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Object* To assemble in a. general form for use in the design of respiratory
equipment, the variety of data on respiratory physiology.

Summary* Data on respiratory physiology are assembled and unified into general
statements which maybe of use to engineers in the design of respira-
tory equipment. The varied and apparently independent data concerned
with partial pressures of oxygen required for adequate arterial blood
saturation; pulmonary ventilation; respiratory rate; human tolerable
resistance to ‘flow; and gas exchange in the lungs are collected and
presented in a generalized framework.
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Introduction

The design of continuous flow or dilutor demand oxygen equipment requires
the establishment and use of certain basic physiologic data. Design of more
specialized equipment such as pressure demand or pressure suit equipment in-
volves additional pertinent physiologic data. At present much of this basic
physiologic ajid technical data has been accumulated at the Aero Medical Labora-
tory and under the auspices of the O.S.R.D. However, it has not been completely
collated or organized. The use of these data in formulating equipment design
has necessitated an organization of the data for the specific purpose. It is
the purpose of this report to present and elaborate those data which are the
bases for the design requirements of Army Air Forces oxygen equipment.

The factors which the engineer must carefully evaluate are few in number
but the volume of data is large and, at times, complexly interrelated. Factors
to be considered are:

1. The pressure of oxygen required to maintain adequate arterial
oxygen.

2. Pulmonary ventilation:

a* Effect of activity, cold, altitude, flight conditions.

b. Inspiratory instantaneous rates of flow.

c. Expiratory instantaneous rates of flow.

d. Maximum instantaneous rate of flow.

e. Moan instantaneous rate of flow.

f. Per cent of total volume drawn in at various rates of flow.

5* Respiratory rate.

!+• Human tolerable resistance to flow.

5* Gas exchange in lungs.

The data pertaining to these factors may have varying significance on the
design of the various types of oxygen apparatus. Basically, all the data should
be reviewed for any system.

Generally, data on any experimental subject are presented as an average
with sufficient data being collected to insure significance. However, the average
figure, if used in the design of respiratory equipment, can give an erroneous
interpretation of equipment value. In no piece of equipment can the design be
confined to the average, for by definition that development excludes 50$ of the
individual users from having adequate protection. A tenable thesis is proposed
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requiring that equipment should be so designed that 90 per cent of its users will
be completely protected. Thus, in prediction of the duration of an oxygen supply,
a value on the basis of average figures would give the flyer an even chance of
having sufficient oxygen; on the basis of the thesis just stated the chances
would be 9 to 1. If the average figure and the standard deviation are known,
then the value to be used is determined as:

Average � (1*3 * Standard Deviation) (l)

In a few cases where necessary a minimum figure may be obtained by a correspond-
ing subtraction.

The Partial Pressure of Oxygen Necessary to Maintain Adequate Aterial Saturation.

This question has been extensively discussed and adequate basic data are
included in Reference 1. Calculations to determine the necessary fraction of
oxygen may be determined by:

f°2 * (P°2 * pC0 2/R.Q.)/(Pa - hi - pCOg - pC0 2/R‘Q.) (2)

or by a simpler formula

t02 = pOa/Pa - U7 (3)

(see glossary for definition of terms)

The desirability of using the latter formula in equipment design has been ably
presented by Boothby and Ferguson (Reference 2 and 3)•

The minimum p0 2 which is desirable has been indicated to be that simulat-
ing ft. breathing air (References 1, 2, 3 and U)• This then is a minimum
value for the equipment; the apparatus must deliver at least this quantity of
oxygen at all conditions of flow and temperature. This is the minimum tolerance.
Alveolar p02 at 5»000ft. is given at 81.6 mm. Hg. by Boothby (Reference 2).
The standard deviation is U-5 mm. Hg. To cover 90% of the cases in maintaining
a p0 2 (alveolar) at 81.6 mm. Hg. the p0 2 for tracheal air in equation (3) will
be fixed at 13U mm. Hg.

Pulmonary Ventilation.

