

3NIDIG3W to Ayvaril TVNOIVN

NATIONAL LIGRARY OF MEDICINE

3NIDIQヨW to AdVas！TVNOUVN

NATIONAL LIBEARY OF MEDICINE

ZNIDIGIW tO AEVAEIT IVNOUVN

NATIONAL IIBRARY OF MEDICINE

3rajigaw to A．8Vasil TVNOUVN

NATIONAL LIBRARY OF MEDICINE

3NIDIGIW $\ddagger O$ Ayvalil TVNOIVN m
$\frac{3}{2}$
$\frac{2}{8}$
$\frac{2}{2}$

NATIONAL LIBRARY OF MEDICINE

ЭNIJIQ3W to Aavilell TVNOIVN
nd Wallarn，Rublit

NATIONAL LIERARY OF MEDICINE

NATIONAL LIBRARY OF MEDICINE

उNIDIGZW 50 AצV8日！IVNOITVN

U．S．Departe

NATIONAL LIBRARY Of

子NIDIGヨW fo Aava8！

NATIONAL IIBRARY OF

3NIJIQ3w to Aavasit

NATIONAL LIBRARY OF

3NIDIQJW so kavasil

C
0
8
3
3
3
2
NATIONAL IISRARY OF

3NIDIG3W tO A\＆VAIT
A Wellare，Public

A MANUAL

OF

ORGANIC MATERIA MEDICA.

BRING A

GUIDE TO MATERIA MEDICA OF THE VEGETABLE AND ANIMAL KINGDOMS,

FOR THE
USE OF STUDENTS, DRUGGISTS, PHARMACISTS, AND PHYSICIANS.

BY
JOHN M. MAISCH, Ph. M., Phar. D.,

FIFTH EDITION.

WITH TWO MUNDRED AND SEVENTY ILLUSTRATIONS.

PHILADELPHIA:
LEA BROTHERS \& CO.
1892.

> QQ
> M231m 1892 fum no 10982 Ulm 3

Entered according to Act of Congress, in the year 1892, by LEA BROTHERS \& CO.
In the Office of the Librarian of Congress, at Washington, D.C.
All rights reserved.

PREFACE TO FIFTH EDITION.

In its present form the "Manual" differs from that of the preceding edition mainly in this, that the recent observations and investigations on the various articles of materia medica, as far as they come within the scope of this work, have been incorporated, and that the pronunciation of the systematic names of plants and animals has been indicated by marks of accent. In addition to this, the text has been carefully revised, with the view of rendering the characterization of the drugs and of their constituents even more precise and available for critical research; a number of new illustrations, partly replacing others, have been prepared in elucidation of structural descriptions; and the pharmacopœial drugs have been more conspicuously distinguished by the selection of smaller type for those articles which are not recognized by the Pharmacopeia, or which at present are scarcely ever met with in commerce. Of the same importance as pharmacophial crude drugs appear to be such as-like Juniperus virginiana, Rhamnus Purshiana, etc.-bear a close resemblance to officinal ones, or which-like Sabadilla, Coccuhus indicus, etc.-are the sources of proximate principles admitted into the Pharmacopeia as important remedies; hence, such drugs have been designated by the same kind of type.

In indicating the pronunciation the U. S. Pharmacopœia has been closely followed; but in several cases, where different pronunciations appear to be sanctioned by good authorities, the two forms are given side by side. On page 79 it was overlooked to alter the word A'lthæa to Althæ'a, as correctly given on page 313 .

The best thanks of the author are due to several correspondents for their valuable suggestions.

PREFACE T0 FOURTH EDITION.

Eight years ago, when the first edition of this " Manual" was published, the author explained the scope of the work as embracing the drugs of animal and vegetable origin recognized by the Pharmacopœias of the United States and Great Britain, supplemented by important non-officinal drugs, and by others recently introduced or revived, which seemed to deserve attention.

The system of classification which was adopted in the first has been retained in the later editions with very slight modifications; it has been found to be readily comprehended and easily applied by those for whose use the work is intended, although the author is conscious of its imperfections and the inherent causes for the same.

It is in the nature of descriptive works that a certain monotony-inseparable from the material treated of-renders the text uninviting to the casual reader not interested in the subjects, or ignorant of the intrinsic importance of the various details. For practical application, however, a description of the essential physical, histological, and chemical characters of the organic drugs is needful, and to the student is of the utmost importance, as a guide in studying the different drugs and determining the variations in characteristics caused by diverse agencies. While the physical characters may, as a rule, be readily ascertained and com-
pared with those of similar drugs without the use of special appliances, a moderately magnifying pocket lens will be found useful as an aid in demonstrating the outlines of structure, and its use is likely to lead to more minute research by means of the microscope. A knowledge of the proximate principles of drugs is of value on account of the medical properties which these principles may possess, and for the equally, if not more, important reason that their behavior to solvents and to other compounds will determine, both for galenical and extemporaneous preparations, the selection of a suitable menstruum and the avoidance of chemical incompatibles. But in scanning the pages of the "Manual" the careful observer and the attentive student cannot help observing how much there still remains to be done for many drugs, notably those indigenous to North America, as well as most of those which have been introduced during recent years.

In preparing each successive edition the author has kept the above objects steadily in view, and is gratified to observe that the general plan which he has adopted has met the approval of most teachers of pharmaceutic materia medica, and that the book has steadily gained in favor with students and others using it. The author hopes that it may also, in a measure, have accomplished the ulterior purpose of stimulating original research in some of the directions indicated above.

The principal change made in the present edition is in the list of drugs arranged according to origin, in which Bentham and Hooker's "Genera Plantarum" (published in London from 1862 to 1883) has been followed. The arrangement according to that high authority seemed to be
particularly appropriate at the present time in view of the approaching revision of the United States Pharmacopœia. While only a few drugs have been added to those previously described, every page of the present issue will bear evidence of the endeavor to make it conform to the present knowledge of the drugs in use, embracing the results of all important new investigations, and it is hoped that the work will prove to be as acceptable and useful as the preceding issues.

 $x^{2} \times 2=5+3$

Hes 2

 2
 \qquad

CONTENTS.

PAGE
List of Illustrations xiii
Introduction 25
PART I.-ANIMAL DRUGS.

1. Animals 27
2. Eggs 32
3. Anastomosing fibrous tissue 33
4. Membranous tissues and gelatins 34
5. Secretions and excretions 35
6. Calcareous skeletons and concretions 42
PART II.-CELLULAR VEGETABLE DRUGS.
7. Roots.-Radices 45
8. Rhizomes.-Rhizomata 101
9. Tubers and Bulbs.-Tubera et Bulbi 149
10. Twigs and Woods.-Stipites et Ligna 159
11. Barks.-Cortices 167
12. Leaves and Leaflets.-Folia et Foliola 211
13. Herbs.-Herbæ 257
14. Leafy tops.-Cacumina, Summitates 302
15. Flowers and Petals.-Flores et Petala 305
PAGE
16. Fruits.-Fructus 322
17. Seeds.-Semina 365
18. Cellular drugs not readily recognized as distinct organs of plants 398
PART III.-DRUGS WITHOUT CELLULAR STRUCTURE.
19. Extracts and Inspissated Juices.—Extracta et Succi Inspissati 423
20. Sugars.-Sacchara 439
21. Gums.-Gummata 445
22. Gum resins.-Gummi-resinæ 448
23. Resins.-Resinæ 457
24. Balsams and Oleoresins.-Balsama et Oleoresinæ 467
25. Volatile oils and Camphors. - Olea Volatilia et Camphoræ 479
26. Fixed Oils and Waxes.-Olea Pinguia et Ceræ 491
Drugs arranged according to origin 513
Alphabetical Index 537

LIST OF ILLUSTRATIONS.

FIG. PAGE

1. Cantharis vesicatoria 28
2. Cantharis vittata 28
3. Mylabris cichorii 29
4. Coccus cacti 30
5. Chinese musk sac 36
6. Mexican sarsaparilla; transverse section, microscopic appearance 50
7. Section through nucleus sheath ; Honduras sarsaparilla 51
8. - Mexican sarsaparilla 51
9. - Rio Negro sarsaparilla 51
10. - Jamaica sarsaparilla 51
11. Mexican sarsaparilla ; transverse section 51
12. -bundle 52
13. Jamaica sarsaparilla ; bundle 52
14. - transverse section 52
15. Honduras sarsaparilla ; bundle 53
16. - transverse section 53
17. Rio Negro sarsaparilla ; transverse section 53
18. - bundle 53
19. Senega ; transverse sections 55
20. - microscopic appearance 55
21. False senega; transverse section 56
22. Saponaria ; transverse section 57
23. Gentian root ; longitudinally sliced 58
24. - transverse section 59
25. Taraxacum ; transverse section 61
26. Cichorium ; transverse section 62
27. Pyrethrum ; transverse section 63
28. Pyrethrum germanicum ; transverse section 63
29. Inula ; transverse section 64
30. Lappa ; transverse section 65
FIG. PAGE
31. Apocynum cannabinum ; transverse section 67
32. Stillingia; transverse section 69
33. Angelica; transverse sections 70
34. Levistieum; transverse section 71
35. Pimpinella; transverse section 72
36. Petroselinum ; transverse section 73
37. Sumbul ; section 73
38. Imperatoria; root and transverse section 74
39. Phytolacca ; transverse section 76
40. Belladonna; transverse section 78
41. Althæa; transverse section 79
42, 43. Calumba; transverse sections 82
42. Rhaponticum ; transverse section 83
43. Rhubarb; section near the cambium 85
44. Oxalate of calcium crystals in rhubarb 85
45. Russian rhubarb ; transverse section 85
46. Chinese rhubarb; transverse section 86
47. European rhubarb; transverse section 86
48. Kava root; transverse section 88
49. Glycyrrhiza glabra; transverse section 89
50. Glycyrrhiza glandulifera; transverse section 89
51. Ipecacuanha; transverse section 91
52. - root 92
53. Striated ipecacuanha 92
54. Undulated ipecacuanha 92
55. Apocynum androsæmifolium ; transverse section 94
56. Gelsemium; transverse section 95
57. Pareira brava; root and transverse sections 97
58. Rhatany ; transverse sections 100
59. Filix mas; transverse section 106
60. - surface of peeled rhizome 106
61. Zingiber; transverse section 108
62. - starch granules 108
63. Jamaica ginger 109
64. East India ginger 109
65. Zedoaria ; transverse section 110
66. Galanga ; rhizome 111
67. - transverse section 111
68. Round turmeric 112
69. Long turmeric 112
70. page
71. Curcuma; transverse section 112
72. Calamus ; transverse section 114
73. Iris florentina ; transverse section 115
74. Triticum repens; rhizome aud transverse section 116
75. - transverse section ; magnified. 116
76. Veratrum ; longitudinal section 118
77. - transverse section 118
78. Dracontium ; transverse section 120
79. Iris versicolor; rhizome and section 122
80. Cypripedium pubescens and C. parviflorum ; rhizomes 123
81. Sanguinaria ; rhizome and section 125
82. Geranium ; rhizome and sections 126
83. Tormentilla ; rhizome and section 127
84. Bistorta ; rhizome 128
85. Podophyllum ; rhizome 129
86. Asclepias Cornuti ; rhizome 131
87. Valeriana ; longitudinal and transverse sections 132
88. Arnica ; transverse section of rhizome 134
89. - section of rootlet 134
90. Serpentaria ; rhizome and transverse section 135
91. Hydrastis ; rhizome and transverse section 139
92. Helleborus niger ; transverse section of rhizome and root 141
93. Helleborus viridis; transverse section of rhizome and root 141
94. Cimicifuga ; transverse sections of rhizome and root 143
95. Gillenia stipulacea; rootlets 144
96. Gillenia trifoliata; rootlets 144
97. Leptandra ; transverse sections of rhizome and root 146
98. Menispermum ; transverse section of rhizome 147
99. Jalap tuber 151
100. Jalap ; transverse section 151
101. Aconitum ; tubers and transverse section 153
102. Colehicum ; tuber and transverse section 155
103. Salep ; tubers and transverse section 157
104. Scilla; bulb 157
105. Dulcamara; transverse section 161
106. Gouania ; transverse section 162
107. Cinchona Calisaya; radial longitudinal section 172
108. Cinchona lancifolia ; transverse section 172
109. Cinchona micrantha; transverse section 173
110. Cinchona Calisaya; bark 177
ria. PAGK
111. Cinchona scrobiculata ; bark 177
112. Calisaya bark, quilled; transverse section 177
113. - flat, inner layer ; transverse section 178
114. - outer layer; transverse section 178
115. Cinchona succirubra; transverse section 179
116. Salix ; transverse section 186
117. Rubus villosus, bark ; transverse section 190
118. Granati cortex ; transverse section, magnified 5 diam 191
119. - magnified 40 diam 191
120. Simaruba ; transverse section 193
121. Frangula; transverse section, magnified 10 diam. 195
122. Frangula; transverse section, magnified 80 diam 195
123. Mezereum ; transverse section, magnified 15 diam. 201
124. Cinnamon from China and Ceylon 206
125. Angustura bark, one-half natural size 209
126. Angustura ; transverse section, magnified 10 diam. 209
127. Cascarilla; quill 210
128. Cascarilla; transverse section, magnified 5 diam. 210
129. Rosmarinus ; branch and flower 215
130. Boldus; leaf 216
131. Pilocarpus; leaflet 217
132. Eucalyptus globulus; leaf 219
133. Cheken leaves 220
134. Uva ursi ; plant 222
135. - leaves 223
136. Manzanita leaves 224
137. Cassia acutifolia: legume and leaflet 225
138. Argel leaf 225
139. Coriaria leaf 225
140. Tephrosia leaflet 225
141. Cassia elongata; legume and leaflet 226
142. Cassia obovata; legume and leaflet 227
143. Tripoli senna; leaflets and legumes 227
144. Sesamum ; flowering branch 229
145. Peruvian Coca leaf, lower side 230
146. Bolivian Coca leaves; natural size 230
147. Belladonna; branch, fruit, and seed 232
148. Stramonium ; flowering branch 235
149. Hyoscyamus ; flowering branch 236
150. - calyx, containing capsule 236
YIG. PAGE
151. Digitalis ; leaf of first and second year's growth 238
152. Matico; leaf 239
153. Salvia ; leaf, upper and lower surface 240
154. Hamamelis ; leaf 241
155. Tea leaves 242
157, 158. Turnera leaves 244
156. Aplopappus; leaf 244
157. Castanea ; leaf 245
158. Chimaphila umbellata; flowering stem 247
159. Gaultheria ; leaf 248
160. Buchu leaves and Empleurum serrulatum 249
161. Eriodictyon ; leaf, upper and lower surface 251
162. Comptonia; leaf, upper and lower surface 252
163. Aconitum ; leaf 253
164. Rhus Toxicodendron ; leaf 255
165. Ruta ; leaf with axillary branch 256
166. Conium ; portion of pinna 257
167. Chondrus crispus ; plant 261
168. - narrow form 262
169. Gigartina mamillosa 262
170. Fucus vesiculosus 263
171. Cetraria islandica 264
172. Anemone pratensis; leaf with flowering scape 266
173. Sarothamnus scoparius; flowering branch 271
174. Drosera rotundifolia 275
175. Eupatorium perfoliatum ; flowering top 276
176. Lobelia; branch with flowers and fruit 285
177. - flower and section ; magnified 286
178. - seed ; magnified 286
179. Scrophularia ; flower and corolla 287
180. Mentha piperita ; flowering tops 288
181. Mentha viridis; flowering tops 289
182. - leaf. 289
183. Origanum vulgare ; flower and corolla, magnified 291
184. Melissa ; flower and corolla, magnified 293
185. Hedeoma ; flower and corolla, magnified 294
186. Monarda ; flower, magnified 295
187. Sabina 303
188. Caryophyllus ; bud and longitudinal section 307
189. - transverse section, magnified 15 diam. 307
rig. PAGE
190. Santonica ; flower-head and section, magnified 10 diam. 308
191. Orange flowers; unexpanded, petals removed, and sec- tion 309
192. Brayera ; branch of panicle, and flowers 311
193. Matricaria ; flower-head and parts 314
194. Anthemis nobilis ; ray and disk-floret, and section 316
195. Arnica montana; ray and disk-floret 317
196. Lavender flower and corolla 321
197. Juniperus ; catkin, galbulus, and seed 325
198. Ficus ; branch, fruit, and flowers 328
199. Rhamnus ; fruit, transverse and longitudinal sections 330
200. Cubeb; fruit, natural size and magnified 331
201. Caryophylli fructus 334
202. Cocculus ; fruit and longitudinal section 335
203. Diospyros; fruit and transverse section 339
204. Colocynth ; longitudinal and transverse section 343
205. Cassia Fistula ; part of fruit 344
206. Poppy capsules and seeds 346
207. Illicium verum ; fruit 348
208. Illicium religiosum ; fruit 348
209. Malabar cardamom 349
210. Cardamom seed; transverse and longitudinal section 349
211. Ceylon cardamom and seeds 349
212. Coriandrum ; fruit and sections 353
213. Conium ; fruit and sections 354
214. Anisum ; fruit and sections 356
215. Feniculum ; fruit and transverse section 358
216. Cumin ; fruit and sections 359
217. Carum ; fruit and sections 360
218. Anethum ; fruit and transverse section 361
219. Orange peel ; transverse section 362
220. Granatum ; fruit and longitudinal section 364
221. Cydonium ; seed and section 368
222. Almond ; seed and section 369
223. Pepo; seed and cotyledon 371
224. Physostigma ; seeds 375
225. Physostigma; cotyledons 375
226. Physostigma cylindrospermum 375
227. Sinapis ; seed, embryo, and transverse section 378
228. Nux vomica ; seed and section 379
FIG. page
229. Nux vomica; section, magnified 380
230. Ignatia ; vertical section 382
231. Staphisagria; seed and section 383
232. Linum ; seed and section 384
233. Strophanthus; seed with comose awn 386
234. Nutmeg with mace and transverse section 387
235. Wild nutmeg with mace 387
236. Ricinus ; fruit, seed, and sections 389
237. Tiglium ; seeds and longitudinal section 390
238. Stramonium ; fruit and seed with sections 392
239. Hyoscyamus ; fruit, seed, and section 393
240. Sabadilla ; fruit and seed with section 394
241. Colchicum ; seed and section 396
242. Galla ; entire and section 400
243. Gallæ chinenses 401
244. Gallæ japonicæ 402
245. Ergotized rye 405
246. Ergota 405
247. - with fruit-heads 405
248. - section of head 405
249. Crocus ; style with stigmas, and magnified stigma 409
250. Cotton fibres 410
251. Kamala ; gland and hairs 413
252. Lupulin 414
253. Lycopodium 415
254. Pollen of pine 416
255. Yeast cells 416
256. Wheat starch 417
257. Corn starch 417
258. Rice starch 417
259. Maranta starch 418
260. Potato starch 418
261. Canna starch 418
262. Curcuma starch 418
263. Sago starch 419
264. Cassava starch 420
265. Altered starch granules from tapioca 420
266. Barley starch 420
267. Oat starch 421

A MANUAL OF MATERIA MEDICA.

INTRODUCTION.

In arranging the vast mass of material within our reach for the study of Materia Medica several methods may be followed:

1. An alphabetical arrangement, while it affords us all the advantages due to facility of references, lacks the essential requisites of a systematic investigation of the subject.
2. The classification usually adopted in works intended for the use of Medical Students and Physicians is based upon a similarity in the action of drugs on the animal economy; and it presents obvious conveniences for the purpose.
3. Another method of classification is founded upon the chemical relation of substances which have a definite composition, and upon the botanical and zoölogical origin of organic drugs. This method has been followed by Pereira, Guibourt, Royle, Bentley, and by Flückiger (Grundriss), and is employed in the "Pharmacographia" and in other valuable and instructive works. Its chief advantage, as far as Vegetable Materia Medica is concerned, is due to the close chemical and physiological relations of the different parts of the same species, and in many instances of the different plants belonging to the same natural order. A synopsis of such classification will be found in the present volume, arranged according to Bentham and Hooker's "Genera Plantarum."
4. But the primary object of Pharmacognosy or Materia Medica, as more especially adapted to the needs of the Pharmacist and the Druggist, is to enable us to recognize drugs, to determine their quality, to detect their adulteration, and to distinguish the characteristic elements of those which are closely allied. Organic drugs which resemble one another in physical and structural properties are thus naturally brought together ; and the special properties of each are made the more prominent by comparison. Classifications based on these considerations have been elaborated by Berg, Schleiden, Planchon, Flückiger (Lehrbuch), Wigand, Marmé, and others, and have been found useful and instructive. With such modifications as we have thought desirable, such a system has been adopted in this work.

The medical properties and doses of the various drugs, and the treatment of poisoning from excessive doses of what are usually designated as "poisonous drugs," are briefly presented as matters of important information; but it is not the design of this treatise to give instruction in the therapeutical application of medicines.
The development of the different organs of plants and of the histological changes incident to their growth, and the botanical relations of the different natural orders and species of medicinal plants, are subjects which are foreign to the scope of our work. Their consideration is appropriate to a separate course as an introduction to the study of Materia Medica proper. Bastin's "College Botany," Gray's"Structural Botany," Bentley's" Manual of Botany," and the works of Sachs, DeBary, and Thomé, will prove excellent books of reference and study for those who desire information, which it is not the object of this treatise to furnish, on Vegetable Anatomy, Organography, and Systematic Botany.

PARTI.
 ANIMAL DRUGS.

They consist either wholly or in part of cellular tissue, except a few which are free from it. On being heated, they give off vapors having a peculiar animal empyreumatic odor, resembling the odor of burning horn or urine.

1. ANIMALS.

CANTHARIS.-Cantharides.

Spanish flies.
Cántharis (Lyt'ta, Fabricius) vesicatória, De Geer.
Class, Insecta ; order, Coleoptera.
Habitat.-Southern and Central Europe, mainly upon oleaceæ and caprifoliaceæ.

Collection.-By shaking the trees or shrubs, or beating the branches in the morning, and killing the insects with hot water, or, after placing them in a well-closed vessel, with oil of turpentine, carbon disulphide, or ammonia. Yield of dry insects about 40 per cent.
Description.-From 15 to 30 millimeters ($\frac{3}{5}-1 \frac{1}{5}$ inches) long, and 6 to 8 millimeters ($\frac{1}{4}-\frac{1}{3}$ inch) broad; head obtusely triangular and somewhat heart-shaped, with filiform,
in the upper part, black antennæ; thorax obtusely quadrangular ; the flattish cylindrical body covered with the ample membranous, brownish, transparent wings, and these with the long wing-cases, which, like the other parts, are of a shining copper-green color; odor strong and disagreeable; taste acrid. They yield a grayish-brown powder, containing green, shining particles.

Cantharides should be thoroughly dried at a temperature of $40^{\circ} \mathrm{C} .\left(104^{\circ} \mathrm{F}\right.$.) and preserved in well-closed vessels. On keeping cantharides without previous drying in this manner, the addition of a little oil of turpentine, chloroform, benzol, or carbon disulphide is useful for preventing the attack of mites.

Fig. 1.

Cantharis vesicatoria.

Fig. 2.

Cantharis vittata.

Constituents.-Cantharidin, $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4}$ (colorless scales or prisms, soluble in alcohol, ether, chloroform, fats, volatile oils, glacial acetic acid, also sparingly in water ; sublimable ; with alkalies yields cantharidates), also fat, odorous compound, various extractives, and salts ; ash about 6 per cent. ; moisture about 10 per cent.

Valuation.-The powder is exhausted with chloroform (containing some HCl) or acetic ether, the solution evaporated, fat and coloring matter removed by carbon disulphide; yield $0.4-0.7$ per cent. cantharidin. It is with difficulty obtained in crystals from old cantharides; these may be treated with potassa and then with hydrochloric
acid, or mixed with magnesia and water, dried, acidulated, deprived of oil by petroleum benzin, and exhausted with chloroform, etc.

Other species.-Cántharis (Epicáuta, Fabricius) vittáta, Latreille, potato fly, indigenous to the United States ; wingcases black, each with a yellow margin, and a yellow stripe along the middle; contains, when fresh, 1.3 per cent. cantharidin.

Mylábris cichórii, Fabricius, and M. phaleráta, Pallas. Chinese blistering flies. Indigenous to Southern and Eastern Asia; black, wing-cases with two bands and at the base with two spots;

Fig. 3.

Mylabris cichorii. bands and spots orange yellow ; contain 1.0-1.2 per cent. cantharidin.

Mylábris bifasciáta, from Southern Africa. About 25 millimeters (1 inch) long; black, upon the wing-cases two undulating narrow dark yellow bands; contain 1.0 to 1.09 per cent, cantharidin.

Properties. - Diuretic, aphrodisiac, acrid poison; externally, rubefacient, vesicant. Dose, 0.01 to 0.07 gram (gr. $\frac{1}{6}-\mathrm{gr} . \mathrm{j}$), mostly in form of tincture.

Anticlotes. - Evacuation (stomach-pump, or emetics); demulcents (barley water, flaxseed tea-not oils, or oil emulsions) ; morphine.

COCCUS.-Cochineal.

Coccionella.
Cóccus cácti, Linné.
Class, Insecta ; order, Hemiptera.
Habitat - Mexico and Central America, upon Opúntia cochinillífera, Miller, and other species.

Collection. - Cultivated; the wingless females, after fecundation, increase in size; they are brushed off from the plants and killed by hot water, or

Fig. 4.

Coccus cacti.-Female insect, natural size ; a, before, and b, c, after impregnation, dry, and soaked in water. the heat of an oven.

Description. - About 5 millimeters ($\frac{1}{5}$ inch) long, oblong, angular, flat or concave beneath, and with 6 short legs, convex above, annulate and wrinkled, purplish-black or gray, yielding a dark red powder ; odor faint, taste slightly bitter.
Granilla is an inferior kind, and consists of the smaller and of uncultivated insects.

Adulleration.-The silvery-gray cochineal with carbonate or sulphate of barium and lead; the black cochineal with graphites, ivory black, or manganese dioxide ; on maceration in water the powders are separated.

Valuation.-Exhausting with boiling distilled water, and decolorizing the cold decoction with potassium permanganate, preferably in the presence of a little indigo-carmine.

Constituents.-About 10 per cent. of carminic acid, $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{10}$ (brownish-purple, yielding a red powder; very soluble in water, alcohol, and alkalies, precipitated purple by earths; insoluble in fats and volatile oils; splits into sugar and carmine red, $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{7}$, a vermilion-red powder, also soluble in water, alcohol, and alkalies) ; about 18 per cent. of wax and fat; the wax, coccerin, forms the wool-like covering of gray cochineal ; the fat consists of myristin, liquid fat, and fat acids ; various organic compounds ; ash about 3 per cent. (not much more than 1 per cent., Bril. Phar.); moisture about 6 per cent.

Properties.-Stimulant, antispasmodic, diuretic, chiefly used for its coloring-matter. Dose, 0.06 to 1 gram (gr. $\mathrm{j}-\mathrm{xy}$).

Carmine is the precipitate obtained from the decoction of cochineal with alum or cream of tartar, and contains 50-60 per cent. of coloring-matter, the balance being moisture, nitrogen compounds, traces of wax, and some ash.

BLATTA.-COCKroach.

Blátta (Periplanéta, Burmeister) orientâlis, Linné.
Class, Insecta; order, Orthoptera.
Habitat.-Asia, now found in most parts of the world, in kitchens and damp, warm rooms.

Deseription.-About 25 millimeters (1 inch) long, oblong, flat ; reddish-brown or black-brown; antennæ long, filiform; head hidden beneath the prothorax; wings in the male long, in the female very short ; odor very disagreeable.

Constituents.-Fetid oil, extractive, antihydropin (crystallizable, not diuretic), trimethylamine, ammonia.
Properties.-Diuretic. Dose, 0.3 to 0.6 gram (gr. v-x), in powder or tincture.

Other species of Blatta resemble the above in odor and perhaps in properties. B. gigántea of the West Indies is about 5 centimeters (2 inches) long. B. americina of North America is 25 to 30 millimeters (1 to $1 \frac{\mathrm{f}}{\mathrm{inch} \text {) long. B. germánica }{ }^{\text {a }} \text {. }}$ of Central Europe is 10 to 12 millimeters (about $\frac{1}{2}$ inch) long.

HIRUDO.-Leech.

1. Sanguisúga medicinális, Savigny; and 2. San. officinális, Sav. Class, Vermes; order, Annelida; sub-order, Apoda; family, Hirudinea.

Habitat.-1. Central and Northern Europe (Swedish or German leech) ; 2. Southern Europe (Hungarian leech); in fresh-water ponds.

Deseription.-Body 7 to 15 centimeters (3 to 6 inches) long, smooth, soft, round, somewhat flattened, narrowed toward both ends, composed of 90 to 100 rings; posterior end terminated by a broad disk, anterior end by a narrower disk, in the centre with the mouth, containing 3 jaws, each with a double row of teeth ; back olive-green or blackish-green, with 6 longitudinal stripes dotted with black; belly yellowish-green or olive-green -No. 1 with numerous black spots, No. 2 with a black line on each side, unspotted. No. 1 draws readily about its own
weight of blood; No. 2 draws more, and a larger amount of blood will flow after the animal has fallen.

Preservation.-In clear river water in a shady place, free from noxious vapors; temperature 10° to $20^{\circ} \mathrm{C}$. $\left(50^{\circ}\right.$ to $68^{\circ} \mathrm{F}$.) ; the bottom covered or the greater part of the vessel filled with pebbles, turf, moss, some charcoal.

Leeches gorged with blood should be kept by themselves, and not used for six months or more; they may be made to disgorge the blood by placing them for a short time in a solution of table salt.

Uses.-For local depletion.

2. EGGS.

OVUM.-Egg.

Origin.-Gállus Bánkiva, var. domésticus, Temminck, s. Phasiánus Gállus, Linné. Class, Aves ; order, Gallinæ. Habitat.-Java and Cochinchina, domesticated.
The egg consists of the shell and lining membrane about 10 per cent., albumen 60 , and yolk 30 per cent.

1. Testa ovi, Egg-shell.-Composed of $90-97$ per cent. calcium carbonate, 1-5.7 calcium and magnesium phosphates, and 2-47 organic matter.
2. Albumen ovi, White of egg.-Weight 20 to 26 grams ($3 v-v j s s)$. Contains $82-88$ per cent. water and 12-18 per cent. solid constituents, mostly albumin, traces of fat, sugar, and extractive, and about 0.65 ash, of which 42 per cent. is KCl and 9 NaCl , the remainder being carbonates, phosphates, and sulphates of alkalies, calcium, magnesium, and iron.
3. Vitellus ovi, Yolk, Yell:-Contains 48-55 per cent. water, 16 vitellin (a proteid related to casein, mixed with albumin), 30 fat, 1.5 inorganic salts (chlorides, sulphates, and phosphates of potassium, sodium, calcium, and magnesium),
0.42 cholesterin ; also lecithin, coloring-matter, lactic acid, sugar.

Properties and Uses.-Egg-shell is antacid. White of egg is nutritious, and used for the clarification of liquids and as an antidote to metallic poisons. Yelk is nutritious, and used for emulsionizing oils and as a dressing for burns, etc.

3. ANASTOMOSING FIBROUS TISSUE.

SPONGIA.-Sponge.

Origin.-Spóngia officinális, Linné. Class, Poriphera; order, Ceratospongix.

Habitat. -In the sea attached to rocks; sometimes planted.
Collection.-By diving and cutting, or the inferior kinds by tearing from the rocks with a forked instrument. The gelatinous animal matter is removed by exposure and washing.

Description.-A framework consisting of long, elastic, ranifying, and anastomosing fibres, and traversed by numerous smaller or larger cavities and pores; yellowish, brownish, or brown ; soluble in potassa solution with evolution of ammonia ; charred by heating, giving off empyreumatic ammoniacal vapors.

The best kind is the soft, cup-shaped Turkey sponge, collected on the coast of Asia Minor and Syria from Euspóngia mollíssima, O. Schmidt. Zimocca sponge, from Euspóngia Zimócca, Schmidt, coast of Greece, is flatter, harder, and less elastic. Bathing sponge, from Euspóngia équina, Schmidt, North African coast, is nearly spheroid and coarse. The sheeps'-wool, Bahama, Florida, and Nassau sponges are obtained from the West Indies from different varieties of the preceding species.
Constituents.-Spongin (slowly soluble in cuprammonium solutions ; soluble in KHO with evolution of NH_{3}; yields with $\mathrm{H}_{2} \mathrm{SO}_{4}$ leucin and glycocoll [glycin]) ; various salts; when free from sand, etc., ash 3-4 per cent.

Uses.-For cleaning, absorbing liquids, dilating cavities (sponge tents); for preparing burnt sponge, spongia usta, by
heat in covered vessels (yield 30-35 per cent.) ; contains silica, potassium and sodium chloride and bromide, calcium carbonate and sulphate, and about 1.8 per cent. of iodine, combine with sodium and potassium.

4. MEMBRANOUS TISSUE AND GELATINS.

ICHTHYOCOLLA.-Isinglass.

Colla piscium. Russian isinglass.
Origin.-Acipénser Húso, Linné (belugo) ; Ac. Güldenstäd'tii, Brand et Ratzeburg (osseter) ; Ac. ruthénus, Linné (sterlet) ; Ac. stellátus, Pallas (sewruga). Class, Pisces; order, Sturiones (Ganoidei, Acipenseridæ).

Habitat.-Caspian and Black Seas and tributary rivers.
Preparation.-The swimming bladder is cut, washed, deprived of the outer layer, and dried.

Description.-In separate sheets (leaf isinglass), several sheets folded together (book isinglass), or rolled and folded into various forms (staple isinglass), of horny or pearly appearance, whitish or yellowish, semi-transparent, iridescent, tough, tearing parallel with the fibres, inodorous, insipid; almost completely soluble in boiling water and in boiling diluted alcohol. The solution in 24 parts of hot water forms, on cooling, a transparent jelly.

Other kinds.-American isinglass. The sounds of Gádus merlúccius, Linné (hake), and Otólithus regális, Ouvier (weak fish), dried in thin sheets or ribbons.

Purse or pipe isinglass. Fish sounds dried without being cut open.

Japanese or Chinese isinglass (agar-agar) is prepared from Eucheúma spinósum, Agardh, Gracilária lichenoídes, Agardh, and other algæ.

Constituents.-Gelatin (glutin) with about 2 (the inferior kinds sometimes 30) per cent. of insoluble membrane; ash about 0.5 per cent.

Properties.-Emollient, nutritive, externally as a protective.

GELATINA.-Gelatin.

Preparation.-Bone cartilage, skins, tendons, and ligaments are boiled in water until dissolved, and the resulting jelly is dried in the air.

Description.-Thin, transparent sheets, or porous and opaque layers, or shreds; the solution in hot water is colorless and inodorous. Inferior kinds of gelatin are called glue. It dissolves freely in acetic acid (liquid glue); its aqueous solution is not precipitated by dilute acids, alum, lead acetate, and ferric salts; it is precipitated by tannin; its solution, containing $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$, yields an insoluble compound on exposure to light.

Composition.-Glutin contains about 50 per cent. C, 18 N , $7 \mathrm{H}, 24 \mathrm{O}$, and 0.5 S .

Chondrin resembles gelatin ; it is obtained from the cartilages of the ribs and other non-ossifying cartilages; its aqueous solution is precipitated by alum, lead acetate, ferric salts, acetic acid, and a small quantity of mineral acids ; it is not precipitated by tannin or mercuric chloride.

Properties.-Emollient, slightly nutritive, externally as a protective.

5. SECRETIONS AND EXORETIONS.

a. Friable, not Fusible.

MOSCHUS.-Musk.

Origin.-From the preputial follicles of the male animal, Móschus moschíferus, Linné. Class, Mammalia; order, Ruminantia; family, Cervidæ.

Habitat.-Central Asia.

Deseription.-Irregular crummy, somewhat unctuous grains, dark reddish-brown, and in the anhydrous state almost inodorous ; the commercial article contains about 10 per cent. of moisture, and has a peculiar penetrating and persistent but not ammoniacal odor and bitterish taste. Musk is contained in oval or roundish sacs about 5 centimeters (2 inches) in diameter, and about 2 centimeters ($\frac{4}{5}$ inch) thick; on one side invested with a smoothish membrane, on the other side covered with stiff, appressed, grayish hairs concentrically arranged around two orifices

Fig. 5.

Chinese musk-sac.
Lower surface.
Upper surface.
near the centre; in the muscular coat with a portion of the thin penis. Strong alcohol dissolves about one-tenth the weight of musk ; the tincture is light brownish-yellow, and on the addition of water becomes slightly turbid. Water dissolves fully one-half the weight of musk, the solution being deep brown, faintly acid, and strongly odorous. Macerated with oil of turpentine musk disintegrates, forming, when viewed under the microscope, brownish amorphous translucent particles. The secretion, freed from skin and hairs, on ignition gives off a somewhat urine-like odor, and leaves 6 to 8 per cent. of a gray ash. The odor is materially altered by camphor and oil of bitter almonds.

Varieties.-Chinese, Thibet, or Tonquin musk is the best variety. Siberian or Russian musk is sometimes scarcely inferior, but often in flat oval sacs with thin and light hairs, the secretion compact and less aromatic (Cabardine musk). Bucharian and Assam musk is in small sacs, often with portions of the hide adhering.

Constituents.-Ammonia, an acid, cholesterin, fat, wax, gelatinous and albuminous principles; ash about 8 per cent. The odorous principle has not been isolated. Camphor, hydrocyanic acid, ergot, oily seeds, etc., remove the odor of musk.

Properties.-Diffusible stimulant, aphrodisiac, antispasmodic. Dose, 0.06 to 0.6 gram (gr. $\mathrm{i}-\mathrm{x}$), in powder, pills, or enema.

Substitutions and Adulterations.-Artificial musk bags, having none of the characters described, or the secretion partly replaced by dried blood, resin, lead, and other substances.

Trinitro-isobutyl-methyl-benzol has a strong musk-like odor (artificial musk). The homologues of isobutylxylol are analogous in odor.

CASTOREUM.-CASTOR.

Origin.-From the preputial follicles of both the male and female animals Cástor Fíber, Linné. Class, Mammalia ; order, Rodentia ; family, Castoridx.

Habitat.-Northern hemisphere, between 33° and 68° north latitude.

Description.-Follicles in pairs, each about 75 millimeters (3 inches) long, club-shaped or narrow pyriform, wrinkled, brown or blackish ; the inner coat iridescent, glandular, and much folded; the contents brown, hard, friable, of a peculiar odor, and of a bitter, rather acrid and nauseous taste. Alcohol dissolves about one-half of the weight of castor, the tincture being of a brown color. The decoction with water has a light brownish-yellow color, becomes turbid on cooling, and acquires a dark color with ferric chloride.

Varieties.-American or Canadian Castor. Weight of follicles between 30 and 125 grams (1 and 4 oz .) ; the membranes adhering firmly, the contents ofteu rather glossy. Russian or Siberian Castor. Subglobular or roundish pyriform; weight, 75 to 250 grams ($2 \frac{1}{2}$ to 8 oz .) ; the outer membranes rather readily separable; the contents dull brown, of a more agreeable odor. The Russian variety is very rare, and yields a red-brown tincture, which on the addition of water becomes turbid and translucent, and clear again by ammonia water. The tincture of American castor, treated in the same manner, leaves some resin undissolved.

Constituents.-Volatile oil, containing carbolic acid, 1 to 2 per cent., bitter resinous substance 14 to 58 per cent., castorin (colorless fusible needles), salicin, cholesterin, etc. ; ash about 3.5 per cent.

Adulterations.-The secretion of castor sacs from diseased animals is sometimes of a brownish-gray color, and may contain over 50 per cent. of calcium carbonate. Adulterations with earthy matters, resin, blood, etc., are rare.

Properties.-Stimulant, antispasmodic, emmenagogue. Dose, 0.6 to 2 grams (gr. $\mathrm{x}-\mathrm{xxx}$).

PEPSINUM.-PEpsin.

Origin.-The mucous membrane of the stomach of the hog, Sus scrófa, Linné (order, Pachydermata), the sheep, O^{\prime} vis A'ries, Linné (order, Ruminantia), or the calf, Bos Taúrus, Linné (order, Ruminantia). Class, Mammalia.

Habitat.-Domesticated.
Preparation.-By maceration or digestion in water and precipitation with sodium chloride.

Properties.-The dried membrane forms a light-brown powder. Precipitated pepsin is translucent brownish or brownish-yellow. Saccharated pepsin is a mixture of pepsin with milk sugar, and is an opaque, whitish or paleyellowish powder. It is insoluble in alcohol, almost completely soluble in water (syntonin insoluble), curdles milk, and is altered by alkalies.

Test.-Digested at 38° C. $\left(100^{\circ} \mathrm{F}\right.$.) for six hours a
slightly opalescent solution is obtained from 1 saceharated pepsin, 500 water, and 7.5 hydrochloric acid, and 50 parts of hard-boiled egg-albumen.

Use.-In dyspeptic disorders. Dose, 0.5 to 1 gram (gr. viij-xv).

b. Fusible or Soft.

AMBRA GRISEA.-Ambergris.

Origin.-Found floating on the sea; a morbid excretion in the intestines of Physéter macrocéphalus, Linné. Class, Mammalia; order, Cetacea ; family, Physeteridæ.

Habitat.-Indian and Southern Pacific Oceans.
Description.-Fusible in hot water; in the cold friable, gray or brown-gray, streaked and dotted ; sp. grav. 0.80 to 0.92 , of a peculiar fragrance, nearly tasteless; soluble in ether, fats, volatile oils, and hot alcohol; insoluble in potassa solution.

Constituents. - Ambreïn, 85 per cent. (white, tasteless needles, fusible at $36^{\circ} \mathrm{C}$.) ; balsamic extractive ; ash a minute quantity.

Tests.-Heated upon platinum foil, no acrid vapors are evolved, and only a minute residue is left.

Properties. Stimulant, antispasmodic. Dose, 0.3 to 1 gram (gr. v-xv). Mostly used in perfumery.

HYRACEUM.-Hyraceum.

Origin.-From the Klipdas, Hy'rax capénsis, Cuvier. Class, Mammalia ; order, Hyracoidea.

Habitat.-Southern Africa.
Description.-Black-brown, tough and plastic, partly soluble in water, less soluble in alcohol and ether ; when warmed, of a castor-like odor; taste bitter, nauseous. It has been regarded by some as the dried urine, by others as the feces of the animal.

Constituents.-Volatile oil, resin, fat, various acids and salts.
Properties.-Stimulant, antispasmodic. Dose, 0.3 to 1 gram (gr. v-xv). Rarely employed.

CIVETTA.-Civet.

Zibethum.
Origin.-From glands in a pouch between the anus and genitals of the male and female animals. 1. Vivérra Zibétha, S̈chreber, and 2. Viv. Civétta, Schreber. Class, Mammalia; order, Carnivora ; family, Viverridæ.

Habitat.-1. Southern Asia, and 2. Africa.
Description.-Unctuous, fresh yellowish, afterward brown, fusible; almost insoluble in water, soluble in hot absolute alcohol, partly soluble in ether; odor strong, resembling musk ; taste bitterish acrid, nauseous.

Constituents.-Volatile oil, fat, resinous and coloring matters, salts.

Properties.-Stimulant, antispasmodic. Dose, 0.3 to 1 gram (gr. v-xv). Used in perfumery.

c. Liquid.

SANGUIS.-BLood.

Origin.-The arterial fluid of the ox, Bos Taurus, Linné. Class, Mammalia ; order, Ruminantia; family, Bovidæ.

Habitat.-Domesticated.
Properties.-Red, opaque ; sp. grav. 1.050 ; odor peculiar ; contains blood corpuscles in suspension ; coagulates on exposure, separating the clot, cruor, from the liquid or serum. Evaporated, it forms extractum sanguinis or pulvis sanguinis.

Constituents.-Water about 78, albumin 7, fibrin 0.4, salts 0.9 , corpuscles and other constituents about 13 per cent. The red color is due to hæmoglobin. The serum contains between 9 and 10 per cent. of solids, about 8 of these being albuminoids. The salts are chlorides, phosphates, and sulphates of alkalies, calcium, and magnesium.

Properties.-Restorative. Dose of dried blood, 0.5 to 1 gram (gr. viij-xv).
LAC.-MiLk.

Lac vaccinum.
Origin.-From the mammary glands of the cow, Bos Taúrus, Linné. Class, Mammalia ; order, Ruminantia ; family, Bovidæ.

Habitat.-Domesticated.

Description.-White, opaque; sp. grav. 1.030 ; odor slight; taste bland and sweet.

Constituents.-Water 87, solids 13, consisting of albuminoids 4.1, fat 4.0 , milk-sugar 4.2 , and salts, chiefly phosphates with some chlorides, 0.7 . The fat is emulsionized by the albuminoids (casein and lactoprotein).

Derivatives.-Cremor lactis, cream. The fat rising to the surface on standing, containing some albuminoids and serum.

Skim milk. The white liquid from which the cream has been removed, containing the albuminoids, sugar, and salts; taste bland.

Buttermilk, lac ebutyratum. The opaque liquid separated in churning the cream ; contains the albuminoids, sugar, and salts; of a slightly acidulous taste.

Butter, Butyrum ; see Fats.
Milk sugar, Saccharum lactis ; see Sugars.
Whey, Serum lactis. The opalescent liquid separated from milk after removing the albuminoids and fat, either by rennet (serum lactis dulce) or by acids or acid salts (ser. lact. acidum, aluminatum, tamarindatum, etc.). It contains the sugar and salts, also the acid or salt added.

Properties.-Nutritious.

FEL BOVIS.-Ox Gall.

Fel bovinum ; Fel tauri.
Origin.-From the gall-bladder of the ox, Bos Taúrus, Linné. Class, Mammalia; order, Ruminantia; family, Bovidæ.

Habitat.-Domesticated.
Description.-A viscid liquid, greenish or brownishgreen ; sp. grav. 1.020 ; neutral or faintly alkaline ; odor peculiar ; taste sweetish, very bitter, and nauseous; produces with sugar and strong sulphuric acid a deep red and purple color (Pettenkofer's test).

Constituents.-Water about $85-90$ per cent., solids about 10 per cent., consisting of mucilage (precipitated by 2 volumes of alcohol), bilirubin (cholepyrrhin) $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{3}$, and other coloring matters, cholesterin $\mathrm{C}_{26} \mathrm{H}_{44} \mathrm{O}$, lecithin, and
salts, among them the sodium salts of two bitter acids, glycocholic (cholic) and taurocholic (choleic) acid; both acids give Pettenkofer's reaction, and, on being boiled with alkalies, yield cholic (cholalic) acid and, the former, glycocoll; the latter, taurin.

Derivalives.-Evaporated to the consistence of an extract (fel bovis inspissatum). Purified by precipitation with alcohol, then evaporated (fel bovis purificatum s. depuratum).

Properties.-Tonic, laxative. Dose (of inspissated bile), 0.3 to 1 or even 4 grams (gr. $v-x v-3 j)$.

6. CALCAREOUS SKELETONS AND CONCRETIONS.

Almost wholly soluble, with effervescence, in hydrochloric acid.

CORALLIUM.-Coral.

Origin.-1. Oculína virgínea, Lamarck, and 2. Corallium rúbrum, Lamarck. Class, Polypiphera; orders, 1. Hexacoralla, and 2. Octocoralla.

Habitat.-Mediterranean and Atlantic Ocean.
Description.-Hard, cylindrical, branching pieces, with a more or less uneven, porous, and striate surface, and a radiating interior, frequently hollow; inodorous, tasteless, white (from No. 1) or red (from No. 2).

Constituents.-Animal matter 7.75, calcium carbonate 83.25, magnesium carbonate 3.50 , ferric oxide 4.25 (in red coral).

Properties.-Antacid. Dose, 0.3 to 2 grams (gr. v-xxx). Used in tooth powders.

OS SEPIE.-Cuttlefish Bone.

Origin.-The calcareous bone of Sépia officinális, Linné. Class, Cephalopoda ; order, Decapoda; family, Sepiadæ.

Habitat.-Mediterranean and Atlantic Ocean.
Description.-White, oval-oblong, 10 centimeters (4 inches)
or more in length, flattened ; both sides convex ; outer surface smoothish, hard, the remainder porous and friable; inodorous; taste earthy, somewhat saline.

Constituents.-Animal matter, $10-15$ per cent. ; the remainder calcium carbonate, with little sodium chloride and traces of calcium phosphate and magnesia.

Properties.-Antacid, mostly used in tooth powders; also for polishing.

TESTA.-Oystershell.

Conchæ, s. testa ostrem.
Origin.-The bivalved shell of Os^{\prime} trea virginiána, Lister, and O. edulis, Linné. Class, Acephala (Conchifera, Lamellibranchia) ; order, Monomya; family, Ostracea.

Habitat.-Several species are found on the coast of the Atlantic and Indian Oceans.

Description.-Irregular roundish, oblong or obovate; hinge toothless; valves composed of imbricate foliaceous layers, externally rough, inner surface smooth, glossy, and white. For medicinal purposes, it is purified by boiling with water and elutriation.

Constituents.-Animal matter 0.5-4.5 per cent., the remainder calcium carbonate, with a small proportion of calcium phosphate and sulphate, magnesia, alumina, ferric oxide, and silica.

Properties.-Antacid. Dose, 0.3 to 2 grams (gr. v-xxx).

TESTA OVI.-EgGshell.

(See page 32.)

Calculi cancrorum.-Crabs' Stones.

Lapides, s. lapilli, s. oculi cancrorum. Crabs' eyes.
Origin.-Concretions in the stomach of As'tacus fluviátilis, Fabricius, s. Cáncer As'tacus, Linné. Class, Crustacea ; order, Decapoda; family, Astacida.

Habitat.-Northern temperate zone, in rivers.
Description.-Circular, 3 to 10 millimeters ($\frac{1}{8}$ to $\frac{g}{5}$ inch) in diameter; plano-convex; the upper side with a concentric groove; white, hard; in boiling water rose-red; effervescing with hydrochloric acid, leaving a cartilaginous plano convex mass; inodorous, tasteless.

Constituents.-Animal matter, 12-15 per cent.; calcium carbonate, 63 ; calcium phosphate, 17 ; the remainder, magnesium phosphate and sodium salts.

Properties. Antacid. Dose, 0.3 to 2 grams (gr. v-xxx).
Substitutions.-Factitious crabs' stones, treated with hydrochloric acid, leave little or no residue.
OS.-Bone.

Origin.-The skeleton of vertebrate animals.
Description.-W hite, smooth, internally more or less porous, insoluble in water, soluble in hydrochloric acid with some effervescence, leaving a gelatinous mass.

Constituents.-40 to 67 per cent. of calcium phosphate, including 5 to 10 per cent. of calcium carbonate, 1 to 2 per cent. of magnesium phosphate, and other salts. The organic ossein yields gelatin on being boiled with water. On dry distillation Dippel's animal oil is obtained, containing pyrodine, picoline, and other bases.

Uses.-For preparing boneblack (animal charcoal) and phosphates.

PARTII.

CELLULAR VEGETABLE DRUGS.

These consist of plants and parts of plants-all being composed of one or more kinds of cells.

1. ROOTS.-RADICES.

A root is the descending axis of a plant, and resembles the ascending axis or stem, but is destitute of leaves, and consequently does not branch by the growth of axillary buds. The pith found in the stem of dicotyledons usually descends only a short distance into the main or tap root, and the epidermis of even young roots becomes uneven and obliterated by the formation of cork ; with these exceptions, the tissues of the root and their arrangement resemble those of the stem. Roots are destitute, or nearly so, of chlorophyll.

Annual roots, separated from the other portions of the plant, are not employed in medicine; the officinal roots derived from biennial or perennial herbs emanate from a short crown (base of stem) bearing leaf scars and producing buds, the crown being several- or many-headed in perennial roots; the roots of shrubs and trees are destitute of such a crown. In the monocotyledons the tap root is
commonly not developed, but in its place appear a number of adventitious roots (rootlets) of about equal thickness and length, and usually not branched, though frequently beset with fibres. Adventitious roots are also met with in dicotyledons, and emanate, as in the monocotyledons, from the base or other parts of the stem, or from the rhizome. But the dicotyledonous roots which are medicinally employed consist generally of the main or tap root and its branches-in some cases of the latter alone. The branches at their base are often but little thinner than the main root from which they emanate, and, like the latter, are tapering toward the tip.

Histology.-The rootlets of monocotyledons (see Sarsaparilla) consist, under the epidermis, of a circle of parenchyme, which is followed by the nucleus sheath or endoderm, formed of one or sometimes two rows of thick-walled cells, and inclosing an irregular circular layer, containing a few or numerous small fibro-vascular bundles, which are never arranged in wedge-shaped rays; the centre of the rootlets is often occupied by parenchyme tissue, similar in character to that of the outer layer.

The roots of dicotyledons consist of bark, the outer layer of which is cork, followed by parenchyme, and an inner layer, rarely containing bast fibres and usually traversed by more or less distinct medullary rays. A cambium layer containing the newly formed cells and indicated in the dried root as a dark line, separates the bark from the wood, the bundles of which are wedge-shaped, and separated from one another by medullary rays. The central pith is mostly minute or nearly wanting, except in the upper part, and occasionally for some distance in the main root; in the latter case it becomes considerably thinner toward the tip.

Classiflcation.

Sect. 1. Monocotyledonous Roots (Rootlets).Orange-brown ; outer layer mealy or horn-like;taste acrid.Pale brownish; outer layer spongy; taste pun-gently aromatic.

Sarsaparilla.
Vetiveria.
Sect. 2. Dicotyledonous Roots (Tap roots and branches).
I. Fleshy roots: wood either soft or wood bundles thin, with broad medullary rays.

1. Free from starch and inulin.

Taste acrid ; externally keeled; wood not cylindrical.
red-brown; wood yellowish, not radiate.
light brownish-gray ; wood whitish, radiate.
Taste bitter; wood bundles thin; inner bark radiate; yellowish-brown.
pale orange-brown.
Taste mucilaginous; externally brown-black.
2. Free from starch, but containing inulin.

Taste bitter; laticiferous vessels in bark forming concentric circles.
laticiferous vessels in bark in radiating lines.
Taste acrid; burning; resin cells forming concentric circles in bark and medullary rays. resin cells in bark only (root thin).

Taste aromatic; resin cells numerous, scattered; wood bundles small.
Taste mucilaginous and bitter; neither resin cells nor milk vessels; wood and bark radiate.
3. Containing starch.
a. With laticiferous vessels in bark.

Cork orange-brown; bark thin; laticiferous Asclepias vessels few.
Light brown; subcylindrical ; bark thick, wood porous, yellowish.
Pale yellowish-brown; subeylindrical; internally white.
Cork blackish; internally whitish.
Gray-brown; internally pinkish; seattered resin cells.

Senega.
Saponaria.
Saponaria levantica.

Gentiana. Frasera. Symphytum.

Taraxacum.
Cichorium.
Pyrethrum.
Pyrethrum German.

Inula.
Lappa. Apocynum cannabinum.
Euphorbia ipecacuanha.
Euphorbia
corollata.
Stillingia.
b. With radiating rows of resin cells in bark.

Root-stock short, divided into numerous long rootlets; resin cells large. Angelica.
Root nearly simple, with several stout Angelica branches; resin cells small. triquinata.
with several long branches; resin cells small.
(brown cork removed) whitish; wood white.
brown-yellow; wood yellow, porous in branching rays.
brownish-yellow; resin cells in numerous approximate rows.

Levisticum.
Laserpitium.
Pimpinella.
brown-gray; resin cells irregular in thin bark and thick pith; wood bundles small.
In sections; tough; resin cells in irregular rows; wood bundles irregularly matted.

Petroselinum.

Imperatoria.
Sumbul.
c. Resin cells not radiating.

Tuberous, napiform ; resin cells in broad and narrow concentric circles.
Roots forked below ; yellowish; resin cells in bark in concentric circles.
Root large, nearly simple ; brown-gray ; internally whitish; resin cells scattered.
d. Neither resin cells nor laticiferous vessels.

Very pungent ; cylindrical ; used fresh.
Taste acrid; grayish; wood wedges short, numerous, in several circles.

Jalapa (see Tubers).

Panax.

Ipomea pandurata.

Armoracia.
Phytolacea.
Taste bitter; grayish-white; wood bundles small, in numerous circles, and forming many rays; usually in disks.
Taste mucilaginous, bitter, and astringent; grayish; wood bundles irregular; mostly in disks and sections.
Taste sweetish, acrid, and bitter ; cork graybrown ; internally whitish, no bast fibres; wood yellow, porous.
Taste mucilaginous, insipid ; (brown cork removed) white, with long bast fibres.
Taste sweetish, slightly acrid; deep red; thin or in powder; red color soluble in water.

Nymphea.

Belladonna.
Althea.

Rubia.

Taste slight ; bark scaly, friable, dark purple ;
red color insoluble in water.
Alkanna.
Taste astringent ; purplish-brown ; internally reddish.
Taste mucilaginous and bitter:
In sections; grayish and pale yellow; wood bundles in distant circles. Calumba.
Fusiform, yellowish-brown; medullary rays reddish.
Fusiform, brown-red; medullary rays red. Sections; marbled by interrupted and interwoven red medullary rays, radiate near cambium.
II. Woody roots: wood firm and medullary rays narrow.
Taste sweet; color tawny-yellow internally. Glycyrrhiza. inner bark whitish and with laticiferous vessels.
Taste bitterish and sweetish ; color yellowish internally.
Taste sweetish and pungent; externally pale brown.
Taste pungent ; externally grayish-brown ; woodwedges narrow.
Taste bitter, nauseating; bark annulate. bark more or less annulate, resin-dotted.
bark wrinkled, contains milk vessels.
Taste bitter, aromatic; bark thin, light brown ; wood yellowish-white, hard.
Taste spicy; wood pale, reddish-brown.
Taste bitter; wood in irregularly concentric circles, pale brown. wood yellow; bark foliaceous, loose, yellow. bark firm, yellow.

Rumex.
Rhaponticum.

Rheum.

Hemidesmus.

Abrus.

Hydrangea.

Methysticum.
Ipecacuanha.
Gillenia (see Rhizomes).
Apocynum androssemifolium.

Gelsemium.
Sassafras (see Woods).

Pareira. Berberis.
Berberis aquifo- lium (see Rhizomes).
Taste bitterish, somewhat acrid ; brown ; wood white, indistinctly rayed.

Baptisia.
Taste astringent; reddish-brown; wood-wedges narrow, yellowish. rust-brown; wood reddish. rust-brown or purplish-brown ; wood brownish. Krameria.

SARSAPARILLA.-Sarsaparilla.

Origin.-Smílax officinális, Kunth, S. papyrácea, Poiret, S. médica, Schlechtendal. Natural order, Liliaceæ, Smilaceæ.

Habitat.-Tropical America from Mexico to Brazil.
Description.-Very long, cylindrical, about 5 millimeters ($\frac{1}{5}$ inch) thick, longitudinally wrinkled, grayish-brown or orange-brown externally, white and mealy or somewhat horny internally, with a circular zone of wood-bundles around a central layer of parenchyme (pith) ; nearly inodorous; taste mucilaginous, bitterish, acrid. The thick woody, knotty rhizome, if present, should be removed.

$$
\text { FIG. } 6 .
$$

Mexican sarsaparilla.-Transverse section, microscopic appearance.
Structure.-Epidermis, subcuticular layer (2 or more rows of cells with thickened walls), parenchyme (cortical layer), nucleus sheath (1 row of thick-walled cells), wood
zone, and central parenchyme (pith). The parenchyme contains compound starch granules or pasty starch, numer-

Fig. 7.

Honduras sarsaparilla.

Fig. 8.

Mexican sarsaparilla.

Fig. 9.

Rio Negro sarsaparilla.

Fig. 10.

Jamaica sarsaparilla. Sections through and near nucleus sheath, magnified 80 diam.
ous cells with raphides of calcium oxalate, and few resin cells.

Varieties.-a. Non-mealy sarsaparillas. Starch mostly pasty ; rarely in granules.

1. Mexican sarsaparilla, in part from Smílax médica. The long roots folded back over the rhizome, to which portions of the stem are often attached. Roots deeply wrinkled, with some fibres, brown-gray from adhering earth ; woody and medullary zones nearly equal in width, and

Fig. 11.

Mexican sarsaparilla, magnified 3 diam. about half as broad as the cortical layer; nucleus sheath with the cells radially elongated, the inner cell-walls thickest. In the market as Vera Cruz and Tampico sarsaparilla.
2. Jamaica sarsaparilla, from Smílax ornáta, Hooker. In loose bundles with or without the rhizome; resembles
the preceding, but has more fibres attached (bearded sarsaparilla), and surface usually more of a red tint, and less deeply wrinkled; medullary and cortical layers broader

Fig. 12.

than the woody zone. Caracas sarsaparilla is probably derived from Smílax officinális.
b. Mealy sarsaparillas. Starch in granules, oceasionally pasty.
3. Honduras sarsaparilla, probably from Smílax officinális. In subcylindrical bundles, tied with a root and

Fig. 13.

Jamaica sarsaparilla.

Fig. 14.

Jamaica sarsaparilla, magnified 4 diam.
rounded at the ends by the roots being folded back. Roots rather finely wrinkled, with few fibres, brown or graybrown from adhering earth. Cortical and medullary layers and woody zone about alike in thickness, or the latter some-
what thinner; cells of the nucleus sheath nearly square, with large apertures, and the cell-walls evenly thickened.

Fig. 15.

Honduras sarsaparilla.
4. Rio Negro sarsaparilla (also called Para and Lisbon sarsaparilla); probably mainly from Smílax papyrácea. In large cylindrical rolls, neatly tied with the stem of a climbing plant, and evenly cut off at both ends. Roots finely wrinkled, dark brown or blackishbrown from adhering earth ; cortical

Honduras sarsaparilla, magnified 3 diam. layer thick; woody zone narrow; medullary layer as broad as the cortical layer, or broader ; cells of the nucleus sheath somewhat radially elongated, the inner cell-walls thickest, the aperture small.

Fig. 17.

Rio Negro sarsaparilla. Section, magnified 3 diam.

Fig. 18.

Rio Negro or Para sarsaparilla ; portion of bundle.

Constituents.-Parillin (smilacin, parillic acid) about 0.2 per cent., trace of volatile oil, starch, resin, coloring matter,
calcium oxalate, and other salts. Parillin is soluble in hot water and in alcohol, insoluble in ether, has an acrid taste, is a glucoside, and closely resembles saponin. When quite pure it crystallizes in scales; boiled with dilute acids it is split into sugar and parigenin, crystallizing in scales from alcohol.

Medical properties.-Regarded as an alterative. Dose, 2 to 8 grams (3ss-3ij).

VETIVERIA.-Vetivert.

Radix Ivarancusæ.
Origin.-Andropógon muricátus, Retzius. Natural order, Gramines, Andropogonere.

Habitat.-East India.
Description.-Rootlets emanating from a short, thin rhizome, light yellowish-brown, somewhat waxy, about 15 to 20 centimeters (6 to 8 inches long), about 1 millimeter ($\frac{1}{25}$ inch) thick, tough, aromatic, balsamic. The bark has large airpassages, and a number of resin cells.

Constituents.-Volatile oil and resin.
Medical properties.-Tonic, stimulant ; almost exclusively used in perfumery for sachet powders, etc.

SENEGA.-Seneka.

Origin.-Polyg'ala Sénega, Linné. Natural order, Polygaleæ.

Habital.-United States, westward to Minnesota.
Description.-About 10 centimeters (4 inches) long, with a very knotty crown, bearing numerous short stem remnants with scaly leaves, and divided into a few branches from 5 to 10 millimeters ($\frac{1}{5}-\frac{2}{5}$ inch) thick ; branches spreading, tortuous, wrinkled, somewhat fissured transversely and keeled when dry, fleshy and round after having been soaked in water ; externally, yellowish-gray or brownishyellow ; fracture short; bark whitish within, sweetish, afterward acrid, inclosing an irregular porous, yellowish,
less acrid or nearly tasteless wood; odor slight, but unpleasant.

A northern variety of Polygala Senega yields a larger, thicker, and less tortuous root, which is usually of a darker color than described above, and has a less prominent keel, or is sometimes nearly keel-less.

Fig 19.

Senega.-Transverse sections, magnified.
Structure-Bark thick; the small celled inner bark present on only one side, taking the place of more or less of the outer bark, and on drying forming the keel; no bast fibres present; wood circular near the crown, below

Senega root, magnified 18 diam.
consisting of various shaped segments and rays ; medullary rays delicate.

Constituents.-Polygalic acid, senegin, fixed oil (containing virginic acid), little volatile oil (methyl salicylate), pectin, sugar, coloring matter. Polygalic acid is sparingly soluble in alcohol, insoluble in ether or chloroform, and is precipitated by lead acetates. Senegin has a neutral reaction, is nearly insoluble in cold absolute alcohol, is not precipitated by normal lead acetate, and yields sapogenin. (Kobert, 1887.) Exhausting the root with 60 per cent. alcohol, concentrating and precipitating with alcohol and ether, yields 5 per cent. of crude senegin.
Substitution.-White or false senega. Collected west of the Mississippi River from Polyg'ala álba, Nuttall. The

Fig. 21.

False senega root, magnified 10 diam.
root is usually 5 or 6 millimeters ($\frac{1}{5}$ or $\frac{1}{4}$ inch) thick, and closely resembles senega root, but has descending, scarcely spreading branches, a lighter, internally white, color, is destitute of the keel, and has a cylindrical wood. It contains about 3 per cent. of polygalic acid, and yields a light-colored infusion and tincture. The root of Polygala Boykinii, Nuttall, of the Southern States, is thin, but otherwise resembles the preceding, and has similar properties.

Admixtures.-Ginseng root and the rhizomes and roots of Gillenia and of Cypripedium are sometimes present from careless collection; the rootlets of American species of Gentiana, and in Europe the subterraneous portion of Cynánchum Vincetóxicum, R. Brown, have been used for adulteration ; all are easily distinguished from senega root.

Properties.-Expectorant, emetic, somewhat diuretic. Dose, 0.2 to 1.5 grams (3 to 22 grains).

SAPONARIA.-SOAPWORT.

Origin.-The root of Saponária officinális, Linné. Natural order, Caryophylleæ, Silener.

Habitat.-Central and Southern Europe, naturalized in North America.

Description.-About 25 centimeters (10 inches) long, 2 to 5 millimeters ($\frac{1}{12}$ to $\frac{1}{5}$ inch) or more in thickness, nearly cylindrical, longitudinally wrinkled, light rustFig. 22.

Saponaria. Transv, sec. 3 diam. brown, internally whitish, with a rather thick bark containing numerous small white crystal cells, and a pale yellow meditullium, with indistinct medullary rays; inodorous; taste sweetish, somewhat bitter, persistently acrid.

The subterranean runners are, to some extent, present in the commercial drug; they resemble the root branches, but have somewhat thickened internodes, and have the same properties.

Old woody roots are rarely collected.
Constituents.-Saponin 4 to 5 per cent., mucilage, a little resin. Saponin $\mathrm{C}_{32} \mathrm{H}_{34} \mathrm{O}_{18}$, is a white powder, sternutatory, soluble in hot water and alcohol, the aqueous solution foaming like soap water; by acids it is split into sugar and erystallizable sapogenin, which is sparingly soluble in water.

Properties.-Alterative, resembling sarsaparilla.

SAPONARIA LEVANTICA.-Levant Soaproot.

Origin.-The root of Gypsóphila Arróstii, Gussone, and G. paniculáta, Linné. Natural order, Caryophylleæ, Sileneæ.

Habitat.-Italy to Asia Minor.
Description.-Simple, 25 to 40 centimeters (10 to 16 inches) long, 2 to 5 centimeters ($\frac{3}{4}$ to 2 inches) thick, somewhat fusiform, with longitudinal wrinkles and transverse ridges ; light brownish-gray, internally whitish, with a thickish bark and a whitish meditullium containing numerous medullary rays, and rather narrow wood-wedges; inodorous; taste sweetish, persistently acrid.

Constituents and Properties.-Sapotoxin 8.5 per cent., a glucoside yielding sapogenin (Kruskal, 1891), otherwise similar to the preceding; mostly used in washing silks and other fabrics.

GENTIANA.-GEntian.

Radix gentianæ rubræ.
Origin.-Gentiána lútea, Linné ; also G. purpúrea, G. pannónica, and G. punctáta, Linné. Natural order, Gentianeæ, Swertieæ.

Habitat.-Mountains of Central and Southern Europe.
Description.-In nearly cylindrical pieces or longitudinal slices, about 15 to 20 centimeters (6 to 8 inches) long and

Fig. 23.

Gentian root, longitudinally sliced: about one-half natural size.
about 25 millimeters (1 inch) thick, the head closely annulate, the lower portion longitudinally wrinkled; externally deep yellowish-brown, internally lighter; somewhat flexible and tough when damp ; rather brittle when dry; fracture short, indistinctly radiate; odor peculiar, faint, more prominent when moistened ; taste sweetish, persistently bitter.

The root of G. purpurea is shorter, thinner, and darker;
that of G. pannonica is scarcely annulate, shorter, and darker ; that of G. punctata little annulate, lighter, otherwise like the officinal root ; they have the same properties.
Structure.-Bark rather thick, by a blackish cambium line separated from the somewhat spongy meditullium; medullary rays indistinct, narrow, of about the width of the vascular rays; bast fibres and wood fibres are wanting.

$$
\text { Fig. } 24 .
$$

Gentian.-Transverse section, magnified 3 diam.

Constituents.-Gentiopicrin 0.1 per cent., gentisic acid (gentisin), uncrystallizable sugar about 14 per cent., pectin, fixed oil 6 per cent., ash about 8 per cent. Gentiopicrin is an amorphous or crystalline glucoside, freely soluble in water and alcohol, and yields amorphous bitter gentiogenin. Gentisic acid, $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{5}$, crystallizes in yellow, tasteless needles, is somewhat soluble in alcohol and ether, and colors ferric salts dark brown; and a dark green color is produced by a principle which is precipitated by water from the alcoholic tincture. The pectin compound is precipitated by lead acetate. Gentianose, the sugar present in the fresh root, crystallizes in scales and is fermentable, but does not reduce Fehling's solution.

Properties.-Tonic. Dose, 0.3 to 2 grams (gr. v-xxx).
The American gentian root, collected from Gentiána pubérula, Michaux, G. Saponária, Linné, and G. Andréwsii, Grisebach, consists of a scarcely annulated head about 12 milli-
meters ($\frac{1}{2}$ inch) long and 3 millimeters ($\frac{1}{8}$ inch) thick, and numerous nearly simple, light brown-yellow, wrinkled rootlets about 6 centimeters ($2 \frac{2}{}$ inches) or more long, and having a thick whitish bark and thin meditullium; odor and taste like those of gentian.

Frasera.-Amerioan Columbo.

The root of Frísera Wálteri, Michaux, F. carolinénsis, Walter. Natural order, Gentianeæ, Swertieæ.

Habitat.-United States in the Alleghanies and westward.
Description.-Mostly in longitudinal slices, about 25 millimeters (1 inch) thick, the upper portion annulate, the lower portion longitudinally wrinkled, externally pale orange-brown, internally light yellowish-brown; the bark thick, overlapping on the edges, by a brown cambium line separated from the rather spongy meditullium; odor gentian-like, more prominent when moistened; taste sweetish and bitter.

Constituents.-The same as gentian, but apparently less gentiopicrin. The yellow crystalline principle differs from gentisic acid in solubility, and in the higher melting-point.

Properties.-Tonic. Dose, 1 to 2 grams (gr. $\mathbf{x v}-\mathbf{x x x}$). The recent root is said to be emetic and purgative.

SYMPHYTUM.-Comfrex.

The root of Sym'phytum officinále, Linné. Natural order, Boragineæ, Boragex.

Habitat.-Europe, cultivated and spontaneous in the United States.

Description.-About 15 centimeters (6 inches) long, 1 to 2 centimeters ($\frac{2}{5}$ to $\frac{4}{5}$ inch) thick, deeply wrinkled, brown-black, internally somewhat horny, whitish or, when old, gray ; the dry root hard; fracture short, showing a thickish bark, short narrow wood-bundles, broad medullary rays, and in the upper part a thin pith; inodorous, taste sweetish, mucilaginous, and faintly astringent.

Constituents.-Mucilage, sugar, a little tannin, few starch granules, and a small quantity of asparagin.

Properties.-Demulcent, somewhat astringent. Dose, 8 to 15 grams ($3 \mathrm{ij}-\mathrm{iv}$) per day.

TARAXACUM.-Dandelion.

Origin.-Taráxacum Dens-leónis, Desfontaines, s. T. officinále, Weber, s. Leóntodon Taráxacum, Linné. Natural order, Compositæ, Cichoriacees.

Habitat.-Grassy places and roadsides in Europe, naturalized in North America. Collected in the autumn.

Nearly cylindrical, 10 to 30 centimeters (4 to 12 inches) long, above about 25 millimeters (1 inch) thick, crowned with several short thickish heads, little branched, longitudinally wrinkled, externally gray-brown, internally white with a yellowish centre, when dry breaking with a short fracture; inodorous, bitter. It should be free from chicory root.
Structure.-Bark thick, white, consisting of parenchyme, and containing numerous concentric brown circles, formed by laticiferous ducts. Meditullium yellowish, porous. Medullary rays wanting.

Constituents.-Early in spring dandelion contains uncrystallizable sugar, which diminishes during the summer; in autumn it contains about 24 per cent. of inulin; pectin is also present. The

Fig. 25

Transverse section of taraxacum root. milk-juice contains the crystalline bitter principle taraxacin, resin, a glutinous body, and taraxacerin, $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}$, a wax-like body, which in alcoholic solution has an acrid taste. Taraxacin is soluble in water and alcohol.

Properties.-Deobstruent, tonic in hepatic disorders, on continued use deranging digestion. Dose, 2 to 8 grams (3ss-ij).

CICHORIUM.- Chicory, Succory.

Origin.-Cichórium In'tybus, Linné. Natural order, Compositæ, Cichoriacer.

Habitat.-Roadsides in Europe, naturalized in North America, cultivated in Europe.

Description.-Chicory bears a close resemblance to dan-

Cichorium.-Transverse section. delion; but the root of wild plants is usually lighter in color and more woody, and has a relatively thinner bark. It, like the more fleshy and darker cultivated root, is readily distinguished by the radiating arrangement of the laticiferous vessels in the bark.

Constituents.-Bitter principle, inulin, pectin, sugar.

Properties.-Deobstruent, tonic, in overdoses deranging digestion.
Dose, 1 to 4 grams (gr. xv-3j). The roasted root is used for adulterating coffee.

PYRETHRUM.-Pellitory.

Radix pyrethri romani. Roman pellitory.
Origin.-Anacy'clus Pyréthrum, De Candolle. Natural order, Compositæ, Anthemideæ.

Habitat.-Highlands of Northern Africa.
Description.-Somewhat fusiform, nearly simple, 5 to 10 centimeters (2 to 4 inches) long, about 12 millimeters ($\frac{1}{2}$ inch) thick, annulate above, deeply longitudinally wrinkled below, externally dark gray-brown, internally brownishwhite, fracture short. Inodorous, pungent, and very acrid.

Structure.-Bark rather thick, containing two circles of shining axially elongated resin ducts; wood-wedges slender, yellowish; medullary rays slender, with about four circles of shining resin ducts.

Constituents.-Acrid brown resin and acrid fixed oils,
one brown and soluble in potassa, the other yellow and insoluble in potassa; inulin about 50 per cent., trace of tannin, mucilage ; pyrethrine (?).

Pyrethrum.-Transverse section, magnified 3 diam.
Properties.-Irritant, rubefacient, sialagogue. Dose, as a masticatory 2 to 4 grams (3 ss-j).

PYRETHRUM GERMANICUM.-German Pellitory.
Radix pyrethri germanici.
Origin.-Anacy'clus officinárum, Hayne. Natural order, Compositæ, Anthemideæ.

Habitat.-Central Europe, cultivated in Thuringia, Germany.

Description.-Nearly simple, about 5 centimeters (2 inches) long, about 3 millimeters ($\frac{1}{8}$ inch) thick, almost filiform toward

Fig. 28.

Pyrethrum germanicum.-Transverse section, magnified 3 diam.
the tip, finely wrinkled, brown-gray, brittle, internally brownish; odor slight ; taste acrid, burning. In commerce it is usually found with the thin, almost tasteless stem, which should be separated.

Structure.-Bark rather thick, in the outer layer one circle of distinct resin ducts; wood-wedges very slender, soft.

Constituents.-Acrid resin, fixed oil, inulin, bitter principle. Properties.-Like Roman pellitory.

INULA.-Elecampane.

Radix inulæ s, enulæ.
Origin.-I'nula Helénium, Linné. Natural order, Compositæ, Inuloideæ.

Habitat.-Central and Southern Europe, and eastward to Central Asia; spontaneous in the United States; cultivated.

Fig. 29.

Description.-Branches of the root 15 to 30 centimeters (6 to 12 inches) long, and 2 to 2.5 centimeters ($\frac{3}{4}$ to 1 inch) in diameter ; in commerce nearly always in transverse concave slices or longitudinal sections with overlapping bark, externally wrinkled and brown, flexible in damp weather, when dry breaking with a short, somewhat horny fracture, internally grayish, slightly radiate and dotted ; odor peculiar, aromatic ; taste bitterish, camphoraceous, aromatic.

Structure.-Bark thickish, with several irregular circles of resin ducts; wood-bundles small, forming many narrow wedges; medullary rays broader, containing numerous resin ducts.

Constituents.-Acrid resin, helenin, inulin, bitter ex-
tractive, wax, etc. ; odor and camphoraceous taste are due to the volatile oil, containing alantol (inulol), $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}$, having a peppermint-like odor and taste, and alantic (inulic) anhydrid, $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{2}$, which is in needles and slightly camphor-like ; helenin, $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}$, is insipid.

Properties.-Stimulant, diaphoretic, diuretic, expectorant, externally rubefacient. Dose, 2 to 8 grams (3ss-ij) in infusion.

> LAPPA.-Burdock.

Radix bardanæ s. lappæ.
Origin.- A'rctium Láppa, Linné, s. Láppa officinális, Allioni. Natural order, Compositæ, Cynaroideæ.

Habitat.-Europe and Northern Asia, naturalized in North America in waste places.

Fig. 30.

Lappa.-Transverse section, magnified 2 diam.
Description.-Nearly simple, fusiform, 30 centimeters (12 inches) or more long; above about 25 millimeters (1 inch) thick, fleshy, longitudinally wrinkled, crowned with a tuft of whitish, soft-hairy leaf-stalks ; gray-brown, internally paler; fracture short; odor feeble, unpleasant; taste mucilaginous, sweetish, and somewhat bitter.

Structure.-Bark rather thick, without bast fibres, the inner part and the meditullium radially striate, the parenchyme often with cavities lined with snow-white remains of tissue; medullary rays rather broad; vascular rays narrow, porous, destitute of wood-fibres.

Constituents.-Mucilage, sugar, inulin, bitter extractive, little tannin and resin; fat 9 per cent. ; possibly a glucoside (olive-green by $\mathrm{Fe}_{2} \mathrm{Cl}_{6}$) ; ash 3 to 4 per cent. In autumn and early spring the root of one year's growth contains about 45 per cent. of inulin.

Properties.—Diaphoretic, diuretic, alterative. Dose, 2 to 8 grams (3 ss-ij) in decoction.

ASCLEPIAS TUBEROSA.-Pleurisy Root.

Asclepias, U. S. P.
Origin.-Asclépias tuberósa, Linné. Natural order, Asclepiadeæ, Cynancheæ.

Habitat.-United States near the Atlantic coast.
Description.-Root large and fusiform, dried in longitudinal or transverse sections from 2 to 15 centimeters ($\frac{3}{4}$ to 6 inches) long, and about 20 millimeters ($\frac{3}{4}$ inch) or more in thickness, the head knotty, and slightly but distinctly annulate, the remainder longitudinally wrinkled; externally orange-brown, internally whitish; fracture uneven, tough ; inodorous ; taste bitterish and somewhat acrid. When long kept, pleurisy root acquires a gray color.

Structure.-Bark thin, in two distinct layers, the inner one whitish ; wood yellowish and porous, with broad white medullary rays.

Constituents.-Crystalline glucoside possessing the taste of the root, soluble in alcohol, ether, and somewhat in water, precipitated by tannin; apparently identical with that of Asclépias cornúti. Also two resins, tannin(?), mucilage, starch, ete.

Properties.-Sudorific, expectorant, carminative, anodyne. Dose, 1 to 4 grams (gr. xv-3j).

apocynum Cannabinum.-Canadian Hemp.

A pocynum, U. S. P.
Origin.-Apócynum cannábinum, Linné. Natural order, Apocynacex, Echitidex.

Habitat.-United States, on the border of thickets and in grassy places.

$$
\text { Fig. } 31 .
$$

Apocynum cannabinum.-Transverse section, magnified 25 diam.
Deseription.-Long, cylindrical, branched, about 6 millimeters ($\frac{1}{4}$ inch) thick, pale brown-gray, longitudinally wrinkled; somewhat fissured ; fracture short, white, and pale yellow; inodorous, bitter. The bitter taste resides chiefly in the bark, which constitutes about 65 per cent. of the root. This drug is sometimes sold in place of A pocynum androsemifolium.

Structure.-Bark thick, coyered with a thin cork layer, and containing many scattered laticiferous vessels, and in the inner layer numerous narrow medullary rays; wood yellow, soft, porous, consisting of several circles and radiate by fine medullary rays.

Constituents.-Tannin, resin, apocynin (sparingly soluble in water), apocynein (freely soluble in water), bitter extractive, starch, etc. ; ash, 10 to 12 per cent.

Properties.-Emetic, cathartic, expectorant, diuretic, antiperiodic. Dose, as an antiperiodic and diuretic, 0.3 gram (gr. iv-v) ; as an emetic, 1 to 2 grams (gr. xv-3ss).

EUPHORBIA IPECACUANHA.-Ipecacuanha

Spurge.

American Ipecac.
Origin.-Euphórbia Ipecacuánha, Linné. Natural order, Euphorbiaces, Euphorbieæ.

Habitat.-United States, in sandy soil, not far from the Atlantic coast.

Description.-Several, or many-headed, branches of the head short or sometimes 5 centimeters (2 inches) long, somewhat knotty and marked with stem scars; roots more than 30 centimeters (12 inches) long, about 1 centimeter ($\frac{2}{5}$ inch) thick, nearly cylindrical, somewhat branched, light brown, wrinkled, fracture short ; bark rather thick, white internally; wood yellowish, spongy ; inodorous, sweetish, somewhat bitter, slightly acrid.

Constituents.- Probably a glucoside, resins, euphorbon, starch, etc.

Properties.-Diaphoretic, cathartic, emetic. Dose, 0.3, 0.6, $1.3 \operatorname{gram}(\mathrm{gr} . \mathrm{v}, \mathrm{gr} . \mathrm{x}, ~ \exists \mathrm{j})$.

EUPHORBIA COROLLATA.-Large-flowering Spurge.

Origin.-Euphórbia corolláta, Linné. Natural order, Euphorbiaceæ, Euphorbieæ.

Habitat.-United States in meadows; most abundant in the Southern States and west of the Alleghanies.

Description.-Many-headed: branches of the head usually short and stumpy; root 20 centimeters (8 inches) or more long, branched, subcylindrical or elongated-conical, from 5 to 25 millimeters ($\frac{1}{3}$ to 1 inch) thick, externally blackish-brown or brown-black, wrinkled and somewhat fissured, fracture short, or, in old roots, somewhat fibrous; bark rather thick,
white internally ; wood yellowish, soft ; inodorous, sweetish, somewhat bitter, and slightly acrid.

Constituents.-Resin, mucilage, sugar, starch, etc. ; probably similar to preceding.

Properties and Dose. - Diaphoretic ($0.3 \mathrm{gm} .=\mathrm{gr}$. v), cathartic ($0.6 \mathrm{gm} .=\mathrm{gr} . \mathrm{x}$), emetic ($1.3 \mathrm{gm} .=\mathrm{gr} . \mathrm{xx}$).

STILLINGIA.-Stillingia, Queen's Delight.

Origin.-Stillíngia sylvática, Linné. Natural order, Euphorbiaceæ, Crotoneæ.

Habitat.-Southern United States, in sandy soil.
Description.-Subeylindrical, about 30 centimeters (12 inches) long, nearly 5 centimeters (2 inches) thick, tapering, little branched, compact, wrinkled, brown-gray, tough, fracture fibrous; internally pinkish, with yellowish-brown dots; odor peculiar, unpleasant ; taste bitter, acrid, pungent.

Stillingia, magnified 10 diam.
Structure.-Bark thick, covered with a thin cork, and containing many resin cells and few bast fibres; the meditullium porous, and with numerous narrow wedges of wood and medullary rays, the latter containing resin cells. The parenchyme contains starch.

Constituents.-Sylvacrol (acrid resin, soluble in alcohol
and chloroform, insoluble in benzin), probably a glucoside, but no alkaloid (E. G. Eberhardt, 1891); resin, fixed oil, volatile oil, tannin, gum, starch ; ash, 5 per cent.

Properties. - Alterative, antivenereal, in large doses emetic. Dose, 1 to 2 grams (gr. xv- 3 ss).

ANGELICA.-Angelica.

Origin.-Archangélica (Angélica, Moench) officinális, Hoffmann. Natural order, Umbelliferæ, Seselineæ.

Habitat.-Central and Northern Europe and Northern Asia; cultivated; collected in the spring of the second year.

Description.-Root-stock 5 to 10 centimeters (2 to 4 inches) long, 25 to 5 centimeters (1 to 2 inches) thick, crowned with

Fig. 33.

Angelica.-Transverse section of root-stock and rootlet, magnified 3 diam.
remnants of leaf-bases, annulate ; below divided into numerous nearly simple cylindrical and tuberculate wrinkled branches, which are 2 to 6 millimeters ($\frac{1}{12}$ to $\frac{1}{4}$ inch) thick, and 20 to 30 centimeters (8 to 12 inches) long; grayishbrown; fracture short; aromatic, sweetish, pungent, and bitter. Root-stock with a rather thick bark, irregularly curved yellowish porous wood-wedges, and a whitish pith; root branches with the spongy whitish bark rather thicker than the yellowish soft wood; bark with radiating lines of large resin ducts in the bast rays, which are destitute of bast fibres.

Constituents. $-\frac{1}{2}-1$ per cent. volatile oil, $6-10$ per cent. resin, valerianic acid, $\frac{1}{5}$ per cent. angelic acid, $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{2}$ (volatile, crystalline, fusible at $45^{\circ} \mathrm{C}=113^{\circ} \mathrm{F}$., aromatic), angelicin or hydrocarotin (crystalline, pungent, insoluble in water), sugar, bitter principle, starch, tannin, and 7 or 8 per cent. of ash.

Properties.-Carminative, stimulant, tonic, diaphoretic, in large doses emetic. Dose, 0.6 to 2 grams (gr. $\mathrm{x}-3 \mathrm{ss}$), in powder or infusion.

ANGELICA ATropurpurea.-American Angelica.

Origin.-Arehangélica (Angélica, Linné) atropurpúrea, Hoffmann, s. Angélica triquináta, Michaux. Natural order, Umbellifere, Seselineæ.

Habitat.-Northern and Western United States, south to Pennsylvania.

Description.-About 10 to 15 centimeters (4 to 6 inches) long and 18 millimeters ($\frac{3}{4}$ inch) thick, branched, deeply wrinkled, light brown-gray, internally whitish, fracture short, with a thick, finely resinous-dotted bark, and soft, radiating wood; aromatic, sweetish, pungent, and bitter.

Constituents.-Volatile oil, volatile acid, resin, starch.
Properties and Dose.-Similar to preceding.

LEVISTICUM.-Lovage.

Origin.-Levísticum officinále, Koch, s. Ligústicum Levísticum, Linné. Natural order, Umbelliferæ, Seselineæ.

Habitat.-Southern Europe; cultivated in Germany.
Description.-Head 5 to 10 centimeters (2-4 inches) long and 2 to 4 centimeters ($\frac{4}{6}-1 \frac{2}{5}$ inches) thick, branched, annulate; below divided into a few nearly simple, subcylindrical, and deeply wrinkled branches, which are about 20 centimeters (8 inches) long and 2 to 6 or 10 millimeters ($\frac{1}{12}$ to $\frac{1}{4}$ or $\frac{2}{5}$ inch) thick; brown or reddish-brown; fracture short, spongy; arematic, sweetish, pungent, and bitter. Head branches with a rather thick bark, and yellowish porous wood, which is radiate near the bark, and in irregular meshes toward the centre; roots with the bark rather

Levisticum. - Transverse section, magnified 3 diam. thicker than the porous, yellowish wood; the bark with numerous bast rays, and small resin ducts, in somewhat radiating lines.

Constituents.-Volatile oil, bitter extractive, resins, sugar, starch, mucilage, angelic acid.

Properties.-Carminative, stimulant, diuretic, emmenagogue. Dose, 0.6 to 2 grams (gr. $x-3 s s$), in infusion.

LaSERPITIUM.-White Gentian.

Radix gentianæ albæ.
Origin.-Laserpítium latifólium, Linné. Natural order, Umbelliferæ, Laserpitieæ.

Habitat.-Central Europe.
Description.-Several-headed, somewhat conical, annulate above, branched below, and deeply wrinkled; the brown, corky layer removed; grayish-white ; aromatic, bitter ; fracture short, white; bark thick, with numerous orange-colored resin ducts; wood finely porous.

Constituents.-Volatile oil, bitter principle, mucilage, starch.

Properties.-Tonic, stimulant. Dose, 1 to 4 grams (gr. $\mathrm{xv}-\mathrm{jj})$.

PIMPINELLA.-Pimpernel.

Origin.-Pimpinélla Saxífraga, Linné, and P. mágna, Linné. Natural order, Umbelliferæ, Ammineæ.

Habitat.-Central Europe and Western Asia, in dry and mountainous localities.

Description.-Several-headed, branches of the head short, terminated by the hollow stem-base;

Pimpinella.-Transverse section, magnified 3 diam. fusiform, about 20 centimeters (8 inches) long, annulate above, longitudinally wrinkled and tuberculate below; externally yellowish-brown or brown-yellow; aromatic, sweetish, pungent; fracture short, whitish; bark thick, radiate, with numerous yellow resin ducts in radiating lines; wood yellowish, porous, radiate, with broad medullary rays. The pith of the head contains resin cells.

Constituents. - Volatile oil, acrid resin, sugar, starch, crystallizable and almost tasteless pimpinellin.

Properties.-Stimulant, tonic, sialagogue. Dose, 0.5 to 2 grams (gr. viij-3ss).

PETROSELINUM.-ParsLey.

Origin.-Petroselínum satívum, Hoffmann, s. Apium (Cárum, Baillon) Petroselínum, Linné. Natural order, Umbelliferæ, Ammineæ.

Habitat.-Southern Europe ; extensively cultivated.

Description. - Somewhat conical, about 15 centimeters (6 inches) long, and about 12 millimeters ($\frac{1}{2}$ inch) thick ; light brown-yellow ; annulate above, wrinkled below, with transverse ridges; faintly aromatic, sweetish; fracture short; bark thick, resinousdotted, and, like the medullary rays, white; wood light yellow, porous.

Constituents.-Volatile oil, muei-

Petroselinum. - Transverse section, magnified 3 diam. lage, sugar, starch, apiin (tasteless).

Properties. - Carminative, diuretic, nephritic, discutient. Dose, 2 to 4 grams ($388-\mathrm{j}$), in infusion.

SUMBUL.-Sumbul.

Origin.-Férula (Euryángium, Kauffimann) Súmbul, Hooker-filius. Natural order, Umbelliferæ, Pencedaneæ.

Habitat.-Central and Northeastern Asia.

Description. - In transverse segments about 5 centimeters (2 inches) thick, and 2.5 centimeters (1 inch) long, but varying considerably in diameter and thickness, light, spongy, annulate or longitudinally wrinkled;

Fig. 37
 fracture irregularly fibrous; gray-brown, internally whitish and brown-yellow ; odor strong, musk-like ; taste bitter and balsamic.

Structure.-Bark thin, with fibre circles; wood fibres
irregularly twisted ; resin ducts numerous in the spongy white parenchyme.

False Sumbul of India.-Ammoniacum root, somewhat flavored with sumbul ; firmer, denser, and of a yellow or reddish tint.

Constituents.-Volatile oil, $\frac{1}{3}$ per cent., bluish; soft resin, 9 per cent., of musk odor; angelic acid, methylerotonic acid, valerianic acid, bitter extractive, sugar, starch ; on dry distillation yields umbelliferon.

Properties.-Stimulant, tonic, nervine. Dose, 0.5 to 2 grams (gr. viij- J_{ss}) in powder, tincture, or fluid extract.

IMPERATORIA.-MAsterwort.
Origin.-Peucédanum (Imperatória, Linné) Ostrúthium, Baillon. Natural order, Umbelliferæ, Peucedaneæ.

Habitat.-Southern and Central Europe.
Fig. 38.

Imperatoria root, natural size ; and transverse section, magnified.

Description.-Somewhat conical, about 5 centimeters (2 inches) long, and nearly 2 centimeters ($\frac{4}{5}$ inch) thick, flattish, finely annulate above, wrinkled and tuberculate; brown-gray, internally whitish, with numerous resin dots; odor balsamic ; taste pungent and bitter; bark thin, wood-bundles small, inclosing a large pith.

Constituents.-Volatile oil $\frac{3}{4}$ per cent., imperatorin (peucedanin ; crystalline, pungently acrid, insoluble in water). ostruthin (tasteless).

Properties.-Stimulant, tonic. Dose, 1 to 2 grams (gr. $\mathrm{xv}-\mathrm{xxx}$).

PANAX.-Ginseng.

Origin.-Pánax (Arália, Gray) quinquefólium, Linné. Natural order, Araliaceæ, Panaces.

Habitat. - North America, south to the mountains of Georgia and Tennessee ; in rich woods.

Description.-Fusiform, 50 to 75 millimeters (2 to 3 inches) long, annulate above, divided below into 2 or 3 equal branches, wrinkled longitudinally; sweetish and slightly aromatic ; externally pale brownish-yellow; fracture short, mealy, white, with a thin bark containing numerous reddish resin cells; wood-wedges narrow, yellowish; medullary rays broad.

Constituents.-Panaquilon, sweet, amorphous, soluble in water and alcohol, insoluble in sodium sulphate solution, precipitated by tannin; resin, mucilage, starch.

Properties.-Demulcent, slightly stimulant. Dose, 1 to 8 grams (gr. xv-3ij).

ipOMGEA PANDURATA.-Wild Jalap, Manroot.

Origin.-Ipomळ'a (Ipomæ'a) panduráta, Meyer. Natural order, Convolvulaceæ, Convolvuleæ.

Habitat.-United States, in sandy fields.
Description.-Large, conical, about 5 centimeters (2 inches) thick, above with several rhizome branches about 1 centimeter ($\frac{2}{5}$ inch) thick ; in longitudinal or transverse slices, with overlapping bark, wrinkled and brownish-gray externally, whitish internally; bark thin with a zone of resin cells; wood-wedges numerous and narrow, in the medullary rays scattered resin cells; odor slight; taste sweetish, bitter, somewhat acrid.

Constituents.-Resin 1-2 per cent., sugar, gum, coloring matter, starch. The resin is a glucoside, soluble in alcohol,
ether, chloroform, and alkalies, the latter solution being precipitated by acids.

Properties.-Diuretic, cathartic. Dose, 1 to 4 grams (gr. $\mathrm{xv}-3 \mathrm{j})$.

ARMORACIA.-Horseradish.

Origin.-Cochleária Armorácia, Linné, s. Armorácia rusticána, Gaertner. Natural order, Cruciferæ, Alyssineæ.

Habitat.-Eastern Europe, cultivated.
Description.-Used only in the fresh state. Heads several, annulate ; root cylindrical, 30 centimeters (12 inches) or more long, 12 to 25 millimeters ($\frac{1}{2}-1$ inch) thick, pale yellowishbrown, somewhat scaly and warty; internally white, fracture short; when crushed, of a pungent odor and sharp, acrid taste.

Structure-Bark thickish, covered with a thin cork and containing numerous yellow stone cells in the outer layer; wood-bundles small in narrow wedges; medullary rays broad: the rhizome with a central pith.

Constituents.-Volatile oil 0.05 per cent., of same composition as oil of mustard, resin, sugar, starch, etc., and about 80 per cent. of water.

Properties.-Stimulant, irritating, rubefacient.
Substitution.-In Europe fresh aconite root, which has a radish-like odor, has been mistaken for horseradish.

PHYTOLACCE RADIX.-Pokeroot.

Origin.-Phytolácca decándra, Linné. Natural order, Phytolaccaceæ, Euphytolacceæ.

Habitat.-North America, in waste places ; naturalized in Southern Europe and the West

Fig. 39.

Phytolacca. - Transverse section, natural size. Indies.

Description.-Large, conical, somewhat branched, mostly in transverse or longitudinal slices, wrinkled, browngray ; internally whitish, hard ; fracture fibrous ; inodorous; sweetish, acrid.

Structure-Bark thin, with a thin suberous coat; wood-bundles numer-
ous, small, and narrow, arranged in rays and concentric circles, and surrounded by thin-walled parenchyme.

Constituents.-Resin, probably a glucoside, starch, tannin, mucilage, volatile acid, waxy matter, sugar, ash $8-10$ per cent.

Properties. - Alterative, anodyne, resolvent, emetic. Dose, 0.3 to 2 grams (gr. v-⿹\zh26ss) in powder, decoction, or extract.

BRYONIA.-BRYONY.

Origin.-Bryónia alba and B. dioíca, Linné. Natural order, Cucurbitaceæ, Cucumerineæ.

Habitat.-Central and Southern Europe.
Deseription - Root conical, about 50 centimeters (20 inches) long, and 5 to 10 centimeters (2 to 4 inches) thick; in commerce usually in thin, rugged disks; externally wrinkled, brownish, from the first species with warts and transverse ridges ; fracture short ; internally white or grayish; inodorous; disagreeably bitter.

Structure.-Bark thin with a thin friable cork; woodbundles numerous, small, arranged in rays and concentric circles, and surrounded by thin-walled parenchyme.

Constituents.-Bryonin (bitter glucoside, soluble in water and alcohol, insoluble in ether, precipitated by tannin; yields bryoretin and hydrobryoretin, besides sugar), starch, sugar, gum, etc.

Properties.-Emmenagogue, hydragogue cathartic. Dose, 0.6 to 4 grams (gr. x-3j).

BELLADONN \nrightarrow RADIX.-Belladonna Root.
Origin.-Átropa Belladónna, Linné. Natural order, Solanaceæ, Atroper.

Habitat.-Central and Southern Europe, in woods.

Description.-In cylindrical, somewhat tapering, longitudinally wrinkled pieces, 20 to 30 centimeters (8 to 12 inches) long and 12 to 25 millimeters ($\frac{1}{2}$ to 1 inch) or more thick; externally brownish-gray, internally whitish ; fracture nearly smooth, mealy, not radiating in the bark or in the meditullium, except in the thicker roots inside and near the cambium line; nearly inodorous; taste sweetish, afterward bitterish and strongly acrid.

Roots which are tough, woody, and break with a splintery fracture, also the hollow stem bases sometimes present, should be rejected.

Structure.-Bark thickish, indistinctly radiate, free from bast fibres; wood-bundles yellowish, near the centre small and distant, surrounded in the
 thicker roots by broader woodwedges and equally wide medullary rays. The wood predominates in old roots.

Constituents. - Atropine $0.2-$ 0.6 per cent., belladonine (probably oxyatropine, $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{4}$), hyoscyamine, atropamine, starch, atrosin (a fluorescent compound). Atropine, $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{3}$, is white, crystalline, bitter and acrid, soluble in ether, chloroform, alcohol, also in water ; with alkalies yields tropic acid and tropine; its gold precipitate is crystallizable and of a dull yellow color. On digesting tropine tropate in acidulated water, atropine is reproduced. Other alkaloids (tropeines) are formed in a similar manner; tropine mandelate thus yields homatropine, $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{3}$, which resembles atropine in its effeets. Atropamine, $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{2}$, which is sometimes present, is easily decomposed by mineral acids.

Young roots contain only hyoscyamine ; older roots (810 years) also atropine ; the alkaloids are found chiefly in
the bark; hence woody roots should be rejected; it is present in largest quantity about the time of flowering.
Properties.-Diuretic, dilating the pupil, sedative, narcotic. Dose, 0.06 gram (gr. j) ; of atropine, 0.5 to 1 milligram ($\frac{1}{125}-\frac{1}{64}$ grain).

Antidotes.-Emetic (vegetable or mineral), or stomachpump; stimulants (brandy, coffee, ete.); morphine; physostigmine ; pilocarpine.

Allied Drug.-The rhizome of Scópola (Scopólia) carniólica, Jacquin, indigenous to southern Central Europe, is of horizontal growth, $2-4$ centimeters ($1-1 \frac{1}{2}$ inch) thick, almost jointed with few annulations ; tissues similar as in belladonna root; contains the same alkaloids.

althea.-Marshmallow.

Origin. - Álthæa officinális, Linné. Natural order, Malvacere, Malver.

Habitat.-Europe, Western and Northern Asia; naturalized in the eastern United States and in Australia, in salt marshes ; cultivated in Europe.

Description. - The fleshy branches are collected and deprived of the brown corky layer ; cylindrical or conical, longitudinally wrinkled pieces, from 7 to 15 centimeters (3 to 6 inches) long, and about 1 centimeter ($\frac{2}{5}$ inch) or more in diameter; externally white, mealy, somewhat hairy from detached slender bast fibres, and marked with circular scars of the rootlets;

Althwa.-Transverse section, magnified 2 diam. fracture short and granular in the meditullium, whitish and fleshy or mealy. Odor faint, peculiar, stronger in infusion ; taste sweetish, mucilaginous.

Marshmallow should not be coated with lime.
Young uncoated belladonna root resembles marshmallow ; but is externally not fibrous, and has yellowish wood-bundles or wood-wedges.

Structure.-Bark thickish; inner bark radiating from small groups of long bast fibres; meditullium in outer layer faintly radiating; wood-bundles distant and small; medullary rays narrow ; the parenchyme filled with starch and containing scattered crystal cells and larger mucilage cells.

Constituents.-Asparagin, about 1 per cent.; mucilage, 35 per cent.; sugar, 8 per cent.; pectin, 10 per cent.; starch, 35 per cent. ; ash, 4-5 per cent.

Properties.-Demulcent. Dose, 2 to 8 grams (5 ss-ij) in infusion or syrup.

RUBIA.-Madder.

Origin.-Rúbia tinctórum, Linné. Natural order, Rubiaceæ, Galiex.

Habitat.-Levant and Southern Europe.
Description.-Rhizome cylindrical, long, about 5 millimeters ($\frac{1}{5}$ inch) thick with distant nodes; roots about 3 millimeters ($\frac{1}{8}$ inch) thick, dark red, deeply wrinkled, with a foliaceous cork, thin brown-red inner bark, spongy red wood, and irregular medullary rays, the rhizome with a dark-red small pith; fracture short, odor feeble; taste sweetish and slightly bitter, acrid, and astringent. Mostly kept in form of powder.

Constituents.-Rubian (yellow, bitter), rubihydran (gumlike), ruberythrin (yellow needles, blood-red with alkalies), alizarin (orange-red needles, purple or blue with alkalies), purpurin (red needles, violet colored with alkalies), pectin, sugar, tannin, etc.