Pulmonary ventilation or the amount of gas mixture breathed has significance
in the design of respiratory equipment (mask and regulator) and also the amount
of oxygen placed in the aircraft. The latter may be discussed briefly. The
amount of oxygen to be carried in aircraft can certainly not be based on an
average nor entirely on experimental results. Reports on experimental flights
(Reference 5) indicate that the average ventilation in flight expressed at
B.T.P.S. is constant up to 33*000 ft. The average value is II4.2 liters per
minute B.T.P.S. for normal flying'conditions. Statistical analysis places the
90% inclusive figure at 18.1+ l/m. Data from actual combat flights (Reference 6)
presents an average of 11.14. l/ra B.T.P.S. and the 90% inclusive figure is 18.2
l/m.
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An average ventilation has also been determined experimentally. No combat
data are now available. The average active figure is presented in Reference 2
as 23.2 l/m B.T.P.S. Ninety per cent of the cases are covered by a value of
37.I l/m. B.T.P.S. From these data it is interesting to note that to cover
adequately approximately 100°£ of the cases under consideration, the value be-
comes 66.0 l/m B.T.P.S. The maximum figure actually observed in these flights
was approximately 60 l/m B.T.P.S.

In the design of equipment the average figure for ventilation has value
for use in design of mechanical lungs for fatigue testing, average values for
varying degrees of work and also is utilized for mechanical mask freezing tests,
etc. The ventilation must be further dissected to determine maximum, minimum,
average and instantaneous flow patterns (Figures 1 and 2). Data on these at
present are taken from Reference 7 (that data which involves no inspiratory
resistance) since a complete study is available for 27 subjects. General
deductions from these data have been transferred to aircraft data. The minimum
ventilation given is 6.1 l/m B.T.P.S., the maximum is 90 l/m B.T.P.S. (Compare
with minimum of 6.8 l/m and maximum of 60 l/m in aircraft experiments. Reference
5). Average respiratory patterns in use for fatigue testing and mask freezing
have been made as composites from the data in Reference 6 and Reference 7
(Figure l).

Effect of Activity, Cold, Altitude and Flight Conditions.

The effect of activity on ventilation has been well shown (References 1,
7 and 8 for specific information). The effect of cold would seem to be negligible
from data presented in Reference 5 although other data (Reference 10, unpublished,
Ferguson RCAF) indicates an increase in ventilation when subjects were exposed
to the cold. Flight conditions seem to effect an increase in the ventilation
of fighter personnel with increasing altitude and of bomber personnel at altitudes
above 33*000 ft. (Reference ll). Altitude introduces a factor above 33*000 ft.
(Reference 8, Reference ll). The effect of clothing, tight fitting parachutes,
and position in the airplane oh respiratory patterns has not been clearly de-
fined. Since it has been shown (Reference 7) that the inspiratory pattern
changes with the type of exercise, further work is indicated.

Instantaneous Rates of Gas Flow.

Instantaneous rates of inspiratory gas flow are of interest from several
points of view. The variation in flow during respiration must be used to
duplicate respiratory patterns. Maximum instantaneous inspiratory flow in-
dicates the maximum flow to be met by the respiratory equipment. The mean in-
spiratory flow has been used by Hart (Reference ll) in mask leakage considerations.

An analysis of the data in Reference 7 with the design of oxygen dispensing
equipment specifically in mind discloses a number of generalities which may
serve as a physiologic basis and form a framework which must be tested experi-
mentally and upon which future data may be applied. These data furnish basic
information about four important respiratory phenomena: minute volume, respira-
tory rate, maximum instantaneous flow, and portions of the respiratory cycle
spent in inspiration and expiration. When the latter three are plotted against
the minute volume certain regularities become apparent (see Figure 3)» The
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relative time of inspiration is less than half at low ventilations and increases
to one half with increasing ventilation. The maximum instantaneous flow may be
determined from these data as given in Figure 3 as:'

M.I.F. . 2.6 V. � 10 (U)

The 90% inclusive maximum instantaneous flow may be calculated from:

M.I.F.(90) = 5*1 V. i- 16 (5)

The 90% inclusive minute volume as taken from Reference 5 may be determined by
the equation:

V.(9Q) - 1.U V. - 2 (6)

The mean inspiratory flow is 0.9 the maximum instantaneous flow and is:

Mean I.F. = 2.3 V. f 9 (7)

and

Mean I.F. (90) = 2.8 V. - li+ (Q)

Figures Ij., 6 and 7 demonstrate that the actual inspiratory patterns can
be generalized. The data from Figures 20, 21, 22, 23, 2JLj. (Reference 7) are
shown plotted as fraction of tidal volume inspired versus flow as a fraction of
the maximum flow. The two figures supply information for determining representa-
tive curves at any minute volume.

Expiratory rates of flow should be categorized similarly. Data used at
present has been taken from Silverman (unpublished). Further data must be
obtained. These data are important in design of expiratory valves. They can-
not be transposed directly to intermittent or continuous pressure breathing
equipment since the effects of the pressure alter the respiratory pattern,
(Reference 13)*

Volumes of Gas at Various Rates of Flow.

The per cent of tidal volume drawn in at various rates of flow has proved
significant in certain aspects of continuous flow equipment, in the design of
demand equipment and in the consideration of mask leakage. Hart (Reference ll+)
indicates that about 29% of the inspired volume of air is inhaled at rates be-
low 79% of peak flow rates and about 60% of the inspired volume is inhaled at
rates below 93% of the peak pate at rest and during exercise. This agrees with
Figure 7» The individual variation is great and the report states that during
quiet breathing 1 - lU% of the inspired volume is inhaled at rates below 10 1/m.

Respiratory Rate.

The general relationship of respiratory rate to ventilation is shown in
Figure 3* At low ventilations, between 5 and 20 l/m, this curve may be sigmoid
although a scatter diagram of the actual data indicates a straight line is more
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applicable. In this range the variation in respiratory rate is great. The
data in Reference 7 indicate that where the average minute volume is 16.6 the
range is from 8 to 2k breaths per minute. The extent of the range at any given
average ventilation decreases with increasing ventilation.

Human Tolerable Resistance to Flow.

Tolerable inspiratory and expiratory resistance to flow has been indicated
(Reference l) and the effect of resistance on flow studied (Reference 7) •

Negative pressures less than one inch water column are unnoticed at 50 liters
per minute flow (see Figure 8). At 100 liters per minute flow suctions as
high as 1.5 inches water column are unnoticed. Maximum instantaneous rates of
flow decrease and the relative time of inspiration increases with increased
inspiratory resistance. Increasing inspiratory resistance decreases the min-
ute volume and the maximum instantaneous rate of flow, and the relative time
of inspiration increases. At high work loads a resistance of 50 mm. (measured
at 60 l/m, 70°C. dry flow) causes a decrease in ventilation and approximately
13% decrease in the maximum instantaneous flow. The greatest reduction of max-
imum instantaneous flow rates for all work loads occurs between 0 and 50 mm.
resistance. Demand and continuous flow equipment require low resistance or
positive pressure and are well below tolerable limits generally. Expiratory
resistance is necessary in pressure demand equipment.

Gas Exchange in the Lungs.

For the design of closed respiratory systems it is necessary to consider
the magnitudes of the gas exchanges which take place in the lungs (Figure 9)*
These changes are: (l) the removal of oxygen from inspired gas (oxygen con-
sumption)! (2) the addition of carbon dioxide to expiredgas (CO2 elimination);
and the addition of water vapor to expired gas (H2O vapor elimination). Oxygen
consumption and carton dioxide production vary among individuals and the re-
spective curves are experimentally determined and represent the 90% inclusive
figures for oxygen consumption and carbon dioxide elimination. No significant
data on water vapor elimination have been found and hence the curve represents
the volume of vapor in expired air saturated at 57°C.
Examples of Applications of the Data.

Continuous Flow System.