Properties.-Tonic, emmenagogue. Dose, 1 to 4 grams (gr. xv-3j).
alkanna.-Alkanet.
Origin - Alkánna (Anchúsa, Linné) tinctória, Tausch Natural order, Boragineæ, Borageæ.

Habitat.-Western Asia and Southeastern Europe.

Description.-Fusiform, about 10 centimeters (4 inches) long, and 1 to 2 centimeters ($\frac{2}{5}-\frac{4}{5}$ inch thick), with a crown of felt-like leaf bases; deeply wrinkled; bark dark purple, foliaceous, friable, easily separated from the twisted yellowish wood, which is cleft by purple friable medullary rays; nearly inodorous and tasteless; does not tinge the water red.

Constituents. - Alkannin, little starch. Alkannin is of resinous appearance, dark purplish-red, soluble in ether, alcohol, fats, and certain volatile oils, with a red color ; in alkalies blue.

Uses -For coloring tinctures and pomades.

heUCHERA.-Alum Root.

Origin.-Hetíchera americána, Linné. Natural order, Saxifragaceæ, Saxifrageæ.

Habitat.-United States, woodlands.
Description.-About 15 centimeters (6 inches) long, and 12 millimeters ($\frac{1}{2}$ inch) thick, several-headed, somewhat contorted, branched, wrinkled, tuberculate, purplish-brown, fracture short and granular; internally reddish or brownish; bark thin or thickish; meditullium rather spongy; inodorous ; very astringent, somewhat bitter.

Constituents.-About 14 per cent. of tannin (by ferric chloride dark green from acid solution, and dark blue from neutral solution), trace of gallic acid, sugars, etc.

Properties.-Astringent. Dose, 1 to 2 grams (gr. xv- xxx).

CALUMBA.-Colombo.

Origin.—Jateorrhíza Calúmba, Miers. Natural order, Menispermaceæ, Tinosporeæ.

Habitat.-Eastern Africa, cultivated in some East Indian islands.

Description.-Nearly circular or broadly elliptic disks, 3 to 6 centimeters ($1 \frac{1}{5}$ to $2 \frac{2}{5}$ inches) in diameter, 6 to 12 millimeters ($\frac{1}{4}$ to $\frac{1}{2}$ inch) thick, externally greenish browngray and wrinkled; internally yellowish, and near the cambium gray; depressed in the centre, with a few inter-
rupted circles of projecting wood-bundles, distinctly radiate in the outer portion near the blackish cambium line; fracture short, mealy; odor slight; taste mucilaginous, slightly aromatic, very bitter.

Structure. - Bark thickish, with a thin brown cork and narrow bast rays without fibres; wood-bundles bright

Fta. 42.

yellow, small, distant near the centre, in narrow rays near the bark: medullary rays broader; the parenchyme filled with starch.

Constituents.-Columbin about 0.8 per cent. (white, crystalline, slightly soluble in water), berberine (yellow, crystalline), columbic acid (yellowish, amorphous, nearly insoluble in cold water), starch, mucilage, ash about 6 per cent.

Properties.-Tonic. Dose, 0.5 to 2 or 4 grams (gr. viij $-\overline{\mathrm{Ss}}-\mathrm{j})$, in infusion, tincture, extract.

RUMEX.-Yellow Dock.

Radix lapathi.
Origin.-Rúmex críspus, Linné, and other species of Rumex. Natural order, Polygonaceæ, Rumicee.

Habitat.-Europe, naturalized in North America; in grassy places and along roadsides.

Description.-Fusiform, 10 to 20 centimeters (4 to 8 inches) long, 1 to 2 centimeters ($\frac{2}{5}$ to $\frac{4}{5}$ inch) thick, annulate above, deeply longitudinally wrinkled below; externally brown or reddish-brown, internally dingy brownish-yellow; fracture short ; nearly inodorous, taste bitte and astringent ; on mastication the saliva is tinged yellowish.

Structure.-Bark thickish, with a thin cork and distinct yellowish bast wedges; cambium circle prominent; wood wedges porous, somewhat horny ; medullary rays narrow. The parenchyme contains starch grains, reddish-brown coloring matter, and crystals of calcium oxalate.

Constituents.-Tannin, mucilage, starch, chrysophanic acid (rumicin, lapathin), calcium oxalate.

Properties.-Astringent, tonic, alterative, in larger doses laxative. Dose, 1 to 4 grams (gr. $\mathrm{xv}-3 \mathrm{j}$).

rhaponticum.-Rhapöntic Root. Crimean Rhubarb.

Origin.-Rhéum rhapónticum, Linné. Natural order, Polygonacer, Rumiceæ.

Habitat. - Western Asia, cultivated in some parts of Europe, and in North America (pie plant).

Description.-Fusiform, about 10 centimeters (4 inches) long, and 2 centimeters ($\frac{4}{5}$ inch) thick, somewhat annulate above, deeply wrinkled ; partly deprived of the orangered cork; fracture short, internally

Fig. 44.

Rhaponticum.-Transverse section, magnified 3 diam. whitish, with narrow straight interrupted red medullary rays, and a rather thick bark; odor and
taste resembling rhubarb, more mucilaginous, and less gritty ; the saliva, on mastication, tinged yellow.

Constituents.-Like rhubarb, but astringency predominating.

Properlies.-Astringent, laxative. Dose, 1 to 3 grams (gr. $\mathrm{xv}-\mathrm{xlv}$).

RHEUM.-Rhubarb.

Origin.-Rhéum officinále, Baillon, and probably other species of Rheum. Natural order, Polygonaceæ, Rumiceæ.

Habitat.-Western and Central China.
Description.-Cylindrical, conical, or flattish segments of the rhizome or its lateral branches, deprived of most of the dark-brown corky layer, smoothish or somewhat wrinkled, externally marked with white, elongated meshes, containing a white, rather spongy tissue, and a number of short red-brown or brown-yellow striæ; compact, hard; fracture uneven; internally white, marbled with yellow and red ; odor peculiar, aromatic; taste bitter, somewhat astringent; gritty when masticated; the saliva is tinged orange-yellow.

Structure.-The predominating tissue is thin-walled parenchyme containing starch or crystal groups of calcium oxalate. The narrow medullary rays contain orange-red coloring matter, are parallel only near the cambium, and in the interior are irregularly curved and interrupted. The vascular bundles are soft and porous. Near the cambium line are a few stellate spots, or sometimes a larger number arranged in a loose circle ; they indicate the internal origin of the leaves, and contain short, red, somewhat wavy medullary rays radiating from a common centre.

Varieties.-1. Russian Rhubarb came from Chinese Tartary by way of Siberia (Kiachta) to St. Petersburg, and consisted of carefully selected pieces, which after drying were trimmed to beneath the cambium line, and marked
with a conical hole, penetrating beyond the middle. It is no longer an article of commerce.

Fig. 45.

Rhubarb.-Section near the cambium, magnified 40 diam.

Fig. 46.

Oxalate of calcium crystals in rhubarb.
2. Chinese Rhubarb, sometimes called East India Rhubarb, is exported from Canton and other Chinese ports,

Russian rhubarb.-Transverse section.
occasionally by way of India. The inner bark is always present, small patches of the rough corky layer are occasionally adhering, and fragments of twine on which the root was dried are not unfrequently observed. Its color is
less bright, and its odor somewhat less aromatic than that of Russian rhubarb. This variety is the officinal rhubarb.

Chinese rhubarb.-Transverse section.
3. European Rhubarb. From Rhéum palmátum, rhapónticum, compáctum, undulátum, Emódi, and other species, cultivated in Moravia (Austria), England, and France. Frequently trimmed so as to resemble Chinese rhubarb,

European rhubarb.-Transverse section.
but the surface entirely or nearly destitute of white meshes, and the medullary rays interrupted, narrow, and nearly straight; the color is paler, the odor weaker, the taste more mucilaginous, and on mastication it is less gritty
than Chinese rhubarb. It is sometimes used in veterinary practice.

Constituents.-Chrysophan, chrysophanic acid, erythroretin, emodin, phæoretin, aporetin, starch, tannin, crystals of calcium oxalate; the first-named principles yield with alkalies a deep-red or brown-red color. Chrysophan, $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{14}$, is orange-yellow, bitter, soluble in alcohol and water, yields with dilute acids sugar and chrysophanic acid, $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{O}_{4}$; this is nearly tasteless, bright yellow, crystalline, freely soluble in benzol, chloroform, volatile and fixed oils, less soluble in alcohol and ether, nearly insoluble in cold water. Erythroretin is yellow, tasteless, readily soluble in alcohol, less so in ether. Emodin is orange-colored, nearly insoluble in benzol. Phaoretin is yellowish-brown, soluble in alcohol, insoluble in ether, chloroform, and water. Aporetin is blackish, resinous, sparingly soluble in simple solvents. Rheotannic acid, $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{O}_{14}$, is yellowish, soluble in water and alcohol, and yields with dilute acids sugar and rheumic acid, $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{O}_{9}$, which is red, amorphous and sparingly soluble in cold water.

Properties.-Tonic, astringent, aperient, purgative. Dose, 0.3 to 1.6 grams (gr. $\mathrm{v}-\mathrm{xxv}$).

METHYSTICUM.-Kava-Kava.

Origin.-Píper (Macropíper, Miquel) methy'sticum, Forster. Natural order, Piperaceæ, Pipereæ.

Habitat.-South Sea Islands.
Description.-Root large, in commerce usually cut longitudinally and transversely into irregular pieces; light, and often more or less hollow in the interior ; externally blackishgray, internally dingy white; fracture farinaceous and somewhat splintery ; bark thin ; meditullium porous, with irregularly twisted thin wood-bundles, radiating near the surface and separated by broader white medullary rays, the woodbundles forming distinct meshes underneath the bark. Rootlets, if present, about 30 centimeters (12 inches) or more in length,
often braided, more or less fibrous. Odor slight, agreeably aromatic; taste somewhat pungent and benumbing.

Constituents.-Acrid resin 2 per cent., little volatile oil, kavahin (crystalline, tasteless, soluble in water, not colored by nitric acid, yields benzoic acid) ; methysticin, $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{5}$

Fig. 50.

Kava root.-Transverse section.
(crystalline, tasteless, insoluble in water, colors nitric acid yellow and red) ; gum, starch 45 per cent., ash 4 per cent.

Properties.-Stimulant, diuretic, diaphoretic, and tonic. Dose, 1 to 4 grams (gr. $\mathbf{x v}-\mathrm{lx}$). The alcoholic extract is a local anæsthetic.

hydrangea.-Hydrangea.

Origin.-Hydrángea arboréscens, Linné. Natural order, Saxifrageæ, Hydrangeæ.

Habitat.-United States; on rocky banks.
Description. - Head irregular, knotty, about an inch or more in thickness ; roots thinner, much bent and branched, usually cut into pieces of variable length; the bark about $\frac{-1}{20}$ inch thick, pale-gray with rust colored patches, slightly ridged longitudinally or somewhat scaly, brittle, and readily separated from the tough, white, tasteless wood, the latter with numerous narrow or linear wood-wedges and medullary rays;
fracture splintery ; inodorous; taste of the bark sweetish, somewhat pungent.

Constituents.-Resin, gum, sugar, starch, crystalline glucoside (Bondurant, 1887).

Properties.-Diuretic, lithontryptic. Dose, 2 to 4 grams (3 es-j).

GLYCYRRHIZA.-Licorice Root.

Radix liquiritiæ.
Origin.-Glycyrrhíza glábra, Linné. Natural order, Leguminosæ, Papilionaceæ, Galegeæ.

Habitat.-Southern Europe and Western Asia, cultivated.
Description.-Long cylindrical pieces, from 5 to 25 millimeters ($\frac{1}{5}$ to 1 inch) thick, longitudinally wrinkled, externally grayish-brown, warty; internally tawny-yellow; pliable, tough ; fracture coarsely fibrous ; nearly inodorous; taste sweet, somewhat acrid.

The underground runners, which are often present, have the same appearance, but contain a thin pith.

Structure.-Bark rather thick, with a thin cork and narrow bast wedges, the latter containing tough bast-fibres and

Fig. 51.

Glycyrrhiza glabra (rhizome

FIG. 52

Glycyrrhiza glandulifera (root).
cells with crystals of calcium oxalate. Wood-wedges narrow, appearing porous from small groups of large ducts, and accompanied by crystal cells. Medullary rays distinct, consisting of several rows of cells, and containing starch.

Varieties.-1. Spanish, Italian, and Turkish licorice root. The kind described, exported from the countries named.
2. Russian licorice root. From Glycyrrhíza glandulífera, Waldstein et Kitaibel (a variety of Gl. glabra indigenous to Southeastern Europe). It is mostly thicker than the preceding, contains few runners, is deprived of the corky layer, externally bright tawny-yellow, smooth, the wood-wedges softer and paler, the cells larger, and the tissue often cleft.

Constituents.-Glycyrrhizin about 6 per cent. (combined with ammonia), glycyramarin, sugar, asparagin about 3 per cent., starch, resin. Glycyrrhizin, $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{O}_{9}$ or $\mathrm{C}_{44} \mathrm{H}_{63} \mathrm{NO}_{18}$ (?), is sparingly soluble in alcohol and ether, soluble in hot water ; its neutral ammonium salt freely soluble in water, insoluble in absolute alcohol. It is a glucoside, splitting into glucose (or parasaccharic acid ?) and bitter glycyrretin.

Properties.-Demulcent, expectorant. Dose, 1 to 4 grams (gr. xv-3j).

hemidesmus.-Indian Sarsaparilla.

Origin.-Hemidésmus índicus, R. Brown. Natural order, Asclepiadeæ, Periploceæ.

Habitat.-East Indies.
Description.-Cylindrical pieces, about 15 centimeters (6 inches) long, and 6 to 12 millimeters ($\frac{1}{4}-\frac{1}{2}$ inch) thick, tortuous, wrinkled, and fissured, dark-brown, hard; internally whitish and mealy; odor tonka-like; taste sweetish and slightly acrid. The stems are nearly inodorous and tasteless.

Structure.-Bark thin, with a thin cork and small scattered laticiferous ducts. Medullary rays narrow, indistinct.

Constituents.-Stearopten, starch, etc.
Properties.-Diaphoretic, diuretic, alterative, tonic. Dose, 2 to 4 grams ($388-\mathrm{j}$).

AbRI RADIX.-Indian Licorice.

Origin.-Ábrus precatórius, Linné. Natural order, Leguminosæ, Papilionaceæ, Vicieæ.

Habitat.-India; naturalized in most tropical countries.
Description.-Cylindrical, somewhat twisted pieces, 6 to 25 millimeters ($\frac{1}{4}-1$ inch) thick; externally light reddish-brown ;
fracture short, fibrous; internally yellowish; bark quite thin; meditullium composed of alternating layers of porous wood and parenchyme, traversed by medullary rays varying in width; odor slight; taste bitterish, afterward sweetish.

Constituents.-Glycyrrhizin (?), sugar, etc.
Properties.-Demulcent, emollient.

IPECACUANHA.-Ipecacuanha.

Origin.-Cephaélis Ipecacuánha, A. Richard. Natural order, Rubiaceæ, Psychotrieæ.

Habitat.-Brazil to Bolivia and New Granada, in damp forests ; cultivated in India.

Description.-About 10 centimeters (4 inches) long and 4 millimeters ($\frac{1}{6}$ inch) thick; mostly simple, contorted, dull gray-brown or blackish, finely wrinkled, closely irregularly

Fig. 53.

annulated, and often transversely fissured; internally scarcely radiate ; bark brittle, brownish, somewhat waxy, easily separated from the thin, whitish, tough, and nearly tasteless ligneous portion which amounts to about 15 per cent. of the root; odor slight, nauseous; taste bitterish, acrid, nauseating.

Structure.-Cork thin. Bark not uniform in thickness, not radiating, consists of parenchyme inclosing starch or raphides of calcium oxalate, the latter being more numerous in the inner bark. Meditullium slightly radiating, consists mainly of pitted wood cells containing starch.

Varieties.-According to the tint of the corky layer, gray, red, and black ipecac, all being derived from the same species. Ipecacuanha from Carthagena is somewhat larger than the Brazilian root, less conspicuously annulate, has a more firmly adhering bark, and the medullary rays of the wood are more distinct ; it comes from Cephaélis acumináta, Karsten.

Ipecacuanha.
Substitution.-The following are used in Brazil, besides other roots, like ipecacuanha, and are occasionally met with in Europe, but rarely seen in the United States:

Striated ipecacuanha. From Psychótria emética, Linné.

Natural order, Rubiacee, Psychotriee. Longitudinally wrinkled, not annulate, but with distant transverse fissures; dark purplish-brown ; bark thick, containing much sugar, no starch, and little emetine.

Undulated ipecacuanha. From Richardsónia scábra, Saint Hilaire. Natural order, Rubiaceæ, Spermacoceæ. Undulate, slightly wrinkled, somewhat annulate and transversely fissured; externally browuish-gray; bark white, mealy, not bitter; wood nearly the thickness of the bark.

White ipecacuanha. From Ionídium Ipecacuánha, Ventenat. Natural order, Violarieex, Violeæ. Somewhat branched, not annulate, longitudinally wrinkled, whitish or pale brownish-yellow; wood porous, rather thick, yellowish ; free from starch.

Constituents.-Emetine from 1 to 2 per cent., choline (bilineurine), ipecacuanhic acid (amorphous bitter glucoside), resin, pectin, starch, saccharose. Emetine, $\mathrm{C}_{30} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{5}$, is a white powder, soluble in alcohol, ether, and chloroform, slightly soluble in cold water, benzol, benzin, and fixed oils ; fusible at $65^{\circ} \mathrm{C}$., afterward at $74^{\circ} \mathrm{C}$.; colored bright yellow or orange by solution of chlorinated lime ; its chromate and nitrate are nearly insoluble.

Properties.-Expectorant, nauseant, emetic. Dose, 0.06, 0.3 , to 1 or 2 grams (gr. j, gr. v, gr. xv-xxx).

APOCYNUM ANDROS EMIFOLIUM.-Dog's Bane.

[^0]It should not be confounded with the root of Apócynum cannábinum, Linné, which has a relatively thicker bark and soft fragile, porous wood.

Fig. 57.

Apocynum androsæmifolium.-Transverse section, magnified 25 diam.
Constituents.-Bitter principle (probably apocynin and apocynein), resin, caoutchouc, starch, etc.

Properties.-Diuretic, sudorific, emetic, cathartic. Dose, 0.3 to 1.6 grams (gr. v-xxv).

GELSEMIUM.-Gelsemium. Yellow Jasmine.
Origin. - Gelsémium sempervírens, Aiton. Natural order, Loganiaceæ, Gelsemieæ.

Habitat.-Southern United States.
Description.-The creeping rhizome and rootlets are collected. Cylindrical, long or cut in sections, occasionally 3 centimeters ($1 \frac{1}{4}$ inch) thick, the roots often thinner; externally light brown-yellow with purplish-brown longitudinal lines; tough, fracture splintery; internally yellowish; odor aromatic, heavy; taste bitter, of the wood slightly so.

Structure.-Bark thin, with a thin cork and silky bast fibres, adheres closely to the wood. The latter is yellowish, composed of porous wood-wedges, and has rather broad medullary rays. The rhizome has a thin pith. The
parenchyme contains starch and a few crystals of calcium oxalate.

Constituents.-Volatile oil, gelsemine, gelseminine, gelseminic acid (regarded by some as being identical with æsculin), resin, starch. Gelsemine, $\mathrm{C}_{54} \mathrm{H}_{69} \mathrm{~N}_{4} \mathrm{O}_{12}$ (F. A. Thompson, 1887), is colorless, bitter, crystallizes with difficulty, dissolves in 650 parts cold water, is freely soluble in ether, chloroform, and alcohol, and yields with HCl and HNO_{3} crystalline anhydrous salts, soluble in 40 parts water; it is not colored by strong $\mathrm{H}_{2} \mathrm{SO}_{4}$ or

Gelsemium. -Transverse section. HNO_{3}, but with sulphuric acid and manganic oxide becomes cherry-red, then olive-green. Gelseminine is brown, amorphous, bitter, the salts amorphous, the chloride freely soluble; $\mathrm{H}_{2} \mathrm{SO}_{4}$ colors light yellow, HNO_{3} deep green ; sulphuric acid and manganic oxide color deep purple, changing to purplish-blue.

Antidotes.-Evacuants(stomach-pump, emetic); atropine; stimulants.

Properties.-Nervine, antispasmodic, sedative. Dose, 0.2 to 0.6 gram (gr. $\mathrm{iij}-\mathrm{x}$) in powder, tincture, or fluid extract.

PAREIRA.-Pareira Brava.

Origin.-Chondodendron tomentósum, Ruiz et Pavon. Natural order, Menispermaceæ, Tinosporeæ.

Habitat.-Brazil.
Deseription.-Subeylindrical, somewhat tortuous pieces, about 10 to 15 centimeters (4 to 6 inches) long, varying in thickness between 2 and 10 centimeters ($\frac{3}{4}$ and 4 inches); externally dark brown-gray, with transverse ridges and
fissures and longitudinal furrows; internally pale brown, porous; the fresh cut of a waxy lustre; inodorous, bitter.

Pieces having a bright yellow color, or with a grayish, hard, nearly tasteless wood, should be rejected.

Structure.-Bark thin, with a thin cork. Wood in two or more somewhat irregularly concentric circles, which are separated by layers, composed of parenchyme, stone cells, and compressed cells; the central circle occupied by about 12 wood-wedges, containing large ducts, separated by somewhat narrower medullary rays, and terminating by a semicircular line of compressed cells; the subsequent circles have the same structure, but a larger number of woodwedges and medullary rays.

Admixtures and Substitutions.-Pareira brava is not unfrequently mixed with sections of the stem, which has a rather thicker bark, when young, dotted with black warts, nearly regular zones of wood-wedges, and a small central pith; taste bitterish; otherwise resembles the root.

False Pareira brava.-a. Wood hard, very excentric, in separate circles and sections of circles, grayish, the fresh cut not waxy; bark thin, slightly bitter. Origin unknown.
b. Wood hard, pale brown, nearly concentric, separate circles; bark thin, nearly tasteless; otherwise resembling the preceding. Origin unknown.
c. Bark blackish; wood whitish, amylaceous, tasteless ; derived from Abúta ruféscens, Aublet (Menispermaceæ, Cocculeæ).
d. Wood hard, very excentric, in separate circles and sections of circles, bright yellow like the thin bark; bitter. It contains berberine or a closely allied alkaloid, and is probably derived from Abúta amára, Aublet. Habitat, Brazil.
e. Root resembling true pareira, but readily crumbling
into pieces on cutting; wood-rays terminating with a nearly circular layer of compressed cells. Origin not determined.

Constituents.-Pelosine, about 0.5 per cent., identical with beberine and buxine; little tannin, ash 4 to 5 per cent.

Properties.—Diuretic, tonic. Dose, 2 to 4 grams (3ss-j).

Fig. 59.

Pareira brava - Portion of a root, and transverse sections of the same.

BERBERIS.-Barberry.

Radix berberidis.
Origin.-Bérberis vulgáris, Linné. Natural order, Berberideæ, Berbereæ.

Habitat.-Europe and Western Asia; naturalized in North America.

Description.-Much branched, sometimes 5 centimeters (2 inches) thick, hard and tough, brownish, internally yellow, with a rather thin, foliaceous bark, and thick, light yellow wood; inodorous, bitter.

Constituents. - Berberine (see Hydrastis), oxyacanthine (vinetine or berbine), berbamine, and a fourth alkaloid. See Barberry bark.

Properties.-Tonic. Dose, 2 to 4 grams (3 ss-j) in decoction, etc.

> BAPTISIA.-W ILD Indigo.

Origin.-Baptísia tinctória, Robert Brown. Natural order, Leguminosæ, Papilionacere, Podalyriex.

Habitat.-North America.
Description.-Head short, with knotty branches, and with several roots; the latter are bent, little branched, about 50 centimeters (20 inches long), from 3 to 12 millimeters ($\frac{1}{8}-\frac{1}{2}$ inch) thick; externally brown, somewhat warty and scaly; fracture tough and fibrous; internally whitish; bark rather thick, with a thin brown cork, and tough bast fibres in radial lines; wood tough, finely porous ; medullary rays narrow, indistinct; inodorous; taste of bark bitterish, somewhat acrid and nauseous; wood tasteless.

Constituents.-Baptitoxine or baptisine (acrid, soluble in water, alcohol, and ether, poisonous), baptisin (bitter, indifferent glucoside, insoluble in water), baptin (acicular, soluble in water, glucoside, purgative), resin, starch, etc.

Properties.-Stimulant, emetic, cathartic. Dose, 0.3 to 1 $\operatorname{gram}(\mathrm{gr} . \mathrm{v}-\mathrm{xv})$.

STATICE-Marsh Rosemary.

Origin.-Státice Limónium, Linné, var. caroliniána, Gray. Natural order, Plumbagineæ, Staticeæ.

Habitat.-North America, near the coast.
Description.-Several-headed, 30 to 60 centimeters (12 to 24 inches) long, 25 millimeters (1 inch) or more thick, annu-
late above, branched and wrinkled below, compact, tough, purplish-brown externally, lighter internally, with a rather thick bark and narrow, yellowish wood-wedges; inodorous, strongly astringent, and slightly bitter.

Constituents.-Tannin 14-18 per cent., mucilage, sugar, etc.
Properties.-Astringent. Dose, 0.5 to 2 grams (gr. viijxxx).

Baycuru root, probably from Státice brasiliénsis, resembles the above, and has similar properties ; it is said to contain a crystalline alkaloid.

CEANOTHUS.--Red Root.

Origin.-Ceanóthus americánus, Linné (New Jersey tea). Natural order, Rhamnaceæ, Rhamneæ.

Habitat.-North America in dry woodlands.
Description.-Head simple or branched, knotty-tuberculate; root about 30 centimeters (12 inches) long, and above 10 to 25 millimeters ($\frac{2}{5}-1$ inch) thick, contorted, somewhat branched, rust-brown, finely wrinkled, fracture granular through the thin rust-colored bark ; wood tough, pale brownred, with fine medullary rays; inodorous; bitter and astringent.

Constituents.-Tannin (6.5 per cent. in bark), ceanothine (crystalline, best solvent is chloroform ; reduces gold chloride; red-brown by $\mathrm{H}_{2} \mathrm{SO}_{4}$; blue by Froehde's reagent; does not readily form salts), starch, sugar, mucilage, red coloring matter, ash 2-3 per cent.

Properties.-Astringent, tonic. Dose, 0.6 to 2 grams (gr. $\mathrm{x}-\mathrm{xxx})$.

KRAMERIA.-Rhatany.

Origin.-1. Kraméria triándra, Ruiz et Pavon, and, 2. Kraméria tomentósa, Saint Hilaire. Natural order, Polygalex.

Habitat.-1. Peru and Bolivia; 2. New Granada.
Deseription.-About 25 millimeters (1 inch) thick, knotty and several headed above, branched below, the branches thinner and long; bark smooth or scaly, deep rust-brown, about 2 millimeters ($\frac{1}{12}$ inch) thick, very astringent, inodorous ; wood pale brownish, tough, finely
radiate, nearly tasteless; bark of branches about $\frac{1}{8}$ or $\frac{1}{6}$ the diameter.

The root of Krameria tomentosa (Savanilla rhatany) is less knotty, more slender, and has a dark brown-purplish, somewhat scaly bark, about 3 millimeters ($\frac{1}{8}$ inch) thick; bark of branches about $\frac{1}{5}$ to $\frac{1}{4}$ the diameter.

Fig. 60.

Transverse section of $-a$. Peruvian, b. Savanilla rhatany root.
Structure.-Cork rather thick; parenchyme of bark dotted, contains starch ; bast bundles small, forming interrupted lines; medullary rays in the finely porous wood very narrow.

Varieties.-1. Peruvian or Payta rhatany, and, 2. Savanilla rhatany. Described above.
3. Para or Brazilian rhatany. Probably from Kr. argéntea, Martius. Resembles Savanilla rhatany ; but is more blackish, less of a purple tint, very flexible; bark transversely fissured and somewhat warty.
4. Guayaquil rhatany, described by Holmes (1886). Origin unknown ; root large, woody, contorted ; bark comparatively thin, fibrous, rich in tannin, reddish-brown, the surface striated and warty.
5. Kraméria secundiflóra, De Candolle, of Texas, and Kr. lanceoláta, Torrey, of Florida, have thin dark brown roots with thick bark, rich in tannin. Not found in commerce.

Constituents.-Kramero-tannic acid about 20 per cent., rhatanic red, starch. The tannins differ somewhat in chemical behavior. In alcoholic tincture Payta rhatany
yields a red-brown, but Savanilla or Para rhatany a bluishgray, precipitate with lead acetate.

Properties.-Astringent. Dose, 0.5 to 2 grams (gr. viij3^{ss}) in powder (rarely), syrup, tincture, extract.

2. RHIZOMES.-RHIZOMATA.

Rhizomes are stems remaining wholly or partly under ground, and are mainly distinguished from roots by the presence of scaly leaves or of sheathing leaf-bases or their scars, whereby they, or at least their younger portion, acquire a more or less annulated appearance. Rhizomes grow mostly in a horizontal or oblique direction, and produce overground stems from lateral buds, or more generally from buds terminating the branches, the rhizome elongating from a lateral bud; thus the stem-scars are found mostly on the upper side of the rhizome, while the rootlets are mainly on the lower side. A few of the officinal rhizomes have a perpendicular growth, are on all sides uniformly surrounded by rootlets, and on the lower end are more or less truncate. Branches, if present, emanate from the axils of leaf-scars.

Histology.-The rhizomes of cryptogamous plants (fern-) consist of parenchyme, in which a few, more or less laterally elongated, not wedge-shaped, vascular bundles are imbedded, sometimes arranged in a loose circle, each bundle being surrounded by an endoderm.

The rhizomes of monocotyledons consist of a circle of parenchyme, the cortical layer, followed toward the interior by a circular row of thick-walled cells, the nucleus sheath or endoderm, and inclosing a cylinder of parenchyme in which wood-bundles are irregularly scattered, and these
are often most abundant near the nucleus sheath ; in some cases wood-bundles are also observed in the outer layer.

The rhizomes of dicotyledons have usually the epidermis replaced by a layer of cork; the bark consists of an outer and an inner layer, the latter being the liber, and is separated by a thin layer of cambium from the wood, which is circularly arranged in more or less distinctly wedge-shaped masses, and these alternate with medullary rays and inclose a circular pith. Some of the dicotyledonous rhizomes, like valerian, contain an endoderm, which is also observed in the rootlets of some of these drugs.

Classiflcation.

Sect. 1. Cryptogamous Rhizomes.

Rhizome densely covered with stipes, and between these with brown silky chaff.

Aspidium.
Sect. 2. Monocotyledonous Rhizomes.
Collected without rootlets.
Aromatic and pungent.
Peeled or unpeeled, flattish, lobed, with numerous oil-cells.
Usually in disks, light reddish or brown-gray, with oil-cells.
Cylindrical, annulate, branched, reddish-brown; internally whitish, with oil-cells.
Globular pyriform, or more frequently cylindrical, gray ; internally orange-yellow, horny.
Aromatic and bitter, flattish-cylindrical, on the lower side with scars of rootlets in wavy and branched lines.
Odor of violets, bitterish, white, consisting of flattened, club-shaped joints.
Taste sweet; thin, straw-yellow, internally whitish, spongy, hollow in centre.
Taste bitterish, acrid; thin, brown-gray, under the epidermis a circle of large air-tubes.
Taste bitterish ; thick, tuberous, tuberculated, red-dish-brown ; internally whitish-brown, dotted. Smilax China.

Taste acrid, tingling; obconical, brown, surrounded by scars of rootlets ; internally whitish, with short curved wood-bundles.
Collected with rootlets.
Taste acrid, tingling ; obconical, brown, surrounded by shrivelled, lighter-colored, simple rootlets; internally whitish, with short curved woodbundles.
Resembling the preceding, but of larger dimensions, dark gray, and, when rubbed, of a disagreeable odor.
Taste sweetish, astringent, bitter, and acrid; subglobular or obconical ; wood-bundles curved.
Taste bitter; short, cylindrical; wood-bundles crowded near centre.
Taste amylaceous, bitter; short, cylindrical, jointed.
Taste acrid; brown, consisting of cylindrical joints, which are flattened above.
Taste bitterish, slightly acrid; long, thin, subcylindrical ; little branched, brown ; on upper side with approximate cup-shaped stem-scars. Long, thin, cylindrical, branched, whitish, with rather distant stem-scars above.
Resembling the preceding, but thicker and jointed between the stem-scars.
Taste acrid; flattish cylindrical, bent and branched; whitish, hard.

Sect. 3. Dicotyledonous Rhizomes.

Collected with few or no rootlets.
Short, leaf-scars approximate.
Acrid; cylindrical, deep brown-red; internally white, with numerous red resin-cells.
Astringent; cylindrical, brown ; internally reddish ; bark thin ; wood-wedges small ; medullary rays broad.
Astringent ; irregularly conical, pitted, brown ; internally reddish; bark thick; wood-wedges small; medullary rays broad.
Astringent; S-shaped, flattish, red-brown; internally reddish; bark thick; wood-wedges small, numerous; medullary rays narrow.

Veratrum album.

Veratrum album and Ver. viride.

Dracontium.

Trillium.

Chamælirium.
Aletris.

Iris versicolor.

Cypripedium.
Convallaria.

Polygonatum.

Dioscorea.

Sanguinaria.

Geranium.

Tormentilla.

Bistorta.

Long horizontal, leaf-scars mostly distant.
Mucilaginous, bitter, and astringent; grayish, spongy, wood-bundles scattered; disks or sections.
Somewhat bitter and acrid; composed of joints, terminated by a broad cup-shaped scar on upper side, and a tuft of rootlets underneath. Cylindrical, somewhat tuberculate, with laticiferous vessels.
Somewhat aromatic, sweetish ; cylindrical, annulate above.
Very pungent, cylindrical.
Collected with rootlets.
Rhizomes short, upright or mostly oblique, often knotty.
Aromatic, more or less pungent.
Upright, subglobular, or obconical ; internally brownish, waxy, with small wood-wedges.
Cylindrical, oblique, or horizontal ; wood circle narrow ; in bark of rhizome and rootlets, near the wood, a circle of resin cells.
Thin cylindrical, oblique, with projecting stem-scars on upper side and numerous rootlets beneath; wood somewhat excentric.
Thin cylindrical, with deeply cup-shaped stem-scars on upper side and numerous rootlets beneath, wood excentric.
Slightly aromatic, bitter, and astringent.
Subcylindrical, oblique, with fragile rootlets; wood soft, pith brown-gray.
Subcylindrical or obconical, with numerous fragile rootlets; wood rather hard; pith reddish ; odor clove-like.
Not aromatic; bitter or somewhat acrid, wood (except in Hydrastis) prominent, hard.
Subglobular ; wood white; rootlets numerous, brittle; pale brown.
Obconical or oblique and short-jointed; yel-lowish-gray ; internally bright yellow.
Horizontal, short-branched, matted; stemscars broad ; brown; tough.

Nymphea.

Podophyllum.
Asclepias Cornuti.
Aralia
nudicaulis.
Armoracia
(see Roots).

Valeriana.

Arnica.

Serpentaria.

Spigelia.

Geum rivale.

Geum urbanum.

[^1]Very knotty and hard; brown-gray ; stemscars shallow.
Irregular tuberculate, blackish-brown, waxy ; wood-bundles rather distant ; wood of rootlets somewhat hexagonal.
Like preceding, somewhat smaller; woodbundles approximate in about four distant groups; wood of rootlets with four short rays.
Like the following, but smaller.
Stout branches ascending, black-brown, hard; wood-wedges approximate; wood of rootlets with four long rays.
Stout knotty-cylindrical, gray-brown, hard; scars concave; medullary rays fine.

Collinsonia.

Helleborus niger.

Helleborus viridis.
Actea alba.

Cimicifuga.
Triosteum.
Knotty, red-brown ; rootlets more or less annulate; resinous dotted in the bark. . Gillenia.
Elongated, mostly not knotty.
Aromatic ; knotty from prominent stem-scars ; roots long.
Aromatic; pungent; quadrangular or twoedged, thin, gray-brown ; bark thick; woodwedges small; pith large.
Bitter, slightly acrid; flattened, branched, black-brown; bark thin; wood thick, tough ; pith brownish.
Bitter; cylindrical, pale yellowish-brown; internally bright yellow ; wood tough ; pith small.
Bitter; often knotty; yellowish-brown; tough.
Aromatic, bitter; cylindrical, light brown; bark thin; wood hard; pith small.
Sweet; cylindrical, brownish; internally tawny-yellow; bark rather thick; wood large-porous.
Sweetish, slightly acrid; cylindrical or in powder ; deep red.
Bitter; cylindrical, yellowish-brown; internally yellowish; woody zone narrow, tough ; pith prominent, somewhat excentric.

ASPIDIUM.-Aspidium.

Male fern.
Origin.-1. Aspídum Fílix-mas, Swartz, and, 2. Aspídium marginále, Willdenow. Natural order, Filices, Polypodiaceæ.

Habitat.-1. North America (Canada, Northern Michigan, Dakota, to the Rocky Mountains), Northern Asia, and Europe. 2. North America south to the mountains of North Carolina.

Description.-From 7 to 15 centimeters (3 to 6 inches) long, 15 to 25 millimeters ($\frac{3}{5}$ to 1 inch) thick, and, together

Fig. 61.

Filix-mas.-Transverse section, magnified 3 diam: f. Vascular bundles.

Fig. 62.

Surface of peeled rhizome.
with the closely imbricated dark brown stipe remnants, 50 or 65 millimeters ($2-2 \frac{1}{2}$ inches) in diameter, and densely covered with brown, glossy, transparent, and soft chaffy scales; fracture short and cork-like ; internally pale green, rather spongy; the vascular bundles about 10 (A. Filixmas) or 6 in number (A. marginale), arranged in an interrupted circle outside of which a variable number of small scattered bundles are found; odor slight, disagreeable;
taste sweetish, somewhat astringent and bitter, acrid and nauseous.

When used, the chaff, together with the dead portions of the rhizome and stipes, must be removed, and only such portions as have retained their green color should be employed.

Structure.-The parenchyme is thin-walled, and contains minute starch grains and green oil, and in the intercellular spaces short-stalked oil glands. The vascular bundles consist largely of scalariform ducts.

Constituents.-Fixed oil 6-7 per cent., filitannic acid, filixred, chlorophyll, filicin, $\mathrm{C}_{35} \mathrm{H}_{40} \mathrm{O}_{12}$, and filicic acid, $\mathrm{C}_{33} \mathrm{H}_{42} \mathrm{O}_{13}$. Filicin or filicic anhydride is not poisonous, is crystalline, soluble in chloroform, benzol, fixed and volatile oils, less soluble in ether and alcohol, insoluble in water ; melts at $184.5^{\circ} \mathrm{C}$. ; yields with fusing potassa, butyric acid and phloroglucin. Filicic acid is white, amorphous, tasteless, more freely soluble than its anhydride, straw-yellow at 100°, melts at 125°, is anthelmintic and poisonous. The constituents named are contained in Oleoresiua filicis. Ash 2-3 per cent.

Properties.-Tænifuge. Dose, 2 to 8 grams (3 ss-ij), or the oleoresin, 0.3 to 1 gram (gr. $\mathrm{v}-\mathrm{xv}$).

Allied drugs.-Aspídium rígidum, Swartz, indigenous to Europe and California. The rhizome is longer and thinner than male fern, has the stipes loosely imbricate, and contains 6 vascular bundles.

Aspídium athamánticum, Kunze, panna-panna, uncomocomo, from Southern Africa ; thicker and firmer than male fern; internally brownish, with black resin-dots and broader vascular bundles.

Substitutions.-The rhizomes of most indigenous ferns are thinner, the stipes rarely closely imbricate, and usually free from, or with very little, chaff.

ZINGIBER.-Ginger.

Origin.-Zíngiber officinále, Roscoe. Natural order, Scitamineæ, Zingiberee.

Habitat.-India; cultivated in the tropics.
Deseription.-Flattish, about 15 millimeters ($\frac{3}{5}$ inch) broad, on one side lobed or clavately branched; deprived of the epidermal layer, pale buff-colored, striate; breaks with a mealy rather fibrous fracture; internally whitish,

Fig. 64.

Ginger starch-granules, magnified 250 diam.
with numerous small orange-colored dots and a distinct nucleus sheath ; aromatic and spicy, of a pungent and warm taste.
Structure.-The tissue consists mainly of parenchyme containing flattened starch-granules, and is, in coated ginger, surrounded by a layer of tangentially elongated cells, resembling those of the nucleus sheath. The resin cells are scattered through the tissue, and the fibro-vascular bundles are most numerous within the circle of the nucleus sheath. The cortical layer is much thinner than the central cylinder.

Varieties.-Coated and uncoated ginger; the latter deprived of the epidermal layer ; the former sometimes distinguished as black ginger-a designation more properly restricted to the rhizome, which, before drying, has been steeped in boiling water, and, when dry, breaks with a
horny, blackish, somewhat diaphanous fracture, due to the pasty condition of the starch. The commercial varieties are designated from the country of production.

Fig. 65.

Jamaica ginger.

1. Jamaica ginger. The kind described above; sometimes the rhizome has been steeped in milk of lime, and is covered with a white powder of calcium carbonate.

2. African ginger. Coated with a light brown or graybrown suberous tissue, rhizome shorter, the lobes broadly linear or oblong.
3. Chinese ginger. Coated, rhizome shorter, the lobes stumpy.
4. East India ginger. Coated on the edges, the flat sides deprived of the epidermal layer.
5. Green ginger. The lobed branches recently dug and sent to market without drying.
6. Preserved ginger. Fresh ginger steeped in hot syrup; it is soft, brown-yellow, translucent.

Constituents.-Volatile oil, 1 to 2 per cent., gingerol (viscid inodorous liquid, to which the hot taste is due, soluble in fat, volatile oil, alcohol, ether, very sparingly soluble in benzin), resin (yields protocatechuic acid), starch 20 per cent., mucilage, etc. ; ash about 4 per cent. Jamaica ginger yields about 5 per cent., East India ginger about 8 per cent. of oleoresin.

Properties.-Carminative, stimulant, sternutatory, rubefacient, anodyne. Dose, 0.3 to 2 grams (gr. v-xxx), in powder or tincture.

ZEDOARIA.-ZEDOARy.

Origin.-Cúrcuma Zedoária, Roscoe. Natural order, Scitamineæ, Zingiberex.

Habitat.-India.
Description.-Circular disks of a tuber, 1 to 4 centimeters ($\frac{2}{5}$ to $1 \frac{3}{5}$ inches) in diameter, orange-brown; internally pale

reddish gray-brown, with numerous brown-yellow resin cells, and lighter colored wood-bundles, the latter most numerous
within the nucleus sheath, which separates the central portion from a much thinner cortical layer; fracture short, somewhat mealy, and slightly horny ; odor and taste ginger-like.

Yellow zedoary, the pear-shaped tuber of Zíngiber Cassumúnar, Roxburgh, has a more camphoraceous odor and bitterish taste.

Constituents.-Volatile oil $\frac{1}{2}$ to 1 per cent., resin (to which the pungent taste is due), starch, mucilage, etc.

Properties and Dose.-Like ginger.
Galanga.-Galangal.

Origin.-Alpínia officinárum, Hance. Natural order, Scitamineæ, Zingiberex.

Habitat.-China.
Description.-Cylindrical, branched, about 5 centimeters (2 inches) long and 15 millimeters ($\frac{3}{5}$ inch) thick, annulate

Galanga.
by somewhat distant leaf-sheaths, rust-brown ; fracture short, somewhat fibrous; internally brownish-white, with numerous

brown-yellow resin cells and brownish wood-bundles which are scattered in the outer layer and approximate in the equally thick central portion: odor and taste ginger-like.

The larger galangal from Alpínia Galánga, Swartz (India), which is of larger dimensions and of a more reddish tint externally, is now not an article of commerce.

Constituents.-Volatile oil $\frac{1}{2}$ per cent., resin, fat, galangol (soft, very pungent, inodorous), three yellow tasteless crystalline principles (kempferid, galangin, alpinin), starch, mucilage, etc., ash about 4 per cent.

Properties and Dose.-Like ginger.

> CURCUMA.-Turmeric.

Origin.-Cúrcuma lónga, Linné. Natural order, Scitaminese, Zingiberes.

Habitat.-Southern Asia; cultivated.
Description.-Uval or oblong, 2.5 to 5 centimeters (1-2 inches) long and about one-half as thick (round turmeric);

Fig. 70.

Round turmeric.

Fig. 71.

Long turmeric.

Curcuma.-Transverse section, magnified 3 diam.
or cylindrical branches about 1 centimeter ($\frac{2}{5}$ inch) thick (long turmeric) ; sometimes cut longitudinally or transversely ; externally yellowish-gray, somewhat annulate; internally orange-yellow or brown-yellow, with a circular nucleus sheath; the cortical layer about one-half the thickness of the central cylinder; fracture flattish, resinous, glossy; odor slight ginger-like ; taste warm, aromatic, and bitterish; powder deep yellow, turning brown-red by alkalies and borax.

Varieties. - 1. Chinese turmeric. Central rhizomes and branches.
2. Bengal turmeric. Slender branches, reddish.
3. Madras turmeric. Thick branches and transverse sections of central rhizomes.
4. Java turmeric. Rather small central rhizomes and branches, usually cut transversely and longitudinally.
5. Cochinchina turmeric. Sections of large diameter, rough externally.

Constituents.-Volatile oil 1 per cent., viscid oil 11 per cent. (containing aromatic turmerol), a little pungent resin, curcu\min, pasty starch, mucilage, ete.

Curcumin, $\mathrm{C}_{44} \mathrm{H}_{44} \mathrm{O}_{4}$, is orange-yellow, resinous, insoluble in water and benzin, soluble in alcohol and ether, also with a red-brown color in alkalies ; red-brown by boric acid ; sparingly soluble in benzol and carbon disulphide.

Properties.-Stimulant, tonic; used for coloring ointments and tinctures, and for the detection of alkalies and borates.

CALAMUS.-Calamus.

Sweet flag.

Origin. - A'corus Cálamus, Linné. Natural order, Aroideæ, Orontieæ.

Habitat.-Europe and North America, on the banks of streams and ponds.

Description.-The unpeeled rhizome is directed. It grows horizontally, 1 meter (40 inches) or more in length; in commerce it is cut in sections of various length, subcylindrical, about 2 centimeters ($\frac{4}{5}$ inch) broad; externally reddish-brown (when peeled pinkish-white), deeply wrinkled, somewhat annulate, or the upper surface marked with the oblique leaf-scars or their fibro-vascular bundles, forming triangles ; on the lower surface marked with the circular scars of the rootlets in wavy longitudinal lines; whitish internally, of a spongy texture, breaking with a short corky fracture, showing numerous yellowish and brownish dots on both sides of the elliptic nucleus sheath; odor aromatic ; taste strongly bitter.

Structure. - The predominating tissue is parenchyme containing numerous large air-passages ; the cells are filled with starch or with oil, the latter being more numerous in the thick cortical zone. The yellowish fibro vascular bundles are most numerous within and near the nucleus sheath, the latter consisting of rather thin-walled cells.

Fig. 73.

Calamus -Transverse section, magnified 3 diam.
Constituents.-Volatile oil 1-2 per cent., acorin about 0.2 per cent., choline, calamine (minute quantity), resin, starch, mucilage. Acorin of Thoms (1886) is a thick honey-yellow neutral liquid, faintly aromatic, very bitter, insoluble in water, soluble in alcohol, chloroform, and ether. The bitter principle appears to be crystallizable and precipitated by tannin (Flückiger).

Properties.-Stimulant, carminative, tonic. Dose, 1 to 4 grams (gr. $\mathrm{xv}-3 \mathrm{j}$), in powder, infusion, and tincture.

IRIS FLORENTINA.-Florentine Orris.

Origin.-I'ris florentína, Linné, I. pállida, Linné, and I. germánica, Linné, chiefly the last two species. Natural order, Irideæ, Moræeæ.

Habitat.-Northern Italy ; cultivated.
Description.-Of horizontal growth ; flattened, consisting of joints, 5 to 10 centimeters (2 to 4 inches) long, broadest near the upper extremity, and terminated by a circular scar; peeled, of a whitish color; on the upper side with small fibrovascular bundles in transverse lines; on the lower side with
numerous circular brownish scars of the rootlets; fracture short, somewhat mealy; nucleus sheath prominent in lower half; wood-bundles scattered, crowded within the nucleus sheath; odor violet-like; taste mealy, bitterish, and slightly acrid.

Long, rather slender joints are selected for the use of teething infants, trimmed smoothly and frequently whitened by chalk or magnesia.

Fig. 74.

Iris florentina.-Transverse section.

Constituents.-Volatile oil, resin, fat, starch, mucilage, bitter extractive. Oil of orris, about 0.1 per cent., distilled by means of superheated steam, is solid at ordinary temperatures, has an agreeable violet odor, and consists chiefly of myristic acid mixed with a little thickish volatile oil.

Properties.-Errhine, diuretic, in fresh state irritant; used chiefly in dentifrices and perfumery. Dose, 0.3 to 1 gram (gr. $\mathrm{v}-\mathrm{xv}$).

TRITICUM REPENS.-Couchgrass.

Triticum, U.S.; Rhizoma (Radix) graminis.-Quitchgrass, Quickens.

Origin.-Tríticum (Agropy'rum, Beauvais) répens, Linné. Natural order, Gramineæ, Hordeeæ.

Habitat.-Europe and North America.
Description.-Very long and creeping, the internodes about 5 centimeters (2 inches) long, cut in sections about 1 centimeter ($\overline{5}$ inch) long, about 2 millimeters $\left(\frac{1}{12}\right.$ inch) thick, smooth but wrinkled, straw-yellow, hollow in the centre ; inodorous, sweet.

It should be gathered in autumn or in early spring and deprived of the rootlets.

Fig. 75.

Triticum repens.-Rhizome and transverse section, magnified 3 diam.
Structure.-The cortical zone consists of large parenchyme cells, with about six small wood-bundles, and is free from starch. The woody zone is narrow and yellowish, and

Fig. 76.

Triticum repens.-Section through portion of rhizome, magnified 65 diam.
incloses a narrow circle of parenchyme, the remnant of the medullary centre.

Constituents.-Glucose, fruit-sugar, inosit, triticin (about 8 per cent., resembles inulin), mucilage, malates ; ash about 5 per cent. Lactic acid and mannit are found in the extract as products of fermentation.

Properties.—Diuretic, aperient. Dose, 2 to 8 grams (3 ss-ij), in decoction and as extract.

CAREX ARENARIA.-Red SEdge.

Radix sarsaparillæ germanicæ, Radix graminis rubre.
Origin.-Cárex arenária, Linné. Natural order, Cyperaces, Caricer.

Habitat.-Central and Northern Europe, near the coast.
Description.-Horizontal, long, internodes 1 to 3 centimeters ($\frac{2}{5}$ to $1 \frac{1}{5}$ inch) long, angularly furrowed, brown-gray, the nodes fringed with leaf-sheaths and marked with scars and remnants of rootlets; internally with a large centre containing numerous approximate wood-bundles, and surrounded by a circle of large air passages; nearly inodorous, sweetish, somewhat bitter, and acrid.

Constituents. - Acrid and bitter principle, sugar, resin, starch.

Properties.-Alterative ; used similarly to sarsaparilla.
Substitutions. - The rhizomes of many other species of Carex are destitute of the large air-passages, and in many the woodbundles in the central portion are surrounded by broad layers of parenchyme.

SMilaX China.-China Root.

Origin.-Smílax Chína, Linné. Natural order, Liliaceæ, Smilaceæ.