The application of these data can be sampled by reference to the schematic
types of continuous flow systems in Figure 10. In a straight continuous flow
system (Figure 10-1) such as the Japanese use, the continuous supply of oxygen
must be carefully related to the volumes inspired under given instantaneous
flows* A use of the data for straight continuous flow may be given. Since
only that part of the flow is used which is flowing during inspiration, the
flow required will be equal to the flow at which a fraction of the inspired
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volume equals the fraction of oxygen required. Thus,

F s MTF x fraction of MIF under which fraction of tidal volume
taken in is equal to the fraction of added oxygen required.

since:

MIF - 2.6 V «• 10 (9)

Fraction added oxygen required - 1.27 (fOg - 0.21) (10)

Fraction of MIF under which fraction of tidal volume is
taken in is equal to the fraction of added oxygen required
taken from Figure U# Curve 2 and between the fractions
0.1 and 0.9 is:

8/9 (1.27(f02 - 0.21)) (11)

The flow required for a continuous flow system without economizer systems is:

F = (2.6 V . 10)(8/9(l.27(f02 - 0.21)))((Pa - U7)/P)(T/Tb) (12)

This equation, due to the inadequacies of the fraction 9/9, is valid when f0 2
is greater than 0.10 and less than 0.90.

Substituting:

f$2 = p02/^a " U7 and solving for an equivalent altitude of 500C ft. the

equation is:

F a 144+ - 0.0006 PaV - 0.0025 Pa * O.57 V (13)

Flows calculated from these data are in fair agreement with Reference 15• When
a reservoir or rebreather reservoir (Figure 10, II and III) are used the re-
lationship of the factors change. These systems are more complex to evaluate
than the demand system. Making the assumption that the reservoir will save
half the oxygen the above equation (9) can be utilized. Values here are
analagous to those in Reference 16 and 17. Further refinements of the formula
to evaluate the effect of a rebreather reservoir can be made from the graphic
data. Limitations of the rebreather economizer due to its volume can be ex-
pressed by:

(V/n)Ae (lit)

and the equation becomes:

2F : (2.6V � 10)(8/9(l.27(f02 -0.21)))((Pa - U7)/P(T/Tb)) (15)

((v/n )/Ve)
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This equation is in error by the amount of flow that occurs during the inspira-
tory cycle and can be further corrected with the use of:

((V/n/Ve) - 8/9(1.27(f02 - 0.21))/2 (16)

An economizer without a rebreather will require the modification of the basic
formula whenever ((v/n)/Ve) is greater than one. With a 700 cc. economizer,
(Y/n)/Ve becomes 1.0 at 15 l/m ventilation which may lead to the statement that
little difference exists in the two systems (Reference 17)• Since these formula-
tions incorporate the fraction of oxygen required they may be utilized to
calculate flows necessary for oxygen therapy and such calculations show good
agreement with Reference 18 and unpublished data from the Aero Medical Laboratory.

Demand System*

In the demand system requirements may be taken from the Figures 3* 5 7
when the value of pulmonary ventilation is set. Army Air Forces equipment is
designed for an average inactive ventilation of 1/m B.T.P.S., and average
active ventilation of 2l\ l/m B.T.P.S. and a maximal ventilation of 60 l/m B.T.P.S.
Using equation (6) the 90% inclusive ventilations are 18 and 32 l/m B.T.P.S.
respectively. Using equation (U) the 90/ inclusive maximum instantaneous flows
are U5, 93 and 166 l/m, respectively. Army Air Forces regulators must be de-
signed to deliver these inclusive flows within the minimum suction requirements.

In the testing of respiratory equipment average data should be employed
and corrected to the 90/ inclusive value. At the present time Army Air Forces
regulators are tested with a mechanical lung which duplicates the breathing
pattern for 18 and 32 l/m ventilation, illustrated in Figure 1. These flow-
time curves were reconstructed from the curves in Figures 3 and 5» In addition
to testing with average (fl.5 Std. Dev.) data, extremes of the range encountered
should also be used. Thus, in the inactive ventilation group (Reference 7)
there is illustrated the flow-time pattern of the lowest ventilation (Figure 2),
which should be duplicated on the mechanical lung. A ventilation pattern for
60 l/m(Figure 2) is used to test performance at maximum respiratory volumes.

The variables of respiratory phenomena discussed above have not been clearly
defined for pressure breathing equipment (Reference 15)* Interrelated physiologic
factors as well as characteristics of equipment complicate the problem but do
not obscure the solution. A similar approach can and will be made to reduce
these factors to generalities for equipment design.

Discussion.

The synthesis of varied and apparently independent data into a unified
and generalized relation is desirable when large and diverse groups of data
exist and this data is to be transferred from the field of physiologic in-
vestigation to serve as a basic requirement for an engineering development.
In addition, such a synthesis has the advantage of establishing a measure for
evaluation of data already existent, permits rapid comprehension of the signif-
icance of such data, readily directs research into channels where sufficient
data are lacking and permits rapid and sufficiently accurate (i.e. 10%) extraction
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of average data for practical application. The presentation of the general
relations of respiratory data in the above report embodies the characteristics
of such a synthesis.

The construction of such a generalized framework is based upon experi-
mental data. The value of such a framework depends upon the accuracy and
validity of the data used. As an example, the average curve for respiratory
rate in Figure 3 embodies a largo range among individual determinations which
is not apparent upon inspection of the curve but is apparent when compared with
other experimental data. Similarly, the curve for water vapor elimination in
Figure 9 is not based on experimental data but calculated on the basis of
certain assumptions (refer to text). Comparison of this curve with experimental
data, as these become available, may show a discrepancy, since the values in
Figure 9 are probably too high.

In spite of the faults of the framework presented in this report, it is
believed to be a worthwhile approach to a synthesis of respiratory data which
should not be considered a definitive attempt but rather a directional attempt
to be modified and corrected by subsequent experimental data. The value of
such an attempt is certainly indicated generally for all field* of investigation*
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Glossary of Abbreviations

F ■ flow of oxygen liters per minute S.T.P.D.

S.T.P.D. ■ 760 mm. Hg., 0°C, dry.

B.T.P.S. z Body temperature and pressure saturated with water vapor at 37°C.
MIF ■ Maximum instantaneous rate of flow, liters per minute B.T.P.S*

V s Ventilation or minute volume in liters per minute B.T.P.S.

fOg s fraction of oxygen required.

P s J60 mm. Hg.

Pa * ambient pressure, ram. Hg.

T = 273°K.
Tb 2 body temperature,

n s number of breaths per minute.

Ve ■ Volume economizer or rebreather in liters.

p02 s partial pressure of oxygen in mm. Hg.

PCO2 r partial pressure of carbon dioxide in mm. Hg.

R.Q. 3 respiratory quotient.

I.F. - instentaneous rate of flow,liters per minute B.T.P.S*
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Figure 1

Standard Inspiratory Flow-time Curves for 16 and 52 l/m Ventilation
Reconstructed from Data Presented in this Report.

Inspiratory flow curves reconstructed from the generalized average data
presented in Figures 3 and 5» These inspiratory curves will result in minute
volumes of approximately 18 and 32 liters per minute. Such curves may be
used as a basis for design of cams for driving mechanical pumps. In order
to obtain the data required for the construction of these curves, the minute
volume must be predetermined.
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Figure 2

Maximum and Minimum Inspiratory Flow-time Curves Obtained
by Tracing of Original Records.

Inspiratory flow curves, obtained by tracing from an original record,
representing minimum and maximum inspiratory flow-time curves. The minimum
flow time curve pertains to a subject with the lowest ventilation and the
lowest respiratory rate in a group of 27 sedentary subjects. These respiratory
curves may also be used for the design of test equipment for respiratory
apparatus•
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Figure 3
Presentation of Average Respiratory Data.

This graph represents several factors in respiration plotted against the
minute volume. The data used for all curves except the 90% inclusive MIF
curve are average data obtained from Reference

The 90% inclusive MIF curve was calculated from the average minute volume
data of reference 7* The standard error of the MIF 90% data, computed for the
data series having the largest standard deviation, is t 0.65 l/m, indicating
that out of any number of future groups of data, 90% of the MIF 90% figures will
fall within t 2 l/m of the indicated values.
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Figure i+
Inspiratory Flow-time Pattern Marked to Obtain Data for

Construction of Curves on Figure 5*

An average inspiratory flow curve for a work load of 620 Kg. meter/min.
obtained from Reference 7* This curve is divided into 7 parts by vertical
lines which intersect the flow curve at i+0* 80 and 120 liters per minute.
Relative flow is obtained from the ratio of fractional flow to maximum flow;
relative volume from the ratio fractional time to total time* A plot of the
latter two against relative flow is illustrated in Figure 5*



TIME
-

SECONDS FIG.
4

Flow—Lifers/Min

$331



Figure 5
Generalized Relative Volume - Relative Flow and Relative Time -

Relative Flow Curves.