Habitat.-China, Japan.
Description.-Irregularly tuberous, about 10 or 15 centimeters (4 or 6 inches) long and 3 to 5 centimeters ($1 \frac{1}{5}$ to 2 inches) thick, tuberculate by short branches, reddish-brown; internally whitish, mealy, with numerous small brown resin cells, and near the centre with many scattered wood-bundles, but without a nucleus sheath; inodorous, insipid, afterward bitterish, and slightly acrid.

Substitutions.-Smílax pseudochína, Linné, Central and Southern North America. Smaller, less tuberculate, rather spongy, and with few resin cells.

The tubers of Smílax glaúca, Walter, are yellowish or pale brownish, spongy, and destitute of resin cells.

Constituents. Smilacin, resin, stareh, a little tannin.
Properties.-Alterative; used similarly to sarsaparilla.

VERatrum album.-White Veratrum.

Origin.-Verátrum álbum, Linné. Natural order, Liliacer, Veratres.

Habitat.-Europe, in mountainous regions.

Description.-It closely resembles American veratrum in all essential characters. Formerly it consisted only of the rhizome, deprived of its rootlets; but the latter are now present, as directed by the German Pharmacopceia.

Fig. 77.

Veratrum.-Longitudinal section.

Fig. 78.

Veratrum.-Transverse section.

Constituents. - Jervine, pseudojervine, rubijervine, veratralbine (amorphous), veratroidine, protoveratridine, veratrine (?), jervic acid (identical with chelidonic acid), resin, sugar, veratramarin (yellow, deliquescent, bitter, present in minute quantity).

Properties.-Emetic, cathartic, errhine, poisonous. Dose, 0.06 to 0.12 gram (gr. j -ij), in powder, mostly externally as ointment in itch, and mixed with an inert powder as snuff.

VERATRUM VIRIDE.-American Veratrum.

Origin.-Verátrum víride, Aiton, nearly allied to Verát. álbum, var. Lobeliánum, Bernhardt, of Europe. Natural order, Liliaceæ, Veratreæ.

Habitat.-North America, in rich woods.
Description.-Closely resembles white veratrum. Rhizome obconical, mostly simple, 5 to 8 centimeters ($2-3$ inches) long, 2 to 3 centimeters ($\frac{4}{5}-1 \frac{1}{5}$ inch) thick, tufted above, truncate below, externally blackish-gray, and invested on all sides with numerous shrivelled light yellow-ish-brown rootlets, which are about 20 centimeters (8 inches
long) and about 3 millimeters ($\frac{1}{8}$ inch) thick; internally whitish with numerous darker colored dots and short wavy lines within the nucleus sheath; inodorous, bitter, very acrid, sternutatory.

Structure.-Cortical zone about $\frac{1}{7}$ of the diameter of the rhizome, consists of parenchyme, containing starch and occasionally calcium oxalate, and has few short-curved wood-bundles; nucleus sheath wavy, the inner cell-walls thickened; central portion like the cortical zone, but the wood-bundles numerous. The rootlets have a thick cortical zone consisting mainly of spongy parenchyme, the cells filled with starch or calcium oxalate; the brown nucleus sheath encloses a fibrovascular cord.

Constituents.-Resin, starch, and alkaloids. Jervine, $\mathrm{C}_{26} \mathrm{H}_{37} \mathrm{NO}_{3}$, is crystalline, tasteless, not sternutatory, insoluble in water, benzin, and acetic ether, soluble in 270 parts absolute ether, 60 parts chloroform, and 17 parts alisolute alcohol ; turns gradually red with concentrated HCl , and on boiling yellowish; colored yellow and green by $\mathrm{H}_{2} \mathrm{SO}_{4}$, the salts insoluble in dilute mineral acids. Veratroidine is uncrystallizable, sternutatory, soluble in ether, chloroform, and benzol, colored yellow and red by $\mathrm{H}_{2} \mathrm{SO}_{4}$; pale red by concentrated HCl , and on boiling cherry-red. Pseudojervine resembles jervine, but its sulphate is more soluble in water. Rubijervine resembles veratroidine, but is not sternutatory. Cevadine is also contained in sabadilla seed.

Properties.-Emetic, diaphoretic, sedative, errhine. Dose, 0.06 to 0.12 gram (gr. j -ij) in powder, or preferable in tincture and fluid extract.

SYMPLOCARPUS.--Skunk Cabbage.

Origin. - Symplocárpus fó'tidus, Salisbury (Dracóntium fee'tidum, Linné). Natural order, Aroideæ, Orontieæ.

Habitat.-North America, in moist grounds.

Description.-Obconical, truncate above and below, 7 to 10 centimeters (3 to 4 inches) long, and about 5 centimeters (2 inches) in diameter, the upper half beset with numerous long shrivelled rootlets; gray-brown externally ; internally whitish, with numerous short bent wood-bundles, which are crowded within the somewhat wavy nucleus sheath. When triturated, it emits a disagreeable odor, taste acrid, biting.

Dracontium.-Section through upper part, natural size.
Constituents. - Fat, resin, sugar, gum, starch ; the acrid principle, which appears to be altered by heat, has not been isolated (see Arum).

Properties. - Emetic, diuretic, antispasmodic, stimulant. Dose, 0.3 to 1 gram (gr. v-xv), in recent powder or infusion.

TRILLIUM.-Bethroot, Birthwort.

Origin.-Tríllium eréctum, Linné, and other species of Trillium. Natural order, Liliaceæ, Medeoleæ.

Habitat.-United States, in damp woods.
Description.-Varying between subglobular and obconical, somewhat tufted above, truncate below, about 3 centimeters ($1 \frac{1}{5}$ inches) long, annulate, orange-brown, rootlets light brown; internally whitish ; fibrovascular bundles mostly near the circumference, curved or circular; inodorous; taste sweetish, astringent, bitter, and acrid.

Constituents.-Acrid glucoside (not precipitated by lead acetate, nearly insoluble in water), fixed oil, resin, tannin, starch, ash 2 to 3 per cent.

Properties.-Emmenagogue, emetic. Dose, 2 to 4 grams ($388-\mathrm{j}$).

CHAM ELIRIUM.-Starwort.

Origin-Chamslírium lóteum, Gray, s. C. caroliniánum, Willdenow, s. Helónias dioíca, Pursh. Natural order, Liliaceæ, Narthecieæ.

Habitat.-North America, in low grounds.
Description.-About 25 millimeters (1 inch) long and 6 millimeters (1 inch) thick, subcylindrical, closely annulate, gray-brown, on upper side few stem-scars, on lower side wiry rootlets; internally whitish; fracture smooth and horny; woodbundles near the centre numerous; inodorous; taste bitter.

Constituents. - Starch, chamælirin, $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{O}_{9}$ (yellowish glucoside, watery solution frothing, by sulphuric acid colored orange-red, crimson, brown, etc.)

Properties.-Tonic, diuretic, anthelmintic. Dose, 1 to 4 grams (gr. xv-3j).

ALETRIS.-Colicroot, Starwort.

Origin.-A'letris farinósa, Linné. Natural order, Нæmodoracer, Conostylex.

Habitat.-United States, in sandy woods.
Description.-A Aout 30 millimeters ($1 \frac{1}{5}$ inches) long, and 3 millimeters ($\frac{1}{8}$ inch) thick, flattened and tufted on upper side, convex, and with numerous wiry or whitish rootlets on the lower side; indistinctly jointed, brown-gray ; fracture mealy, white, somewhat fibrous; inodorous ; taste amylaceous, bitter.

Constituents.-Starch, bitter principle.
Properties. - Tonic, emetic, purgative. Dose, 0.6 gram (gr. x).

IRIS VERSICOLOR.-Blue Flag.

Iris, U. S. P.
Origin.-I'ris versícolor, Linné. Natural order, Irideæ, Moræеж.

Habitat.-North America, in swampy localities.
Description.-Rhizome of horizontal growth, consisting of joints, 5 to 10 centimeters (2 to 4 inches) long, cylindrical in the lower half, flattish, and about 2 centimeters (4 inch) broad near the upper extremity, and terminated by a circular scar, annulated from the leaf-sheaths, graybrown ; rootlets long, simple, crowded near the broad end; odor slight; taste aerid, nauseous.

Structure.-The predominating tissue is parenchyme, containing starch and some crystals. The nucleus sheath incloses most of the wood-bundles.

Fig. 80.

Iris versico:or.-Joint of rhizome and section of branches.
Allied drugs.- I'ris virgínica, Linné, Bostou iris, and I. vérna, Linné, dwarf iris of the United States. The joints of the rhizome are about 25 millimeters (1 inch) long, and about 1 centimeter ($\frac{2}{5}$ inch) broad, brownish-gray ; otherwise resembling the above.

Constituents.-Acrid resin, camphoraceous body, fat, sugar, gum, tannin, possibly an alkaloid.

Properties.-Alterative, diuretic, purgative, emetic. Dose, 0.3 to 1 gram (gr. $v-x v$), in powder, or the oleoresin, 0.06 to 0.12 gram (gr. $\mathrm{j}-\mathrm{ij}$).

CYPRIPEDIUM.-Cypripedium.

American Valerian.
Origin.-Cypripédium pubéscens, Willdenow, and Cypr. parviflórum, Salisbury. Natural order, Orchideæ, Cypripedieæ.

Habitat.-North America, in swampy places.
Description.-Of horizontal growth, bent, 10 centimeters (4 inches) or less long, about 3 millimeters ($\frac{1}{8}$ inch) thick; on the upper side with numerous circular cup-shaped scars ;
closely covered below with simple wavy rootlets, varying from 10 to 50 centimeters (4 to 20 inches) in length; brittle; dark brown or light orange-brown ; fracture short, white ; odor faint, but heavy ; taste sweetish, bitter, and somewhat pungent.

Cypripedium parviflorum yields the shorter and thinner rhizome with orange-brown rootlets.

Fig. 81.

Cypripedium pubescens.-Rhizome and rootlets, natural size.

Cypripedium parviflorum - Rhizome and rootlets, natural size.
Structure. - Cortical parenchymatous zone thickish. Nucleus sheath indistinct. Wood-bundles approximate, near the centre more distant. The parenchyme contains starch.

Constituents.-V olatile oil (trace), fixed oil, volatile acid, resins, tannin, sugar, starch ; the bitter principle appears to be a glucoside. Ash about 6 per cent.

Properties.-Diaphoretic, stimulant, antispasmodic. Dose, 0.5 to 1 gram (gr. viij-xv), in powder, infusion, or extract.

CONVALLARIA.--Convallaria.

Lily of the valley.
Origin.-Convallária majális, Linné. Natural order, Liliaceæ, Convallariex.

Habitat.-United States, in the Alleghany mountains; Europe and Northern Asia.

Description.-Creeping and branched, about 3 millimeters ($\frac{1}{8}$ inch) thick, cylindrical, wrinkled, whitish, the internodes from 2 to 6 centimeters ($\frac{4}{5}-2 \frac{1}{2}$ inches) long, marked with few circular scars, the joints annulate, and beset with a circle of 8 or 10 grayish, branching long rootlets, about 1 millimeter ($\frac{1}{25}$ inch) thick; fracture rather tough, somewhat fibrous, white; inodorous; taste sweetish, bitter and somewhat acrid; the rhizome contains a small number of fibrovascular bundles within a thick-walled nucleus sheath ; the cortical and central parenchyme is thin-walled.

Constituents.-Convallamarin (white powder, sweet and bitter, soluble in water and alcohol; precipitated by tannin), and convallarin (acrid prisms ; sparingly soluble in, but foaming with water) ; both are glucosides.

Properties.-Heart-tonic, poisonous. Dose, 0.1 to 0.4 gram (gr. jss-vj).

POLYGONATUM.-Solomon's Seal.

Origin.-Polygonátum biflórum, Elliott, and P. gigantéum, Dietrich. Natural order, Liliaceæ, Polygonateæ.

Habitat.-North America, in woodlands.
Description.-Jointed and annulate, about 15 centimeters (6 inches) long, and 5 millimeters ($\frac{1}{5}$ inch) thick, somewhat flattened, each joint on the upper side with a circular concave stem-scar; pale brownish-yellow; fracture short; internally whitish, spongy; wood-bundles most numerous near the centre, not inclosed by a nucleus sheath; inodorous ; taste mucilaginous, somewhat acrid.

Smilacína racemósa, Desfontaines, false Solomon's seal, has the circular stem-cars flattish, and the rhizome not constricted at the termination of the annual shoots.

Constituents.-Probably the same as in European Solomon's seal from Polygonátum multiffórum, Moench; convallarin, asparagin, mucilage, sugar, etc.

Properties.-Diuretic, emetic, cathartic.

DIOSCOREA.-Wild Yam, Colic Root.

Origin.-Dioscoréa villósa, Linné. Natural order, Dioscoreacer.

Habitat.-United States, in moist thickets.
Deseription.-Flattish-cylindrical, branched and curved; about 15 centimeters (6 inches) long, and 1 centimeter ($\frac{2}{5}$ inch) thick, pale brownish, hard; fracture short, somewhat fibrous; internally white with yellowish wood-bundles; inodorous; taste insipid, afterward acrid.

Constituents.-Acrid principle allied to saponin, resin, starch, sugar, ash 2-3 per cent.

Properties.-Expectorant, diaphoretic, emetic. Dose, 0.6 to 2 grams (gr. $\mathrm{x}-\mathrm{xxx}$.)

SANGUINARIA.-Bloodroot.

Origin.-Sanguinária canadénsis, Linné. Natural order, Papaveraceæ, Eupapavereæ.

Habitat.-North America, in rich woods.
Description.-Of horizontal growth, cylindrical, about 5 centimeters (2 inches) long, 1 centimeter ($\frac{2}{5}$ inch) thick, somewhat branched, faintly annulate, wrinkled, reddish-

Fig. 82.

Sanguinaria.-Rhizome with transverse section.
brown; fracture short, somewhat waxy, whitish, with numerous small red dots, or of a nearly uniform brownishred color; rootlets very brittle; odor slight; taste bitter and acrid.

It should be collected in autumn,

Structure.-Bark thin; vascular bundles small, not woody, in one or two loose circles; pith large; rootlets with a thick bark, and rather thin central fibrovascular column; resin cells axially elongated, scattered in the parenchyme.

Constituents.-Sanguinarine, $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{NO}_{4}$, chelerythrine, $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{NO}_{4}$, protopine, $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{NO}_{5}$, homochelidonine, $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NO}_{4}$, citric and malic acids, resins, starch, ash about 8 per cent. Sanguinarine is white, soluble in alcohol, ether, and benzol, and yields bright red salts having an acrid taste. Chelerythrine is very similar in its properties, but yields lemon-colored salts. Protopine, also present in opium, is colored deep purple by $\mathrm{H}_{2} \mathrm{SO}_{4}$. The resins yield protocatechuic acid.

Properties.-Alterative, tonic, stimulant, emetic, sternutatory. Dose, $0.2,0.5,1$ to 4 grams (gr. iij, viij, $x v-\bar{j}$), in powder or tincture.

GERANIUM.-Geranium, Cranesbill.

Origin—Geránium maculátum, Linné. Natural order, Geraniaceæ, Geranieæ.

Habitat.-North America, in woods and thickets.
Description.-Of horizontal growth, cylindrical, 5 to 7 centimeters (2 to 3 inches) long, 10 millimeters ($\frac{2}{5}$ inch) or

Geranium maculatum.-Rhizome and transverse section of rhizome and rootlet, natural size.
less thick, tuberculated, longitudinally wrinkled, dark brown; fracture short, pale red-brown ; rootlets shrivelled, very brittle; inodorous; taste astringent.

Structure.-Bark thin ; wood-wedges yellowish, small, forming a circle near the cambium line; medullary rays broad; central pith large; rootlets with a thick bark and a thin central column of fibrovascular tissue.

Constituents.-Tannin 12-27 per cent. (maximum in A pril; blue-black with ferric salts), gall:c acid (in dry rhizome), red coloring matter, starch, pectin, sugar.

Properties.-Tonic, astringent. Dose, 1 to 3 grams (gr. $\mathrm{xv}-\mathrm{x} \mid \mathrm{v})$.

TORMENTILLA.-TORMENTIL.

Origin.- Potentílla Tormentílla, Sibthorp (Tormentílla erécta, Linné). Natural order, Rosaceæ, Potentilleæ.

Habitat.-Europe, in open woodlands.
Description.-Conical, oblong, or nearly cylindrical, occasionally branched, about 5 centimeters (2 inches) long, and 15 millimeters ($\frac{3}{5}$ inch) thick, with irregular rounded eleva-

Fig. 84.

tions and ridges, depressed stem-scars, and minute scars of the filiform brittle rootlets; brown or reddish-brown; fracture smooth, slightly fibrous; internally light brownish-red; bark thin; wood-wedges small, distant, in one or in two distant circles, inclosing a large pith; inodorous, astringent. The parenchyme contains starch grains and raphides of calcium oxalate.

Constituents.-Tannin (25 per cent.), red coloring matter (tormentil red), kinovic acid, ellagic acid, starch, mucilage.

Properties.-Tonic, astringent. Dose, 0.6 to 2 grams (gr. $\mathbf{x}-\mathbf{x x x})$, in powder or decoction.

BISTORTA.-BISTORT.

Origin.-Poly'gonum Bistórta, Linné. Natural order, Polygonaceæ, Eupolygoneæ.

Habitat.-Europe, Northern Asia, Canada, and Northwestern United States, in swampy meadows.

Fig. 85.

Description.-Depressed, S-shaped, about 5 centimeters (2 inches) long, and 15 millimeters ($\frac{3}{5} \mathrm{inch}$) broad, flattened or channelled and transversely striate on the upper side, convex and with depressed thin root-scars on the lower side, dark red-brown; fracture smooth, scarcely fibrous; internally light brownish-red; bark thick; wood-wedges small, numerous, approximate, inclosing a pith broader or about equal to the bark; inodorous, astringent. The parenchyme contains starch grains and raphides of calcium oxalate.

Constituents.-Tannin (20 per cent.), red coloring matter, starch.

Properties.-Tonic, astringent. Dose, 0.5 to 2 grams (gr. viij-xxx), in powder or decoction.

NYMPHÆA.-WATER-Lily.

Origin. - Nymphæ'a odoráta, Aiton. Natural order, Nymphæасеæ, Nymphææ.

Habitat.-United States, in ponds.

Description.-Of horizuntal growth, about 50 centimeters (20 inches) long, and 5 centimeters (2 inches) thick, with sub-circular leaf-scars on the upper side, and with remnants of rootlets on the lower side; usually in light segments ; externally brown; iuternally whitish or gray ; wood-bundles irregular in the spongy parenchyme; inodorous; taste mucilaginous, astringent.

The rhizome of the yellow pond-lily, Núphar ádvena, Nuttall, is very similar.

Constituents.-Mucilage, tannin, probably alkaloids.
Properties.-Demulcent, astringent. Dose, 0.6 to 2 grams (gr. $\mathrm{x}-\mathrm{xxx}$).

PODOPHYLLUM.-Mayapple.

Origin.-Podophy'llum peltátum, Linné. Natural order, Berberideæ, Berbereæ.

Habitat.-North America, in rich woods a :. . thickets.
Description.-Of horizontal growth, about 5 millimeters ($\frac{1}{5}$ inch) thick, nearly eylindrical, consisting of joints about 5 centimeters (2 inches) long, somewhat enlarged at the end,

Fig. 86.

which has a circular scar on the upper side, a tuft of about ten nearly simple fragile rootlets on the lower side, and is sometimes branched laterally; smooth or somewhat wrinkled, orange-brown ; fracture short ; internally white and mealy ; inodorous; taste sweetish, somewhat bitter and acrid.

Structure.-Bark thickish; wood consisting of about 16 short vascular wedges, placed in a circle and inclosing a large pith; the thin-walled parenchyme contains mainly starch, occasionally calcium oxalate.

Constituents.-Resin 4-5 per cent., starch, sugar. The resin is a mixture of several compounds, partly neutral, partly acid; both portions are partly soluble in ether; the acid yields yellow compounds with alkalies and earths.

Podophyllotoxin, $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{9}$ (white, crystallizable, bitter, faintly acid, soluble in chloroform and acetone, slightly soluble in ether and cold benzol, sparingly soluble in water ; colored cherry-red, then greenish-blue and violet by $\mathrm{H}_{2} \mathrm{SO}_{4}$), picropodophyllin (formed from podophyllotoxin by alkali; less soluble than the latter; crystalline, bitter), podophyllinic acid (inactive), podophyllo-quercetin (yellow needles, insoluble in water, slightly soluble in chloroform, more soluble in ether, freely in alcohol), green oil, and crystalline fatty acid.

Podophy'llum Emódi, Wallich, a Himalayan species, has a cylindrical rhizome with crowded stem-scars on the upper side, and numerons simple rootlets below. It yields from 10 to 12 per cent. of resin.

Properties.-Alterative, cholagogue, cathartic. Dose, 0.3 to 1 gram (gr. $v-x v$), in powder or extract; the resin 0.03 to 0.06 gram (gr. ss-j).

ASCLEPIAS CORNUTI-Milkweed.

Silkweed.

Origin.-Asclépias Cornúti, Decaisne, s. A. syríaca, Linné. Natural order, Asclepiadaceæ, Cynancheæ.

Habitat.-North America, fields and waste places.
Description.-Of horizontal growth, 0.5 to 2 meters (112-6 feet) long, cut in sections, 6 to 12 millimeters ($\ddagger-\frac{1}{2}$ inch) thick, cylindrical, nearly simple, finely wrinkled, somewhat knotty gray-brown, tough; fracture short or splintery, white; bark-
rather thick, with laticiferous vessels ; wood-wedges yellowish, porous, narrow ; nearly inodorous ; taste bitterish, nauseous.

Asclepias Cornuti.--Portion of rhizome.
Constituents.-Bitter crystalline principle, asclepion (tasteless), caoutchouc (6 per cent. of milk juice), resin, tannin, starch, sugar, fat.

Properties.-Diuretic, diaphoretic, alterative, emetic. Dose, 0.5 to 3 grams (gr. viij-xlv), in powder, infusion, or extract.

aralia nudicaulis.-False Sarsaparilla.

Origin.-Arália nudicaúlis, Linné. Natural order, Araliacer, Aralieæ.

Habitat.-North America, in rocky woodlands.
Description.-Of horizontal growth, 30 centimeters (12 inches) or more long, about 5 millimeters ($\frac{1}{5}$ inch) thick, wrinkled, annulate above, stem-scars cup-shaped ; rootlets few ; bark light gray-brown, exfoliating; internally white with a yellowish wood and spongy pith ; fracture short ; odor slightly aromatic ; taste mawkish.

Constituents.-Probably a little volatile oil, resin, starch, sugar, etc.

Properties.-Stimulant, diaphoretic, alterative. Dose, 2 to 4 grams (3 ss-j), in infusion or decoction.

VALERIANA.-Valerian.

Origin.-Valeriána officinális, Linné. Natural order, Valerianeæ.

Habitat.-Europe and Northern Asia, naturalized in New England, in moist and dry localities ; cultivated.

Description.-Rhizome growing upright, subglobular or obconical, from 2 to 4 centimeters ($\frac{4}{5}$ to $1 \frac{1}{2}$ inches) long, truncate at both ends, yellowish-brown or brown ; internally whitish or pale brownish, waxy or horny. Horizontal branches, if present, about 5 millimeters ($\frac{1}{5}$ inch) thick.

Fig. 88.

Valeriana.-Longitudinal and transverse sections.
Rootlets numerous, 5 to 10 centimeters (2 to 4 inches) long, about 2 millimeters ($\frac{1}{12}$ inch) thick, slender, brittle, brown. Odor peculiar, becoming stronger and unpleasant on keeping ; taste camphoraceous and bitter.

Collected from dry localities, the rhizome is small, and has few light brown rootlets; from moist localities, it is larger, usually cut longitudinally, has numerous, larger, and darker rootlets, shows at the lower end scars from decayed roots, and contains less volatile oil.

Structure.-Bark rather thin, covered with a thin cork; nucleus sheath mostly indistinct; fibrovascular bundles small, forming a circle and inclosing a thick pith; the branches have a similar structure but a thick bark. The
rootlets have a thick bark, and a slender central vascular cord with a meagre pith and inclosed in a nucleus-sheath. The parenchyme contains starch, extractive matter, or oil drops.

Constituents.-Volatile oil $\frac{1}{2}-2$ per cent. ; valerianic, formic, acetic, and malic acids, chatinine (isolated in 1891), tannin, resin, starch, mucilage, sugar. The volatile oil has the density 0.94 , and consists of the alcohol borneol, $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}$, its ether, $\left(\mathrm{C}_{10} \mathrm{H}_{17}\right)_{2} \mathrm{O}$, and its formic, acetic, and valerianic ethers; the acids are liberated by the gradual decomposition of the compound ethers. Valerianic acid, $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{2}$, is oily, volatile, soluble in 30 parts of water, and has a peculiar odor; the salts have a sweet taste.

Properties.-Stimulant, anodyne, antispasmodic, nervine. Dose, 1 to 6 grams (gr. $\mathrm{xv}-3 \mathrm{j} \mathrm{ss}$), in infusion, tincture, or fluid extract. The volatile oil, 0.06 to 0.2 gram (gr. j-iij).

ARNICE RADIX.-Arnica Root.

Origin.-A'rnica montána, Linne. Natural order, Compositæ, Senecionideæ.

Habitat.-Europe, Northern Asia, Northwestern America, in mountainous localities.

Description.-Of oblique growth, about 5 centimeters (2 inches) long and 2 to 3 millimeters ($\frac{1}{12}-\frac{1}{8}$ inch) thick, brown, sharply wrinkled longitudinally, rough and irregularly annulate from remnants of leaves and stem bases; fracture short, internally whitish. Rootlets thin, about 10 centimeters (4 inches) long, light-brown, fragile. Odor slightly aromatic ; taste aromatic, pungent, bitter.

Structure.-Bark thickish, with a thin layer of cork, and near the cambium a circle of resin cells; wood-wedges short, forming a close circle, and inclosing a large pith. The rootlets have a thick bark, a slender central fibrovas-
cular cord, and surrounding the latter a circle of few resin cells.

The rhizome of strawberry, Fragária vésca, Linné, has a similar appearance, but is harder, darker brown, not annulate, and contains starch, but no resin cells.

Fig. 89.

Arnica.-Transverse section of rhizome, natural size, and magnified 12 diam.

Fig 90.

Section of rootlet, magnified 25 diam.

Constituents.- Volatile oil $\frac{1}{2}-1$ per cent., acrid and tasteless resins, arnicin, capronic and caprylic acids, inulin 10 per cent., tannin, mucilage. Arnicin is yellow, amorphous, acrid, freely soluble in alcohol and ether, slightly soluble in water.

Properties. - Irritant, stimulant, diuretic, vulnerary. Dose, 0.3 to 2 grams (gr. v-xxx), in powder or infusion.

SERPENTARIA.-SERpentaria.

Origin.-1. Aristolóchia Serpentária, Linné, and, 2. Aristolóchia reticuláta, Nuttall. Natural order, Aristolochiaceæ.

Habitat.-United States, in hilly woods. No. 1, east of the Mississippi ; No. 2, in the Southwestern States.

Description.-Rhizome about 25 millimeters (1 inch) long and 3 millimeters ($\frac{1}{8}$ inch) thick, bent, on the upper
side with approximate short stem-remnants, on the lower side with numerous thin branching rootlets about 10 centimeters (4 inches) long; dull yellowish-brown, internally whitish ; odor aromatic, camphoraceous ; taste warm, bitterish, and camphoraceous.

The rootlets of Ar. reticulata (Red River or Texas snakeroot) are coarser, longer, and less interlaced than those of Ar. Serpentaria (Virginia snakeroot).

Fig. 91.

Serpentaria.
Rhizome with rootlets.
Transverse section of rhizome.

Structure.-Bark thin ; wood-wedges longest on lower side of rhizome, separated by broad medullary ravs; pith large-celled. Rootlets with a thick bark and a thin central fibrovascular cord. The parenchyme contains starch and, in scattered cells, oil.

Constituents.-Volatile oil $\frac{1}{2}-1$ per cent. (contains terpene and mainly $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{O}_{2}$, an ether of borneol), aristolochine, little tannin, starch, sugar, mucilage, albumin, resin; ash 11 per cent. Aristolochine forms light yellow needles, is very bitter, soluble in most simple solvents. (Ferguson, 1887.)

Properties.-Stimulant, diaphoretic, tonic. Dose, 0.3 to 2 grams (gr. $v-x x x$), in powder, infusion, tincture, or fluid extract.

Admixtures.-The subterraneous parts of Panax, Cypripedium, Hydrastis, and others are readily distinguished; Spigelia has no projecting stem-remuants, and in the wood indistinct medullary rays. The rhizome and rootlets of Polemónium réptans, Linné, resemble serpentaria in size and shape, but are nearly white.

SPIGELIA.-Spigelia. Pinkroot.

Origin.-Spigélia marilándica, Linné. Natural order, Loganiaceæ, Euloganieæ.

Habitat.-Southern United States, westward to Texas and Wisconsin, in rich woods.

Deseription.-Rhizome horizontal in growth, 5 centimeters (2 inches) or more long, about 3 millimeters ($\frac{1}{8}$ inch) thick, bent, purplish-brown, somewhat branched, on the upper side with cup-shaped scars, on the lower side with numerous thin, brittle, lighter-colored rootlets about 10 centimeters (4 inches) long; fracture smooth; somewhat aromatic, sweetish, and bitter.

Structure.-Bark thin ; wood-circle whitish, thickest on lower side, scarcely radiate ; pith usually dark colored or decayed. Rootlets with a thick bark and a slender central fibrovascular cord.

It should not be confounded with the rhizome of Phlox Carolina, Linné (like Spigelia, known as Carolina pink), which is short, upright, and has a central pith, hard wood, and brownish-yellow, rather coarse, straight rootlets containing a straw-colored wood underneath a readily removable bark; benzin extracts from it a crystalline white
tasteless hydrocarbon (1 per cent.), with some fat, wax, and red color.

Constituents.-Little volatile oil, resins, bitter principle (insoluble in ether), tannin, wax, fat, gum, spigeline (volatile alkaloid).

Properties.-Anthelmintic, toxic, dilates the pupil. Dose, 1 to 4 grams (gr. $\mathrm{xv}-3 \mathrm{j}$).

GEUM RIVALE.-Water Avens.

Origin.-Géum rivále, Linné. Natural order, Rosaceæ, Potentilleæ.

Habitat.-North America (south to Pennsylvania), Northern Asia, Northern and Central Europe.

Description.-Horizontal or oblique in growth, about 5 to 7 centimeters (2 to 3 inches) long and 6 millimeters ($\frac{1}{4}$ inch) thick, tuberculate and scaly above, wrinkled; fracture short, waxy, reddish or brownish, with a thin bark, small and distant whitish wood-wedges, and a large pith. Rootlets wrinkled, with a thick bark. Odor faintly aromatic; taste astringent, bitterish.

Constituents.-Little volatile oil, tannin, bitter principle, sugar, resin, etc.

Properties.-Astringent, tonic. Dose, 1 to 3 grams (gr. xvxlv), in powder or decoction.

GEUM URBANUM.-Avens.

Radix caryophyllatæ.
Origin.-Géum urbánum, Linné. Natural order, Rosaceæ, Potentillex.

Habitat.-Europe, in shady places.
Description.-Upright or oblique, 3 to 5 centimeters (1 to 2 inches) long, obconical, thinner and abrupt below, tuberculate and scaly, dark brown, hard; upon transverse section waxy, light purplish-brown; bark thin ; wood-circle yellowish, narrow ; pith large. Rootlets light brown, with a thickish bark. Odor aromatic, clove-like ; taste astringent, somewhat aromatic, and bitter.

Constituents.-Little volatile oil, tannin 30 per cent., bitter principle, resin, etc.

Properties.-Astringent, tonic. Dose, 1 to 3 grams (gr. xvxlv), in powder or decoction.

asclepias incarnata.-Swamp Milkweed.

Flesh-colored Asclepias.
Origin.-Asclépias incarnáta, Linné. Natural order, Asclepiadeæ, Cynancheæ.

Habitat.-North America, wet grounds.
Description.-Of upright or oblique growth, about 2 centimeters ($\frac{4}{5}$ inch) long, irregularly globular or oblong, knotty, yellowish-brown, hard, with a thin bark, tough whitish wood, and rather thick central pith or hollow. Rootlets 10 centimeters (4 inches) or more long, light brown, with the white bark and woody cord of about equal thickness. Inodorous; taste sweetish, acrid, and bitter.

Constituents.-Volatile oil a trace, two acrid resins, asclepiadin (yellow amorphous glucoside, emetic, easily decomposed), alkaloid, pectin, starch, sugar, ete.; ash 8.25 per cent.

Properties.-Alterative, emetic, cathartic. Dose, 1 to 3 grams (gr. xv-xIv), in decoction.

Hydrastis.-Hydrastis. Golden Seal.

Origin.-Hydrástis canadénsis, Linné. Natural order, Ranunculaceæ, Helleboreæ.

Habitat.-North America, west to Missouri and Arkansas, in woodlands.

Deseription. - Obconical and upright, or of oblique growth and sub-cylindrical, about 4 centimeters ($1 \frac{1}{2}$ inches) long and 6 millimeters ($\frac{1}{4}$ inch) thick, with short branches terminating in cup-shaped scars, somewhat annulate, and longitudinally wrinkled ; externally brownish-gray ; fracture short, waxy, bright reddish-yellow; rootlets thin, brittle, about 12 centimeters (5 inches) long; odor slight; taste bitter.

Structure.-Bark thickish, yellow or orange-colored. Wood-wedges about 10, narrow, light yellow. The yellow broad medullary rays and large pith like the bark contain starch. Rootlets with a thick yellow bark and thin sub-
quadrangular woody cord, surrounded by a nucleus sheath, and enclosing a meagre pith.

Constituents.-Berberine, $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{NO}_{4}, 3-4$ per cent., hydrastine, $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{6}$, canadine, $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{4}$, resin, fluorescent compound, starch, sugar, ete. Berberine dissolves in alcohol and in water, slightly in benzol, and is insoluble in ether, chloroform, and petroleum benzin ; its salts are

Hydrastis.-Rhizome with transverse section.
bright yellow, and sparingly soluble in acidulated water ; the hot alcoholic solution yields with iodine not in excess dark green lustrous scales. Hydrastine is soluble in alcohol, ether, benzol, and most soluble in chloroform; its salts are white and bitter ; on oxidation with MnO_{2}, yields opianic and finally hemipinic acid and hydrastinine; on dry distillation trimethylamine and meconin. Canadine forms white needles, the sulphate only easily soluble in water and alcohol ; in alcoholic solution yields with iodine yellow crystals.

Properties.-Tonic, deobstruent, alterative. Dose, 0.3 to 3 grams (gr. v-xlv), in decoction or fluid extract.

CaUlophyllum.-Blue Cohosh, Papoose Root, Squaw Root.

Origin.-Caulophy'llum (Leóntice, Linné) thalictroídes, Michaux. Natural order, Berberideæ, Berbereæ.

Habitat.-North America, southward to Kentucky, in rich woodlands.

Description.-Of horizontal growth, matted, about 10 centimeters (4 inches) long, 6 or 8 millimeters ($1-\frac{1}{3}$ inch) thick, and with the branches 4 or 5 centimeters ($1 \frac{1}{2}-2$ inches) broad, bent, knotty, with numerous broad concave stem-scars, dark gray-brown, hard, fracture rather short ; internally whitish. Rootlets very numerous, densely matted, about 13 centimeters (5 inches) long, and about 1 or 1.5 millimeters ($\frac{1}{25}$ or $\frac{1}{16}$ inch) thick, wiry and tough. Nearly inodorous ; taste sweetish, slightly bitter, and somewhat acrid, unpleasant.

Structure.-Bark thin ; wood-wedges narrow or linear, numerous, elongated or in two circles in the rhizome, in the branches shorter, more uniform, and in a single narrow circle; medullary rays rather broad; pith large. Rootlets with a relatively thicker bark, and a rather thick central woody cord. The parenchyme contains starch.

Admixture.-Hydrastis differs in shape and color.
Constituents.-Leontin (white, feathery, soluble in boiling alcohol and ether, acrid, sternutatory; glucoside), resins, tannin, wax.

Properties. - Antispasmodic, diuretic, emmenagogue. Dose, 1 to 2 grams (gr. xv-xxx).

COLLINSONIA.-Stoneroot.

Origin.-Collinsónia canadénsis, Linné. Natural order, Labiatæ, Satureineæ.

Habitat.-North America, in woodlands.
Description.-Of horizontal growth, about 10 centimeters (4 inches) long, and with the very knotty, short, and irregular branches nearly as broad; stem-scars numerous, shallow ; externally brown-gray, very hard; internally whitish or grayish; bark very thin; wood-wedges irregular; rootlets numerous, rather brittle; nearly inodorous; taste bitterish, nauseous.

Constituents. - Resinous matter, etc.
Properties.-Diuretic, irritant.

helleborus.-Black Hellebore.

Origin.-Helléborus níger, Linné. Natural order, Ranunculaceæ, Helleboreæ.

Habitat.-Central and Southern Europe.
Description.-Of upright growth, irregular knotty, about 5 centimeters (2 inches) long and 1 centimeter ($\frac{2}{5}$ inch) thick, with short, somewhat annulate branches; externally brownblack; internally grayish, with a thick bark, a circle of about

Fig. 93.

Helleborus niger.-Transverse section of rhizome and root, magnified 3 diam.

Fig. 94.

Helleborus virdis.-Transverse section of rhizome and root, magnified 3 diam.

8 wood-wedges, broad medullary rays, and a large pith Rootlets long, brown-black, very brittle, with a thick bark and a hexagonal wood-centre. Odor slight, heavy (in the fresh state radish-like); taste sweetish, bitterish, and acrid.

Helléborus víridis, Linné, Green hellebore. The rhizome resembles the preceding, but is of smaller dimensions, and the narrow wood-wedges form three or four groups, separated
by broad medullary rays; the woody cord of the rootlets has about 4 obtuse rays. It contains more helleborin, and is considered to be more active than black hellebore.

Constituents. - Helleborin, $\mathrm{C}_{36} \mathrm{H}_{42} \mathrm{O}_{6}$, and helleborein, $\mathrm{C}_{26} \mathrm{H}_{44} \mathrm{O}_{15}$, both poisonous; resin, fat, starch, no tannin. Helleborein predominates, is precipitated by tannin, soluble in water, also in alcohol, not in ether; yields with acids sugar and inert helleboretin. Helleborin is scarcely soluble in ether and cold water, easily soluble in chloroform and hot alcohol ; with acids yields sugar and helleboresin.

Properties.-Diuretic, emmenagogue, cathartic. Dose, 0.3 to 1.3 grams (gr. $v-\mathrm{xx}$), in powder, tincture, or extract.

Admixtures.-Acte'a álba, Linné, The rhizome with rootlets has the dimensions of black hellebore, but closely resembles black snakeroot in appearance and structure, and contains tannin.

CIMICIFUGA.-Black Snakeroot.

Origin.-Cimicífuga racemósa, Nuttall. Natural order, Ranunculaceæ, Helleboreæ.

Habitat.-North America, in rich woodlands, westward to Eastern Kansas.

Description.-Of horizontal growth, 5 to 15 centimeters (2-6 inches) long, about 2 centimeters ($\frac{4}{5}$ inch) thick, hard, with numerous stout, upright or curved branches, terminated by a cup-shaped scar; brownish-black, hard; fracture smoothish ; internally whitish. Rootlets numerous, wiry, brittle, obtusely quadrangular, about 2 millimeters ($\frac{1}{12}$ inch) thick; fracture short. Nearly inodorous; taste bitter and acrid.

Structure.-Bark of rhizome thin and firm ; wood-wedges elongated, narrow or linear, most uniform in the branches; medullary rays of about the same width; central pith rather large. Rootlets with a thick bark and a ligneous cord branching into about four broad rays, and enclosed in a nucleus sheath.

Constituents.-Crystalline principle (alkaloid ?), not pre-
cipitated by lead acetate, soluble in chloroform and alcohol, the solution intensely acrid; resins, fat, wax, tannin,

Cimicifuga.-Transverse section through a branch of the rhizome and through rootlets, natural size.
starch, gum, sugar. The crystalline principle has not been obtained by recent investigators. A glucoside is probably present.

Properties.-Alterative, emmenagogue, sedative. Dose, 0.3 to 2 grams (gr. $\mathrm{v}-\mathrm{xxx}$), in powder, decoction, or fluid extract.

Gillenia.-Gillenia. American Ipecac.

Origin.-1. Gillénia stipulácea, Nuttall, and, 2. Gillénia trifoliáta, Moench. Natural order, Rosaceæ, Spiræeæ.

Habitat.-United States: No. 1, Western and Southern Sates; No. 2, east of the Alleghanies.

Description.-Of horizontal growth, very knotty, much branched, 10 to 25 millimeters ($\frac{2}{5}-1$ inch) thick, with a thin bark, and numerous tortuous or undulated, annulate and somewhat transversely fissured ruotlets having a thick irregular bark, which is brittle, composed of two reddish layers and marked with numerous minute resinous dots; wood tough, whitish, with fine medullary rays, and in the rhizome with a thin pith; nearly inodorous, taste bitter.

The rhizome of Gillenia trifoliata is smaller and less knotty; the rootlets smoother and less distinctly annulate.

Constituents.-Gillenin, resin, tannin, starch, etc. Gillenin is a whitish powder, bitter, neutral, soluble in water, alcohol, and ether, and colored blood-red by nitric acid.

Properties.-Mild emetic. Dose, 1 to 2 grams (gr. xv-xxx).

144 CELLULAR VEGETABLE DRUGS-RHIZOMES.

Triosteum.-Feverroot. Bastard Ipecac.
Origin.-Triósteum perfoliátum, Linné. Natural order, Caprifoliaceæ, Lonicereæ.

Habitat.-United States, in woodlands.
Description.-Of horizontal growth, 15 centimeters (6 inches) or more long, about 15 millimeters ($\frac{8}{5}$ inch) thick, knotty-cylindrical, with broad cup-shaped stem-scars, yellow-ish-brown, bark thin, wood hard, whitish, with fine medullary rays. Rootlets long, about 5 millimeters ($\frac{1}{5}$ inch) thick, with a thick wrinkled bark. Inodorous; taste bitter, somewhat nauseous.

Constituents.-No analysis.
Properties.-Purgative, emetic. Dose, 1 to 2 grams (gr. $\mathrm{x} v-\mathrm{xxx}$).

> aralia racemosa.-American Spikenard.

Origin.-Arália racemósa, Linné. Natural order, Araliaceæ, Aralieæ.

Habitat.-North America, in rich woods.

Description.-Grows obliquely, 10 or 15 centimeters (4 or 6 inches) long with prominent concave stem-scars about 3 centimeters ($1 \frac{1}{5}$ inches) broad, pale brown, internally whitish. Roots numerous, long, about 25 millimeters (1 inch) thick at the base, little branched, wrinkled, pale brown, breaking with a short fracture, internally whitish; of a peculiar aromatic odor and taste.

Constituents.-Probably volatile oil, resin, starch, sugar, etc.

Properties.-Stimulant, diaphoretic, alterative, expectorant. Dose, 2 to 4 grams (3^{88-j}), in infusion.

ASARUM.-W ${ }_{\text {ILd }}$ Ginger.

Origin.-A'sarum canadénse, Linné. Natural order, Aristolochiaceæ.

Habitat.-North America to North Carolina, in rich woodlands.

Description.-Of horizontal growth, 10 centimeters (4 inches) or more long, and 3 millimeters ($\frac{1}{8}$ inch) thick, irregular quadrangular or almost two-edged, finely wrinkled, grayish-brown or purplish-brown, internally whitish, fracture short; rootlets thin, nearly simple, on the nodes, which are about 12 millimeters ($\frac{1}{2}$ inch) distant ; aromatic, pungent, and bitterish.

Structure-Bark rather thick; cambium layer prominent ; wood-wedges short and distant ; central pith large. The parenchyme contains starch and occasionally oleoresin or oil, the latter principally in the bark. Rootlets with a thick bark and a thickish ligneous cord.

Constituents.-Volatile oil, 1.5-3.5 per cent., resin, coloring matter (asarin), starch, mucilage, sugar, possibly an alkaloid; ash about 13 per cent. The volatile oil is of spec. grav. 0.953 , very aromatic, and consists of asarene $\mathrm{C}_{10} \mathrm{H}_{16}$, a neutral body $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2}$, asarol $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}$, and the acetic and probably also the valerianic ether of asarol; probably also methyl-eugenol.

Properties.-Carminative, stimulant, diaphoretic. Dose, 2 grams (3ss) in infusion.

Allied drug.-A'sarum europæ'um, Linné. Asarabacca. The rhizome is 1 or 2 millimeters ($\frac{1}{25}-\frac{1}{12}$ inch) thick, nearly quadrangular, and is emetic, cathartic, and employed as an errhine. The volatile oil contains asarene, methyl-eugenol, and asarone (crystalline, emetic), but no asarol.

LEPTANDRA.-Leptandra. Culver's Physic.
Origin.-Verónica (Leptándra, Nuttall) virgínica, Linné. Natural order, Scrophularineæ, Digitaleæ.

Habitat.-United States, south to Georgia, and west to Minnesota, in low grounds.

Description.-Horizontal, 10 to 15 centimeters (4 to 6 inches) long, about 10 millimeters ($\frac{2}{5}$ inch) thick, somewhat flattened, bent, and branched, deep

Fig. 98.

Leptandra.-Transverse sections of rhizome and rootlets, natural size. blackish-blown, on upper side with cup-shaped scars, hard, of a woody fracture, internally blackish with a broad yellowish circle of wood; rootlets thin, wrinkled, very fragile; inodorous; taste bitter and feebly acrid.
Structure.-Bark thin, blackish-gray ; wood tough, yellowish in one or two circles; pith large, purplish-brown, often partly destroyed, about six-rayed from the medullary rays. Rootlets with a thick bark and a slender ligneous cord.

Constituents.-Leptandrin, resin 6 per cent., saponin, tannin, mannit, gum, and possibly a volatile alkaleid. Leptandrin is crystalline, bitter, soluble in water, alcohol, and ether, not precipitated by lead subacetate. Leptandrin of the eclectics is essentially the alcoholic extract.

Properties.-Alterative, cholagogue, cathartic. Dose, 1 to 4 grams (gr. $\mathrm{xv}-\mathrm{zj}$), in powder and extract.

MENISPERMUM.-Yellow Parilla.

Origin. - Menispérmum canadénse, Linné. Natural order, Menispermaceæ, Cocculeæ.

Habitat.-North America, in moist thickets.
Deseription.-Cylindrical, 1 meter (40 inches) or more long, about 6 millimeters ($\frac{1}{4}$ inch) thick, somewhat knotty

Fig. 99.

Menispermum canadense.-Transverse section of rhizome, magnified.
from scars of overground stems, with indistinct nodes, finely wrinkled longitudinally, and beset with numerous thin branching and rather brittle rootlets, externally yel-
lowish-brown ; fracture tough, woody; internally yellowish ; nearly inodorous ; taste bitter.

Structure.-Bark thickish with semilunar bast bundles; wood-wedges about 14 , broad, porous, separated by rather broad medullary rays, those on the lower side longest; central pith nearly equalling the shortest wood-wedges. The parenchyme contains starch. The overground stem, which is often present, has a large spongy central pith, and short, almost square, wood-wedges.

Constituents.-Berberine, menispine, starch, resin, tannin. Menispine is white, insoluble in benzol and alkalies, and becomes brown by $\mathrm{H}_{2} \mathrm{SO}_{4}$ and brownish-yellow by ZnCl_{2}.

Properties.-Tonic, alterative, diuretic. Dose, 1 to 4 grams (gr. xv-3j).

XANTHORRHIZA.-Yellow Root.

Origin.-Xanthorrhíza apiifolia, L'Heritier. Natural order, Ranunculaceæ, Helleboreæ.

Habitat.-Southern and Central United States.
Description.-Horizontal, 0.5 to 1 meter (20 to 40 inches) long, 1 centimeter ($\frac{2}{5}$ inch) thick, bent, much branched, sparingly beset with brittle fibres, externally light yellowishbrown ; bark thin, internally deep yellow, covering a bright yellow tough wood, with a thin pith; inodorous, bitter.

Constituents.-Berberine, a white alkaloid, starch, sugar, mucilage, resin, etc. Ash about 2 per cent.

Properties.-Tonic. Dose, 2 to 4 grams (5 ss-j) in powder or infusion.

BERBERIS AQUIFOLIUM.-Oregon Grape.

Origin.-Bérberis aquifólium, Pursh; B. nervosa, Pursh; and B. repens, Lindley. Natural order, Berberider, Berbereæ.

Habitat.-Rocky Mountains and westward.
Deseription.-In more or less knotty and tough pieces, varying from 3 to 25 or 50 millimeters ($\frac{1}{8}$ to 1 or 2 inches) in thickness, with a thin, yellowish-brown, internally bright yellow bark, and a yellow hard wood with fine medullary
rays, the rhizome with a thin pith; inodorous and bitter. The rhizomes and roots of B. repens and B. nervosa rarely exceed millimeters ($\frac{1}{8}$ inch) in diameter.

Constituents.-Berberine, oxyacanthine, berbamine, phytosterin, sugar, gum, etc. See Barberry Bark.

Properties.-Tonic, alterative. Dose, 0.5 to 2 grams (gr. viij-3ss), in decoction or fluid extract.

3. TUBERS AND BULBS.-TUBERA ET BULBI.

Tubers are enlarged, more or less fleshy subterraneous stems or branches, or dilated bases of stems, which are not invested with leaves. They consist of either one internode or of several, and hence may develop either a terminal or several lateral buds. The tuberous roots of jalap and aconite carry upon the apex small portions or scars of the stem. The dilated fleshy tuberous base of an annual stem is often designated as a corm.

Bulbs are buds with a permanently short, fleshy axis, which is invested with fleshy leaves, called scales, the external layers of the latter usually decaying and becoming dry and papyraceous. The scaly bulb has the leaves rather short, thick, and imbricate; in the tunicated bulb the leaves are broad, cover the axis and inner leaves completely, or nearly so, and thus form concentric layers. If several small bulbs surround a common axis, and the whole is again invested with fleshy or dry leaves, the compound bulb is produced. Bulbous plants are monocotyledons.

Histology.-The arrangement of the tissue in the tubers corresponds with that of the rhizome, while the scales of the bulbs have, like the leaves proper, more or less delicate fibrovascular tissue (veins) imbedded in soft and fleshy parenchyme.

Classification.

Tubers.-Sect. 1. Of Dicotyledons.

With resin cells in circles.	Jalapa.
Without resin cells; turnip-shaped, very acrid.	Aconitum.
Subglobose, yellowish, bitterish.	Corydalis.

Sect. 2. Of Monocotyledons.
Ovate with a lateral groove; usually in reniform sections, bitter.
Depressed globose, above with a zone of rootlets or their scars; acrid.
Ovate or roundish; horny ; mucilaginous.

Colchicum.

Arum.
Salep.

Bulbs, all tunicated.
Single; globular ovate; mostly in sections of the scales; mucilaginous, bitter, acrid.
Compound; mucilaginous, pungent, acrid.

Scilla.
Allium.
JALAPA.-JALAP.

Origin. - Ipomœ'a (Ipomæ'a; Exogónium, Bentham) Púrga, Hayne. Natural order, Convolvulaceæ, Convolvuleæ.

Habitat.-Eastern Mexico.
Description.-Jalap tubers are produced from the nodes of the thin rhizomes by the enlargement of the bases of the rootlets, and are either napiform, and 5 to 10 centimeters (2-4 inches) thick, or pyriform or oblong, and thinner, but varying in size; the larger ones incised, more or less wrinkled, bark brown, with lighter-colored warts and short transverse ridges, hard, compact, internally pale grayish-brown, scarcely radiate, but showing numerous concentric circles; fracture resinous, not fibrous; odor slightly smoky and sweetish; taste sweetish and acrid.