Generalized relative volume - relative flow and relative time - relative
flow curves obtained in the manner described in explanation for Figure U*
From these curves average data may be extracted for construction of inspiratory
flow curves and for construction of curves in Figure 7»
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Figure 6

Generalized Relative Volume - Relative Flow Curve to Explain
Construction of Curves in Figure 7»

Generalized relative volume - relative flow curve marked to illustrate
extraction of data used to construct curves of Figure 7* The flow ratio is
arbitrarily selected, i.e. 0.50, and a horizontal line intersecting the relative
volume curve is drawn. The ratio of the area below this horizontal line and
bounded by the relative volume curve (hatched and cross hatched region) and
the total area is plotted against relative flow to obtain data for the con-
struction of curve 2, Figure 7* labelled Total Volume at Fraction. Where the
horizontal line, i.e. 0.50, intersects the relative volume curve, perpendicular
lines are dropped to the abcissa. The ratio of the sum of the areas between
these perpendicular lines end the relative volume curve (cross hatched area)
and the total area beneath the relative volume curve is plotted against relative
flow to obtain curve 1 of Figure J, labelled Total Volume at Fraction or Less.
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Figure 7
Generalized Fractional Volume - Relative Flow Curves

The curves in Figure 7 present generalized inspiratory flow data obtained
from curves in Figure 6 as follows:

(a) Curve 1 is a plot of the ratio of flow (instantaneous flow and
maximum instantaneous flow) against the fraction of volume inspired at a given
instantaneous rate of flow.

(b) Curve 2 is a plot of the ratio of flow against total volume in-
spired at a given instantaneous rate of flow. These data are obtained from
Figure 6 in the manner described in that figure.
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Figure 8

Resistance to Breathing

Data illustrating negative mask pressure in relation to maximum instantaneous
rates of flow. The data were obtained by the instantaneous measurement and re-
cording of pressure in a mask fitted with orifices of varying diameter. The
open circles denote resistances which were not noticed by subjects. The closed
circles denote resistances noticed by the subjects; the closed triangles denote
resistance uncomfortable for short periods.

Curve A represents the maximum allowable inspiratory resistance which is
unnoticed by subjects; curve B represents the maximum allowable resistance which
is noticed but not classified as uncomfortable by subjects.

Data from Reference 1.
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Figure 9

Curves Relating Oxygen Consumption, Carbon Dioxide Elimination and
Water Vapor Elimination to Pulmonary Ventilation.

Curves illustrating the relation of oxygen consumption, carbon dioxide
elimination and water vapor elimination to minute volume. The oxygen con-
sumption and carbon dioxide elimination curves are based on the 90/o inclusive
figure calculated from average data obtained from Silverman, unpublished data.
The reliability of these curves was checked by plotting data from reference
18; open squares represent carbon dioxide elimination and closed squares
repredent oxygen consumption. Notice that these values from reference 18
fall on or below the 90% inclusive curves*

The standard error of the oxygen consumption and carbon dioxide elimination
90% inclusive values, computed for the data series having the largest standard
deviation, is 1 0.001+7 l/m, indicating that out of any number of future groups
of data, 90/o of the oxygen consumption and carbon dioxide 90% inclusive values
will fall within i O.OII4. l/m of indicated values.

The curve for water vapor elimination is calculated, assuming the expired
air is saturated with water vapor at 57°C*
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Figure 10

Sketches of Oxygen Supply Systems.

Schematic sketches of oxygen supply systems are illustrated. Sketch 1
represents a constaxit flow system consisting only of regulator and mask.
Sketch 2 represents a constant flow system consisting of regulator, mask and
a reservoir volume. Sketch 3 represents a constant flow system consisting
of regulator, mask and a rebreather bag. Sketch U represents a demand system
consisting of regulator and mask. Refer to text for further detail.
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