Structure. - The predominating tissue is parenchyme, containing starch (which in the outer layers is pasty) and calcium oxalate. Bark thin, in the inner layer with a dense
zone of resin cells. Vascular bundles small, distant, and indistinct ; the concentric circles formed of resin cells, arranged in wavy, narrow, or somewhat broader zones.

Fig. 100.

Jalap tuber, small.

Fig. 101.

Jalap.-Transverse section, natural size.

Quality.-10 grams of jalap should yield not less than 1.2 grams (or 12 grains for 100 grains of jalap) of resin, not more than 10 per cent. of which should be soluble in ether.

Constituents.-Starch, gum, sugar, etc., resin 7 to 15 or 22 per cent. ; about $\frac{1}{10}$ of the resin (soft, waxy matter?) is soluble in ether, also in potassa, and reprecipitated by acids; the remainder is the glucoside jalapurgin (convolvulin), $\mathrm{C}_{62} \mathrm{H}_{100} \mathrm{O}_{33}$, which is soluble in alkalies and converted into jalapurgic (convolvulic) acid, soluble in water.

False Jalaps.-Tampico jalap, from Ipomœ'a símulans, Hanbury. Irregularly globular, or elongated, deeply wrinkled, without transverse ridges or scars, yields 10 to 15 per cent. resin (tampicin), almost wholly soluble in ether.

Fusiform (male or light) jalap, jalap stalks; from Ipomo'a orizabénsis, Ledanois. Spindle-shaped, but mostly divided longitudinally and transversely, in sections or rectangular irregular and rather woody pieces; the transverse section distinctly radiate from thick porous wood-bundles.

The resin, orizabin (jalapin), $\mathrm{C}_{34} \mathrm{H}_{56} \mathrm{O}_{16}$, is completely soluble in ether.

Mechoacanna root, from Convólvulus Mechoacánna, Vandelli, and perhaps from other plants ; in sections, light, whitish, mealy, contains little resin.

Properties.-Diuretic, hydragogue cathartic. Dose, 0.5 to 2 grams (gr. viij-3ss) ; of the resin 0.1 to 0.2 gram (gr. jss-iij).

ACONITI RADIX.-Aconite Root.

Aconitum, U. S. P.
Origin.-Aconítum Napéllus, Linné. Natural order, Ranunculaceæ, Helleboreæ.

Habitat.-Mountainous districts of Europe, Asia, and Northwestern North America.

Characters.-Produced at the end of short horizontal rhizomes ; $\mathbf{1 5}$ to 20 millimeters ($\frac{3}{5}-\frac{4}{5}$ inch) thick at the crown, conically contracted below, about 5 centimeters (2 inches) long, with scars or fragments of rootlets, externally dark brown, wrinkled; fracture short, amylaceous, or horny ; internally whitish or brownish ; odor none (the fresh tuber radish-like) ; taste sweetish, soon acrid, producing a sensation of tingling.

Structure.-Bark thick; the inner layer composed of small cells, and separated from the outer layer by a nucleus sheath. Cambium about seven-rayed. Vascular bundles small, located at the termination, and at the base of the rays. Pith large-celled. The parenchyme contains starch.

Constituents.-Resin, fat, sugar, aconitic acid, $\mathrm{H}_{3} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{O}_{6}$, and about 0.07 per cent., of alkaloids, consisting of aconitine (benzoylaconine), $\mathrm{C}_{33} \mathrm{H}_{43} \mathrm{NO}_{12}$, pseudaconitine (veratroylaconine), $\mathrm{C}_{36} \mathrm{H}_{49} \mathrm{NO}_{11}$, aconine, $\mathrm{C}_{26} \mathrm{H}_{39} \mathrm{NO}_{11}$, pseudaconine, $\mathrm{C}_{27} \mathrm{H}_{41} \mathrm{NO}_{8}$, picraconitine, $\mathrm{C}_{31} \mathrm{H}_{45} \mathrm{NO}_{10}$. These alkaloids and one or two amorphous bases are contained in commer-
cial aconitine. By heating in sealed tubes aconitine is decomposed into benzoic acid and aconine, and pseudaconitine into dimethyl-protocatechuic (veratric) acid and pseudaconine.

Properties.-Anodyne, sedative, poisonous. Dose, 0.06 to 0.12 gram (gr. j-ij), in tincture. Commercial aconitine, being of variable composition, is not adapted for internal use.

Antidotes.-Emetic (mustard, ipecacuanha, zinc sulphate, apomorphine) ; friction of extremities ; amyl nitrite inhalation ; atropine ; digitalis.

Other Aconite Roots.-Aconítum Cammárum, Jacquin, Europe ; globular-ovate, about 15 millimeters ($\frac{3}{5}$ inch $)$ long, the rays of the pith about five in number, rather short and rounded.

Aconítum Sterkéánum, Reichenbach, Europe; slender conical, the pith roundish pentagonal. The tubers of this
and the preceding species are sometimes found among commercial aconite root, and possess similar properties.

A conítum férox, Wallich. Bikh or bish, Indian aconite. From 5 to 10 centimeters (2 to 4 inches) long, and 25 millimeters (1 inch) or more in diameter above, conical, brown, internally whitish, mealy or horny, intensely acrid. The roots of the Ac. uncinátum, Linné; Ac. lúridum, Hooker filius et Thomsen, and perhaps others, are said to be collected with it. The constituents are similar to those of Ac. Napellus, but pseudaconitine predominates among the alkaloids.

Japanese and Chinese aconite, obtained from Ac. F'íscheri, Reich, Ac. japónicum, Thunberg, and others. The tubers are napiform or elongated, the pith circular, elliptic, or more or less five- to seven-rayed. Allied to the first speeies is Ac. columbiánum, Nuttall, of the Rocky Mountains and Sierra Nevada. Thedrug contains japaconitine, $\mathrm{C}_{66} \mathrm{H}_{88} \mathrm{~N}_{2} \mathrm{O}_{21}$; very poisonous.

Aconitum heterophy'llum, Wallich, India; conical or fusiform, bitter, not acrid or poisonous.

Aconítum Anthóra, Linné, Europe; long, fusiform; pith thin, with short and longer rays.

Aconítum Lycóctonum, Linné, Europe and Northern Asia; oblique, several-headed rhizome with elongated conical rootlets, bitter.

CORYDALIS.-Turkey Corn, Squirrel Corn.

Origin.-Dicéntra canadénsis, De Candolle, s. Cory'dalis canadénsis, Goldie. Natural order, Papaveraceæ, Fumariex.

Habitat.-Canada and mountains of United States, south to Kentucky.

Description.-Depressed globose, about 6 millimeters (inch) thick, with a scar on each of the depressed sides, somewhat wrinkled, otherwise smooth; tawny-yellow, internally whitish or yellowish, fracture horny or rather mealy, inodorous, bitter.

The rhizome of Dicéntra exímia, De Candolle, s. Cory'dalis formósa, Pursh, is scaly.

Constituents.-A erid and tasteless resin, starch, mucilage, fumaric acid, and corydaline, which is very bitter in solution.

Properties.-Tonic, diuretic, alterative. Dose, 0.6 to 2 grams (gr. $\mathbf{x}-\mathrm{xxx}$), in powder or extract.

COLCHICI RADIX.-Colchicum Root.

Origin.-Cólchicum autumnále, Linné. Natural order, Liliaсеæ, Colchiceæ.

Habitat.-Southern and Central Europe.
Description.-Developed from the base of the parent tuber, producing flowers in autumn, fruit in the following summer, and in the second year a new tuber, when it shrivels and disappears. About 25 to 40 millimeters (1 to $1 \frac{1}{2}$ inches) long, ovoid, flattish, and with a groove on one side ; externally brownish and wrinkled; internally white and solid; often in transverse slices, reniform in shape, breaking with a short mealy fracture, inodorous, taste sweetish, bitter, and somewhat acrid.

Tuber of Colchicum.

Colchicum.-Transverse section.

Colchicum root breaking with a horny or very dark colored fracture should be rejected.

Structure.-The predominating tissue is parenchyme, containing starch and occasionally raphides; vascular bundles numerous, scattered; nucleus sheath wanting.

Constituents.-Starch, gum, sugar, resin, fat, colchicine (about 0.5 per cent.). (See Colchici Semen.)

Properties.-Cathartic, emetic, sedative; in gout and rheumatism. Dose, 0.1 to 0.5 gram (gr. jss-viij), in powder, wine, fluid extract, or extract.

Antidotes.-Evacuation (stomach pump or emetics); tannin ; demulcents ; stimulants.

arUM.-Indian Turnip, Dragon Root.

Origin.-Arisæ'ma (A'rum, Linné) triphy'llum, Torrey. Natural order, A roideæ, Arineæ.

Habitat.-North America, in rich woods.
Description.-Developed from the end of short rhizomes. Depressed globular, 2 to 5 centimeters ($\frac{4}{5}$ to 2 inches) broad, above with a zone of numerous simple rootlets, the lower surface wrinkled; externally brown-gray, internally white, mealy, with scattered wood-bundles ; inodorous, taste burning, acrid.

Constituents.-Starch, mucilage, sugar, fat, a volatile acrid principle, soluble in ether. According to R. A. Weber (1891) the acridity is due to raphides of calcium oxalate.

European dragon-root, from A'rum maculátum, Linné; A. Dracúnculus, Linné ; and A. itálicum, Lamarck. Oval or oblong, with radicles on the lower side, in commerce often peeled, and in white mealy sections; very acrid.

Properties.-Stimulant, diaphoretic, expectorant, irritant. Dose, 0.5 to 1 gram (gr. viij-xv), in powder, mixed with honey, externally in ointment.

SALEP.- SALEP.

Origin.-O'rchis máscula, Linné, O. Mório, Linné, and other species of Orchis. Natural order, Orchidex, Ophridex.

Habitat.-Central and Southern Europe, in rich woods.
Description.-Oblong or ovate, 25 millimeters (1 inch) or less long, deprived of the epidermal layer, and scalded, brownyellow, hard, translucent, internally horny ; inodorous, taste insipid. The tissue contains scattered vascular bundles, parenchyme with pasty starch, or occasionally with raphides, and large cells containing mucilage. The powder is pale grayishyellow.

The tubers of O'rchis latifólia, Linné, O. maculáta, Linné,
and others, closely resemble the preceding, but below are palmately divided (radix palmæ Christi).

Fig. 104.

Constituents.-Starch 27, mucilage 48, sugar, proteids, and ash about 2 per cent. One part of powdered salep with 50 of boiling water yields, after cooling, a jelly.

Properties.-Demulcent, nutritive.

> SCILLA.-Squill.

Origin.-Urginéa Scílla, Steinheil, s. Scílla marítima, Linné. Natural order, Liliaceæ, Scilleæ.

Habitat.-Basin of the Mediterranean near the sea.

Description.-Bulb broadly ovate or pear-shaped, 10 to 15 centimeters (4-6 inches) in diameter; in commerce usually the fleshy scales, rejecting the insipid inner ones; narrow segments about 5 centimeters (2 inches) long, and 3 millimeters ($\frac{1}{8}$ inch) thick, slightly translucent, yellowish-white

Fig. 105.

Scilla.-Bulb. or reddish, brittle and pulverizable when dry, flexible and tough, horny on exposure ; inodorous, mucilaginous, bitter and acrid.

Structure.-The thin-walled parenchyme contains mucilage and numerous raphides, and is traversed by parallel vascular bundles, and small laticiferous ducts; the epidermis on both sides with stomata.

Constituents.-Mucilage, sinistrin, $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5}$ (lævogyre; resembling dextrin ; easily converted into sugar), sugar, crystals of calcium oxalate ; the active principles are scillipicrin (yellowish, hygroscopic, bitter, very soluble in water, acts upon the heart), scillitoxin (brown, bitter burning taste, soluble in alcohol, acts upon the heart), and scillin (crystalline, soluble in alcohol and boiling ether, produces numbness, vomiting, etc.) [Merck]. Jamersted's scillain is a yellowish glucoside, soluble in alcohol, poisonous. Ash about 3 per cent.

Properties. - Expectorant, diuretic, cathartic, emetic, irritant. Dose, 0.03 to 0.3 or 0.6 gram (gr. ss-v-x), in powder, vinegar, syrup, or tincture.

ALLIUM.-Garlic.

Origin.-A'llium satívum, Linné. Natural order, Liliaсеж, Allieæ.

Habitat.-Asia and Southern Europe, cultivated.
Description.-Bulb subglobular, compound, consisting of about eight compressed wedge-shaped bulblets, which are arranged in a circle around the base of the stem and covered by several dry membranaceous scales. It has a pungent, disagreeable odor, and a warm, acrid taste. It is used only in the fresh state.

Hybrids of the above species with A'llium Pórrum, Linné, and perhaps with other species of Allium, are frequently met with.

Constituents.-Mucilage 35 per cent., albumin, volatile oil $\frac{1}{4}$ per cent., consisting of oxide and sulphides of allyl $\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)$.

Properties.-Stimulant, diuretic, expectorant, anthelmintic, irritant.

Dose.-2 to 4 grams (3ss-j), as expressed juice or syrup.

4. TWIGS AND WOODS-STIPITES ET LIGNA.

The twigs are the overground stems and branches of perennial herbaceous or suffruticose plants, deprived of leaves, flowers, and fruit ; they consist of a woody column, enclosing a pith and covered by a green bark. The twigs of one plant only are now officinal.

The medicinal woods are derived from dicotyledonous trees, and as used in pharmacy have the bark removed.

Histology.-The woods consist principally of prosenchyme, the elongated wood-fibres with tapering ends and thickened cell-walls (libriform), associated with ducts (tracheæ), which, upon transverse section, appear as pores. With the exception of the annular and spiral ducts near the medullary sheaths, the ducts are mostly dotted. The wood of Conifere is destitute of ducts, and the woodfibres on their lateral walls are marked with disks; they are distinguished as tracheïds. The wood encloses a pith composed of parenchyme, and is radially dissected by medullary rays, which, upon transverse section, appear as fine lines separating the narrow wood-wedges, upon radial section as broader bands, and upon tangential section as short vertical striæ, which are narrowed at both ends. The medullary rays consist of parenchyme cells, somewhat elongated in the radial direction, forming either a single row, or broader rows of two or more cells, and vertically a layer of six or more cells. Parenchyme is also found scattered in some woods or accompanying the ducts and, extending laterally, sometimes forming more or less complete
circles ; its cells are vertically elongated and it is designated as wood parenchyme. The wood-cells formed in the spring are larger, those formed toward the close of the season are thinner and more compact; the annual layers or circles of wood are thus plainly indicated by the abrupt transition from the growth of one year to that of the next. In woods from tropical countries the annual layers are less distinctly marked, and often cannot be recognized. The inner layer of wood, from deposits upon its cell-walls, is harder, denser, and frequently of a darker color than the outer layer; the former is called the heartwood or duramen, the latter is the sapwood, or alburnum.

The structural characters of the dicotyledonous woods depend upon the vertical course of the wood-fibres, the width and thickness of the medullary rays, the size and distribution of the ducts, the presence or absence of the wood parenchyme, etc.

Classification.

Twigs; nodes alternate; cylindrical; taste bitter-
sweet.
pentangular ; taste bitter, nauseous.
Woods containing ducts.
Annual layers distinct.
Pale reddish-brown; soft; aromatic. Sassafras.
Annual layers indistinct, or with irregular circles of wood-parenchyme.
Bark present; yellowish-gray; bitter. Gouania.
Bark mostly absent; wood whitish, very bitter.
greenish-brown, heavy, taste somewhat acrid.
dark-red, ducts large; nearly tasteless, not Santalum coloring water.
dark-red, ducts fine; astringent and sweetish, tingeing water red.
yellowish or whitish, ducts fine; on rubbing aromatic.

Dulcamara.
Scoparius (see Herbs).

Quassia.
Guaiacum.
Santalum
rubrum.
Hamatoxylon.
Santalum album.

DULCAMARA.-BrtTERSWEET.

Origin.-Solánum Dulcamára, Linné. Natural order, Solanacer, Solaneæ.

Habitat.-Europe and Asia; naturalized in North America.

Description.-Cylindrical, somewhat angular ; longitudinally striate, more or less warty ; usually hollow in the centre; about 6 millimeters ($\frac{1}{4}$ inch) or less thick, cut into short sections; externally pale greenish or light greenishbrown, marked with alternate leafscars, and internally green, with a greenish or yellowish wood. Odor slight; taste bitter, afterward sweet.

Structure.-Cork thin, gray-brown; bark thickish, composed of parenchyme, with few bast fibres, and with narrow medullary rays; wood in one or two circles with large ducts and numerous onerowed medullary rays; pith prominent,

Dulcamara.-Transverse section, magnified 3 diam. but mostly hollow. The parenchyme contains minute starch grains and chlorophyll.

Constituents.-Resin, gum, wax, starch, calcium lactate, an amorphous alkaloid (solanine?), and the glucoside dulcamarin, $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{O}_{10}$ (0.4 per cent.), which is soluble in water and alcohol, yields frothing solutions, and has a bitter and sweet taste.
Properties.-Deobstruent, alterative, resolvent, anodyne. Dose, 4 to 8 grams ($3 \mathrm{jj}-\mathrm{ij}$), in decoction, fluid extract, or extract.

SASSAFRAS LIGNUM (RADIX).-SAssafras Wood (Root).

Origin.-Sássafras officinále, Nees. Natural order, Laurineæ, Litseaceæ.

Habitat.-North America, woods.
Description.-In branching billets or logs, partly covered with bark, or in chips; pale brownish or reddish, coarse-grained, soft, with narrow medullary rays, large ducts, and oil cells scattered in the different tissues; odor and taste aromatic.

Constituents.-Volatile oil, tannin, starch.
Properties and Uses.-Like sassafras bark.
GOUANIA.-Chewstick.
Origin. - Gouánia domingénsis, Linné. Natural order, Rhamneæ, Gouanier.

Habitat.-West Indies.
Description.-Pieces of stems about 12 millimeters ($\frac{1}{2}$ inch) thick; externally brownish-gray; wrinkled; internally yel-

Fig. 107.

Gouania -Transverse section.
lowish gray; fracture fibrous; bark thin ; wood porous; medullary rays fine; the parenchyme contains many cells with crystals; inodorous, taste bitter.

Constituents.-Bitter principle.
Properties.-Tonic.

QUASSIA.-QuAssia.

Origin. - Picræ'na (Simarúba, De Candolle, Quássia, Swartz) excélsa, Lindley. Natural order, Simarubeæ, Picramnieæ.

Habitat.-Jamaica.
Description.-Various sized billets, sometimes 30 centimeters (12 inches) thick, dense, tough, of medium hardness, freed from the thick tough bark, internally porous, yellowish-white, radially striate and marked with irregular circles; in the shops usually in raspings or chips; inodorous, intensely bitter.

Structure.-Ducts large, mostly in small groups; medullary rays of about three rows of cells; circular zones of wood parenchyme distinct in layers of 4 to 6 cells; central pith thin. Externally and internally occasionally with blackish patches or lines from the mycelium of a fungus.

Surinam quassia, from Quássia amára, Linné, is in much thinner billets, has a thin, brittle bark, smaller ducts, narrower zones of wood parenchyme in layers of 2 or 3 cells, and indistinct medullary rays of mostly one cell in width.

Constituents.-Mucilage, pectin, resin, alkaloid (? fluorescent in acidulated alcoholic solution), picrasmin (a mixture of crystalline compounds, homologous with the quas$\sin , \mathrm{C}_{32} \mathrm{H}_{40} \mathrm{O}_{10}$, of Surinam quassia; these principles are very bitter, are soluble in chloroform, in alcohol, and in water, and are precipitated by tannin). The wood is free from tannin and yields 7 to 8 (Surinam quassia 3 to 4) per cent. of ash.

Properties.-Tonic, febrifuge. Dose, 1 to 4 grams (gr. $\mathrm{x} v-3 \mathrm{j})$, in infusion, tincture, or extract.

GUAIACI LIGNUM.-Guaiacum Wood.

Origin.-Guaiacum officinále, Linné. Natural order, Zygophylleæ.

Habitat.-West Indies and Northern South America.
Description.-In billets and logs, with a yellowish alburnum ; heavy, hard, brown or greenish-brown, resinous, internally marked with irregular concentric circles; splitting very irregular, wavy and splintery; when heated emitting a balsamic odor ; taste slightly acrid.

Used in the form of raspings, which should be greenishbrown, contain few particles of a whitish color, and on the addition of nitric acid acquire a dark blue-green color.

Structure.-The predominating tissue consists of wavy interwoven wood-fibres, with numerous one-rowed medullary rays, large single ducts and narrow lines of wood parenchyme in one or two rows, arranged in irregular and interrupted circles. All cells contain resin.

Constituents.-Resin 20 to 25 per cent. (see Guaiaci resina) ; extractive, soluble in water, 3 to 4 per cent., ash less than 1 per cent.

Properties.-Diaphoretic, alterative. Dose, 2 to 8 grams (3ss-ij), in decoction.

SANTALUM RUBRUM-Red Saunders.

Origin.-Pterocárpus santalínus, Linné filius. Natural order, Leguminosæ, Papilionaceæ, Dalbergieæ.

Habitat.-Madras; cultivated.
Description.-In billets deprived of light-colored sapwood, heavy, hard ; splitting coarsely splintery ; externally dark red-brown; the fresh transverse section deep red marked with lighter red indistinct radiating lines and distinct irregular concentric circles; inodorous and nearly
tasteless ; on maceration in water does not color it. Used in the form of chips or of an irregular powder, of a deep brown-red or purplish-red color.

Structure.-Ducts large ; medullary rays one-rowed; wood parenchyme in about four rows, forming interrupted irregular circles. The cells contain red resinous coloring matter, the parenchyme also crystals of calcium oxalate.

Constituents.-Santalin, $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{5}$ (red needles, soluble in ether with a yellow, and in alkalies with a violet color); santal, $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{O}_{3}$ (colorless scales, in alcoholic solution deep red by $\mathrm{Fe}_{2} \mathrm{Cl}_{3}$); pterocarpin, $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{O}_{6}$, and homopterocarpin, $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{O}_{6}$ (colorless crystals, the latter soluble in cold CS_{2}; fused with HKO yields phloroglucin).

Used for coloring tinctures.

HAMATOXYLON.-Logwood.

Origin.-Hæmatóxylon campechiánum, Linné. Natural order, Leguminosæ, Cæsalpinieæ, Eucæsalpinieæ.

Habitat.-Central America, naturalized in the West Indies.

Description.-In logs; heavy, hard, splitting irregularly, externally blackish-purple, often with a green metallic lustre; fracture coarse splintery; internally brown-red, finely porous, marked with irregular concentric circles and numerous delicate radiating lines; odor faint, agreeable; taste sweetish, astringent; colors the saliva dark pink. Used in the form of small chips or coarse powder of a dark brown-red color, often with a greenish lustre.

Structure.-Ducts rather large, often in groups of two ; medullary rays about two-rowed; wood parenchyme in broader wavy circular lines. The coloring matter is deposited mainly in the wood-fibres and ducts.

Constituents.-Hæmatoxylin, $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{6}$, colorless, sweet,
soluble in water and alcohol, turning red in sunlight, purplish by alkalies; fused with potassa yields pyrogallol. Hæmatein, $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{6}$, is a product of oxidation of the former, has a green metallic lustre, and is soluble in alkalies with a blue color. Also tannin, fat, resin, trace of volatile oil.

Properties.-Astringent, tonic. Dose, 2 to 4 grams (3 ss-j), in decoction or extract.

SANTALUM ALBUM.-Sandalwood.

Origin.-1. Sántalum álbum, Linné; 2. S. Yási, Seemann, and other species. Natural order, Santalaceæ, Osyridere.

Habitat.-1. Southern India; 2. Fijee Islands; other species in Australia, the Sandwich Islands, etc.

Description.-Malabar sandalwood is in billets, or logs, 10 to 20 centimeters (4 to 8 inches) thick, splitting readily, heavy, hard, yellowish, brownish or whitish, marked with darker circles; odor when rubbed aromatic, somewhat musk-like ; taste aromatic.

Structure.-Ducts of moderate size, single ; wood parenchyme narrow, contains volatile oil or calcium oxalate; medullary rays very narrow, in one or two rows.

Macassar sandalwood resembles the preceding in all essential characters; but on treating sections with tincture of iodine the oil is colored black.

West Indian sandalwood resembles the former in color but not in structure ; the ducts are in radial rows of two to ten; no essential oil is present in the wood, but numerous oil cells are scattered in the bast layer of the bark.

Constituents.-Resin, tannin, volatile oil 1-4 per cent. ; the latter is yellow, thick; sp. grav. 0.96 ; readily soluble
in alcohol while fresh, strongly aromatic, but varying somewhat with its origin.

Properties.-The volatile oil stimulant, sudorific, used in gonorrhœea in doses of 0.5 to 1 or 1.5 gram (gr. viij-xvxxij), also in perfumery ; the wood for fancy articles.

5. BARKS.-CORTICES.

Barks constitute the outer layer of dicotyledonous stems and roots, separated from the wood by the cambium layer, and are collected mostly from the trunk or stem and its larger branches, in a few cases from the root. The outer surface of the stem bark is not unfrequently beset with larger or smaller patches of lichens; the inner surface, immediately after the removal of the bark from the wood, is mostly whitish or light colored and smooth, but darkens more or less on drying, and often becomes rough or ridged in consequence of the unequal shrinkage of different parts of the tissue.

Histology.-The bark consists originally of two layers, the outer bark wholly composed of parenchyme, containing chlorophyll; and the inner bark, bast or liber, which is composed of vertically elongated bast parenchyme, and of bast prosenchyme or liber fibres, and this tissue is radially dissected by medullary rays, formed of radially elongated parenchyme. The pharmacopœial root barks are destitute of liber fibres. The epidermis is present only in very young barks; its place is soon taken by the primary cork, which is frequently present in wart-like projections, or in longitudinal or transverse ridges, and is composed of tangentially flattened cells. The secondary cork, composed of similar cells, penetrates in layers or bands into the outer or inner bark, and the exterior tissue cracks off in layers
or falls away by decay. The tissues which may be present in barks are: 1, the epiphlœum or exophlœum, formed by the primary cork; 2, the mesophlœum, primary or outer bark, also sometimes called middle bark; or these two layers may have been thrown off, so that the external layer is formed by 3 , the rhytidoma, or secondary cork; 4 , the endophlœum or liber. The term periderm is often used to designate the external corky layer, whether it be epiphlœum or rhytidoma, but is by some authors confined to the latter. The parenchyme of some barks contains cells in which volatile oil, resin, mucilage, or crystals are found; and others in which the cell-walls become considerably thickened and indurated, producing the gritty cells or stone cells or sclerenchyme.

Aside from the natural color of the tissue, the appearance of the outer surface of the medicinal barks depends upon the presence or absence of lichens, epiphlœum, mesophlœum, and rhytidoma, and the appearance of the inner surface upon the degree of shrinkage in drying of the medullary rays and bast parenchyme. The breadth of the medullary rays on the other hand, and the radial or lateral arrangement of the bast cells on the other hand, cause the radial, lateral (tangential), or checkered markings upon the transverse section of the inner bark.

Classiflcation.

Sect. 1. Taste bitter and astringent.
Bast fibres with a minute cavity, single, in short radial lines or small groups.

Cinchona.
Bast fibres with larger cavity, in close radial lines; copper-colored.

Remijia.
Bast indistinctly tangentially striate ; cork removed; fracture granular. Nectandra.
Bast radially striate, pale red; periderm brown. Cornus florida.

Bast radially striate, cinnamon-colored ; periderm brown-gray; bark thin.

Cornus circinata.
Bast radially striate, pale brown ; periderm pur-plish-brown; bark thin.
Bast radially striate, whitish; periderm purplishbrown.
Bast radially striate, whitish ; periderm gray or brownish.
Bast radially striate, yellowish ; periderm grayish, dotted.
Bast radially striate, rust-brown; periderm green brown.
Bast layers tangential, checkered, yellow, exfoliating.
Bast layers tangential, checkered, pale cinna-mon-colored.
Bast layers tangential, pale cinnamon-colored; periderm ash-gray, exfoliating.
Bast indistinctly striate, whitish; periderm purplish or grayish-brown.

Sect. 2. Taste astringent.
Bast checkered, pale brown ; inner surface ridged; saliva not tinged.

Quercus alba.
Bast checkered, pale brown ; inner surface ridged; saliva tinged yellow.
Bast tangentially striate; periderm blackish; inner surface smooth, brownish; tough.
Bast scarcely striate, yellowish; inner surface smooth; fracture short.

Sect. 3. Taste bitter, not aromatic.
Bast radially striate, whitish; inner surface smooth ; fracture splintery.
Bast radially striate, pale brownish; bark tough.
Fraxinus.

Bast radially striate, whitish; periderm blackish; bark tough.

Quassia excelsa.
Bast radially striate, whitish; periderm gray; bark brittle.

Quassia amara.
Bast radially striate, grayish, dotted; slightly acrid.

Condurango.

Bast scarcely striate, brownish-yellow ; periderm dark gray.
Bast scarcely striate, yellowish ; periderm gray and whitish.
Bast somewhat checkered ; internally with bluegreen patches; odor opium-like.

Frangula.
Rhamnus
Purshiana.

Piscidia.
Bast checkered, brown and white ; cork removed; inner surface striate.
Bast yellowish-brown, dotted ; outer bark in undulated layers.
Bast tangentially striate, yellowish ; cork rustbrown, tasteless.

Azedarach.
Sect. 4. Taste acrid or pungent.
Slender prickles in transverse rows.
Brown-gray, inner surface whitish; fracture short; spines brown, two-edged.
Brown-gray, inner surface whitish; fracture short; spines brown, stout, upon a thick, corky base.
Reddish-brown, with thin grayish cork; fracture short.
Red-brown ; internally with brown-yellow spots; brittle.
Bast tangentially striate, tough, whitish ; periderm greenish, glossy.

Aralia spinosa.
Xanthoxylum
fraxineum.

Xanthoxylum carolinianum.

Myrica.

Erythrophlœuш.
Mezereum.
Bast tangentially striate, tough, whitish; periderm reddish; taste slightly acrid.

Gossypium.
Bast tangentially striate, tough, with yellow dots ; cinnamon-brown ; aromatic, pungent. Coto.
Bast tangentially striate, whitish; periderm gray and blackish, scaly ; taste slightly acrid and bitter.
Bast checkered, white or whitish ; cork removed; sternutatory.

Quillaia.
Sect. 5. Mucilaginous.
Bast checkered, whitish or brownish ; cork removed.

Ulmus.

Sect.6. Aromatic (some also bitter) with oil or resin cells.

Astringent ; compound quills; papery, outer surface lightest.	Cinnamomum.
Astringent; curved or quilled; both surfaces cinnamon-brown.	Cinnamomum cassia.
Astringent; flattish fragments, rust-brown; fracture corky.	Sassafras.
Bitterish, pungent; periderm whitish and reddish, with white scars; bast white.	Canella.
Bitterish, pungent; periderm brown, with darkbrown scars ; bast brown.	Cinnamodendro
Bitterish, pungent; periderm whitish or brown; inner surface ridged; contains tannin.	Wintera.
Very bitter; reddish-brown; in outer bark white strie.	Angustura.
Very bitter; periderm white, fissured; inner surface brown.	Cascarilla.

cinchona.-Cinchona, Peruvian Bark.

Origin.-Between 30 and 36 species of cinchona are usually recognized, of which number about one-half furnish commercial cinchona bark. O. Kuntze regards most of these as hybrids or as varieties, and recognizes only four typical species. Those recognized by the pharmacopeias are mentioned below.

Natural order, Rubiaceer, Cinchoneer.
Habitat.-South America, commencing at $19^{\circ} \mathrm{S}$. lat., on the eastern slope of the central chain of the Andes, northward to $2^{\circ} \mathrm{S}$. lat., where a second belt commences on the eastern slope of the western chain; thence spreading northward into Colombia to $10^{\circ} \mathrm{N}$. lat. The valuable species grow at an altitude of 1600 to 2400 meters (5300 to 8000 feet), Cinch. succirubra at 700 meters (2300 feet). Other species of little or no value are found up to 3500 meters (11,600 feet), and down to 100 meters (330 feet). The climate where the best species grow has a mean temperature of 12° to $13^{\circ} \mathrm{C}$. ($55^{\circ} \mathrm{F}$.), and is damp and foggy throughout the greater part of the year.

Cinchonas are now extensively cultivated in Java, India (Neilgherry and Himalaya Mountains), Jamaica (Blue Mountains), and other countries ; to a limited extent also in South America. Nearly all the commercial bark is obtained from cultivated trees.

Structural Characteristics.-The bast fibres are short, about 1 millimeter ($\frac{1}{25}$ inch) long, rather fusiform, obtusely

Fig. 108.

Calisaya bark.-Radial longitudinal section, showing bast fibres, bast parenchyme, and medullary rays.

Fig. 109.

Cinchona lancifolia.Transverse section, magnified 30 diam., showing numerous stone cells in outer bark and outer bast layer; bast cells in interrupted radial lines.
pointed, unbranched, have very much thickened cell-walls and a minute cavity, and are quite brittle. They are im-
bedded in the bast parenchyme, either singly, or in short radial lines, composed of one or two rows, or in irregular

Fig. 110.

Cinchona micrantha.-Transverse section, magnified 40 diam.; few stone cells in outer bark; bast fibres single and in groups.
groups of 2,3 , or sometimes 6 or 8 cells. The bast rays contain also incomplete fibres or staff cells, which are elongated and thick-walled. The primary bark of some species
contains somewhat elongated unbranched laticiferous ducts (vessels, lacunæ) and thick-walled stone cells containing resin or crystals, which are also occasionally found in the medullary rays. The formation of secondary cork bands, penetrating deeply into the interior, causes the absence of these ducts and stone cells in the older trunk bark of some species. The cork cells are thin-walled.

The structure of cultivated cinchona is to some extent modified by the process of mossing and in renewed bark.

Officinal Cinchona Barks.-The bark of any species of cinchona is admitted for medicinal use if containing at least 3 per cent. of total alkaloids. Cinchona flava and cinchona rubra are required to contain at least 2 per cent. of quinine (U. S. Phar).

The Brit. Phar, admits all cinchona barks for the preparation of the alkaloids, but requires for all galenical preparations cultivated red bark-containing between 5 and 6 per cent. of alkaloids-of which not less than half shall consist of quinine and cinchonidine.

The German Phar. directs trunk and branch bark of cultivated cinchonas, preferably C. succirubra, containing at least 5 per cent. of alkaloids.

The French Codex requires pale (Loxa or Huanuco) bark to contain at least 1.5 per cent. of alkaloids; yellow (Calisaya) bark to yield at least 2.5 per cent. of crystallized quinine sulphate, and red bark to give not less than 2 per cent. of quinine sulphate, and 3 per cent. of total sulphates.

Description.-Cultivated cinchona bark is seen in commerce in the form of quills or curved pieces, about 10 centimeters (4 inches) or more in length, the thickness of the bark being usually about 2 or 3 millimeters ($\frac{1}{12}$ or $\frac{1}{8}$ inch), occasionally 5 or 6 millimeters ($\frac{1}{5}$ or $\frac{1}{4}$ inch). The outer surfaces consist of whitish or brown-gray cork, and
is more or less rough from seattered, or in older bark more numerous, warts frequently forming longitudinal lines in C. succirubra, from shallow longitudinal furrows and ridges, and from short transverse, sometimes also longitudinal fissures (met with chiefly in C. Calisaya and C. officinalis). The inner surface is of a more or less deep cinnamon-brown, or in thick succirubra bark of a dark reddish-brown color, and is finely, or in older bark more coarsely striate ; the fracture is nearly smooth or somewhat granular and short in the thinner quills, or finely fibrous, but never splintery, in the thicker pieces; the powder is cinnamon brown, or from succirubra bark reddish-brown in color ; odor slight, somewhat aromatic; taste bitter and distinctly astringent.

These barks contain in their inner layer the characteristic bast fibres described above, and these are seen in the thin quills, mostly single and arranged in interrupted radial lines; the arrangement in bark from old wood is described below; the tissue is never in concentric layers.

On heating about 0.1 gram ($1 \frac{1}{2}$ grains) of the powdered bark in a dry test-tube, a tarry distillate of a red color is obtained (Grahe's test).

Classification of the Important Cinchona Barks.

1. Bast fibres single, sometimes in groups of 2 or rarely more, medium sized.
C. Calishya. Laticiferous ducts in young bark; no or very few stone (resin) cells ; old bark with prominent secondary cork; medullary rays narrow.
C. glandulifera. Laticiferous ducts in 1 or 2 rows; stone cells few ; bast rays narrow; medullary rays large-celled.
2. Bast fibres single, or oftener in groups, not in distinct radial lines.
C. micrántha. No laticiferous ducts; stone cells few or none; bast fibres medium ; medullary rays narrow.
C. purpúrea. Laticiferous ducts in 1 or 2 rows; stone cells numerous; bast fibres medium, with some incomplete fibres; medullary rays broadly wedge-shaped at end.
C. pubéscens. Laticiferous ducts in 1 row ; stone cells numerous; bast fibres large, variable, with incomplete fibres; medullary rays broad.
3. Bast fibres in interrupted, single or double radial lines.
C. succirúbra. Laticiferous ducts in 1 row, in old bark often filled with cells; stone cells none; bast and medullary rays narrow; bast fibres medium.
C. officinális. Laticiferous ducts thin, soon obliterated; stone cells none or very few ; bast fibres medium ; medullary rays narrow.
C. pitayénsis. Laticiferous ducts none; stone cells few or none; bast fibres thin; medullary rays mostly narrow, wedge-shaped at end.
C. cordifólia. Laticiferous ducts none; stone cells few; bast fibres small, with some incomplete fibres; medullary rays large-celled.
C. lancifólia. Laticiferous ducts none; stone cells many ; bast fibres medium, with some incomplete fibres; medullary rays largecelled.
C. nitida. Laticiferous ducts none; stone cells few or none; bast fibres mostly thin, but many thick or medium ; medullary rays narrow.
C. peruviána. Laticiferous ducts (in 1 row) and stone cells small; bast fibres small, many incompletely filled.
4. Bast fibres in nearly uninterrupted radial lines.
C. scrobiculata. Laticiferous ducts in 1 or 2 rows; stone cells and bast fibres numerous; medullary rays large-celled.

The following cinchona barks were formerly shipped from South America in large quantities; the two or three varieties first described below, are still recognized by several pharmacopœias.

Calisaya bark, or yellow cinchona, the bark of the trunk of Cinchóna Calisáya, Weddell (U. S. P., 1880), from Northeastern Bolivia and Southeastern Peru, growing at altitude of 1500-1800 meters ($5000-6000$ feet). In quills or flat pieces, varying in size ; bark 2 or 3 millimeters ($\frac{1}{12}$ or $\frac{1}{8}$ inch) thick, externally gray with fissures forming nearly square meshes with raised edges, internally yellowish, cinnamon-colored; inner surface nearly smooth; fracture granular and shortfibrous; the flat pieces from 4 to 10 millimeters ($\frac{1}{6}$ to $\frac{2}{5}$ inch) in thickness; almost completely deprived of the brown corky layer; compact; of a tawny-yellow color; outer surface marked with shallow conchoidal depressions (digital furrows) and intervening, rather sharp ridges ; inner surface closely and finely
striate; transverse fracture showing numerous, very short, and rigid, glistening fibres. Powder light cionamon-brown,

Fig. 111.

Cinch. Calisaya, showing digital furrow and short fibrous fracture.

Fig. 112.

Cinch. scrobiculata.
slightly aromatic, and persistently bitter. The young bark contains a layer of primary cork, no stone cells, and near the

Fig. 113.

Calisaya bark, magnified 30 diam., quilled, with primary cork and near the bast rays, with laticiferous ducts.
bast rays one or two circles of large laticiferous ducts. The flat bark consists of liber only, has the bast fibres singly or
sometimes in pairs, arranged in radial lines, and contains bands of secondary cork.

Calisaya bark was sometimes confounded with other cinchona barks of a similar color, but having the bast fibres in bundles or radial rows, and breaking with a splintery or coarsely fibrous fracture (Cinch. scrobiculata and C. lancifolia).

Fig. 114.

Flat, inner layer; with narrow medullary rays and single bast fibres in radial lines.

Fig. 115.

Flat, outer layer; with bands of secondary cork and distant bast fibres.

Red Cinchona from Cinchóna succirúbra, Pavon, indigenous to Ecuador, west of Chimborazo, at an altitude of $700-1500$ meters (2300-5000 feet). Incurved pieces or quills, varying in length and width, and from 2 to 12 millimeters ($\frac{1}{12}$ to $\frac{1}{2}$ inch) thick; compact; of deep brown-red color; outer surface covered with numerous suberous warts, and in the older bark, with ridges, or longitudinally and somewhat transversely fissured; inner surface rather coarsely striate ; transverse fracture short-fibrous; powder deep brown red, slightly odorous, astringent, and bitter. It should not be confounded with other barks having an orange-red color and breaking with a coarse splintery fracture. The tissue contains no stone cells; the large laticiferous ducts are frequently present in old bark and often filled with cells; the bast fibres are placed in interrupted lines of two to about eight.

Loxa bark' or crown bark, chiefly from C. officinális,

Hooker. Thin single or double quills; periderm brown or gray-brown, more or less fissured transversely, otherwise smooth; liber yellowish-brown or reddish-brown; fracture slightly fibrous in inner layer; powder pale brown.

Pitaya bark, from C. Pitayénsis, Weddell. Periderm smooth, ochre-colored, with circular scars; liber reddish cin-namon-brown; fracture short splintery ; powder bright brown-yellow.

Cusco bark, from C. pubéscens, Vahl. Periderm pale brown-yellow, warty, sometimes whitish; liber cinnamon-colored, with a coarse splintery fracture.

Carthagena bark, from C. lancifólia, Mutis, and C. cordifólia, Mutis. Quills and half-quills; periderm whitish, ochrecolored or yellowish-brown, soft; inner surface cinnamon-brown, with orange or reddish tint ; inner fracture fibrous.

Lima or Huanueo bark, from C. peruviána, Howard, C. nítida, Ruiz et Pavon, C. micrántha, R. \& P., and other species. Quills and half-quills, varying according to the origin.

Huamalies bark, from C. micrántha, Ruiz et Pavon, C. glandulífera, R. \& P., C. purpúrea, $R . \& P$., and other species. Quills and half-quills, varying according to origin.

Jaen bark or false Loxa bark, from C. Humboldtiána, Lambert. Inferior.

Cinchona Pahudiána, Howard, formerly cultivated in Java. Bark of handsome appearance, but inferior.

Sputrious Cinchona Barks.-From different species of Ladenbergia, Exostemma,

Fig. 116.

Cinchona succirubra. -Transverse section, magnified 30 diam. Nauclea, etc. The liber layer is more or less distinctly radially striate or checkered, and contains bast fibres with large cavity, variously arranged. Occasionally a bast fibre like those of the cinchonas is observed. These are rarely, if ever, seen in commerce at the present time.

Constituents.-Kinic (quinic) acid, $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}_{6}$ (5 to 7 per cent., yields kinone, $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}$, with sulphuric acid and man-
ganese binoxide) ; kinovic (quinovic) acid, $\mathrm{C}_{32} \mathrm{H}_{48} \mathrm{O}_{6}$) tasteless) ; kinovin (quinovin), $\mathrm{C}_{30} \mathrm{H}_{48} \mathrm{O}_{8}$ (bitter ; yields kinovic acid and mannitan) ; cinchotannic acid (usually 2 to 4 per cent.) ; cinchona red (derivative of the preceding) ; volatile oil (minute quantity), gum, sugar, wax, ash ($2-3$ per cent.). The most important constituents are the following five alkaloids: quinine and quinidine (conquinine), $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}$); cinchonine and cinchonidine, $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}$ (older formula, $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}$) ; quinamine, $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}$. Their properties are as follows :

	Soluble in parts of Alkaluids.					
Rotation.	Water.	Alcohol.	Ether.	Cl and NH_{3}	Cl, KCfo , and NH_{3}	
Quinine	left	1670	6	26	green	dark red
Quinidine	right	2000	26	30	green	dark red
Cinchonine	right	3740	133	370	not gr.	not red
Cinchonidine	left	1680	20	188	not gr.	not red
Quinamine	right	1520	110	55	not gr.	not red

A large number of allied alkaloids have been obtained, some of which are known to be produced under the influence of heat or of reagents :

Isomeric with quinine are quinidine and quinicine.
Isomeric with quinamine are conquinamine, quinamidine, quinamicine.

Isomeric with cinchonine are cinchonidine, cinchonicine, homocinchonine, homocinchonidine, homocinchonicine, and apoquinamine.

In the preparation of the cinchona alkaloids a motherliquor is obtained yielding a brown amorphous alkaloid known as chinoidine (quinoidine), which is usually a mixture of dicinchonicine $\mathrm{C}_{38} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{O}_{2}\left(=2 \mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}\right)$, and diconquinine (diquinidine), $\mathrm{C}_{40} \mathrm{H}_{46} \mathrm{~N}_{4} \mathrm{O}_{3}\left(=2 \mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}-\right.$ $\mathrm{H}_{2} \mathrm{O}$); the latter gives the chlorine water and ammonia the green thalleioquin color.

Other alkaloids obtained from varieties of cinchona barks are-paricine, $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$, in red bark; cusconine
and aricine, $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4}$, in Cusco bark; paytine, $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}$, in Payta bark.

Properties.-Astringent, tonic, antiperiodic, febrifuge. Dose, 1 to 4 grams (gr. xv- zj), in powder, fluid extract, extract, or the salts of the alkaloids.

remiJia.-Cuprea Bark.

Origin.-Remíjia pedunculáta, Triana. Natural order, Rubiaceæ, Cinchoneæ.

Habitat.-Colombia, central part, at an altitude of 1000 to 2000 meters (3300 to 6600 feet).

Description.-Flat or curved pieces, about 3 to 6 millimeters ($\frac{1}{8}$ to $\frac{1}{4}$ inch) thick, rarely in quills, mostly deprived of the warty and furrowed brownish cork, otherwise of a characteristic dull copper-red color; the inner surface striate; hard, fracture coarsely granular and splintery; odor slight; taste bitter, somewhat astringent. The cork cells are thick-walled; the primary bark contains a few laticiferous ducts; the bast fibres, with rather large cavities and obtuse ends, are in close radial lines most numerous in the outer bast layer; numerous stone cells are found in the primary bark and the bast layer. Cuprea bark, powdered and heated in a dry test-tube, yields a tarry distillate of a red color (Grahe's test).

Constituents.-Quinine, 2 to 3 per cent., quinidine and cinchonine, also kinovin, but no cinchonidine. Quinine exists in part as homoquinine, which is a compound of quinine with cupreine, $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$; the latter dissolves with difficulty in ether and chloroform, is colored red-brown by ferric chloride, and green by chlorine and ammonia, and may be converted into quinine by treatment with methyl chloride.

Remíjia Purdieána, Weddell, which is also a native of Colombia, yields a bark of a yellowish-brown color, covered with a brown-gray cork, and containing radial rows of thin bast fibres with rather large cavities, and scattered stone cells in the primary bark, but none in the bast layers. It does not respond to Grahe's test, and contains the alkaloids cinchonamine, concusconine, chairamine, conchairamine, chairamidine, and conchairamidine.

Properties.-Tonic, febrifuge. Cuprea bark has been used for the manufacture of quinine.

nectandra.-Bebeeru. Greenheart Bark.

Origin.-Nectándra Rodiæ'i, Schomburgk. Natural order, Lauriner, Perseaceæ.

Habitat.-Guiana.
Description.-Flat pieces, 6 millimeters (\mid inch) or less thick; outer surface gray-brown, with numerous longitudinal depressions; inner surface cinnamon-colored, coarsely striate; fracture granular from the numerous stone cells, in the liber somewhat tangentially striate; inodorous; taste astringent and bitter.

Constituents.-Bebirine, $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{3}$, identical with buxine and pelosine, white, soluble in ether; sipirine, red-brown, amorphous, insoluble in ether.

Properties.-Tonic, febrifuge, antiperiodic. Dose, 2 to 4 grams ($388-\mathrm{j}$) ; mostly the alkaloid, 0.06 to 0.6 gram (gr. $\mathrm{j}-\mathrm{x}$).

CORNUS.-Dogwood.

Origin.-Córuus flórida, Linné. Natural order, Cornaceæ.

Habitat.-North America, westward to Minnesota and Texas, in woods.

Description.-The bark of the root is collected and is deprived of the furrowed brown-gray corky layer; in curved pieces of various sizes, about 3 millimeters ($\frac{1}{8}$ inch) thick; outer and inner surface pale reddish or light red-dish-brown, striate; transverse and longitudinal fracture short, whitish, with brown-yellow striæ of stone cells; inodorous ; astringent and bitter.

Constituents.-Cornin (cornic acid, silky needles, bitter, soluble in water and alcohol), tannin (3 per cent.), resin, gum, ete.

Properties.-Astringent, tonic, febrifuge. Dose, 1 to 4 grams (gr. $\mathrm{xv}-3 \mathrm{j}$), in decoction and fluid extract.

The bark of Córnus circináta, L'Héritier, or round-leaved
dogwood, is thin, quilled, or curved ; outer surface greenish or brownish-gray, with suberous warts or longitudinal lines ; inner surface cinnamon-brown.
The bark of Córnus serícea, Linné, or swamp dogwood, is quilled, thin; outer surface purplish-brown or purplishgray, with few suberous warts; inner surface cinnamonbrown.

These barks agree with that of Cornus florida in taste, constituents, and properties.

LIRIODENDRON.-Tulip-tree Bark.

Origin.-Liriodéndron Tulipífera, Linné. Natural order, Magnoliaceæ, Magnolieæ.

Habitat.-United States, westward to Eastern Kansas, in woodlands; also in China.

Description.-The bark of the branches is collected. Quilis or curved pieces, about 2 millimeters ($\frac{1}{12}$ inch) thick; outer surface purplish-brown or blackish-gray, with thin, often cleft ridges forming elongated meshes; internally whitish, smooth; transverse fracture short, somewhat fibrous in the inner layer ; nearly inodorous; taste somewhat astringent, pungent, and bitter. The bark of old wood deprived of the corky layer is whitish, fibrous, and less pungent.

Constituents.-Little volatile oil, various resins (including liriodendrin), glucoside, tulipiferine (white tasteless alkaloid; heart tonic), tannin, coloring matters, gum, etc.

Properties. - Tonic, febrifuge, vermifuge. Dose, 4 to 8 grams ($\mathbf{~} \mathrm{j}-\mathrm{ij}$), in infusion or fluid extract.

MAGNOLIA.-Magnolia.

Origin.-Magnólia glaúca, Linné, M. acumináta, Linné, and M. tripétala, Linné. Natural order, Magnoliaceæ, Magnolieæ.

Habitat.-Middle and Southern United States.
Description.-Thin quills or curved pieces; periderm orange-brown, glossy, or light gray, with scattered warts,
somewhat fissured; inner surface whitish or brownish, smooth ; fracture in inner layer somewhat fibrous ; inodorous; taste somewhat astringent, pungent, and bitter. The bark of old wood deprived of the corky layer is whitish, or pale brownish, fibrous, and less pungent.

Constituents.-Little volatile oil, resins, a tasteless crystalline glucoside, tannin, coloring matters, gum, etc. Magnolin is a crystalline principle of the fruit of M. tripetala, having an irritating taste, or when pure tasteless, insoluble in water, soluble in most simple solvents and in alkalies. The identity of the crystalline principles in the bark and fruit of the different species has not been demonstrated.

Properties.-Diaphoretic, tonic, febrifuge. Dose, 2 to 4 grams (3ss-j), in decoction.

PRINOS.-Black Alder, Winterberry.

Origin.-Hex verticilláta, Gray, s. Prínos verticillátus, Linné. Natural order, Ilicineæ.

Habitat.-North America, south to Florida, in swampy thickets.

Description.-Thin slender fragments, about 1 millimeter ($\frac{1}{25}$ inch) thick, fragile; outer surface brownish ashcolored, with whitish patches and blackish dots and lines, the corky layer easily separating from the green tissue; inner surface pale greenish or yellowish; fracture short, tangentially striate; nearly inodorous, bitter, slightly astringent.

Constituents. - Tannin, wax, fat, resin, chlorophyll, albumin, sugar, gum, starch, amorphous bitter principle, which is precipitated by subacetate of lead ; ash 4 to 5 per cent.

Properties. - Astringent tonic, alterative, febrifuge. Dose, 2 to 4 grams ($3 \mathrm{ss}-\mathrm{j}$), in decoction or fluid extract.

PRUNUS VIRGINIANA.-Wild Cherry Bark.

Origin.-The bark of Prúnus (Cérasus, Loiseleur) serótina, Ehrhart. Natural order, Rosaceæ, Pruneæ.

Habitat.-North America, westward to Minnesota and Louisiana; in woods.

Description.-Curved pieces or irregular fragments, 2 millimeters ($\frac{1}{12}$ inch) or more thick ; outer surface greenishbrown or yellowish-brown, smooth, and somewhat glossy; if collected from old wood deprived of most of the corky layer, the outer surface rust-brown and uneven ; inner surface somewhat striate, cinnamon-brown ; brittle ; fracture granular, radially striate ; after maceration in water, of a distinct bitter almond odor ; taste astringent, aromatic, and bitter.

It should be collected in autumn. The bark of the small branches is to be rejected.

Constituents.-Tannin, gallic acid (?), bitter principle, resin, starch, amorphous principle (somewhat bitter, soluble in alcohol and not precipitated by ether), and a ferment which is not identical with emulsin (Power, 1887). The reaction in water of the two last-named principles generates hydrocyanic acid and oil of bitter almond. Collected in October, the bark yields 0.144 per cent. HCy, contains about $3 \frac{1}{2}$ per cent. of tannin, and yields a dark-colored infusion. The bitter taste is partly due to a glucoside, crystallizing in colorless needles, soluble in ether, and showing blue fluorescence in aqueous and alkaline solution.

Properties.-Tonic, sedative, pectoral. Dose, 2 to 4 grams (3 ss-j), in infusion, syrup, or fluid extract.

> BERBERIS.-Barberry Bark.

Cortex radicis berberidis.
Origin.-Bérberis vulgáris, Linné. Natural order, Berberidaceæ, Berbereæ.

Habitat.-Europe and Western Asia; naturalized in North America.

Description.- Thin fragments; periderm yellowish gray, soft; inner surface smooth, orange-yellow; fracture short, bright yellow ; separable in laminæ ; inodorous; taste bitter, not astringent, tingeing the saliva yellow.

Constituents.-Little tannin (green with ferric salts), wax, fat, resin, albumin, gum, starch, berberine $1 \frac{1}{4}$ per cent. (see Hydrastis), oxyacanthine, $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{3}$ (vinetine, or berbine; bitter, white, soluble in alcohol, ether and chloroform ; separates iodine from iodic acid; isomeric with thebaine; the salts sparingly soluble in sodium phosphate), berbamine, $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{3}$ (white, the salts sparingly soluble in sodium nitrate), and a fourth amorphous alkaloid. A dilute solution of potassium ferricyanide with ferric chloride is colored blue by salts of berbamine and oxyacanthine.

Properties.-Tonic, febrifuge, in large doses laxative. Dose, 0.2 to 0.6 gram (gr. $\mathrm{ijj}-\mathrm{x}$), in powder or decoction.

SALIX.-Willow.

Origin.-Sálix álba, Linné, and other species of Salix. Natural order, Salicaceæ.

Habitat.-Europe, naturalized in North America; cultivated.

$$
\text { Fig. } 117 .
$$

Salix.-Transverse section, magnified 15 diam.
Description.-Collected from branches several years old. Fragments or quills, 1 or 2 ! millimeters ($\frac{1}{25}$ or $\frac{1}{12}$ inch)
thick, smooth ; outer surface somewhat glossy, brownish, or yellowish, more or less finely warty or somewhat transversely ridged, under the corky layer green; inner surface brownish-white, smooth; fracture tough and fibrous. The less esteemed trunk bark is much thicker, deprived of the ash-gray cork, pale cinnamon-brown, the fracture more fibrous, somewhat splintery. The liber separates in thin layers, and the transversely elongated liber bundles are accompanied by axial rows of crystal cells; inodorous, bitter, and astringent.

Constituents. - Tannin, about 12 per cent. ; salicin, $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{7}, 1$ to 3 per cent., white bitter scales or needles, insoluble in ether, blood-red by sulphuric acid; by dilute acids split into sugar and saligenin, $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}_{2}$ (solution blue by ferric chloride), or saliretin, $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{3}$. The white or crack willows appear to contain more tannin, the purple willows more salicin. Salicin has also been found in the leaves and flowers of several species of willow, and in the bark and leaves of several species of Populus associated with populin, which is benzoylsalicin.

Properties.-Tonic, astringent, vermifuge, febrifuge. Dose, 1 to 4 grams (gr. $\mathrm{xv}-3 \mathrm{j}$) or more. Salicin as a tonic or febrifuge in doses of 0.2 to 1 gram (gr. iij-xv).

Hamamelis.-Hamamelis, Witch Hazel.

Origin.-Hamamélis virginiána, Linné. Natural order, Hamamelidex.

Habitat.-North America, in thickets.
Description.-In irregular fragments or curved pieces, 1 or 2 millimeters ($\frac{1}{25}-12$ inch) thick; outer surface ash-gray, smooth, with scattered small blackish warts, or with short transverse ridges or scars, or somewhat scaly in older bark; the thin gray corky layer easily removed from the pale cinnamon colored middle bark; inner surface smooth or finely striate; the liber of older bark separating in thin layers ; fracture of young bark short, of older bark tough in the bast layer; inodorous ; taste astringent, somewhat bitter and pungent.

Constituents.-Tannin 8 per cent. ; bitter and pungent principles (not isolated), resin, wax, sugar ; ash 6 per cent.

Properties.-Tonic, astringent. Dose, 2 to 4 grams ($38 s-\mathrm{j}$), in infusion or fluid extract.

Viburnum.-Viburnum, Black Haw.

Origin.-Vibúrnum prunifólium, Linné. Natural order, Caprifoliaceæ, Sambuceæ.

Habitat.-United States, westward to Kansas and Mississippi ; in thickets.

Description.-The bark of the stem is in thin pieces or quills, glossy purplish-brown, with scattered warts and minute black dots ; collected from old wood grayish-brown ; the thin corky layer easily removed from the green layer; inner surface whitish, smooth; fracture short, inodorous, or of a slight valerian-like odor ; taste somewhat astringent, bitter. The root bark is reddish-brown, internally cinnamon-colored, very bitter.

Constituents.-Valerianic acid, brown bitter resin, green-ish-yellow bitter principle (viburnin), tannin, sugar, oxalates, citrates, malates, and ash 8-9 per cent.

Properties.-Diuretic, tonic, nervine; used in threatened abortion. Dose, 2 to 4 grams (5ss-j), in infusion or fluid extract.

QUERCUS ALBA.-White Oak Bark.
Origin.-Quércus álba, Linné. Natural order, Cupuliferæ, Quercineæ.

Habitat. - North America, westward to Minnesota, Kansas, and Mississippi ; in woods.

Description.-Nearly flat pieces, deprived of the corky layer, about 6 millimeters ($\frac{1}{4}$ inch) thick, pale brown, inner
surface with short, sharp, longitudinal ridges; tough; fracture coarsely fibrous; odor faint tan-like ; taste strongly astringent ; in the shops usually in an irregular fibrous powder, which does not tinge the saliva yellow.

Constituents.-Tannin, 6-11 per cent. (olive-brown with ferric salts; on sublimation yields needles soluble in alcohol and sparingly in water, colored green by ferric chloride), red-brown coloring matter, pectin, resin, etc. Young oak bark is richer in tannin than bark from old wood. Querco-tannic acid is $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{O}_{12}$ and $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{O}_{14}$, the latter being readily soluble in water. Oak red is $\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{O}_{11}$.

Properties.—Astringent. Dose, 1 to 4 grams (gr. xv3j); mostly used externally.

QUERCUS TINCTORIA.-Black Oak Bark.

Origin.-Quércus coccínea var. tinctória, Gray. Natural order, Cupuliferæ, Quercinez.

Habitat.-North America, westward to Minnesota and Texas; in woods.

Description.-Flattish pieces, deprived of the corky layer, about 5 millimeters ($\frac{1}{5}$ inch) thick, reddish-brown, inner surface somewhat ridged; compact but rather brittle; fracture coarsely fibrous; odor faint tan-like; taste strongly astringent and somewhat bitter, imparting a brownish-yellow color to the saliva. Usually kept in an irregular fibrous powder.

In the Southern States the barks of Quércus nígra, Linné (black jack), and of Qu. falcáta, Michaux (Spanish oak), are frequently used as black oak bark; they are of a much coarser texture and of a deep reddish-brown color.

Constituents.-Tannin 6 to 12 per cent. (blue with ferric salt), red-brown coloring matter, pectin, quercitrin, $\mathrm{C}_{36} \mathrm{H}_{38} \mathrm{O}_{20}$. The latter is yellow, crystalline, nearly tasteless; nearly insoluble in cold water; colored dark yellow by ferric salts, and with dilute acids yields isodulcit, $\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}_{6}$, and yellow quercetin, $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{O}_{11}$ (with alcoholic ferric chloride dark green, on boiling deep red).

RUBUS.-Blackberry Bark.
Origin. - Rúbus villósus, Aiton; Rúbus canadénsis, Linné; and Rúbus triviális, Michaux. Natural order, Rosaceæ, Rubeæ.

Habitat.-North America, in fields and thickets; the last-named species is confined to the Southern States, westward to Texas.

Description.-The bark of the root is collected. Thin, tough, flexible bands, outer surface blackish or blackishgray, inner surface pale brownish, sometimes with strips of

Rubus villosus.-Transverse section of bark, magnified 15 diam.
whitish tasteless wood adhering, fracture rather tough and fibrous, the bast fibres in transversely elongated groups, forming rather broad wedges ; inodorous, strongly astringent, somewhat bitter.

Constituents.-Tannin 10-13 per cent., gallic acid 0.4 per cent., villosin 0.8 per cent., ash 3 per cent., etc. Villosin is a bitter crystalline glucoside, soluble in alcohol, sparingly soluble in water and benzin, insoluble in ether or chloroform ; it readily yields villosic acid, which is soluble in alcohol, ether, and chloroform. Both yield with $\mathrm{H}_{2} \mathrm{SO}_{4}$ and little water deep blue or violet color ; with $\mathrm{H}_{2} \mathrm{SO}_{4}$ and little HNO_{3} blood-red color disappearing by water (G. A. Krauss, 1889, 1890).

Properties.-Astringent, tonic. Dose, 2 to 8 grams (5ssij), in decoction, syrup, or fluid extract.

GRANATI RADICIS CORTEX.-Bark of

Pomegranate Root.
Origin.-Púnica Granátum, Linné. Natural order, Lythrarieæ, Lythreæ.

Habitat. - India and Southwestern Asia; cultivated and naturalized in subtropical coun. tries.

Description.-The bark of the root is directed by the U. S., Brit. and French Pharmacopeias. In thin quills or fragments, 5 to 10 centimeters (2 to 4 inches) long, little over 1 millimeter ($\frac{1}{25}$

Fig. 119.

Granati cortex.-Transverse section, magnified 10 diam.
inch) thick; outer surface brown or brown-gray, somewhat warty or longitudinally and reticulately ridged, the larger pieces with conchoidal scales of cork; inner surface smooth, finely striate, grayish-yellow; fracture short,

Magnified 40 diam. granular, brownish-yellow, indistinctly radiate in the liber, which contains scattered stone cells and numerous trans-
versely and axially packed cells with crystals of calcium oxalate; inodorous, scarcely bitter, astringent.

The bark of the stem is admitted with the root-bark by the German Pharmacopeia ; it is similar to the preceding, externally more gray, with longitudinal ridges and with scattered dots or patches of dark-colored lichens ; the fracture greenish-yellow, and the bast layer more distinctly radiate ; it is said to be equal to the root-bark.

Constituents.-Punico-tannic acid, $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{O}_{13}$, about 20 per cent., mannit, sugar, gum, pectin, pelletierine, $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{NO}$ (colorless oily aromatic alkaloid, soluble in water, alcohol, ether, and chloroform; resinifies on exposure ; the salts crystalline), and three allied alkaloids; ash 14 to 16 per cent. The bark from stem and branches contains from 0.35 to 061 per cent. of alkaloids, and the root-bark from 1.01 to 1.32 per cent. (Stoeder, 1888.)

Properties.-Anthelmintic, trenifuge. Dose, 8 to 16 grams ($\mathrm{z}_{\mathrm{ij}} \mathrm{iv}$-iv), in decoction.

Adulterations.-The barks of Bérberis vulgáris, Lin. (see page 185) and Búxus sempervírens, Linné, are bitter, not astringent, and yield infusions which are not colored blue-black by ferric salts.

FRAXINUS.-White Ash.

Origin.-Fráxinus americána, Linné (Fr. álba, Marsh). Natural order, Oleaceæ, Fraxineæ.

Habitat.-North America.
Deseription.-The bark of the root is preferred. Quills or curved pieces about 5 millimeters ($\frac{1}{6}$ inch) thick; cork warty, ash-gray, often removed; whitish or yellowish; inner surface smooth; fracture coarsely fibrous, splintery; odor faintly aromatic, taste bitter, slightly acrid.

Constituents.-Volatile oil, resin, starch, sugar, glucoside (fluorescent with alkalies), crystalline principle, bitter principle, ash 5 to 6 per cent.

Properties.-Diuretic, emmenagogue. Dose, 1 gram (gr. $\mathrm{xv})$.

SIMARUBA.-Simaruba.

Origin.-1. Simarúba officinális, De Candolle; and, 2. S. medicinális, Endlicher. Natural order, Simarubeæ.

Habitat.-1. Guiana to Northern Brazil. 2. West Indies.
Description.-The bark of the root is usually collected. Flattish, curved or quilled pieces, often 0.5 to 1 meter (20-40 inches) long, and about 3 millimeters ($\frac{1}{8}$ inch) thick; periderm yellowish or brownish, often partly or wholly removed ; then

Simaruba.-Transverse section, magnified 3 diam.
gray-brown ; inner surface light brown, striate ; bast coarsely fibrous, tough, flexible, difficult to break; bast rays wavy and oblique; inodorous; taste very bitter. No. 2 is light yellowish-brown, the inner surface finely striate.

Constituents.-Probably quassin or picrasmin, some resin, trace of volatile oil, etc.

Properties.-Tonic, febrifuge. Dose, 0.5 to 2 grams (gr. viij-xxx), in infusion or decoction.

QUASSIE CORTEX.-Quassia Bark.

Origin. - Picre'na (Quássia, Svartz) excélsa, Lindley. Natural order, Simarubee.

Habitat.-Jamaica.
Description.-Flat or curved pieces, about 5 millimeters ($\frac{1}{5}$ inch) or more thick; outer surface black-gray, longitudinally furrowed and verrucose; inner surface whitish, smooth; bast rays somewhat wavy; fracture in inner layer tough; inodorous, taste very bitter.

The bark of Quássia amára, Linné, or Surinam quassia, is about 1 millimeter ($\frac{1}{25}$ inch) thick; externally gray, smoothish; inner surface whitish, smooth; very brittle; fracture smooth.

Constituents.-Picrasmin, alkaloid (?), trace of volatile oil, etc. The bark of Surinam quassia contains quassin.

Properties.-Tonic, febrifuge. Dose, 0.5 to 2 grams (gr. viij-xxx), in infusion.

CONDURANGO.-Condurango.

Origin.-Gonólobus Condurángo, Triana. Natural order, Asclepiadaceæ, Gonolober.

Habitat.-Eeuador.
Description.-Quills or curved pieces about 5 to 10 centimeters (2-4 inches) long; bark about 2 to 6 millimeters ($\frac{1}{12}$ $\frac{1}{4}$ inch) thick, externally brownish or brown-gray, wrinkled and warty ; inner surface pale brownish and striate; fracture granular, slightly fibrous, brownish, with scattered latex tubes and brownish yellow groups of stone cells in the wavy bast wedges; the parenchyme contains starch and raphides; nearly inodorous; taste slightly bitter and somewhat acrid. The infusion, prepared with cold water, becomes turbid on heating, but clear again on cooling.

Constituents.-Tannin, a peculiar glucoside (less soluble in hot than in cold water), alkaloid (trace; resembling strychnine in action), resin, starch, gum, etc., ash about 12 per cent.

Properties.-Used in cancer and rheumatism ; tonic. Dose, 2 grams (gr. xxx).

FRangula.-Frangula.

Origin.-Rhámnus Frángula, Linné. Natural order, Rhamneæ.

Habitat.-Europe and Northern Asia.
Description.-Quilled, about 1 to 1.5 millimeters ($\frac{1}{25}-$ $\frac{1}{16}$ inch) thick; outer surface gray-brown or blackishbrown, with numerous small whitish transversely elongated suberous warts; inner surface smooth, pale brownish-yellow ; fracture in the outer layer short, of a purplish tint ; in the inner layer fibrous and pale yellow; bast bundles in tangential groups, accompanied by axial rows of cells containing crystals; nearly inodorous; taste mucilaginous,
sweetish, and bitter. On mastication it colors the saliva yellow. Immersed in diluted alkali solution, its inner surface is colored red. The reddish infusion is colored dark brown by ferric chloride. The bark should not be used sooner than a year after it has been collected.

Fig. 122.

Frangula.-Transverse section, magnified 10 diam.
Constituents.-Frangulin or rhamnoxanthin, $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{9}$, or $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{10}$, about 0.04 per cent. (yellow glucoside, tasteless, sublimable, purple by alkalies ; yields yellow needles of frangulic acid or isoemodin), emodin, $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{O}_{5}$, about 0.1

Fig. 123.

per cent. (reddish), isoemodin, $\mathrm{C}_{15} \mathrm{H}_{8} \mathrm{O}_{4}$ (bitter and laxative), resin, tannin, ash 5-6 per cent. Fresh frangula bark contains neither frangulin nor emodin.

Properties.-When fresh, emetic ; when old, tonic, purgative, diuretic. Dose, 2 to 8 grams ($\mathbf{3 s s}_{\mathrm{ss}-\mathrm{ij}}$), in decoction.

RHAMNUS PURSHIANA.-('ascara Sagrada, Chittem Bark.

Origin - Rhámnus Purshiána, De Candolle. Natural order, Rhamneæ.

Habitat.-Northern Idaho, and westward to the Pacific coast.

Description.-Curved or quilled, usually about 10 centimeters (4 inches) long, 1 or 2 to 4 millimeters ($\frac{1}{25}-\frac{1}{12}-\frac{1}{6}$ inch) thick; periderm brownish-gray and whitish, with numerous rather broad pale-colored corky warts, and often with patches of lichens, otherwise smooth; underneath brown or reddish-brown ; inner surface yellowish or brownish, smooth or finely striate; fracture short, yellowish, in the inner layer of the thick pieces somewhat fibrous ; medullary rays narrow ; bast bundles in tangential groups ; stone cells in the outer bark in clusters; inodorous, taste bitter.

Rhámnus califórnica, Eschscholtz, from central California southward, is locally also known as cascara sagrada. The bark resembles the preceding, but is rather thinner, the color somewhat reddish dull-gray, the corky warts less numerous and disappearing rather early, the bast rays somewhat broader with the bast bundles sometimes in pairs, and the inner surface distinctly striate from the depressed medullary rays.

Both these barks when masticated color the saliva yellow and resemble also frangula bark in their behavior to alkali and ferric chloride.

Constituents.-Tannin, white sublimable principle, yellow crystalline principle (resembling frangulin, but probably not identical with it), and three resins (one is colored brown by potassa, another purple by the same reagent, and the
third red-brown by sulphuric acid). The composition probably changes on keeping; 0.05 per cent. emodin was found in bark about a year old (Schwabe, 1888).

Properties.-Tonic, febrifuge, purgative. Dose, 1 to 4 grams (gr. $\mathrm{xv}-3 \mathrm{j}$), in decoction, tincture, or fluid extract.

PISCIDIA.-Jamaica Dogwood.

Origin. - Piscídia Erythrína, Jacquin. Natural order, Leguminosæ, Papilionaceæ, Dalbergieæ.

Habitat.-West Indies.
Description.-In quills or curved pieces, 5 to 15 centimeters (2-6 inches) long, about 4 or sometimes 6 millimeters ($\frac{1}{6}$ or $\frac{1}{4}$ inch) thick, externally orange-brown or dark gray-brown, with thin longitudinal and transverse ridges, roughish wrinkled, somewhat fissured; inner surface brownish, smooth or fibrous; fracture tough, fibrous, with blue green or brownishgreen patches ; bast fibres in tangentially elongated bundles, arranged in radial rows, attached to cells containing crystals of calcium oxalate and imbedded in parenchyme; odor narcotic, opium-like; taste bitter, somewhat acrid.

Constituents.-Resin, fat, piscidin (crystallizable, insoluble in water, slightly soluble in cold alcohol, soluble in chloroform and benzol), and a bitter glucoside soluble in water.

Properties.-Sudorific, soporific. Dose, 1 to 3 grams (gr. $\mathrm{xy}-\mathrm{xlv}$).

JUGLANS.-Butternut.

Origin.-Júglans cinérea, Linné. Natural order, Juglandeæ.

Habitat.-North America.
Deseription.-The inner bark of the root is collected in autumn. Flat or curved pieces, 3 to 6 millimeters ($\frac{1}{8}$ to $\frac{1}{4}$ inch) thick, outer surface nearly free from soft cork, deep brown ; inner surface smooth and striate; transverse fracture short, delicately checkered from whitish parenchyme and transverse groups of brown bast fibres; odor feeble ; taste bitter, somewhat acrid.

Constituents.-Nucin (juglandic acid, juglone), $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{O}_{8}$ (orange-yellow needles, acrid, purple by alkalies, volatile with water vapors, decomposed by long boiling), fixed oil 14 per cent., trace of volatile oil and tannin.

Properties.-Cathartic, tonic. Dose, 4 to 8 grams ($5 \mathrm{j}-\mathrm{ij}$), in infusion or extract.

QUEBRACHO.-Quebracho.

Quebracho blanco.
Origin.-Aspidospérma Quebrácho, Schlechtendal. Natural order, A pocynaceæ, Plumeriex.

Habitat.-Argentine Republic.
Description.-Nearly flat pieces, 1 to 3 centimeters ($\frac{2}{5}-1 \frac{1}{5}$ inches) thick; cork deeply fissured, gray or yellowish-gray and internally reddish-brown; inner surface yellowish or brown and striate; hard, fracture granular in the outer layer, showing wavy strata of cork and parenchyme, and short splintery in the yellowish or brown bast layer; the parenchyme with numerous whitish groups of stone cells; the bast fibres dark colored, scattered, and accompanied by axial rows of stone cells; medullary rays in about three rows of cells; small starch grains in the parenchyme; nearly inodorous; taste very bitter, slightly aromatic.

Constituents.-Six alkaloids, viz., aspidospermine, quebrachine, quebrachamine, aspidospermatine, aspidosamine, and hydroquebrachine, the two last amorphous; a peculiar sugar, quebrachit ; tannin 3-4 per cent.

Properties.-Tonic, antispasmodic in asthma, etc. Dose, 1 to 4 grams (gr. xv- zj).

Quebracho colorado (Loxoptery'gium Loréntzii, Grisebach. Natural order, Anacardiaceæ. Bark neatly checkered from tangential bands of dark-colored cork and groups of bast fibres, and from radial light-colored medullary rays. Wood, red-brown, contains 20 per cent. of tannin; also loxopterygine.

AZEDARACH.-Azedarach.

Origin. - Mélia Azédarach, Linné. Natural order, Meliaceæ, Melieæ.

Habitat.-China and India, cultivated in the Southern United States.

Description.-The bark of the root is collected. Curved pieces or quills of variable size and thickness, outer surface red-brown, with irregular blackish longitudinal ridges; inner surface whitish or brownish, longitudinally striate; fracture more or less fibrous; upon transverse section tangentially striate, with yellowish bast fibres; inodorous, sweetish, afterward bitter and nauseous.

If collected from old roots, the bark must be freed from the thick rust-brown, nearly tasteless corky layer.

Constituents.-Bitter yellowish-white resin, soluble in alcohol, ether, and chloroform; no tannin.

Properties.-Anthelmintic, emetic, poisonous. Dose, 1 to 4 grams (gr. xv-3j), in decoction.

XANTHOXYLUM.-Prickly Ash.

Origin.-Xanthóxylum (Zanthóxylum) fraxíneum, Willdenow (X. americánum, Miller) (Northern prickly ash), and X. caroliniánum, Lamarck (X. Cláva-Hérculis, Linné) (Southern prickly ash). Natural order, Rutacee, Xanthoxylee.

Habitat.-North America; the first species in rocky woods in the Northern and Central States; the second species not far from the coast, Southern Virginia to Eastern Texas.

Description.-Northern prickly ash is in curved or quilled fragments, about 1 millimeter ($\frac{1}{25}$ inch) thick, outer surface brown-gray with whitish patches and minute black dots, faintly furrowed, with some brown, glossy, straight, two-edged spines, linear at the base, and about 6 millimeters ($\frac{1}{4}$ inch) long; inner surface whitish, smooth; fracture short, non-fibrous, green in the outer and yellowish in the inner layer; inodorous, bitterish, very pungent. Southern prickly ash resembles this, but is nearly 2 millimeters ($\frac{1}{12}$
inch) thick, and is marked by many conical corky projections, sometimes 2 centimeters ($\frac{4}{5}$ inch) high, and by stout brown spines, rising from a corky base.

Prickly ash should not be confounded with the bark of Arália spinósa, Linné, which is nearly smooth externally, but the stembark beset with slender prickles in transverse rows.

Constituents.-Acrid green oil, resin (crystalline, white, tasteless, in alcoholic solution bitter; the principles from the two barks are similar in behavior, but not identical), soft resin (acrid), bitter principle (probably an alkaloid, brown and dark red with sulphuric acid), little tannin, sugar, ash 11 to 12 per cent.

Properties.-Sialagogue, stimulant, alterative, emmenagogue. Dose, 0.5 to 1 gram (gr. viij-xv), in powder or tincture; large doses in decoction.

> MYRICA.-Bayberry Bark.

Origin.-Myríca cerífera, Linné. Natural order, Myricaсеж.

Habitat.-North America.
Description.-Quills or curved pieces, about 1.5 millimeters $\frac{1}{16}$ inch) thick ; externally whitish or grayish, scaly ; underneath the thin suberous layer smooth, red-brown; inner surface red-brown, faintly striate; fracture reddish, granular, slightly fibrous; odor somewhat aromatic ; taste astringent, bitter, pungently acrid.

Constituents.-Acrid resin, myricinic acid (resembling saponin, acrid, frothing with water), little volatile oil, tannin, etc.

Properties.-Acrid stimulant, sialagogue, errhine. Dose, 0.3 to $0.6 \operatorname{gram}(\mathrm{gr}, \mathrm{v}-\mathrm{x})$.

ERYTHROPHLEUM.--SAssy Bark.

Origin.-Erythrophlœ'um guineénse, Don. Natural order, Leguminosæ, Cæsalpinieæ, Dimorphandreæ.

Habitat.-Western and Central Africa.
Description.-Flat or curved, about 5 millimeters ($\frac{1}{6}$ inch)
thick; externally warty, fissured, red-brown, hard; fracture coarsely granular and fibrous, inodorous, astringent, bitter, and acrid.

Constituents.-Erythrophleine (heart tonic, said to possess anæsthetic action), tannin, coloring matter.

Properties.-Astringent, diaphoretic, narcotic.

MEZEREUM.-Mezereon.

Origin.-Dáphne Mezéreum (Mezeréum), Linné, and other species of Daphne. Natural order, Thymelaceæ, Euthymelæеæ.

Habitat.-Europe, in mountainous regions, eastward to Siberia ; spontaneous in Canada and New England.

Description.-Long, thin bands, folded or rolled into disks; outer surface yellowish or brown-yellow, with transverse scars and minute blackish dots; underneath the thin

Fig. 124.

Mezereum.-Transverse section, magnified 15 diam.
cork is a thin parenchyme layer of light greenish color; inner surface whitish, silky; bast in irregular transverse layers, very tough ; inodorous, very acrid.

Dáphne Lauréola, Linné, and D. Gnídium, Linné, of Southern Europe, yield similar barks.

Constituents.-Soft acrid resin and oil; daphnin, $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{9}$ (bitter glucoside, insoluble in ether, soluble in alkalies with a yellow color, blue by ferric salts), the acrid principle has been named mezerein.

Properties.-Sialagogue, stimulant, diuretic, alterative ; externally vesicant. Dose, 0.1 to 0.4 gram (gr. jss-vj), mostly combined with other drugs.

GOSSYPII RADICIS CORTEX.-Bark of Cotton

 Root.Origin.-Gossy'pium herbáceum, Linné, and other species of Gossypium. Natural order, Malvaceæ, Malveæ.

Habitat.-Subtropical Asia and Africa, cultivated in the United States.

Description.-The bark of the root is collected. Thin, flexible bands or quilled pieces; outer surface brownishyellow, with slight longitudinal ridges or meshes, small black circular dots or short transverse lines, and, from the abrasion of the thin cork, with dull brownish-orange patches; inner surface whitish, of a silky lustre, finely striate; bast fibres long, tough, separable in papery layers; inodorous ; taste very slightly acrid and faintly astringent.

Constituents.-In the fresh bark a yellow chromogene, becoming red and resinous; yellow resin, fixed oil, little tannin, sugar, starch, etc.

Properties.-Emmenagogue, oxytocic. Dose, 2 to 4 grams (3 ss-j), in decoction or fluid extract.

> СОТО.-Сото Вавк.

Origin.-Unknown, possibly from natural order Laurineæ or Anacardiaceæ.

Habitat.-Bolivia.
Description.-Flat or curved, mostly deprived of cork, about 5 to 15 millimeters ($\frac{1}{5}-\frac{3}{5}$ inch) thick; outer surface cinnamon-brown, smooth; inner surface darker brown; fracture granular in the outer layer, tenacious and fibrous in the inner layer, with numerous yellow groups of stone cells and bast fibres; odor aromatic, cinnamon-like; taste pungent, slightly bitter.

Another coto (paracoto) bark, likewise from Bolivia, is usually about 10 to 20 millimeters ($\frac{2}{5}-\frac{4}{5}$ inch) thick ; sometimes with whitish fissured cork; odor fainter, nutmeg-like.

The bark of Drímys Wintéri, Forster, var. granaténsis,

Eichler, is said to have been offered as coto bark from Venezuela.

Constituents.-Cotoin, $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}_{6}$ (pale yellow, very acrid, soluble in alkalies, sparingly soluble in water), in coto bark. Paracotoin (pale yellow, tasteless) ; leucotin, hydrocotoin, etc., in paracoto bark. Both barks contain volatile oil, resin, and piperonylic acid, $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{O}_{4}$; no tannin.

Properties.-Useful in diarrhœa. Dose, 0.3 to 0.6 gram (gr. v-x), in powder or tincture. Dose, of cotoin 0.05 to 0.10 gram ($\frac{3}{4}-1 \frac{1}{2} \mathrm{gr}$), of paracotoin 0.1 to 0.2 gram (gr. jss-iij).

EUONYMUS.-W Аноо.

Origin.-Euónymus atropurpúreus, Jacquin. Natural order, Celastrineæ.

Habitat.-United States, southward to Florida, and westward to Wisconsin, in shady woods.

Description.-Quilled or curved pieces, about 2 millimeters ($\frac{1}{12}$ inch) thick; outer surface ash-gray with blackish ridges or patches, detached in thin and small scales; inner surface whitish or slightly tawny, smooth ; fracture smooth, whitish, the inner layers tangentially striate ; nearly inodorous ; taste sweetish, somewhat bitter, and acrid.

Constituents.-Euonymin (very bitter, amorphous, soluble in alcohol and water), atropurpurin (crystalline glucoside), bitter extractive, pungent principle, citric, tartaric, and malic acids, resins, fixed oil, free fat acid, wax, starch, pectin, ash 14 to 15 per cent. (Wenzell, 1862 ; Naylor and Chaplin, 1889). Commercial euonymin is usually the extract or powdered extract.

Properties.-Tonic, diuretic, laxative, antiperiodic. Dose, 2 to 4 grams ($3 \mathrm{ss}-\mathrm{j}$), in decoction or fluid extract.

QUILLAIA.-Quillaia. Soapbark.

Origin.-Quillaía (Quilláia) Saponária, Molina. Natural order, Rosaceæ, Quillajeæ.

Habitat.-Chili and Peru.

Description.-The bark is deprived of the brown periderm. Flat large pieces, about 5 millimeters ($\frac{1}{5}$ inch) thick, pale brownish-white, and smooth on both sides, or the outer surface with small patches of red-brown cork; tough; fracture splintery; transverse section checkered, with tangentially arranged pale brownish bast fibres, white bast parenchyme, and distinct white medullary rays about 5 cells in width; the tissue contains small starch grains and a large quantity of acicular crystals of calcium oxalate; inodorous, very acrid, sternutatory.

Constituents.-Saponin, about 9 per cent., a little starch, gum, salts, etc. This saponin is a mixture of the two glucosides quillaic acid, $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{10}$ (soluble in cold absolute alcohol, precipitated by lead acetates), and quillaia-sapotoxin, $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{10}$ (neutral, nearly insoluble in absolute alcohol, not precipitated by normal lead acetate) (Kobert, 1887).

Properties. - Stimulant, diuretic, irritant, detergent. Dose, 1 to 2 grams (gr. $\mathrm{xv}-\mathrm{xxx}$), in infusion.

ULMUS.-Slippery Elm.

Origin.-Úlmus fúlva, Michaux. Natural order, Urtiсасеæ, Ulmeæ.

Habitat. - North America, west to Louisia:a and Nebraska, in woods.

Description.-The bark is deprived of the brown periderm. Flat pieces varying in length and width, about 3 millimeters ($\frac{1}{8}$ inch) thick, tough, pale brownish-white, the inner surface finely ridged; fracture fibrous and mealy, the transverse section delicately checkered; odor slight, fenugreek-like, taste mucilaginous, insipid.

European Elm bark from Úlmus campéstris, Linné, and
U. effúsa, Willdenow, is cinnamon-colored, nearly inodorous, and of a mucilaginous, bitterish, and astringent taste.

Constituents.-Mucilage ; in European Elm bark also a little tannin and bitter principle. Ground elm bark is sometimes adulterated with corn meal and other starchy materials.

Properties.-Demulcent, emollient. Dose, 8 grams (3ij) or more, mostly used externally.

CINNAMOMUM.-Cinnamon. Ceylon Cinnamon.
Origin.-Cinnamómum zeylánicum, Breyne. Natural order, Laurineæ, Perseaceæ.

Habitat.-Ceylon ; cultivated.
Deseription.-The outer bark has been removed by scraping. In long closely rolled quills, composed of 8 or more layers of bark of the thickness of paper ; pale yellowishbrown ; outer surface smooth, formed by a layer of stone cells, and marked with wavy lines of bast bundles; inner surface scarcely striate ; fracture short-splintery ; the parenchyme contains starch and reddish-brown coloring matter, scattered oil cells and larger cells with mucilage; odor fragrant ; taste sweet and warmly aromatic.

CINNAMOMUM CASSIA.-Cinnamon Cassia.

Chinese Cinnamon.
Origin.-Cinnamómum Cássia, Blume, and other species of Cinnamomum. Natural order, Laurineæ, Perseaceæ. Habitat.-China.
Description.-Nearly deprived of the corky layer, 1 millimeter ($\frac{1}{25}$ inch) or more in thickness; yellowishbrown ; more or less quilled; fracture nearly smooth ; odor and taste analogous to those of cinnamon, but less delicate.

The tissue resembles that of Ceylon cinnamon, but has the stone cells in irregular groups, and contains fewer bastfibres and more mucilage cells.

Fig. 125.

Cinnamon.-a, b, c. From China. d, e. From Ceylon.
Cassia lignea is either Chinese cinnamon, or a thicker, less fragrant, and more mucilaginous bark.

Saigon cinnamon from China is quilled, unscraped, sweet and fragrant.

Constituents.-Volatile oil ($\frac{1}{2}$ to $1 \frac{1}{2}$ per cent.), tannin, sugar, mannit, mucilage, ash about 2 to 5 per cent. Oil of cinnamon has the spec. grav. $1.035-1.055$ or 1.065 , is
readily soluble in alcohol, and consists of a hydrocarbon, cinnamyl acetate, and of cinnamic aldehyd, $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}$ (75 to 90 per cent.), which oxidizes to cinnamic acid, $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{2}$. The oil of Ceylon cinnamon is most fragrant.

Properties.-Carminative, stimulant, astringent. Dose, 0.5 to 2 grams (gr. viij-xxx), in powder, tincture, or infusion.

SASSAFRAS.-SASsafras.

Origin.-Sássafras officinále, Nees. Natural order, Laurineæ, Litseaceæ.

Habitat.-North America, from Eastern Texas and Kansas eastward to Florida and Ontario ; in woods.

Deseription.-The bark of the root is collected and deprived of the gray corky layer ; irregular fragments, about 3 millimeters ($\frac{1}{8}$ inch) thick, bright rust-brown, soft, brittle, with a short corky fracture showing numerous oil cells, several suberous bands, and in the inner layer lighter colored medullary rays and few bast fibres; strongly fragrant, sweetish, aromatic, somewhat astringent.

Constituents.-Volatile oil (about 5 per cent.), tannin, sassafrid, starch, gum, resin, wax. Oil of sassafras has the spec. grav. 1.090, dissolves readily in alcohol, and yields with nitric acid a dark red resin-it consists of safrene, $\mathrm{C}_{10} \mathrm{H}_{16}$, and safrol, $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{2}$; the latter melts at 8.5° C. (47.3° F.).

Properties.-Stimulant, diaphoretic, alterative. Dose, 2 to 4 grams (3 ss-j), in infusion ; mostly used as a flavor.

CANELLA.-Canella.

Origin.-Canélla álba, Murray. Natural order, Canellaсеæ.

Habitat.-West Indies.
Description.-In quills or broken pieces about 3 millimeters ($\frac{1}{8}$ inch) thick ; almost completely deprived of the gray suber-
ous layer; external surface pale orange-red, with transversely elongated cark scars and shallow whitish depressions; inner surface white, finely striate; fracture short, granular, white, with numerous orange-yellow resin cells, and in the inner layer brownish ; odor cinnamon-like; taste bitterish, biting.

Constituents.-Volatile oil 1 per cent. (contains eugenol), resin, bitter principle, mannit about 8 per cent., mucilage, starch, albumin ; free from tannin.

Properties.-Tonic, stimulant. Dose, 0.5 to 2 grams (gr. viij-xxx), in powder and as an addition to tinctures.

Cinnamodendron.-False Winter's Bark.

Origin.-Cinnamodéndron corticósum, Miers. Natural order, Canellaceæ.

Habitat.-Jamaica.
Description.-Curved or quilled, about 3 millimeters (b) inch) thick; deprived of the dark brown corky layer; outer surface smooth, light brown, with red-brown, roundish or transversely elongated scars; inner surface pale brown, finely striate; fracture short, granular, whitish and brownish, with numerous dark brown resin cells, and in the inner layer brown ; odor cinnamon-like; taste bitterish, biting.

Constituents.-Probably like Canella.
Properties and Uses.-Like Canella.

WINTERA.-Winter's Bark.

Origin.-Drímys Wintéri, Forster. Natural order, Magnoliaceæ, Wintereæ.

Habitat.-Western part of South America.
Description.-Quilled or curved, 2 to 8 millimeters ($\frac{1}{12}$ to $\frac{1}{3}$ inch) thick; outer surface gray and smooth, or rust-brown, and wrinkled; inner surface brown, coarsely striate or ridged; fracture granular, brown, with whitish groups of stone cells and yellow resin cells; odor peculiar, aromatic; taste very pungent, astringent.

Constituents.-Volatile oil (containing winterene, $\mathrm{C}_{15} \mathrm{H}_{24}$), tannin, pungent resin, starch.

Properties.-Tonic, stimulant, antiscorbutic. Dose, 0.5 to 2 grams (gr. viij-xxx), in powder or tincture.

ANGUSTURA.-Angustura.

Origin.-Galipéa Cuspária, St. Hilaire (Gal. officinális, Hancock; Cuspária trifoliáta, Engler). Natural order, Rutaсеж, Cusparieæ.

Habitat.-Northern South America.
Deseription.-Flat, curved, or quilled, 2 to 3 millimeters ($\frac{1}{12}$ to $\frac{\frac{1}{8}}{8}$ inch) thick; periderm ochrey-gray, friable, often partly or wholly absent, and the outer surface then reddishbrown ; inner surface light cinnamon-brown, smooth; fracture smooth, resinous, reddish-brown, with scattered darker oil-cells and glistening white striæ (crystals of calcium oxalate); odor aromatic ; taste aromatic, very bitter.

Fig. 126.

Angustura bark, about one-half natural size.

Fig 127.

Constituents.-Volatile oil $\frac{1}{2}$ to $1 \frac{1}{2}$ per cent., angusturin, four alkaloids, a glucoside, resins, gum, ash 8 per cent. Angusturin has a bitter taste, is insoluble in ether, soluble in alcohol and water, precipitated by tannin. A fluorescent glucoside is insoluble in ether and alcohol. The four alkaloids are white and crystallize from petroleum benzin; the salts of galipine and galipidine are yellow or yellowish, those of cusparidine and cusparine white, and the latter sparingly soluble in water (Beckurts and Nehring, 1891).

Properties.-Stimulant, tonic, febrifuge. Dose, 0.5 to 2 grams (gr. viij-xxx), in powder, infusion, or tincture.

Substitutions.-Esenbéckia febrífuga, Martius (Rutaceæ), so-called Brazilian angustura. Bark externally brown-gray or with light rust brown patches, internally dark brown;
fracture short fibrous; taste bitter, not aromatic. Contains evodine or esenbeckine (yellowish-green by $\mathrm{H}_{2} \mathrm{SO}_{4}$).

Stry'chnos Nux vómica, Linné, (Loganiaceæ), so called false angustura bark. Externally gray with whitish warts and bright rust colored patches; inner surface brown; fracture granular, smooth, of a brown color, showing one or occasionally two yellowish tangential layers of stone cells, but no short white striæ; taste strongly bitter, not aromatic. Contains strychnine and brucine.

CASCARILLA.-Cascarilla.

Origin.-Cróton Elutéria, Bennelt. Natural order, Euphorbiaceæ, Crotoneæ.

Habitat.-Bahama Islands.
Description.-In broken quills or curved pieces, rarely 10 centimeters (4 inches) long, about 2 millimeters ($\frac{1}{12}$ inch) thick, having a grayish, somewhat fissured, easily detached corky layer, with chalky white patches of a thin lichen and black dots; the remaining tissue dull brown, and the inner surface smooth; fracture short, resinous, radially striate; the parenchyme contains starch, and in

Fig. 128.

Cascarilla; quill.

Fig. 129.

Cascarilla.-Transverse section, magnified 5 diam.
scattered cells either oil, brown coloring-matter, or crystals; bast fibres few; when burned emits a strong aromatic somewhat musk-like odor ; taste warm and very bitter.

Constituents.-Volatile oil 1.5 per cent., cascarillin (bitter needles, soluble in alcohol, ether, and hot water), resin 15 per cent., little tannin, pectin, gum, starch.

Properties.-Stimulant, tonic, febrifuge, in large doses nauseating. Dose, 1 to 2 grams (gr. $\mathrm{xv}-\mathrm{xxx}$), in infusion or tincture.

Allied Drugs.-Copalchi bark, from Cróton Pseudochína, Schlechtendal, Mexico. Large quills; periderm whitish or gray, not fissured; inner surface cinnamonbrown, smooth; fracture granular, in inner layer finely fibrous; odor and taste similar to Cascarilla.

Malambo bark, from Cróton Malámbo, Karsten, Venezuela. Large quills, resembling the preceding, the thin cork warty, longitudinally fissured, and easily removed; fracture in inner layer coarsely fibrous.

Other barks from different species of Croton are not unfrequently sold for Copalchi and Malambo bark.

6. LEAVES AND LEAFLETS.-FOLIA ET FOLIOLA.

Leaves grow laterally from the stem, and are attached thereto either by the blade, in which case they are sessile, or they are petiolate, raised upon a foot-stalk. A leaf is called simple if it has only one blade, and compound if it has two or more distinct blades on a common leaf-stalk. The separate blades of compound leaves are termed leaflets, and, if they are articulated with the common leafstalk, they are, after collection and drying, usually detached from the latter, and cannot then be distinguished from simple leaves. The veins of a leaf may run parallel from the base to the apex, or from the mid-rib to the margin ; or they may branch and divide in various ways and anastomose, forming a network. Parallel-veined leaves are met with in most monocotyledonous plants, while the dico-
tyledons have only netted-veined leaves, with the exception of the so-called phyllodia, which are foliaceous petioles. Most leaves are more or less hairy, at least while young; in fully matured leaves, which are otherwise smooth, hairs sometimes remain on the lower surface, and particularly along the veins. Hairs may consist of a single or of several cells; sometimes they terminate in oil-bearing glands, as in the leaves of the labiate. The hairy covering modifies, to some extent, the green color of the surface. The color of the upper surface is, as a rule, darker green, owing to the compact nature of the tissue on that side. Occasionally the surface of leaves becomes coated with a wax-like exudation. Deciduous leaves, which last only for a single season, are rarely leathery; but sempervirent leaves, lasting for more than one season, are generally of a leathery texture. All the officinal leaves are derived from dicotyledons.

Histology.-The petiole or foot-stalk consists mainly of fibrovascular tissue, which, on entering the blade, branches so as to form the ribs and veins or framework of the leaf, the spaces between which are filled with parenchyme (mesophyll). Under the epidermis of the upper side of expanded leaves is found a layer consisting of one or more rows of vertically elongated, compacted parenchyme cells (palisade cells). A few of the officinal leaves, like senna, have also a small palisade layer beneath the epidermis of the lower surface, and in the falcate eucalyptus leaves nearly the entire mesophyll consists of palisade cells. The parenchyme between this layer and the lower surface is loosely arranged, leaving irregular air-spaces between the horizontally elongated cells. The parenchyme contains the chlorophyll, likewise the oil-glands, if present, which usually give the leaves a pellucid-punctate appearance ; and in the same tissue originates the suberous growth which
appears upon certain leaves in the form of circular or roundish disks. On the lower surface, and in some leaves also on the upper surface, are found the stomata or breath-ing-pores.

Classification.

I. Margin entire.

1. Aromatic and glandular ; all coriaceous except Thymus.
Linear, revolute, woolly beneath, green above. Rosmarinus.
Linear, revolute, pubescent beneath, grayishgreen. Thymus.
Broad oval, obtuse, rough on both sides.
Oval-oblong, retuse, uneven at base.
Lance-oblong, acute at both ends.
Falcate-lanceolate, pointed, uneven at base.
Oval-lanceolate or elliptic, smooth, delicately wrinkled.
Elliptic, smooth, reticulate above.
Oval-oblong, smooth, petiole winged.
Boldus.
Pilocarpus.
Laurus.
Eucalyptus.

Not aromatic or glandular ; coriaceous.
Linear-lanceolate, somewhat revolute, smooth. Oleander.
Elliptic-oblong, revolute, rusty-woolly beneath, aromatic when bruised.
Obovate, somewhat revolute, smooth.
Ovate-oblong, rather acute, pale green.
Roundish cordate, bristly.
Elliptic, acute at both ends, smooth.
Ledum.
Uva ursi.
Arctostaphylos glauca.
Epigra.
Kalmia.
3. Not aromatic or coriaceous.

Obovate, mucronulate, uneven at base, nearly smooth.
Lance-oval, acute, uneven at base, nearly smooth.
Senna (baladi).
Senna alexandrina.
Lanceolate, acute, uneven at base, nearly smooth.
Ovate-oblong, obtuse, uneven at base, nearly smooth.
Lance-oblong, pointed, sometimes with a few teeth or three-lobed.

Sesamum.
Obovate-oblong, acute at base, near the mid-rib with two folds.

Erythroxylon.

> Ovate-oblong, acute, papery and smooth, upper side mostly brownish.
> Oval-lanceolate, acute below, smooth.
> Ovate-lanceolate, acute, papery, hairy, brown on both sides.
> Belladonna.
> Duboisia.
> Tabacum.
II. Margin toothed or crenate.

1. Not coriaceous.

Ovate, uneven at base, angular-toothed, papery, smooth.
Ovate-oblong, gray-green, hairy, the teeth large and triangular.
Ovate, obtuse, crenate, beneath with white reticulations.
Lanceolate, finely crenulate, beneath with brown reticulations.
Ovate-oblong, finely crenulate, gray-green, soft hairy beneath.
Oval-obovate, obliquely heart-shaped, wavy toothed.
Oval, acute at both ends, irregularly toothed, smooth.
Lance-oblong, rather obtuse ; teeth distant.
Obovate or lance-obovate, rather obtuse; teeth few.
Oblong-lanceolate, acuminate, sinuate serrate, smooth, feather-veined.
Lanceolate, pointed, closely serrate, smooth.
Lance-oblong, with few teeth, mostly entire (see above).
Roundish heart-shaped, angular, white tomentose beneath.
2. Coriaceous.

Oval, spiny-wavy toothed.
Oblanceolate, sharply serrate above, green, and smooth.
Lanceolate, serrate, on upper surface a whitish spot.
Roundish oval, mucronate, with appressed teeth, smooth.
Oblong, serrate, with depressed glands near basé of mid-rib.

Salvia.
Hamamelis.
Thea.
Mex para-
guayensis.
Turnera.
Castanea.
Persica.
Sesamum.
Stramonium.
Hyoscyamus.
Digitalis.
Matico.

Tussilago.

Ilex opaca.
Chimaphila.
Chimaphila maculata.

Gaultheria.
Laurocerasus.

> Oval, obovate, or roundish, crenate or serrate, gland in each sinus. Buchu (short).
> Linear-lanceolate, rather thin, glandular like preceding.

> Buchu (long).
> Elliptic-lanceolate, dentate, varnished above,
white and reticulate beneath.
III. Margin lobed; subcoriaceous.

Linear-lanceolate, lobes alternate, roundish. Comptonia.
Kidney-shaped, three-lobed, lobes entire.
Suborbicular, the divisions linear-lanceolate and furrowed above.

Hepatica.
Aconitum.
IV. Leaves ternate.

Leaflets sessile, obovate oblong, slightly crenate. Menyanthes.
Lateral leaflets sessile, obliquely ovate; all entire or notched.

Toxicodendron.

V. Leaves bi- or tri-pinnate.

Pinæn subcoriaceous, spatulate, nearly entire, pellucid-punctate.

Ruta.
Pinnæ thin, oblong-lanceolate, pointedly toothed. Conium.

ROSMARINUS.-Rosemary.
Origin. - Rosmarínus officinális, Linné. Natural order, Labiatæ, Monardes.

Habitat.-Basin of the Mediterranean ; cultivated.

Description.-Rigid, linear, about 25 millimeters (1 inch) long, entire, revolute, dark green above, woolly and glandular and with a prominent midrib beneath; pungently aromatic, somewhat camphoraceous, and bitter.

Constituents.-Volatile oil about 1 per cent., resin, tannin, bitter principle. The volatile oil is yellowish, spec. grav. 0.90 , readily soluble in

Fig. 130.

Rosmarinus officinalis, Linné.-Branch and flower.
alcohol, contains the hydrocarbon cineol, $\mathrm{C}_{10} \mathrm{H}_{16}$, and the compounds, $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}$ and $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}$.

Properties.-Carminative, stimulant, diuretic, emmenagogue, diaphoretic. Dose, 0.2 to 1 gram (gr. iij-xv), in infusion.

Thymus.-Garden Thyme.

Origin.-Thy'mus vulgáris, Linné. Natural order, Labiatæ, Satureineæ.

Habitat.-Southern Europe; cultivated.
Description.-Linear or narrow oblong, 5 to 10 millimeters $\left(\frac{1}{5}-\frac{2}{5}\right.$ inch) long, revolute, grayish-green, glandular punctate on both sides, grayish pubescent beneath ; aromatic; taste spicy. The expanded leaves are ovate or lanceolate.

Constituents.-Volatile oil about $2 \frac{1}{2}$ per cent., spec. grav. 0.89 , readily soluble in alcohol, consists of cymene, $\mathrm{C}_{10} \mathrm{H}_{14}$, thymene, $\mathrm{C}_{10} \mathrm{H}_{16}$, and thymol, $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}$; the latter melts at 50° C. $\left(122^{\circ} \mathrm{F}\right.$. $)$, and liquefies in contact with camphor.

Properties.-Carminative, tonic,
 emmenagogue, antispasmodic. Dose, 2 to 4 grams (3 ss-j), in infusion. Thymol externally as an antiseptic.

BOLDUS.-Boldo.

Origin.-Peúmus Bóldus, Molina (Boldóa frágrans, Ruiz et Pavon). Natural order, Monimiaces.

Habitat.-Chili; cultivated.
Description.-Broadly oval or ovaloblong, about 5 centimeters (2 inches) long, obtuse, rough on both sides, glossy above, hairy beneath, often reddish-brown, fragrant; taste pungent, aromatic, somewhat bitter.

Constituents.-Volatile oil 2 per cent., boldine 0.1 per cent., glucoside 0.3 per cent. (soluble in alcohol and ether), aromatic resin, tannin, etc.

Properties.-Tonic, stimulant. Dose, 1 to 4 grams (gr. xv$\mathrm{j} j)$, in infusion or tincture.

PILOCARPUS.-Jaborandi.

Origin.-Pilocárpus pennatifólius, Lémaire. Natural order, Rutacex, Xanthoxylex.

Habitat.-Brazil, near Pernambuco.

Fig. 132.

Pilocarpus.-Leaflet, natural size.
Description.-Leaves pinnate, with 5 to 11 leaflets, the terminal one with a stalk about 25 millimeters (1 inch) long, and nearly equal at base ; the others short-stalked
and unequal at the base; oval or ovate-oblong, about 10 centimeters (4 inches) long, entire, and slightly revolute at the margin, near which the anastomosing veins form one or two distinct wavy lines ; obtuse and emarginate ; coriaceous, pellucid-punctate, mostly smooth; when bruised, slightly aromatic, somewhat pungent and bitter.

Constituents.-Volatile oil (chiefly pilocarpene, $\mathrm{C}_{10} \mathrm{H}_{16}$); pilocarpine, $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$, $\frac{1}{4}-\frac{1}{2}$ per cent., is the principal active constituent; it is crystalline, soluble in water, combines with alkalies, on heating, particularly with HCl , yields jaborine and pilocarpidine, its salts readily soluble in water and alcohol, the physiological action similar to that of nicotine. Jaborine, $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{4}$, is yellow, amorphous, soluble less in water and more in ether than pilocarpine ; resembles atropine in action. Pilocarpidine, $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$, is deliquescent ; the salts mostly amorphous; action weaker than pilocarpine; on oxidation in air yields syrupy jaboridine, which may be identical with jaborandine, $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}$, and resembles jaborine in its action.

Properties.-Sialagogue, diaphoretic. Dose, 1 to 2 grams (gr. $\mathrm{xv}-\mathrm{xxx}$), in powder or tincture ; pilocarpine 0.005 to 0.03 gram (gr. $\frac{1}{14}-\frac{1}{2}$).

Other Jaborandis.-Monniéria trifólia, Linné (Aublétia trifólia, Richard), and Xanthóxylum (Zanthóxylum) élegans, Engler, of the natural order Rutacea. Serrónia Jaborándi, Guillemin (contains jaborandine), Píper reticulátum, Linné, P. nodulósum, Link, P. citrifólium, Lamarck, and Artánthe Mollicóma, Miquel, of the natural order Piperaceæ.

LaURUS.-Laurel, Bay Leaves.

Origin.-Laúrus nóbilis, Linné. Natural order, Laurineæ, Litseaceæ.

Habitat.-Basin of the Mediterranean.
Description.-Oblong or lance-oblong, 5 to 10 centimeters
(2 to 4 inches) long, acute at both ends, or the apex rather obtuse, veined beneath, pellucid-punctate, brownish, smooth; aromatic, somewhat bitter.

Constituents.-Volatile oil, tannin, bitter principle.
Properties.-Stimulant, stomachic, astringent.

EUCALYPTUS.-Eucalyptus.

Origin.-Eucaly'ptus glóbulus, Labillardiére. Natural order, Myrtaceæ, Leptospermeæ.

Habitat.-Australia; cultivated in subtropical countries.
Description.-The leaves are collected from rather old trees. Petiolate, lanceolately scythe-shaped, 15 to 30 centimeters (6 to 12 inches) long, oblique and rounded or somewhat attenuated below, tapering above, entire, leathery,

Fig. 133.

Eucalyptus globulus, Labillardière.
gray-green, glandular, feather-veined between the midrib and marginal veins; odor strongly balsamic; taste pungently aromatic, somewhat bitter, and astringent.

The leaves of young shoots are broadly ovate, obtuse, cordate at base, pale bluish-green, thinner, and less aromatic.

Constituents.-Volatile oil 6 per cent., tannin, cerylic alcohol, crystallizable fatty acid, crystallizable resin. The volatile oil contains eucalyptene and dextro-pinene, $\mathrm{C}_{10} \mathrm{H}_{16}$, and cineol or eucalyptol, $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}$.

Properties.-Febrifuge, stimulant, astringent, antiseptic. Dose, 0.3 to 1 gram (gr. $v-x v$), in powder, infusion, tincture, or extract.

CHEKAN.-Cheren.
Origin.-Eugénia Chékan, Molina. Natural order, Myrtaсеæ, Myrteæ.

Habitat.-Chili.
Description.-Nearly sessile, oval-lanceolate or elliptic, about 25 millimeters (1 inch) long, somewhat revolute on the margin ; light green, smooth, delicately wrinkled, pellucidpunctate, aromatic. Usually accompanied by the muchbranched rough brown stems.

Cheken leaves.-Natural size.
Constituents.-Volatile oil 2 per cent., alkaloid, tannin 4 per cent., ash 9 per cent.

Properties.-Stimulant, diuretic, antiseptic. Dose, 2 to 4 grams ($58 s-\mathrm{j}$).

Myrcia.-Bay Leaves, Wild Clove Leaves.
Origin.-My'rcia ácris, De Candolle. Natural order, Myrtaсеæ, Myrteæ.

Habitat.-West Indies.
Description.-Elliptic or broadly oval, 5 to 10 centimeters (2 to 4 inches) long, obtuse, reticulate, smooth, pellucid-punctate, aromatic, and spicy.

Constituents.-Volatile oil ; it contains several hydrocarbons, eugenol, and little methyl-eugenol.

Properties.-Stimulant, tonic ; used for preparing the volatile oil and for bay rum.

aURANTII FOLIA. -Orange Leaves.

Origin.-Cítrus vulgáris, Risso. Natural order, Rutaceæ, Aurantiex.

Habitat.-Asia; cultivated in subtropical countries.
Description.-Oval- or ovate-oblong, 5 to 10 centimeters (2 to 4 inches) long, pointed, smooth, pellucid-punctate ; petiole articulate, with a broad obovate or obcordate wing ; aromatic, somewhat bitter.

The similar leaves of Cítrus Aurántium, Risso, have the petioles narrow-winged or nearly naked.

Constituents.-Volatile oil, bitter principle.
Properties.-Stimulant, tonic.

OLEANDER.-Oleander.

Origin.-Nérium Oleánder, Linné. Natural order, Apocynaceæ, Echiteæ.

Habitat.-Basin of the Mediterranean ; cultivated.
Description.-Nearly sessile, linear-lanceolate, 10 centimeters (4 inches) long, finely pointed, somewhat revolute, smooth, glossy above, feather-veined; inodorous, bitter, nauseous.

Constituents.-Oleandrine and pseudocurarine (two amorphous alkaloids, the former poisonous), neriantin (glucoside).

Properties.-Sedative, poisonous.

LEDUM.-Labrador Tea.

Origin.-Lédum latifolium, Aiton. Natural order, Ericaсеæ, Rhodorez.

Habitat.-Canada and Northern United States, west to Minnesota.

Description.-Elliptic oblong, about 3 centimeters ($1 \frac{1}{5}$ inches) long, revolute, rounded or cordate at base, rusty woolly beneath ; odor, when bruised, heavy ; taste astringent, bitter, somewhat pungent.

Lédum palústre, Linné, Marsh tea, grows in the northern continents, and is free from andromedotoxin ; leaves linear or lance-linear, otherwise like Ledum latifolium.

Constituents.-Tannin, volatile oil, ericolin, ericinol, resin, etc. (in L. palustre).

Properties.-Astringent, tonic, alterative, in lapge doses poisonous (probably due to andromedotoxin). Dose, 1 to 2 grams (gr. xv-xxx), in infusion.

UVA URSI.-Uva Ursi.

Origin.-Arctostáphylos U'va úrsi, Sprengel. Natural order, Ericaceæ, Arbuteæ.

Habitat.-Northern Hemisphere, in dry and sandy or rocky places; in the United States south to Pennsylvania, New Mexico, and California.

Description.-Nearly sessile, obovate or oblong-spatulate, about 2 centimeters ($\frac{4}{5}$ inch) long, obtuse, the apex frequently curved back, slightly revolute on the margin, smooth, glossy on the upper surface, paler and reticulate on the lower surface; odor faint hay-like ; taste strongly astringent, somewhat bitter.

Constituents.-Tannin 6-7 per cent., gallic acid, arbutin,
ericolin, ursone, ash about 3 per cent. Free from andromedotoxin. Arbutin, $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{7}$, bitter needles, soluble in alcohol and hot water, nearly insoluble in ether; blue with dilute ferric chloride ; in alkaline solution azure-blue with phosphomolybdic acid; yields glucose and arctuvin, or

Fig. 136.

Uva ursi leaves, natural size, showing upper and lower surface.
hydrokinone (excreted with the urine). Ericolin, $\mathrm{C}_{34} \mathrm{H}_{56} \mathrm{O}_{21}$, yellow, bitter, soluble in water and alcohol, yields glucose and ericinol (volatile oil). Ursone, $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}$, tasteless needles, sparingly soluble in alcohol and ether, insoluble in water.

Properties.-Astringent, tonic, diuretic, nephritic. Dose, 1 to 4 grams (gr. $\mathrm{xv}-3 \mathrm{j}$), in decoction or fluid extract.

arctostaphylos glauca.-Manzanita.

Origin.-Arctostáphylos glaúca, Lindley. Natural order, Ericaceæ, Arbuteæ.

Habitat.-Mountains of California.
Description.-Petiolate, ovate-oblong, about 5 centimeters (2 inches) long, usually acute above and obtuse at base, glaucously pale green; inodorous, astringent and somewhat bitter.

Constituents.-Arbutin, ursone, tannin 9-10 per cent., ash 6 per cent.

Properties and Uses.-Like uva ursi.

EPIGAA.-Trailing Arbutus, Gravel Plant.
Origin.-Epigæ'a répens, Linné. Natural order, Ericaceæ, Ericineæ.

Habitat.-North America, south to Florida, and west to Minnesota; in sandy woods.

Description.-Ovate or suborbicular, cordate, about 5 centimeters (2 inches) long, reticulate, bristly; inodorous; taste astringent and bitter.

Constituents.-Tannin 3-4 per cent., acid resembling gallic acid, arbutin, ericolin, ursone.

Properties and Uses.-Like uva ursi.

KALMIA.-Mountain Laurel.

Origin.-Kálmia latifólia, Linné. Natural order, Ericaсеæ, Rhodoreæ.

Habitat.-North America, south to Florida, and west to Tennessee; in damp or rocky woods.

Description.-Elliptic or lance-oval, 5 to 9 centimeters (2
to $3 \frac{1}{2}$ inches) long, acute at both ends, smooth and green on both sides; inodorous ; taste astringent, bitter.

Constituents. - Tannin, arbutin, resin, andromedotoxin, $\mathrm{C}_{31} \mathrm{H}_{51} \mathrm{O}_{10}$. The latter is a neutral compound, soluble in water, alcohol and chloroform, not precipitated by lead acetates or alkaloid reagents; colored red by warm dilute mineral acids. Properties.-Astringent, in large doses poisonous.

SENNA ALEXANDRINA.-Alexandria Senna.

Origin.-Cássia acutifólia, Delite. Natural order, Leguminosæ, Cæsalpineæ, Cassieæ.

Habitat.-Eastern and Central Africa.

Fig. 138.

Cassia acutifolia, Delile.-Legume and leaflet.

Description.-Leaves pinnate, with 8 or 10 leaflets, which are lanceolate or lance-oval, about 25 millimeters (1
inch) long, subcoriaceous, brittle, rather pointed, unequally oblique at the base, entire, grayish-green, nearly smooth; odor peculiar ; taste nauseous, bitter.

It should be free from stalks and legumes, but often contains argel leaves (from Solenostem'ma A'rgel, Hayne), which are thicker, one-veined, glaucous, even at the base, and short-hairy on both sides ; not laxative (Schroff). The poisonous three-nerved leaves of Coriária myrtifólia, Linné, have occasionally been mixed with senna; also the emarginate leaflets of Tephrósia Appolínea, De Candolle (Papilionaceæ, Galegeæ).

SENNA INDICA.-India Senna.

Origin.-Cássia elongáta, Lémaire-Lisancourt. Natural order, Leguminosæ, Cæsalpineæ, Cassieæ.

Habitat.-Eastern Africa to India; cultivated.

Fig. 142.

Cassia elongata, Lém.-a. Legume. b. Leaflet.
Description.-Leaves pinnate, with 8 to 16 leaflets, which are lanceolate, from 3 to 5 centimeters (1-2 inches) long, acute, unequally oblique at the base, entire, dull green, smooth, or slightly pubescent, of a peculiar odor, and a mucilaginous, bitter taste.

It should be free from stalks, discolored leaves, and other admixtures.

Varieties.-Commercial Alexandria senna sometimes consists of small leaflets of Cássia elongáta, more or less broken, and mixed with the leaflets of Cássia obováta, Fig. 143.

Cassia obovata, Colladon.-a. Legume. b. Leaflet.
Colladon, known as Senna baladi or wild senna ; these are obovate or obovate-oblong, mucronulate, rather longer than C. acutifólia, and are regarded as less efficacious.

Fig. 144.

Tripoli senna. Like Alexandria senna, leaflets more broken, free from argel leaves.

Tinnevelly senna, the cleanest variety of India senna, carefully dried and unbroken; from cultivated plants.

Bombay senna, an ordinary or inferior India senna, often mixed with discolored and small leaves.

Mecca senna, like the preceding, leaflets often brown, broken, and mixed with legumes.

Aden senna, from Cássia holoserícea, Fresenius (C. pubéscens, R. Brown, s. Sénna ovalifólia, Batka), indigenous to Abyssinia; leaflets 10 to 15 millimeters ($\frac{2}{5}-\frac{3}{5}$ inch) long, elliptic or oval-oblong, slightly retuse or mucronulate at apex and appressed-hairy upon both surfaces and on the margin. It is rarely seen in commerce.

Constituents.-Chrysophan, phæoretin, sennacrol (soluble in ether), sennapicrin (insoluble in ether), cathartic acid, sennit (cathartomannit), mucilage, ash $10-12$ per cent. Cathartic acid is amorphous, black, nearly insoluble in water and alcohol, its alkaline and earthy salts soluble in water, and insoluble in alcohol ; mineral acids split it into glucose and cathartogenic acid.

Properties.-Cathartic. Dose, 8 to 32 grams ($\mathbf{3} \mathrm{ij}-\tilde{J}_{\mathrm{j}}$), in infusion or fluid extract.

CASSIA MARILANDICA.-American Senna.

Origin.-Cássia marilándica, Linné. Natural order, Leguminosæ, Cæsalpineæ, Cassieæ.

Habitat.-United States, west to Louisiana and Nebraska; in low grounds.

Description.-Leaves pinnate, with 12 to 18 leaflets, which are ovate-oblong or elliptic, about 25 millimeters (1 inch) long, obtuse, uneven at base; odor and taste senna-like (but weaker), if collected in September and October.

Constituents.-Cathartic acid, probably chrysophan, sugars, mucilage, albuminoids, etc.; ash 7 per cent. Dose, 16 to 50 grams ($\tilde{亏}^{3 s}-\mathrm{jss}$), in infusion.

SESAMUM.-Benne.
Origin.-Sésamum índicum, Linné. Natural order, Pedalineæ, Sesameæ.

Habitat.-India; cultivated.
Description.-Petiolate, ovate-oblong or oblong-lanceolate, pointed, rounded or somewhat heart-shaped at the base, en-

Fig. 145.

Sesamum indicum, Linné.-a. Flowering branch. b. Section of seed.
tire, sometimes with a few teeth or two basal lobes, prominently veined, smoothish, mucilaginous. Used chiefly in the fresh state.

Constituents.-Mucilage.
Properties.-Demulcent; used in infusion in dysentery, etc.

ERYTHROXYLON.-Coca.

Origin.-Erythróxylon Cóca, Lamarck. Natural order, Lineæ, Erythroxyleæ.

Habitat.-Peru, Bolivia ; cultivated.

Description.-Ovate or obovate-oblong, 2 to 5, sometimes 10 centimeters ($\frac{3}{4}$ to 2 or 4 inches) long, short-petiolate, entire, rather obtuse or sometimes emarginate at apex, reticulate on both sides, with a prominent midrib, and on each side of it with a curved line (caused by a strand of collenchyme

Peruvian coca, lower surface, natural size.

Fig. 147.

Small Bolivian coca, natural size.
cells; Schrenk, 1887), running from base to apex ; odor slight, tea-like, not camphoraceous; taste somewhat bitter and aromatic. Bolivian coca leaves are often much smaller, but are more highly esteemed than the Peruvian leaves. Coca leaves cultivated in Java and India are considered inferior to those of South America; they are stated to be
derived from E. Coca var. Spruceánum, and the latter from E. boliviánum, Burck.

Constituents. - Cocaine, benzoylecgonine, cinnamylcocaine, truxilcocaine (truxilline or cocamine), hygrine (mixture, volatile, oily, readily soluble in water, alcohol, and ether, the dilute solutions of the salts in water fluorescent), cocatannic acid, wax. Cocaine, $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{4}$, forms colorless, bitter prisms, freely soluble in alcohol and ether, also in water; melts at 98°; with strong HCl yields methylalcohol, benzoic acid, and ecgonine, $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{NO}_{3}$, which is sweetish-bitter, freely soluble in water, sparingly soluble in alcohol, and insoluble in ether. Cocaine salts give a violet-purple crystalline precipitate with potassium permanganate. Benzoylecgonine, $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{4}$, crystallizes with $4 \mathrm{H}_{2} \mathrm{O}$; when dry melts at 198°; insoluble in ether, freely soluble in alcohol and hot water; yields benzoic acid and ecgonine. Cinnamylcocaine on saponification, yields cinnamic acid (sometimes also isocinnamic acid). Truxilline (cocamine) yields truxillic acid, $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{2}$, in several modifications which seem to be polymerics of cinnamic acid. From Java coca leaves benzoyl-pseudotropeïne, $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{2}$, has been obtained; it melts at 49°, and is easily soluble in alcohol, ether, chloroform, benzol and benzin ; yields with HCl benzoic acid and pseudotropine, $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{NO}$ (deliquescent rhombic crystals, sparingly soluble in ether, freely in chloroform).

Properties.-Stimulant, diaphoretic. Dose, 1 to 4 grams (gr. $\mathrm{xv}-3 \mathrm{j}$), in substance, infusion, fluid extract; usually combined with an alkali. Cocaine as a local anæsthetic in solution of 4 to 8 or 10 per cent.

BELLADONN Æ FOLIA.-Belladonna Leaves. Deadly Nightshade.

Origin.-A'tropa Belladónna, Linné. Natural order, Solanaceæ, Atropeæ.

Habitat.-Europe and Asia Minor.
Description.-Ovate-oblong or broadly ovate, 10 to 15 centimeters (4 to 6 inches) long, and 5 to 10 centimeters

Atropa Belladonna, Linné.-Branch, fruit, seed, and section of seed, the last two magnified.
(2-4 inches) broad, narrowed into a petiole, tapering at the apex, entire, almost smooth, thin, occasionally with circular perforations caused by cork, upper surface brownish-green, lower surface grayish-green ; both surfaces, viewed under the magnifying glass, of a whitish granular appearance,
due to numerous cells containing a crystalline powder; odor slight, taste bitterish, disagreeable.

Constituents.-About 0.5 per cent. mydriatic alkaloids, choline (bilineurine), mucilage, wax, asparagin, albumin, chrysatropic acid (scopoletin), succinic acid, nitrates, ash 14 per cent. Atropine, $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{3}$, yields a gold double salt at first oily, finally crystalline, without lustre. Hyoscyamine (see hyoscyamus leaves) is sometimes the predominating alkaloid. Belladonine, a yellow powder, is probably oxyatropine, $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{4}$, or apoatropine, $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{2}$.

Properties.-Diuretic, dilating the pupil, narcotic. Dose, 0.03 to 0.2 gram (gr. ss-iij).

Antidotes.-Emetics ; stimulants (brandy, coffee, etc.); morphine ; physostigmine ; pilocarpine.

DUBOISIA.-Duborsia.

Origin.-Duboísia myoporoídes, R. Brown. Natural order, Solanaceæ, Salpiglossideæ.

Habitat.-Australia.
Description.-Short-petiolate, lanceolate, about 7 to 10 centimeters (3 to 4 inches) long, 15 to 25 millimeters ($\frac{8}{5}$ to 1 inch) broad, narrowed at both ends, entire, midrib prominent; the margin somewhat revolute; thin, nearly smooth, inodorous and bitter.

Constituents. - Duboisine, volatile alkaloid, resin, etc. Duboisine appears to vary, and to consist of hyoscyamine or sometimes of hyoscine, or scopolamine.

Properties.-Similar to those of belladonna and hyoscyamus. Dose, 0.06 to 0.2 gram (gr. j-iij); of the alkaloid, 0.0005 to $0.001 \operatorname{gram}\left(\mathrm{gr} . \frac{1}{120}-\frac{1}{60}\right)$.

Antidotes.-Similar as for belladonna.

> TABACUM.-Tobacco.

Origin.-Nicotiána Tabácum, Linné. Natural order, Solanaceæ, Cestrineæ.

Habitat.-Tropical America ; cultivated.

Description.-The commercial dried leaves are used. Oval or ovate-lanceolate, sometimes 50 centimeters (20 inches) long, short petiolate or sessile, acute, entire, brown, friable, glandular-hairy ; odor heavy, peculiar; taste nauseous, bitter, and acrid.

Constituents.-Nicotine, $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2}, 0.7$ to 5 , sometimes 11 per cent., nicotianin (scaly, volatile, probably a salt of nicotine, according to others a camphoraceous compound), resin, albumin, gum, extractive, malates, citrates, ash 14 to 18 , occasionally 27 per cent. Nicotine is colorless, spec. grav. 1.011, becomes rapidly brown, is pungently acrid, freely soluble in water, alcohol, and ether, and is colored violet with warm HCl , and browned by Cl gas. Tobacco smoke contains a number of pyridine bases.
Properties.-Diuretic, sedative, emetic, narcotic. Dose, 0.03 to 0.13 gram (gr. ss-ij) ; as emetic, 0.3 gram (gr. v), in powder, infusion, or wine; externally as sternutatory, enema, etc.

Antidotes.-Evacuants; astringents ; nux vomica; stimulants.

Stramonil folia.-Stramonium Leaves.

Origin.-Datúra Stramónium, Linné. Natural order, Solanaceæ, Hyoscyameæ.

Habitat.-Asia ; naturalized in most countries.
Description.-Petiolate, ovate, about 15 centimeters (6 inches) long, smooth, pointed, unequal at the base, coarsely and sinuately angular-toothed, smooth or nearly so, dark green and rather fleshy when fresh, frequently with circular perforations, caused by cork; after drying thin, brittle, the upper surface usually brownish-green and somewhat whitish granular under the magnifying glass, due to cells
containing a crystallive powder ; nearly inodorous; taste unpleasant, bitter, and nauseous.

Datúra Tátula, Linné, is very similar, but has the foliage deeper green, and the stem and flowers purple colored.

Fig. 149.

Datura Stramonium, Linné.-Flowering branch.
Constituents.-Daturine 0.2 per cent., mucilage, albu\min, ash 17 per cent. Daturine is a mixture of atropine and hyoscyamine, the latter usually predominating.

Properties.-Diuretic, dilating the pupil, narcotic. Dose, 0.06 to 0.13 gram (gr. j-ij), in powder or extract.

Antidotes.-Evacuation by stomach-pump, or emetic; stimulants (brandy, coffee, etc.); douches; morphine ; physostigmine; pilocarpine.

Hyoscyami FOLIA.-Hyoscyamus Leaves. Henbane.

Origin.-Hyoscy'amus níger, Linné. Natural order, Solanaceæ, Hyoscyameæ.

Habitat.-Europe and Asia; naturalized in some parts of North America.

Description.-Ovate or ovate-oblong, sometimes 25 centimeters (10 inches) long, and 10 centimeters (4 inches)

Fig. 150.

Hyoscyamus niger, Linné.-Flowering branch.

Fig. 151.

broad, petiolate or sessile, acute, sinuate-toothed, the teeth large, oblong, or triangular ; grayish-green, hairy ; midrib prominent; odor heavy narcotic; taste bitter, somewhat acrid. Some of the flowers having a five-lobed pale yellow and purplish veined corolla, are usually present; occasion-
ally also the capsule (pyxis) enclosed in the urn-shaped calyx.

Constituents.-Mydriatic alkaloids about 0.3 per cent., choline (bilineurine), hyoscipicrin, $\mathrm{C}_{27} \mathrm{H}_{52} \mathrm{O}_{14}$, mucilage, albumin. Hyoscyamine, $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{3}$, yields a gold double salt in lustrous yellow scales, which melt at $160^{\circ} \mathrm{C}$., but not under water; splits into tropine, $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{NO}$, and tropic acid, $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{3}$. Hyoscine is semi-liquid, isomeric with hyoscyamine, yields tropic acid and pseudotropine, $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{NO}$; its gold double salt melts at $196^{\circ} \mathrm{C}$. Scopolamine, $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{4}$, is amorphous or crystalline; the gold double salt melts at 212° C.; splits into atropic acid, $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{2}$, and scopoline, $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{NO}_{2}$. By heating hyoscyamine for six hours to near $120^{\circ} \mathrm{C}$. $\left(218^{\circ} \mathrm{F}\right.$. $)$ it is converted into atropine.

Properties.-Anodyne, hypnotic, dilates the pupil, narcotic. Dose, 0.13 to 0.6 gram (gr. $\mathrm{ij}-\mathrm{x}$), in powder, tincture, fluid extract, or extract.

Antidotes.-Same as for stramonium.

DIGITALIS.-Digitalis, Foxglove.

Origin.-Digitális purpúrea, Linné. Natural order, Scrophularineæ, Digitaleæ.

Habitat.-Europe, in sandy soil and the edges of woods.
Description.-The leaves are collected from plants of the second year's growth. Ovate-oblong, rather acute, narrowed into a petiole; from 10 to 30 centimeters (4 to 12 inches) long; irregularly crenate, downy; dull green and wrinkled above; paler and whitish reticulate beneath; midrib near the base broad; odor faint, tea-like; taste bitter, nauseous.

Constituents.-Digitalin, resin, digitalosmin (stearopten), digitoleic acid, mucilage, extractive, inosit, pectin, ash 10
per cent. Commercial digitalin is a mixture of several compounds, of which the following have been investigated to some extent: Digitoxin is crystallizable, insoluble in water, benzol, and carbon disulphide, sparingly so in ether, soluble in alcohol and chloroform, and by acids is converted into toxiresin. Digitonin, $\mathrm{C}_{27} \mathrm{H}_{44} \mathrm{O}_{13}$, is a glucoside,

Fio. 152.

Digitalis.-Leaf of the first and of the second year's growth.
crystallizes from 85 per cent. alcohol, is soluble in water (the solution foaming), but not in ether, benzol, or chloroform, dissolves with a red color in $\mathrm{H}_{2} \mathrm{SO}_{4}$ and warm HCl , and splits into dextrose, galactose and digitogenin, which is insoluble in water. Digitalein is soluble in alcohol, ether, and water. Digitalin is crystalline, sparingly soluble in water and ether, soluble in alcohol. These principles are cardiac poisons, while another, digitin, has no such action. The behavior to solvents is more or less altered by the presence of other principles.

Properties.-Diuretic, sedative, narcotic. Dose, 0.06 to 0.13 gram (gr. j-ij), in powder, infusion, tincture, or extract. The dose of digitalin is uncertain, owing to its variable composition ; crystallized digitalin (digitoxin ; but sometimes consists of digitonin) is given in doses of 0.05 to 0.1 milligram ($\frac{1}{1300}-\frac{1}{650}$ grain).

Antidotes.-Evacuants (stomach-pump or emetics); tannin ; stimulants (injections); aconitine.

MATICO.-Matico.

Origin.-Píper elongátum, Vahl (Artánthe elongáta, Miquel). Natural order, Piperaceæ, Рipereæ.

Habitat.--Tropical America.
Description -Short petiolate, oblong-lanceolate, 10 to 15 centimeters (4 to 6 inches) long, pointed, unequally heartshaped, very finely crenulate, tessellated above, reticulate and rough beneath, the meshes small, and the veins densely brownish-hairy ; aromatic, spicy, and bitterish.

The leaves of Artánthe adúnca, Miquel, are not tessellated, rough, and hairy like true matico.

Fig. 153.

Matico.-One-half natural size.

Constituents.-Volatile oil $2 \frac{1}{2}$ per cent., pungent resin, bitter principle, artanthic acid (crystalline), tannin, mucilage, etc.

Properties.-Stimulant, tonic, vulnerary, styptic. Dose, 1 to 4 grams (gr. $x v-3 \mathrm{j}$), in powder, infusion, or extract; also externally as a styptic.

SALVIA.-Sage.

Origin.-Sálvia officinális, Linné. Natural order, Labiatæ, Monardeæ.

Habitat.-Southern Europe ; cultivated.
Description.-Petiolate, ovate-oblong, about 5 centimeters (2 inches) long, obtuse, or rather acute, finely crenulate, the base narrowed, rounded, somewhat heart-shaped or auriculate (the latter forms rare in market), thickish,

$$
\text { Fig. } 154,
$$

Salvia.-Natural size, upper and lower surface.
wrinkled, grayish-green, and beneath reticulate, soft hairy, and glandular ; aromatic, bitterish, somewhat astringent.

Constituents.-Volatile oil $\frac{1}{2}-\frac{3}{4}$ per cent., resin, tannin, albumin, extractive, etc. The volatile oil is of spec. grav. 0.89 , freely soluble in alcohol, and contains pinene, cineol, and salviol, $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}$.

Properties.-Stimulant, tonic, astringent, vulnerary. Dose, 1 to 4 grams (gr. $\mathrm{xv}-3 \mathrm{j}$), in infusion ; externally as a gargle, etc.

HaMamelis.-Hamamelis. Witch Hazel.
Origin.-Hamamélis virginiána, Linné. Natural order, Hamamelideæ.

Habitat.-North America, westward to Minnesota and Louisiana; in thickets.

Description.-Short-petiolate, thickish, 10 to 15 centimeters (4-6 inches) long, obovate or oval-obovate, obtuse,

Hamamelis virginiana.--Leaf one-half natural size.
wavy-toothed, narrowed below, and oblique and slightly heart-shaped at base, feather-veined, nearly smooth, inodorous, taste astringent and bitter.

Constituents.-Tannin, bitter principle, trace of volatile oil.

Properties.-Tonic, astringent, somewhat sedative; externally in skin diseases. Dose, about 4 grams (3j), in decoction or fluid extract.

THEA.-Tea.

Origin.-Caméllia Théa, Link, s. (Théa chinénsis, Sims). Natural order, Ternstrœmiaceæ, Gordonieæ.

Habitat.-Southeastern Asia; cultivated.

Description.-Short-petiolate, oval or oblanceolate, 25 to 50 or 75 millimeters (1 to 2 or 3 inches) long, acute at both ends, or rather obtuse above, irregularly serrate, except near
the base, the lateral veins anastomosing near the margin; smooth or the veins somewhat pubescent; odor agreeable, peculiar; taste pleasantly astringent and bitterish. In commerce the leaves are rolled; bluish green or blackish.

Adulterations with other leaves are recognized by the shape, the character of the venation, and the serratures on the margin.

Constituents.-Volatile oil $0.6-1$ per cent., theine (chemically identical with caffeine, but produces spasms and convulsions, and its lethal dose is larger than that of caffeine), $1 \frac{1}{2}-4$ per cent. (Indian and Ceylon teas contain between 3.2 and 4.6 per cent. of theine, Paul and Cownley, 1887), theophylline (isomeric with theobromine, readily soluble in hot water), tannin 11 to 21 per cent. (Hooper, 1889), boheic acid, albumin, wax, resin, ash 4-6 per cent., containing about 14 per cent. of phosphoric acid. Tea leaves yield about 40 per cent. of aqueous extract.

Properties.-Astringent, tonic, stimulant, nervine. Dose, 2 to 8 grams (3 ss-ij), in infusion.

ilex paraguayensis.-Maté, Paraguay Tea.

Origin.-I'lex paraguayénsis, Lambert. Natural order, Iliciner.

Habitat.-Brazil and Argentine Republic.
Description.-Short-petiolate, lance-oblong, about 5 centimeters (2 inches) long, nearly obtuse, margin few-toothed; smooth ; odor slight ; taste astringent, bitterish and somewhat empyreumatic. The commerchial maté consists of the slightly torrefied leaves, reduced to coarse powder.

Constituents.-Tannin $10-16$ per cent., caffeine, $0.2-1.6$ per cent., little volatile oil and stearopten, wax, glucoside, proteids about 8 per cent., ash 4 to 8 per cent.

Properties and Dose.-Like thea.

TURNERA.-DAMIANA.

Origin.-Turnéra diffúsæ, Willdenow, var. aphrodisíaca, Urban. Natural order, Turneraces.

Habitat.-Mexico.
Description.-Short-petiolate, thickish, obovate, lance-obovate, or oblong, 10 to 25 millimeters ($\frac{2}{5}-1$ inch) long, rather obtuse, with a wedge-shaped base and on each side of the margin with from 3 to 6 teeth; the pinnate veins prominent be-
neath; light green, nearly smooth, somewhat aromatic. The much-branched stems and small pentamerous yellow flowers are sometimes present.

Haplopáppus (Aplopáppus) discoídeus, De Candolle, False damiana. Natural order, Compositæ. Leaves lanceolate or oblanceolate, acute, 1- to 3 -toothed on each side, roughish and minutely dotted; involucre of flower-heads imbricate, florets yellow, pappus hairy.

Figs. 157, 158. -Turnera leaves.-Natural size. Fig. 159.-Aplopappus leaf.-Natural size.

Constituents.-Volatile oil, resin, bitter principle, tannin.
Properties.-Stimulant, tonic, laxative. Dose, 2 grams (gr. xxx), in fluid extract.

CASTANEA.-Chestnut Leaves.

Origin.-Castánea vésca, Gertner (C. satíva, Miller, var. americána; C. dentáta, Marshall). Natural order, Cupuliferæ, Quercineæ.

Habitat.-North America, from Ontario south to Florida, and west to Arkansas and Michigan.

Description.-From 15 to 25 centimeters (6 to 10 inches) long, about 5 centimeters (2 inches) wide, petiolate, oblonglanceolate, acuminate, mucronate, feather-veined, sinuate serrate, smooth, of a slight odor and a somewhat astringent taste.

They should be collected in September or October, while still green.

Constituents.-Tannin, about 9 per cent., gum, albumin, resin, fat, ash 5-6 per cent.

Fig. 160.

Castanea.-Leaf one-half natural size.
Properties.-Tonic, mild sedative. Dose, 2 to 8 grams (3ss-ij), in infusion or fluid extract, in whooping-cough.

PERSICA.-Peach Leaves.

Origin.-Prúnus Pérsica, Linné (Pérsica vulgáris, De Candolle). Natural order, Rosaceæ, Pruneæ.

Habitat.-Levant; cultivated.
Description.-Short-petiolate, lanceolate, about 10 centimeters (4 inches) long, pointed, closely serrate, smooth; odor slight, in infusion bitter-almond like; taste bitter.

Constituents.-Amygdalin, or allied compound, tannin.
Properties.-Mild sedative, tonic. Dose, 2 grams (gr. xxx) in infusion.

TUSSILAGO.--ColtsFoot.

Origin.-Tussilágo Fárfara, Linné. Natural order, Compositæ, Eupatoriaceæ.

Habitat.-Northern Asia and Europe, naturalized in the United States.

Description.-Long-petiolate, roundish heart-shaped, about 10 centimeters (4 inches) in diameter, 5 - to 7 -nerved, angulartoothed, smooth and green above, white tomentose beneath ; inodorous; taste mucilaginous, bitterish, and slightly astringent.

Constituents.-Mucilage, bitter amorphous glucoside, tannin.
Properties.-Demulcent, tonic. Dose, 2 to 4 grams ($3^{s s-j}$), in decoction.

ILEX OPACA.-Holly.

Origin.-I'lex opáca, Aiton. Natural order, Ilicines.
Habitat.-United States, from Massachusetts to Florida, and from Missouri to Texas.

Description.-Petiolate, oval, about 5 centimeters (2 inches) long, spinous wavy-toothed, coriaceous, smooth, inodorous; taste mucilaginous, bitterish, astringent.

Constituents.-Bitter principle, tannin.
Properties.-Demulcent, tonic, emetic. Dose, 1 to 2 grams (gr. $\mathrm{xv}-\mathrm{xxx}$).

CHIMAPHILA.-Pipsissewa, Prince's Pine.

Origin.-Chimaphíla (Chimáphila) umbelláta, Nuttall. Natural order, Ericaceæ, Pyroleæ.

Habitat.-Northern continents.

Description.-Oblanceolate, about 5 centimeters (2 inches) long, sharply serrate above, wedge-shaped and nearly entire toward the base ; coriaceous, smooth, dark green on

Fig. 161.

Chimaphila umbellata; upper part of flowering stem.
upper surface; nearly inodorous, and of an astringent and bitterish taste.

The leaves of the spotted pipsissewa, Chim. maculáta, Pursh, indigenous to North America, are lanceolate or ovate-lanceolate, about 5 centimeters (2 inches) long, serrate, and upon the upper surface variegated with white.

Constituents.-Arbutin, ericolin, urson, tannin 4 per cent., chimaphilin (yellow, tasteless, volatile prisms, red by
sulphuric acid), several white crystalline principles (tasteless, volatile, melting at $153^{\circ}, 166^{\circ}$, and above $250^{\circ} \mathrm{C}$.; possibly solid hydrocarbons-J. C. Peacock, 1892), resin, sugar, gum, ash 5 per cent. Free from andromedotoxin.

Properties.-Astringent, tonic, diuretic, nephritic. Dose, 1 to 4 grams (gr. xv-3j), in decoction or fluid extract.

GAULTHERIA.-Gaultheria, Wintergreen.

Origin. - Gaulthéria procúmbens,

Gaultheria.-Natural size. Linné. Natural order, Ericaceæ, Andromedeæ.

Habitat.-North America, west to Minnesota and south to Georgia.

Description. - Short-petiolate, obovate or roundish-oval, about 4 centimeters ($1 \frac{3}{5}$ inches) long, and 2 centimeters ($\frac{4}{5}$ inch) or more broad, mucronate, slightly serrate with appressed teeth, coriaceous, smooth, glossy-green above, paler beneath; fragrant ; taste aromatic and astringent.

Constituents.-Volatile oil, 0.5 per cent., arbutin, ericolin, urson, resins, tannin 6 per cent., sugar, gum, proteids, ash 4 to 5 per cent. Free from andromedotoxin. The volatile oil is of spec. grav. 1.175, readily soluble in alcohol, colored dark purple by ferric chloride in alcoholic solution, and with nitric aeid yields colorless prisms ; it consists of gaultherilene, $\mathrm{C}_{10} \mathrm{H}_{16}$, and mainly of methyl salicylate, $\mathrm{CH}_{3} \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{3}$.

Properties. - Stimulant, astringent, diuretic, emmenagogue. Dose, 1 to 4 grams (gr. $\mathrm{xv}-3 \mathrm{j}$), in infusion.

LaUrocerasus.-Cherry Laurel.

Origin.-Prúnus (Cérasus, Loiseleur) Laurocérasus, Linné. Natural order, Rosaceæ, Pruneæ.

Habitat.-Western Asia; cultivated in Southern Europe.
Description. -Short-petiolate, about 15 centimeters (6 inches) long, oblong or oblong-lanceolate, acute, somewhat revolute, distantly sharply serrate, dark green and glossy above, dull green beneath, and on the lower surface near the base one to three pairs of depressed glands; odor (when bruised) bitter-almond like; taste aromatic, bitter. Generally used in the fresh state.

Constituents.-Laurocerasin (amorphous, insoluble in ether, possibly a compound of amygdalin), a ferment, bitter principle, tannin, sugar, gum; after bruising and macerating in water, yield hydrocyanic acid and volatile oil, consisting of benzaldehyde, $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}$.

Properties.-Sedative ; used for making cherry-laurel water.

BUCHU.-Buchu.

Origin.-Barósma betulína, Bartling, Bar. crenuláta, Hooker, and Bar. serratifólia, Willdenow. Natural order, Rutacer, Diosmere.

Buchu.-a, b. Barosma crenulata, Hooker. c, d. Bar. betulina, Bartling. q. h. Bar. serratifolia, Willdenow. e, f. Empleurum serrulatum, Aiton. b, c, f, g, natural size.

Habitat.-Southern Africa.
Description.-Roundish-obovate, with a rather wedgeshaped base (B. betulina), or varying between oval and
obovate (B. crenulata), about 2 to 3 centimeters ($\frac{4}{5}-1 \frac{1}{6}$ inch) long, obtuse, crenate or serrate, with a gland at the base of each tooth, dull yellowish-green, thickish, smooth, pellucidpunctate ; strongly aromatic, somewhat mint-like, pungent, and bitterish. Portions of the branchlets, flowers, and capsules are sometimes mixed with this drug.

The leaves of Bar. serratifolia are about 3 to 4 centimeters ($1_{\overline{5}}-1 \frac{3}{5}$ inches) long, thinner, linear-lanceolate, obtuse-otherwise like the preceding.

Varieties.-Short buchu from B. betulina and B. crenulata ; long buchu from B. serratifolia. The latter are sometimes mixed with the very similar leaves of Empleúrum serrulátum, Aiton (Natural order, Rutaceæ), which are narrow linear, and, at the apex, acute and glandless.

Constituents.-Volatile oil (1-1.6 per cent. from short, 0.66 from long buchu ; the stearopten, diosphenol, $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{2}$, is colored black-green by ferric salts), resin, mucilage (in a layer beneath the upper epidermis), bitter principle, rutin (?), etc.

Properties.-Stimulant, tonic, diuretic. Dose, 1 to 2 grams (gr. $x v-x x x$), in infusion or fluid extract.

ERIODICTYON.-Mountain Balm.

Origin.-Eriodictyon califórnicum, Bentham. Natural order, Hydrophyllaceæ, Nameæ.

Habitat.-California.
Description.-Elliptic-lanceolate, 5 to 10 centimeters (2 to 4 inches) long, $\frac{3}{8}$ to $\frac{5}{8}$ inch (9 to 15 millimeters) broad, rather acute, more or less sinuately dentate; upper surface smooth, green, and varnished; lower surface reticulate and whitehairy ; somewhat aromatic and balsamic, free from bitterness.

Constituents.-Volatile oil, resin.
Properties.-Expectorant. Dose, 2 to 4 grams (3ss-j), in decoction or fluid extract.

Fig. 164.

Eriodictyon.-Leaves, natural size, lower and upper surface.

COMPTONIA.-Sweet Fern.

Origin.-Myríca (Comptónia, Aiton) asplenifólia, Endlicher. Natural order, Myricaceæ.

Habitat.-North America, south to North Carolina, west to Minnesota, in sterile soil.

Description.-Short-petiolate, linear-lanceolate, about 7 centimeters (3 inches) long, rather thin, pinnatifid with alternate roundish lobes, pubescent, resin-dotted; stipules two, small, obliquely ovate, acuminate ; aromatic and astringent.

Constituents.-Volatile oil (about 0.1 per cent.; spec. grav. 0.926 ; odor cinnamon-like), tannin, gallic acid (?), a saponin-like compound, etc.

Comptonia leaves, upper and lower surface.
Properties.--Stimulant, astringent. Dose, 1 to 2 grams (gr. $\mathrm{xv}-\mathrm{xxx}$).

hepatica.-Liverwort.

Origin.-Anemóne (Anémone) Hepática, Linné (Hepática tríloba, Chaix), and A. (Hepática, De Candolle) acutíloba, Lawson. Natural order, Ranunculaceæ, Anemoneæ.

Habitat.-North America and Europe, in woods.
Description.-Broad kidney-heart-shaped, about 5 centimeters (2 inches) long and broad, long-petiolate, three-lobed, the lobes obtuse or acute; slightly leathery, smooth, and dark green above ; inodorous, insipid, slightly astringent, slightly bitterish. The leaf of the European plant is intermediate in shape.

Constituents.--Mucilage, sugar, little tannin.
Properties.-Demulcent, deobstruent, tonic. Dose, 2 to 8 grams ($3^{s s}-\mathrm{ij}$), in decoction.

aconiti Folia.-Aconite Leaves.

Origin.-Aconítum Napéllus, Linné. Natural order, Ranunculaceæ, Helleborex.

Habitat.-Europe, Northern Asia, Western North America, in mountainous regions.

Description.- Leaves petiolate, suborbicular, somewhat cordate, 5 to 10 centimeters (2 to 4 inches) in diameter, smooth, somewhat glossy above, palmately three- or fiveparted, the segments narrow wedge-shaped and incised, the divisions linear-lanceolate and toothed; petiole and midrib

Fie. 166.

Aconite leaf, natural size.
with a furrow above; odor slight; taste gradually bitter, acrid, tingling.

The leaves of Aconítum Stoerckeánum, Reichenbach, have the parts broadly wedge-shaped and the divisions lanceolate. The leaves of the Ac. Cammárum, Jacquin, have ovate or rhomboid segments.

Constituents.-Aconitine (see Aconiti radix, page 152), napelline, gum, sugar, albumin, tannin, aconitic acid, ash 16 per cent.

Properties.-Anodyne, sedative, poisonous. Dose, 0.06 to 0.20 gram (gr. j-iij), in powder or extract.

Antidotes.-Emetic (vegetable or mineral); friction of skin; inhalation of amyl nitrite ; atropine.

MENYANTHES.-Buckbean, Bogbean.

Origin. - Menyánthes trifoliáta, Linné. Natural order, Gentianex, Menyanthez.

Habitat.-Temperate Northern Hemisphere, i. bogs.
Description.-Long.petioled, trifoliate; leaflets sessile, about 5 centimeters (2 inches) long, obovate-oblong, obtuse, narrowed below, entire or somewhat crenate, smooth, pale green ; inodorous, bitter.

Constituents.-Menyanthin (amorphous, precipitated by Mayer's reagent and tannin, soluble in alcohol and hot water, sparingly soluble in ether, glucoside, yields menyanthol, having an aromatic odor), mucilage, albumin, saccharose, fat (cholesterin and ceryl-esters), probably carotin.

Properties.-Tonic, antiscorbutic, emmenagogue, vermifuge, febrifuge. Dose, 1 to 3 grams (gr. xv-xlv), in decoction or extract.

RHUS TOXICODENDRON.--Poison Oak.

Grigin.-Rhus Toxicodéndron, Linné. Natural order, Anacardiaceæ, Anacardieæ.

Habitat.-North America, west to Wyoming and Texas, in thickets.

Description.-Long-petioled, trifoliate ; the lateral leaflets nearly sessile, about 10 centimeters (4 inches) long, obliquely-ovate, pointed ; the terminal leaflet stalked, ovate or oval, pointed, often with a wedge-shaped base ; all leaflets either entire or variously notched, coarsely toothed or lobed, downy beneath; after drying papery and brittle; inodorous, somewhat astringent, and acrid.

Constituents.-Toxicodendric acid (volatile, reduces gold from the chloride), tannin, fixed oil, wax, mucilage, etc.

Properties. - Irritant, rubefacient; in paralysis, etc. Dose, 0.12 to 0.3 gram (gr. ij-v), gradually increased, in powder or tincture.

Fig. 167.

Rhus toxicodendron.-Leat one-half natural size.

RUTA.-Rue.

Origin.-Rúta graveólens, Linné. Natural order, Rutaceæ, Ruteæ.

Habitat.-Southern Europe; cultivated.
Description.-Petiolate, triangular-ovate in outline, 5 to 10 centimeters (2 to 4 inches) long, the upper ones pinnatifid, the others twice or thrice pinnate, the divisions thickish, spatulate or obovate-oblong, sparingly crenate, the terminal ones larger, yellowish-green, smooth, finely pellucid-punctate, aromatic, balsamic, bitter, somewhat acrid.

Constituents.-Volatile oil $\frac{1}{4}$ per cent., rutin, $\mathrm{C}_{42} \mathrm{H}_{50} \mathrm{O}_{25}$, resin, etc. The volatile oil is greenish-yellow, freely soluble in alco-
hol, consists chiefly of methyl-nonyl-ketone, $\mathrm{CH}_{3} \cdot \mathrm{CO}_{6} \mathrm{C}_{9} \mathrm{H}_{19}$, and with nitric acid yields œnanthylic, caprylic, pelargonic, and caprinic acids. Rutin forms light yellow needles, is soluble in alcohol, less freely in water, sparingly soluble in ether ;

Fig. 168.

Ruta graveolens.-Leaf with axillary branch.
green with ferric chloride; with acid splits into isodulcit and quercetin.

Properties. - Irritant, stimulant, emmenagogue, nervine. Dose, 0.3 to 1.3 gram (gr. $v-\mathrm{xx}$), in infusion.

CONII FOLIA.-Conium, Hemlock.

Origin.-Coníum maculátum, Linné. Natural order, Umbelliferæ, Amminer.

Habitat.-Asia and Europe; naturalized in North America, in waste and moist places.

Description.-Petioles hollow and sheathing, upper leaves sessile, broadly triangular-ovate in outline, 10 to 30 centimeters (4 to 12 inches) long, pinnately twice or thrice decompound, pinnæ oblong-lanceolate, pointedly toothed or incised;

$$
F_{1 G .} 169 .
$$

> Conium.-Terminal portion of pinna.
thin, gray-green, smooth; odor and taste disagreeable, narcotic.

Constituents.-Coniine (a minute quantity), volatile oil (not poisonous), albumin, mucilage, ash 12 per cent.

Properties.-Sedative, narcotic. Dose, 0.3 gram (gr. v); much larger doses have produced little effect.

Antidotes.-Emetic; astringents ; stimulants ; application of warmth to extremities.

7. HERBS.-HERB 狌.

Under this heading all those drugs are comprised which are usually met with in commerce having those organs which are necessary for their botanical identification. Besides the few medicinal cryptogams, all medicinal herbs are dicotyledons, and consist mostly of leaves and tender tops, the stems, if hard and tasteless, being rejected. Cryptogams which are employed in a partially developed state, or in a condition unsuited for botanical identification, will be found in Class 12.

Classification.

Sect. I. Thallogens. Plants destitute of fibro-vascular tissue and flowers.
Thallus filiform, flattened above, repeatedly forked, margin crisped.
Thallus flattened, with air-vesicles in pairs.
Thallus compressed, the air-vesicles single.
Thallus flattened, lobed, and toothed; brownish above, whitish beneath.

Chondrus.
Fucus
vesiculosus.
Fucus nodosus.

Cetraria.

Sect. II. Ferns.

Stipe polished; frond pinnate; leaflets triangularoblong.

Sect. III. Dicotyledons.

1. Petals distinct.
a. Petals five or four (3 in Polygala) : stamens more than five; leaves alternate.
Leaves with linear acute lobes; akenes numerous, tipped with a long hairy style.
Base of stem tuberous; leaves three-divided; akenes numerous, short-beaked.
Rhizome golden yellow ; leaves trifoliate; follicles 7, few seeded.
Leaves lyrate-pinnatifid; capsule linear.
Leaves mostly radical, toothed or pinnatifid ; pod inversely heart-shaped; petals white.
Stem somewhat woody; leaves simple; capsule several- or many-seeded.
Leaves linear-oblong, pellucid-punctate ; flowers yellow with black dots.
Flowers irregular, purple ; stamens 8, united.
Stamens diadelphous; leaves trifoliate, leaflets toothed, fragrant.
Stamens monadelphous; leaves small trifoliate; leaflets entire; twigs pentangular.
Stem woody; leaves lance-ovate; flowers purple.
Leaves interruptedly pinnate ; flowers small, yellow; calyx uncinate.
Leaves digitate, five-foliate; flowers axillary, yellow.

Pulsatilla.
Ranunculus.

Coptis.
Chelidonium.

Bursa pastoris.
Helianthemum.
Hypericum.
Polygala.
Melilotus.

Scoparius.
Spiriea.
Agrimonia.
Potentilla,

Leaves lance-oblong; flowers showy, yellow, capsule long.

Enothera
Leaves lanceolate ; flowers showy, purplish ; capsule linear.
6. Petals and stamens five.

Leaves with foliaceous pinnatifid stipules ; corolla one-spurred.
Leaves rosulate, fleshy, glandular-bristly.
Viola tricolor. Drosera.
c. Petals and stamens numerous.

Sepals and white petals imbricate; branches fleshy, pentangular, spiny.

Cactus.
2. Petals united.
a. Flowers in a close head on a receptacle surrounded by an involucre.
Pappus slender, bristly; leaves lanceolate, con-nate-perfoliate.
leaves alternate; rays numerous, very narrow purplish or whitish.
rays inconspicuous, not longer than pappus.
florets yellow; heads in recurved racemes, small; odor anise-like.
Pappus three awns; florets yellow; rays conspicuous; leaves broadly spatulate or oblong.
Pappus 2 or 3 awns; florets yellow; leaves spatulate or linear.
Pappus of 5 awned scales ; florets yellow; rays conspicuous; stem winged.

Helenium.
Pappus none, or a short crown ; leaves alternate;
rays white; receptacle conical, chaffy.
rays white; receptacle flat, chaffy.
rays white; receptacle convex, naked.
rays yellow; receptacle convex, naked.
rays none; receptacle small, hairy.
receptacle small, smooth; leaves green above; plant white woolly.
rays yellow ; receptacle flat, naked.
rays none; receptacle bristly; involucre and leaves soft-spiny.
b. Flowers not in heads; corolla more or less twolipped.
Leaves alternate; stamens 5, forming a tube.
stamens 4 ; plant yellowish-brown.
Cotula.
Achillea.
Parthenium.
Tanacetum.
Absinthium.
Artemisia.
Gnaphalium.
Calendula.
Centaurea.

Lobelia.
Epiphegus.

Leaves opposite, not glandular ; stamens 4;
corolla urn-shaped; lips short.
corolla inflated; upper lip arched.
Leaves opposite, glandular; lips nearly equal ; stamens 4 ; inflorescence terminal, spikes slender, acute.
spikes conical, obtuse.
stamens 2 ; flowers in axillary whorls.
upper lip erect; stamens 2, exserted; inflorescence cymose.
stamens 4, exserted; inflorescence spicate. inflorescence corymbose, bracts reddish. inflorescence clustered, spicate, bracts graygreen.
corolla short, slightly 2 -lipped, stamens 4; inflorescence spicate; leaves small, linear.
leaves small, ovate.
corolla curved, two-lipped; stamens 4, upper pair shorter; flowers in axillary whorls.
corolla small, two-lipped; filaments 4, only two with anthers.
corolla long, with narrow lips; stamens 2 ; bracts variegated.
upper lip arched; stamens 4, the lower pair shorter; floral leaves bract-like.
flowers in axillary cymules; leaves and floral leaves alike.
upper lip erect; stamens 4, short; flowers in dense axillary whorls.
stamens 4, the lower pair longer ; calyx lips entire, upper one with helmet-like projection.
calyx spiny five-toothed; leaves palmately lobed.
c. Flowers not in heads; corolla lobes spreading.

Corolla salver-form ; flowers in dense spikes;
leaves rosulate.
flowers in pairs ; leaves opposite.
Corolla rotate; leaves in whorls, rough on the margin.
leaves opposite; sessile, oblong-ovate, acute (or linear-oblong).

Scrophularia.
Chelone.

Mentha viridis.
Mentha.
piperita.
Lycopus.
Cunila.
Hyssopus.
Origanum.
Majorana.
Thymus (see
Leaves).
Serpyllum.

Melissa.

Hedeoma.
Monarda.
Cataria.
Glechoma.
Marrubium.

Scutellaria.
Leonorus.

Plantago.
Mitchella.
Galium.
Sabbatia.
obovate-oblong, obtuse.
ovate, acuminate ; drug brown.
3. Petals absent.

Leaves digitate; leaflets lanceolate, acute, serrate. Cannabis.

CHONDRUS.-Irish Moss, Carrageen.

Origin.-Chóndrus críspus, Lyngbye, and Gigartína mamillósa, Agardh (Chóndrus mamillósus, Greville). Natural order, Alga, Florideæ.

Habitat.-Atlantic Ocean.
Description.-From 5 to 12 centimeters (2 to 5 inches) or more long; yellowish or whitish, horny, translucent, when softened in water cartilaginous, many times forked, seg-

ments varying in shape between wedge-shaped and linear, at the apex emarginate or two-lobed; spore vessels inbedded in the frond, in Gig. mamillosa short-stipitate along the channeled branches; odor slight seaweed-like ; taste mucilaginous, somewhat saline.

One part of it boiled for ten minutes with 30 parts of water yields a solution which gelatinizes on cooling.

Constituents.-Aside from moisture, consists mainly of mucilaginous compounds, some albuminoids and 8-15 per cent. ash, chiefly chlorides, sulphates, and phosphates, with traces of bromides and iodides.

Properties.-Demulcent, somewhat nutritive. Dose, 4 to 8 grams ($3 \mathrm{j}-\mathrm{ij}$), in decoction or jelly.

FUCUS VESICULOSUS.-Bladder-wrack.

Origin.-Fúcus vesiculósus, Linné. Natural order, Algæ, Fucoideæ.

Habitat.-Atlantic Ocean.
Description.-About 1 meter (40 inches) long, and 15 millimeters ($\frac{3}{5}$ inch) broad, flattened, branched, with a midrib and the air-vessels in pairs, blackish; odor like seaweeds; taste mucilaginous, saline.

Fúcus nodósus, Linné, is narrow, without midrib, air-vesicles single, otherwise like the preceding.

Constituents.-Organic matter 62, ash 16, moisture 22 per

Fig. 173.

Fucus vesiculosus, Linné.-Fruiting branch, natural size.
cent. Organic principles: mucilage, mannit, fat, etc. Ash : chlorides, bromides, iodides, phosphates, and sulphates.

Properties.-Alterative. Dose, about 8 grams (3 ij), in decoction ; recommended in obesity.

CETRARIA.-Iceland Moss.

Origin.-Cetrária islándica, Acharius. Natural order, Lichenes, Ascomycetes.

Habitat.-Northern Hemisphere.
Description.-Five to 10 centimeters (2 to 4 inches) long, foliaceous, irregularly divided into fringed and channeled lobes, brownish above, whitish beneath and marked with small depressed white spots, brittle and inodorous; when

soaked in water, soft cartilaginous and of a slight odor; taste mucilaginous and bitter. When boiled with about 25 parts of water, Iceland moss yields a solution forming a ielly on cooling.

Pine leaves, mosses, and other lichens, which are frequently found mixed with it should be removed.

Constituents.-Lichenin and isolichenin (dextrolichenin), $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{10}, 70$ per cent., cetraric acid, $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{8}, 2$ per cent. (crystalline, bitter), lichen-stearic acid, $\mathrm{C}_{14} \mathrm{H}_{34} \mathrm{O}_{3}, 1$ per cent., fumaric acid, oxalic acid, sugar, cellulose 16 per cent., ash 1-2 per cent. Isolichenin is soluble in cold water,
dextrogyre, colored blue by iodine and does not combine with alkalies. Lichenin separates from its hot-water solution as a jelly, is not colored blue by iodine, and combines with bases.

Properties.-Demulcent, tonic, nutritive. Dose, 4 to 8 grams (3j-ij), in decoction or jelly.

ADIANTUM.-Maidenhair.

Origin.-Adiántum pedátum, Linné. Natural order, Filices, Polypodiacer.

Habitat.-North America and Eastern Asia; in woods.
Description.-About 30 centimeters (12 inches) high; stipe polished, brown black, forked at the summit and branched; branches nearly horizontal, each bearing on one side about six linear-lanceolate pinnæ; leaflets triangular-oblong, cre-nately-toothed on the upper margin; fruit-dots at the apex of the teeth; odor faintly aromatic; taste mucilaginous, sweetish, slightly astringent and bitter.

Constituents.-Mucilage, tannin, bitter principle.
Properties.-Demulcent, expectorant, tonic. Dose, 2 to 4 grams (3 ss-j).

Adiántum Capíllus Venéris, Linné, is indigenous to Europe and the Southern United States west to California; it is used like the preceding.

PULSATILLA.-Pulsatilla.

Origin.-Anemóne (Anémone) (Pulsatílla, Miller) praténsis, Linné, An. Pulsatílla, Linné, and An. pátens, Linné, var. Nuttalliána, Gray. Natural order Ranunculaceæ, Anemoneæ.

Habitat.-Europe, the variety Nuttalliana in Western North America.

Description. - Leaves radical, petiolate, silky-villous, twice or thrice deeply three-parted or pinnately cleft, with linear acute lobes, appearing after the large purple (or in the last-named species sometimes whitish) flowers; akenes
numerous, prolonged into the hairy style; inodorous; very acrid.

The herb should be collected shortly after flowering, carefully preserved, and not kept longer than one year.

Constituents. - Anemonin, $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{O}_{4}$, anemonic acid, $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{5}$, anemoninic acid, $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{6}$, and acrid anemone-

Fig. 175.

Anemone pratensis.-Leaf with flowering scape.
camphor. This is oily, crystallizing, not fusible or volatile, but distils from the herb with water; soluble in chloroform ; neutral ; spontaneously decomposed into anemonin and insoluble isoanemonic acid, $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{5}$. Anemonin is colorless, inodorous, acrid when melted or distilled with
water, sparingly soluble in water and alcohol ; may be converted into the two acids named above which are freely soluble in water. (Beckurts, 1892.)

Properties.-Irritant, diuretic, diaphoretic, expectorant, dilating the pupil; poisonous. Dose, 0.12 to 0.6 gram (gr. $\mathrm{ij}-\mathrm{x}$), in powder, tincture, or extract.

RANUNCULUS.-Crowfoot, Buttercups.

Origin.-Ranúnculus bulbósus, Linné. Natural order, Ranunculaceex, Ranunculex.

Habitat.-Europe, naturalized in North America, in grassy places.

Description.-Base of stem tuberous; radical leaves with sheathing petioles, ternate, the lateral divisions sessile, rhomboid wedge-shaped, three-cleft, hairy; stem leaves smaller; flowers yellow, five petalous, with a reflexed calyx, numerous stamens and ovaries, the latter forming akenes with a short curved beak; inodorous; taste very acrid.

Ranúnculus répens, Linné, not bulbous; leaflets stalked, three-lobed and toothed; akenes straight beaked.
Ran. ácris, Linné, not bulbous ; divisions of the leaves sessile; akenes with a sharp curved beak.

Constituents.-The aqueous distillate yields to chloroform an acrid yellow oil from which anemonin and anemonic acid may be obtained.

Properties.-Irritant, diuretic ; externally used as a counterirritant.

COPTIS.-Goldthread.

Origin.-Cóptis trifólia, Salisbury. Natural order, Ranunculacee, Helleboree.

Habitat. - Northern continents.
Description.-Rhizome filiform, golden-yellow, with very thin rootlets; leaves radical from a scaly base, petiolate, trifoliate, the leaflets 1 to 2 centimeters ($\frac{2}{5}$ to $\frac{4}{5}$ inch) long, wedgeobovate, obtusely three-lobed and mucronately crenate; flowers single, yellowish; fruit about seven follicles, containing a few black seeds; inodorous, strongly bitter.

Constituents.-Berberine, coptine (white alkaloid, possibly identical with hydrastine), resin, sugar, etc., ash 4-5 per cent.; no tannin.

Properties.-Tonic. Dose, 1 to 4 grams (gr. xv-3j), in decoction.

CHELIDONIUM.-Celandine.

Origin.-Chelidónium május, Linné. Natural order, Papaveraceæ, Papavereæ.

Habitat.-Europe; naturalized in North America; in waste and cultivated grounds.

Description.-Root several-headed, red-brown; stem about 50 centimeters (20 inches) high, hairy; leaves 10 to 20 centimeters (4 to 8 inches) long, the upper ones sessile, light green above, glaucous beneath, lyrate-pinnatifid, the pinnæ ovate-oblong, obtuse, coarsely crenate or incised, the terminal one often three-lobed; petals 4, yellow ; capsule linear, two-valved, one-celled, many-seeded; odor, when fresh, unpleasant; taste acrid. The whole plant contains a saffron-colored milk-juice.

Constituents.-Chelerythrine, $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{NO}_{4}$, sanguinarine, $\mathrm{C}_{29} \mathrm{H}_{15} \mathrm{NO}_{4}$, chelidonine, $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{5}$, α and β homochelidonine, $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{5}$, protopine, $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{NO}_{5}$, chelidoxanthin (yellow bitter needles), chelidonic (jervic) acid, chelidoninic (ethylene-succinic) acid. Chelerythrine melts at $203^{\circ} \mathrm{C}$. ; its salts are lemon-yellow. Sanguinarine melts at $211^{\circ} \mathrm{C}$. ; salts red. The other alkaloids yield white salts and have the following melting points: Chelidonine, 130°; a homochelidonine, 182°; β homochelidonine, 159°, and protopine, $207^{\circ} \mathrm{C}$.

Properties.-Diuretic, cathartic. Dose, 1 to 4 grams (gr. $\mathrm{xv}-3 \mathrm{j}$), the extract 0.5 to 1 gram (gr. viij-xv) ; the milkjuice externally as a caustic.

BURSA PASTORIS.-Shepherd's Purse.

Origin.-Capsélla Bursa-pastóris, Moench. Natural order, Cruciferæ, Lepidineæ.

Habitat.-Asia and Europe, naturalized in most countries of the temperate zones, in grassy places and along roadsides.

Description.-Very variable. Root annual, thin; radical leaves rosulate, 5 to 10 centimeters ($2-4$ inches) long, lanceolate, narrowed into a petiole, more or less coarsely toothed or deeply pinnatifid; stem about 15 centimeters (6 inches) high; stem leaves alternate, sessile, clasping with an arrow-shaped base, lanceolate, entire or toothed; flowers small, in corymbose, finally elongated racemes; petals 4 , white; stamens 6 , tetradynamous; fruit inversely heart-shaped, on spreading peduncles, containing about 20 minute seeds; nearly inodorous; taste acrid, pungent, and bitter.

Constituents.-Little volatile oil (identical with mustard oil), bursic acid (probably glucoside), bitter principle, resin, etc.

Properties.-Hemostatic, tonic. Dose, 1 to 4 grams (gr. $\mathrm{xv}-3 \mathrm{j})$, in tincture.

helianthemum.-Frostwort.

Origin.-Heliánthemum canadénse Michaux, and Heliánthemum corymbósum, Michaux. Natural order, Cistineæ.

Habitat.-North America, south to Florida, and west to Eastern Texas and Minnesota; in sandy woods and fields.

Description.-About 30 centimeters (12 inches) high; stem rigid, slender, hairy; leaves alternate, entire, elliptic, or linear lanceolate, about 2 centimeters ($\frac{4}{5}$ inch) long, woolly beneath; flowers of two kinds, the earlier ones single with five large yellow caducous petals; the later ones in hoary clusters, nearly sessile, apetalous ; inodorous, bitterish, astringent.

The second species is very similar, but has the stem branched from the base, the leaves narrower, densely tomentose underneath, the flowers all clustered at the summit, the apetalous ones being in glomerate terminal cymes.

Constituents.-Tannin, 11 per cent. bitter principle (probably a glucoside, soluble in water, alcohol, and benzol), sugar, gum, wax, ash 3 per cent.

Properties.-Tonic, astringent, alterative. Dose, 0.5 to 2 grams (gr. viij-xxx), in decoction.

HYPERICUM.-St. John's Wort.

Origin.-Hypéricum perforátum, Linné. Natural order, Hypericineæ.

Habitat.-Asia and Europe ; naturalized in North America.

Description.-Erect, about 50 centimeters (20 inches) high, smooth; stem somewhat two edged; leaves opposite, sessile, linear-oblong, pellucid-punctate; flowers about 2 centimeters ($\frac{4}{5}$ inch) broad, in terminal cymes, yellow, black-dotted; odor slight, balsamic ; taste acrid, bitter.

Constituents.-Resin, tannin, red coloring matter (soluble in alcohol, ether, and oils).

Properties.-Stimulant, discutient ; mostly used externally.

POLYGALA.-Bitter Polygala.

Origin.-Poly'gala poly'gama, Walter (P. rubélla, Willdenow). Natural order, Polygaleæ.

Habitat.-North America, in grassy places.
Description.-Ascending, smooth, about 20 centimeters (8 inches) high, somewhat branched ; leaves alternate, oblanceolate or lance-linear, mucronate; inflorescence racemose; flowers purple, the keel crested and shorter than the wings; capsule ovate-oblong, two-seeded, the seeds with a scale-like crest; bitter.

Constituents.-Bitter principle.
Properties.-Tonic.

MELILOTUS.-Sweet Clover.

Origin.-Melilótus altíssimus, Thuilliers (M. officinális, Willdenow), and Mel. allbus, Desrousseaux. Natural order, Leguminosæ, Papilionaceæ, Genisteæ.

Habitat.-Europe, naturalized in North America.
Description. - Erect, about 1.2 meters (4 feet) high, smooth, much branched; stipules entire, awl-shaped; leaves alternate, trifoliate; leaflets oval or obovate-oblong, sharply serrate, near the base entire ; flowers small, yellow or white, racemose; legumes small, wrinkled, few-seeded; odor fragrant, stronger on drying; taste aromatic, somewhat pungent and bitter.

Constituents.-Coumarin (see Dipterix), melilotol (fragrant, volatile oil), cumaric acid, $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{3}$ (sublimable, soluble in alcohol, ether, and hot water), melilotic (hydrocumaric) acid, $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{3}$ (strongly acid; odor honey-like).

Properties.-Stimulant, discutient ; mostly used externally.

SCOPARIUS.-Broom.

Origin.-Cy'tisus (Sarothámnus, Koch) scopárius, Link. Natural order, Leguminosæ, Papilionaceæ, Genisteæ.
Habitat.-Western Asia, Southern and Western Europe; naturalized in some localities in the United States.
Description.-Thin flexible twigs, pentangular, winged, nearly smooth, tough, usually free from leaves, which are

Sarothamnus scoparius; flowering branch.
small trifoliate, the leaflets obovate-oblong, entire ; flowers racemose, showy, yellow, with ten monadelphous stamens; odor, when bruised, peculiar ; taste disagreeably bitter.

Constituents.-Volatile oil, scoparin, $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{10}$ (tasteless, amorphous), sparteine, $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{2}$, tannin, fat, wax, sugar,
ash $5-6$ per cent. Sparteine is colorless, oily, very bitter, soluble in alcohol, ether, and chloroform, sparingly so in water, insoluble in benzol ; narcotic ; the sulphate in prisms, freely soluble in water ; the hydriodide in plates, freely soluble in alcohol, less so in cold water.

Properties.-Diuretic, somewhat narcotic, in large doses emetic. Dose, 1 to 2 grams (gr. xy-xxx), in decoction.

SPIR EA.-Hardhack.

Origin.-Spiræ'a tomentósa, Linné. Natural order, Rosaсеæ, Spiræeæ.

Habitat.-North America, south to Georgia and west to Minnesota.

Description.-Stem slender, red-brown, woody; leaves alternate, lance-ovate, serrate, rusty tomentose beneath; inflorescence racemose paniculate; flowers small with 5 purplish-red petals, numerous stamens and 4 or 5 ovaries, producing oneseeded woolly follicles; odor slight aromatic ; taste astringent, somewhat bitter.

Constituents.-Tannin, bitter principle.
Properties.-Astringent, tonic. Dose, 2 to 4 grams ($3 s s-\mathrm{j}$).

> AGRIMONIA.-AGRIMONY.

Origin.-Agrimónia Eupatória, Linné. Natural order, Rosaceæ, Poteriex.

Habitat.-Europe and North America, west to Colorado; in grassy places.

Description.-Erect, hairy ; stem about 60 centimeters (2 feet) high, roundish angular, nearly simple; leaves alternate, petiolate, pinnate, with clasping serrate stipules, and about 6 pairs of elliptic oblong coarsely toothed leaflets with several pairs of minute ones; inflorescence slender, racemose; calyx persistent, with hooked bristles; petals 5, small, yellow; stamens about 10 ; fruit one or two akenes; odor faintly aromatic; taste mildly bitter and astringent.

Constituents.-Tannin, bitter principle.
Properties.-Tonic, astringent. Dose, 2 to 4 grams (3ss-j).

POTENTILLA.-OINQUEFOIL.

Origin.- Potentílla canadénsis, Linné. Natural order, Rosaceæ, Potentilleæ.

Habitat.-North Ameriea, in sandy soil.
Description.-Ascending, with slender runners, more or less soft-hairy, leaves petiolate, digitate, the five leaflets obovate or oblanceolate, incised above; flowers axillary, stalked; calyx five-cleft; petals 5 , yellow ; stamens, ovaries, and akenes numerous; inodorous, astringent.

Constituents.-Tannin.
Properties.-Astringent, vulnerary. Dose, 2 to 4 grams ($\mathrm{S}^{8 s}-\mathrm{j}$), in infusion.

Genothera.-Evening Primrose.
Origin.-(Enothéra biénnis, Linné. Natural order, Onagrariez.

Habitat.-North America, in fields ; naturalized in Europe.
Description.-Erect, hairy, branched; leaves alternate, short-petiolate, ovate oblong or oblong-lanceolate, acute, slightly toothed; inflorescence spicate, leafy; calyx superior, the four lobes reflexed; petals four, showy, light yellow, obcordate; stamens 8; capsule sessile, roundish four-sided, about 3 centimeters ($1 \frac{1}{5}$ inches) long; seeds numerous; taste mildly astringent.

Constituents.-Mucilage, tannin.
Properties.-Alterative, astringent. Dose, 2 to 4 grams ($388-\mathrm{j}$).

EPILOBIUM.-Willow Hebb.

Origin.-Epilóbium angustifólium, Linné. Natural order, Onagrarieæ.

Habitat.-Northern Hemisphere, in low grounds and open woodlands.

Description.-Erect, smooth, about 1 meter (40 inches) high; leaves subsessile, alternate, lanceolate, pointed, nearly entire, pale green beneath; inflorescence racemose; calyx superior, four-lobed; petals 4, purplish or pink, showy; stamens 8 ; capsule linear, about 5 centimeters (2 inches) long, somewhat curved; seeds numerous, with a tuft of hairs; taste mucilaginous, astringent.

Constituents.-Mucilage, tannin, etc.
Properties.-Demulcent, astringent. Dose, 2 to 4 grams (3 ss-j).

Viola tricolor.-Pansy, Heart's Ease.

Origin.-Vióla trícolor, Linné. Natural order, Violariex.

Habitat.-Europe, North America, and Northern Asia; cultivated ; but the wild-grown plant alone should be collected.

Description.-Stem 10 to 30 centimeters (4 to 12 inches) high, angular, nearly smooth ; leaves alternate, petiolate, ovate or oblong, obtuse, crenate, the lower ones roundishovate and somewhat heart-shaped; stipules leaf-like, pinnatifid, the lateral lobes linear and entire, the terminal one lance-ovate and crenate; flowers long-peduncled, petals shorter or longer than the calyx, variegated, the lateral ones bearded, forming one obtuse spur ; inodorous ; taste mucilaginous, somewhat bitter and acrid.

Constituents.-Mucilage, sugar, salicylic acid 0.1 per cent., bitter principle, resin, etc.

Properties.-Alterative, expectorant, in large doses emetic. Dose, 1 to 4 grams (gr. xv- 3 j), in decoction or extract.

DROSERA.-Sundew.

Origin.-Drósera rotundifôlia, Linné. Natural order, Droseraceæ.

Habitat.-North America (west to Minnesota) and Europe, in boggy places.

Description.-Leaves radical, rosulate, petiolate, orbicular, about 8 millimeters ($\frac{1}{3}$ inch) broad; fleshy, with purple glandular bristles; scape slender; inflorescence racemose, onesided; flowers small, whitish; inodorous; taste acidulous, acrid, and bitter.

Drósera intermédia, Hayne, has spatulate leaves.
Constituents.-Citric acid, acrid resin, etc.
Properties.-Pectoral, rubefacient.

Fig. 177.

Drosera rotundifolia.

CACTUS.-Night-blooming Cereus.

Origin.-Cáctus (Céreus, Miller) grandiflórus, Linné. Natural order, Cactaceæ, Echinocacteæ.

Habitat.-Tropical America; cultivated.
Description. - The fresh flowering branches are used Branches weak, fleshy, five- or six-angled., on the edges with clusters of 5 or 6 spines ; flowers sessile, large, fragant ; calyx imbricate, brownish and yellow; corolla white ; petals and stamens numerous; fruit berry-like; taste acrid.

Constituents.-No analysis.
Properties.-Vermifuge, emetic, cathartic. Dose, 0.3 gram (gr. v), in fluid extract or tincture.

EUPATORIUM.-Thoroughwort, Boneset.
Origin.-Eupatórium perfoliátum, Linné. Natural order, Compositæ, Eupatoriaceæ.

Habitat.-North America, west to Dakota; in low grounds.

Description.-Leaves opposite, united at base, lanceolate, 10 to 15 centimeters (4 to 6 inches) long, tapering, crenately serrate, rugosely veined, rough above, downy and resinous dotted bencath ; flower heads corymbed, numerous,

$$
\text { Fig. } 178
$$

with an oblong involucre of lance-linear scales, and with 10 to 15 tubular white florets, having a bristly pappus in a single row; odor aromatic, weak; taste astringent and strongly bitter.

Constituents.-Eupatorin (bitter glucoside, crystallizable, soluble in water, alcohol, ether, and chloroform), volatile oil, crystalline wax, resin, tannin, gum, sugar, ash 7.5 per cent.

Properties. - Stimulant, tonic, diaphoretic, laxative, emetic. Dose, 2 to 4 grams (3 ss-j), in infusion or fluid extract.

ERIGERON.-Erigeron, Fleabane, Scabious.

Origin.-Erígeron philadélphicus, Linné, Erígeron ánnuus, Persoon, and Erígeron strigósus, Muhlenberg. Natural order, Compositæ, Asteroidex.

Habitat.-North America, in fields and pastures.
Description.-The three plants are similar in aspect; erect and hairy. Radical leaves petiolate, ovate, or lanceolate, coarsely toothed, serrate, or (E. strigosus) nearly entire ; stem leaves smaller, alternate, petiolate, the upper ones sessile, somewhat toothed or entire ; all hairy ; flower-heads corymbose, with the involucral scales narrow and nearly equal, the receptacle flattish and naked, the ray florets numerous, narrow, in one or two rows, purplish or white, and the disk florets numerous, tubular, and yellow ; pappus bristly, simple (\mathbf{E}. philadelphicus) or double (the other two species); odor slightly aromatic ; taste bitterish, astringent.

Constituents.-Volatile oil a trace, bitter principle, tannin.
Properties.-Diuretic, diaphoretic, tonic. Dose, 2 to 4 grams (3 ss-j), in infusion.

erigeron canadense.-Canada Erigeron.

Origin.-Erígeron canadénsis, Linné. Natural order, Composite, Asteroideæ.

Habitat.-North America, in fields and waste places; naturalized in other countries.

Deseription.-Bristly-hairy and erect; leaves alternate, sessile, lance-linear, nearly entire ; flower-heads in corymbose panicles, numerous, small, with a cylindrical involucre, inconspicuous ray florets, and a straw-colored bristly pappus; odor aromatic ; taste bitterish, somewhat acrid and astringent.

Constituents.-Volatile oil about 1 per cent. of fresh plant, bitter principle, tannin. The volatile oil has spec. grav. 0.864 , is soluble in alcohol, polarizes to the left and becomes thick and brown by age.

Properties.-Stimulant, tonic, diuretic, styptic. Dose, 2 to 4 grams ($38 s-\mathrm{j}$), in infusion.

SOLIDAGO.-Golden Rod.

Origin.-Solidágo odóra, Aiton. Natural order, Compositre, Asteroideæ.

Habitat.-North America, south to Florida, and west to Kentucky ; border of woods and fields.

Description.-Erect ; leaves smooth, sessile, linear-lanceolate, 3 to 5 centimeters (1 to 2 inches) long, entire, acute, pellucid-punctate ; flower-heads small, numerous, in one-sided recurved racemes, with a yellowish scaly appressed involucre, several yellow florets and bristly pappus; odor and taste sweet, anise-like.

Constituents.-Volatile oil, probably containing anisol.
Properties.-Stimulant, carminative, diaphoretic. Dose, 2 to 8 grams (3 ss-ij), in infusion.

GRINDELIA.-Grindelia.

Origin.-Grindélia robústa, Nuttall. Natural order, Compositæ, Asteroideæ.

Habitat.-North America, west of the Rocky Mountains, in salt marshes.

Description.-The leaves and flowering tops are collected. Leaves thickish, varying from broadly spatulate or oblong to lanceolate, sessile or clasping, about 5 centimeters (2 inches) or less long, rather acute, more or less serrate, light green, smooth, finely dotted, and brittle ; heads manyflowered; the involucre hemispherical, about 15 millimeters ($\frac{3}{5}$ inch) broad, composed of numerous imbricated, strongly squarrose and often resinous scales; ray-florets yellow, ligulate, pistillate; disk-florets yellow, tubular, perfect; pappus consisting of about three awns of the length of the disk-florets ; odor balsamic ; taste pungently aromatic and bitter.

Constituents.-Little volatile oil, resin ; possibly a peculiar glucoside and alkaloid; besides fat, wax, sugar, gum, little tannin, ash 7-8 per cent.

Properties.-Sedative, in asthma, ete.; externally in rhus poisoning. Dose, 2 to 4 grams (gr. xv- y j), in tincture or fluid extract.

grindelia Squarrosa.-Squarrose Grindelia.

Origin.-Grindélia squarrósa, Dunal. Natural order, Composite, Asteroidex.

Habitat.-Western plains to the Sierra Nevada and south to Texas.
Description.-Stem about 0.4 meter (16 inches) high, branched, yellowish, smooth; leaves rigid, somewhat petiolate below, sessile and half clasping above, oblong-spatulate or linear-oblong, sharply and sometimes laciniately serrate, pale green, dotted; heads many-flowered, somewhat conical ; involucre strongly squarrose; florets yellow, rays sometimes wanting; akenes truncate, with a two- or three-awned pappus; odor balsamic ; taste aromatic and bitter.

Constituents.-Little volatile oil, resin, fat, wax, sugar, gum, possibly a bitter glucoside, ash about 5 per cent.
Properties.-Tonic, sedative, in asthma, rheumatism, etc. Dose, 1 to 4 grams (gr. xv-zi), in tincture or fluid extract.

HELENIUM.-Sneezewort.

Origin.-Helénium autumnále, Linné. Natural order, Compositæ, Helenioider.

Habitat.-North America, across the continent, in thickets.
Description.-Erect, nearly smooth; stem about 1.2 meters (4 feet) high, quadrangular, winged; leaves sessile, alternate, lanceolate, pointed, serrate; flower-heads numerous with a two-rowed involucre, a naked hemispherical receptacle, long yellow pistillate ray-florets, yellow perfect disk-florets, and top-shaped akenes having a pappus of 5 awned scales; taste bitter, acrid.

Constituents.-Bitter glucoside, resin, malic acid, little tannin, etc.

Properties.-Diaphoretic, errhine.

> Cotula.-Mayweed, Wild Chamomile.

Origin-A'nthemis (Marúta, De Candolle) Cótula, Linné. Natural order, Compositæ, Anthemiděæ.

Habitat.-Europe, naturalized in North America; in fields and waste places.

Description.-Nearly smooth, pale green; stem ascending, branched, furrowed; leaves sessile, thrice pinnatifid with linear subulate segments; flower-heads terminal with a conical chaffy receptacle, white ligulate neutral rays, yellow perfect disk-florets, and obovoid akenes without pappus; odor unpleasant aromatic; taste bitter, acrid.

Constituents.-Volatile oil, valerianic acid, acrid fat, tannin, anthemidine (?), anthemic acid (crystalline, bitter, soluble in ether).

Properties.-Stimulant, antispasmodic, sudorific. Dose, 2 to 8 grams (3 ss-ij), in infusion.

achillea.-Yarrow, Milforl.

Origin.-Achilléa Millefólium, Linné. Natural order, Compositæ, Anthemideæ.

Habitat.-Northern temperate zone, in fields.
Description.-Erect, hairy ; leaves nearly sessile, lanceolate in outline, glandular beneath, 5 to 25 centimeters (2 to 10 inches) long, thrice pinnatifid, with linear spatulate toothed segments ; flower-heads corymbed, with an oblong imbricate involucre, flat chaffy receptacle, five short white pistillate rays, greenish-white perfect disk-florets, and oblong flat akenes without pappus; odor somewhat chamomile-like; taste bitter aromatic.

Constituents.-Volatile oil 0.1 per cent. (blue or dark green), achilleine, $\mathrm{C}_{20} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{15}$ (amorphous, bitter, soluble in water and alcohol, insoluble in ether), resin, tannin, aconitic acid; ash about 13 per cent.

Properties.-Stimulant, tonic, emmenagogue. Dose, 2 to 4 grams ($388-\mathrm{j}$), in infusion.

Parthenium.-Feverfew.

Origin.-Chrysánthemum (Pyréthrum, Smith; Matricária, Linné) Parthénium, Persoon. Natural order, Compositæ, Anthemideæ.

Habitat.-Europe, cultivated.
Description.-Erect, pubescent; leaves alternate, petiolate, broadly ovate, bipinnatifid, the segments oblong, obtuse, and somewhat toothed; flower-heads in terminal cymes, with a two-rowed involucre, a naked hemispherical receptacle, white
ligulate and obtusely three-toothed rays, and yellow tubular disk-florets ; odor and taste chamomile-like, bitter.

Constituents.-Volatile oil, bitter principle, tannin.
Properties.-Stimulant, tonic. Dose, 1 to 4 grams (gr. $\mathrm{xv}-3 \mathrm{j})$.

TANACETUM.-TANSy.

Origin.-Tanacétum vulgáre, Linné. Natural order, Compositæ, Anthemideæ.

Habitat.-Asia and Europe ; naturalized in North America; cultivated.

Description.-The leaves and flowering tops are collected. Stem erect, striate, smooth ; leaves alternate, nearly sessile, about 15 centimeters (6 inches) long, pinnatifid, the segments oblong, obtuse, sharply serrate or incised, dark green, smooth and glandular; flower-heads corymbose, with an imbricated involucre, a convex naked finely pitted receptacle, numerous yellow tubular florets, those of the ray with a short three-lobed margin, and obovate akenes having a short crown ; odor strongly aromatic; taste pungent and bitter.

Constituents.-Volatile oil $\frac{1}{4}$ per cent. (spec. grav. 0.95 , yellow or green, freely soluble in alcohol), tanacetin (bitter, granular, precipitated by tannin, insoluble in ether), fat, resin, tannin, mucilage, sugar, tartrates, citrates, and malates.

Properties.-Stimulant, tonic, anthelmintic, diuretic, emmenagogue. Dose, 1 to 4 grams (gr. xv-3j), in infusion.

ABSINTHIUM.-WORMWOOD.
Origin.-Artemísia Absínthium, Linne. Natural order, Compositæ, Anthemideæ.

Habitat.-Northern Asia, Europe, and Northern Africa; naturalized in North America; cultivated.

Description.-The leaves and flowering tops are collected. Leaves petiolate, about 5 centimeters (2 inches) long, silkyhoary, roundish-triangular in outline, twice or thrice pinnatifid, the segments lanceolate, the terminal one spatulate; flower-heads numerous, racemose, small, subglobose, with an imbricated bell-shaped involucre, a small hairy convex receptacle, small tubular yellowish florets, and obovoid akenes without pappus ; odor aromatic ; taste very bitter.

Constituents.-Volatile oil about 1 per cent. (spec. grav. 0.92, dark green, becoming brown, freely soluble in alcohol, mainly absinthol, $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}$), absinthin, $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4}$ (bitter glucoside, amorphous, white, soluble in ether, alcohol, and cold water ; with acids yields dextrose, a resinous compound, and a volatile odorous body), tannin, resin, succinic acid, malates, nitrates, ash 7 per cent.

Properties.-Stimulant, tonic, febrifuge, anthelmintic. Dose, 1 to 4 grams (gr. $\mathrm{xv}-3 \mathrm{j}$), in infusion, tincture, or extract.

ARTEMISIA.-Mugwort.

Origin.-Artemísia vulgáris, Linné. Natural order, Compositæ, Anthemideæ.

Habitat.-Asia, Europe, naturalized in North America.
Description.-Stem often reddish, branched; leaves subsessile, green above, white tomentose beneath, pinnatifid, segments lanceolate, acute, incised or entire; flower-heads numerous, small, nearly sessile, ovate, with an imbricated involucre, a small smooth receptacle and tubular reddish florets; odor aromatic ; taste bitter.

Constituents.-Volatile oil, bitter principle, tannin, etc.
Properties.-Stimulant, tonic. Dose, 1 to 4 grams (gr. xvzj), in infusion.

GNAPHALIUM.-Life Everlasting.

Origin.-Gnaphálium polycéphalum, Michaux. Natural order, Compositæ, Inuloideæ.

Habitat.-North America, from the Atlantic region southwestward to Texas and Mexico; in fields and woods.

Description.-Erect, about 25 centimeters (10 inches) high, densely woolly; leaves sessile, lanceolate; flower-heads in dense terminal clusters, small, obovate, with a whitish imbricate involucre and tubular yellowish florets; odor agreeable; taste bitterish, aromatic.

Gnaphálium margaritáceum, Linné, has larger, globularovate, pearl-white heads and a slight odor.

Constituents.-Volatile oil, bitter principle.
Properties.-Diaphoretic, astringent, tonic. Dose, 2 to 4 grams (3 ss-j).

CALENDULA.-Marigold.

Origin.-Caléndula officinális, Linné. Natural order, Compositæ, Calendulaceæ.

Habitat.-Levant and Southern Europe; cultivated.
Deseription.-Stem about 50 centimeters (20 inches) high, somewhat angular, rough, leaves alternate, thickish, after drying thin, hairy, spatulate or oblanceolate, entire or slightly toothed, the upper ones sessile and amplexicaul; involucre hemispherical, receptacle flat, naked; ray-florets in one or several rows, fertile, the akenes incurved and muricate on the back, those of the outer row winged ; odor somewhat narcotic ; taste bitter and saline.

Caléndula arvénsis, Linné, which is frequently cultivated, is rather smaller and more spreading, has light yellow flowers and nearly straight akenes in the outer row, and resembles the former in odor and taste.

Constituents.-A trace of volatile oil, amorphous bitter principle, tasteless yellow calendulin, sugar, gum, etc.

Properties.-Stimulant, resolvent, vulnerary, alterative. Dose, 0.5 to 1 or 2 grams (gr. viij-xv- xxx), in infusion, tincture, or extract.

Carduus benedictus.--Blessed Thistle.

Origin.-Cnícus benedíctus, Gertner (Centauréa benedícta, Linné). Natural order, Compositæ, Cynaroideæ.

Habitat.-Levant and Europe, rare in the United States.

Description.-Erect, somewhat woolly ; leaves sessile above and somewhat decurrent, alternate, lance-oblong, sinuately lobed, soft spiny; flower-heads ovate, about 25 millimeters (1 inch) long, with an imbricate squarrous spinously-pointed involucre, a flat hispid receptacle, tubular yellow florets and grayish akenes, crowned with ten teeth and with ten long and ten short bristles; odor slight, of the fresh herb disagreeable; taste very bitter.

Constituents.-Cnicin (bitter needles, slightly soluble in cold water and ether), tannin, malates, calcium oxalate.

Properties.-Diaphoretic, tonic. Dose, 1 to 4 grams (gr. $\mathrm{xv}-\mathbf{3 j})$.

LOBELIA.-Lobelia, Indian Tobacco.

Origin.-Lobélia infláta, Linné. Natural order, Campanulaceæ, Lobelieæ.

Habitat.-North America, in fields and open woods.
Description.-Erect; leaves alternate, petiolate, the upper sessile, ovate or oblong, about 5 centimeters (2 inches) long, irregularly toothed, pubescent, pale green; branches furrowed, hairy, terminating in long racemes of small pale blue flowers, having a superior narrowly fivetoothed calyx, which is inflated in fruit, a pale blue twolipped corolla, and 5 united stamens; odor slight, irritating; taste mild, afterward burning and acrid.

The leaves and flowering tops should be collected after a portion of the capsules are ripe, and contain a large number of minute reticulate seeds.

Constituents.-Lobeline (white powder, inodorous, soluble in most simple solvents, acrid, the salts not crystalline, freely soluble in water), a second alkaloid (?), inflatin (tasteless crystals, probably wax), lobelacrin (probably lobelate of lobeline), lobelic acid (precipitated by copper sulphate, olive-brown by ferric salts), resin, wax, volatile oil, gum.

Properties.-Expectorant, nervine, purgative, emetic, narcotic. Dose, $0.12,0.5$ to 2 grams (gr. ij-viij-xxx), in powder, infusion, or tincture.

Fig. 179.

Lobelia inflata; branch with flowers and fruit.
Antidotes. - Astringents; stimulants; application of warmth.

Flower of lobelia and section, magnified 5 diam.

Fig. 181.

Lobelia seed.-Highly magnified.

EPIPHEGUS.-BEECHDROP.

Origin.-Epiphégus virginiána, Barton. Natural order, Orobanchaceæ.

Habitat.-North America, west to Wisconsin and Arkansas; parasitic upon roots of the beech.

Description.-Erect, branched, about 40 centimeters (16 inches) high, yellowish brown, tuberous at base, angular above; leaves scaly, ovate; flowers in spicate racemes, the upper sterile ones with a somewhat curved and two-lipped corolla; taste bitter, somewhat astringent.

Constituents.-Bitter principle, tannin.
Properties.-Astringent, depurative. Dose, 2 to 4 grams ($3 s s-\mathrm{j}$).

> SCROPHULARIA.-Figwort.

Origin.-Scrophulária nodósa, Linné. Natural order, Scrophulariaceæ, Cheloneæ.

Habitat.-North America (west to Mississippi, Utah, and Oregon) and Europe ; in moist thickets.

Description.-Erect; smooth; stem obtusely quadrangular; leaves opposite, petiolate, ovate-oblong or lanceolate, serrate, rounded or heart-shaped at base ; inflorescence loosely paniculate; corolla greenish-brown, hemispherical urn-shaped, the five teeth roundish-obtuse, the two upper ones larger and
brown, the lowest one spreading; stamens 4 , short, the fifth sterile ; capsule two-celled, many-seeded; taste bitter, nauseous.

$$
\text { Fig. } 182 .
$$

Scrophularia; tlower and corolla cut open.
Constituents.-Scrophularin (crystalline scales, bitter, precipitated by tannin), alkaloid (from the root in minute quantity), scrophularosmin (stearopten), tannin, gum, pectin, resin, starch, salts.

Properties.-Depurative, vulnerary.
CHELONE.-BALMONY.

Origin.-Chelóne glábra, Linné. Natural order, Scrophulariaceæ, Cheloneæ.

Habitat.-North America, west to Minnesota and Texas; in wet places.

Description.-Erect, smooth ; leaves short-petiolate, opposite, oblong-lanceolate, pointed, serrate; inflorescence spicate, terminal ; corolla about 3 centimeters ($1 \frac{1}{5}$ inches) long, white or pinkish, bilabiate, the upper lip arched, the mouth somewhat gaping; capsule two-celled; seeds many, winged; inodorous, bitter.

Constituents.-Bitter principle.
Properties.-Tonic, laxative, anthelmintic. Dose, 2 to 8 grams ($3 \mathrm{ss}-\mathrm{ij}$), in decoction.

MENTHA PIPERITA.-Peppermint.

Origin.-Méntha piperíta, Linné. Natural order, Labiatæ, Satureineæ.

Habitat.-Wild in Asia, Europe, and North America; cultivated.

Description.-The leaves and tops are collected. Leaves
petiolate, ovate-lanceolate, about 5 centimeters (2 inches) long, acute, sharply serrate, glandular, nearly smooth; branches quadrangular, often purplish ; flowers in terminal conical spikes, with a tubular, five-toothed, often purplish calyx, a purplish four-lobed corolla, and 4 short stamens; aromatic ; taste pungent and cooling.

$$
\text { FIG. } 183 .
$$

Mentha piperita, Linné, fluwering tops.
Constituents.-V olatile oil about 1 per cent., little tannin, resin, gum, etc. The volatile oil has the spec. grav. 0.91, is freely soluble in alcohol, and consists of little terpene (boiling at $160^{\circ} \mathrm{C}$.), of liquid $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}$, and of crystalline menthol, $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}$.

Properties.-Carminative, stimulant, nervine, stronger than spearmint. Dose, 1 to 4 grams (gr. xv-3j), in infusion.

MENTHA VIRIDIS.-Spearmint.

Origin.-Méntha víridis, Linné. Natural order, Labiatæ, Satureineæ.

Habitat.-Wild in Europe and North America; cultivated.

Description.-The leaves and flowering tops are collected. Leaves subsessile, lance-ovate, about 5 centimeters (2 inches) long, acute, serrate, glandular, nearly smooth; branches quadrangular, mostly light green ; flowers in terminal, interrupted, narrow, acute spikes, with a tubular sharply five-toothed calyx, a light purplish four-lobed corolla, and 4 exserted or included stamens; aromatic and pungent.

Fig. 184.

Mentha viridis, Linné, flowering tops.

Fig. 185.

Spearmint leaf, natural size.

Constituents.-Volatile oil about $\frac{1}{2}$ per cent., resin, gum, etc. The volatile oil has the spec. grav. 0.91 , is freely soluble in alcohol, and consists of $\mathrm{C}_{10} \mathrm{H}_{16}$ (boiling-point $160^{\circ} \mathrm{C}$.), and of carvol, $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}$.

Properties.-Carminative, stimulant, nervine. Dose, 2 to 4 grams (3 ss-j), in infusion.

LYCOPUS.-Bugle.

Origin.-Ly'copus (Lycópus) virgínicus, Linné. Natural order, Labiatæ, Satureineæ.

Habitat.-North America, south to Florida and Missouri, and west to Oregon ; in moist shady places.

Description.-Stem obtusely quadrangular, with slender runners; leaves about 5 centimeters (2 inches) long, shortpetioled, elliptic-lanceolate, toothed above, smooth; flowers in axillary clusters, small, with a bluntly four-toothed calyx, a purplish four-lobed corolla, and two fertile stamens; odor somewhat mint-like; taste bitter.

Ly'copus sinuátus, Elliotl, alsoindigenous to North America, and extending across the continent, has a sharply quadrangular stem, the leaves sinuate-toothed or pinnatifid at the base, and a sharply five-toothed calyx. It is closely related to L. europæ'us, Linné.

Constituents.-Volatile oil, bitter principle, tannin.
Properties.-Astringent, tonic, sedative. Dose, 0.5 to 2 grams (gr. viij-xxx), in infusion.

CUNILA.-Dittany.

Origin.- Cuníla Mariána, Linné. Natural order, Labiatæ, Satureineæ.

Habitat.-United States, south to Georgia and Arkansas; in dry soil.

Description.-Stem thin; leaves nearly sessile, about 25 millimeters (1 inch) long, ovate, serrate, subcordate ; flowers in small cymes, with an ovate-tubular calyx, a two-lipped, pale purple corolla, and 2 exserted stamens ; odor mint-like; taste pungent aromatic.

Constituents.-Volatile oil.
Properties.-Carminative, stimulant, sudorific. Dose, 1 to 4 grams (gr. xv-3j), in infusion.

HYSSOPUS.-Hyssop.

Origin.-Hyssópus officinális, Linné. Natural order, Labiatæ, Satureineæ.

Habitat.-Southern Europe; naturalized in the United States; cultivated.

Description.-Stem branched, wand-like; leaves sessile, about 25 millimeters (1 inch) long, linear-lanceolate, rather obtuse ; flowers in small clusters, with a five-toothed calyx, a two lipped, purple corolla, and 4 exserted didynamous stamens; aromatic, pungent, bitterish.

Constituents.-Volatile oil about $\frac{1}{2}$ per cent., bitter principle, tannin, etc.

Properties.-Carminative, stimulant, sudorific. Dose, 1 to 4 grams (gr. $\mathrm{xv}-\mathrm{zj}$), in infusion.

ORIGanUM.-Wild Marjoram.

Origin.-Oríganum vulgáre, Linné. Natural order, Labiate, Satureineæ.

Habitat.-Asia, Europe, and Northern Africa ; naturalized in North America in some of the Atlantic States.

Description.-Stem roundish, purplish, short-hairy, branched above; leaves petiolate, about 2 centimeters ($\frac{4}{5}$ inch) long, roundish-ovate, obtuse, nearly entire, hairy

$$
\text { Fig. } 186 .
$$

Origanum vulgare; flower and corolla, magnified.
beneath ; flowers corymbose, with reddish bracts, a fivetoothed calyx, a somewhat two-lipped, pale-purple corolla, and 4 exserted didynamous stamens; aromatic, pungent, bitterish.

Constituents.-Volatile oil about 1 per cent. (spec. grav. 0.89 , light yellow, neutral, bitterish, not freely soluble in

80 per cent. alcohol, contains oxygen), tannin, bitter principle, resin.

Properties. - Carminative, stimulant, emmenagogue. Dose, 1 to 4 grams (gr. xv- $\overline{\mathrm{j}}$), in infusion.
MAJORANA.-Sweet Majoram.

Origin.- Oríganum Majorána, Linné. Natural order, Labiate, Satureinex.

Habitat.-Asia Minor and Southern Europe ; cultivated.
Description.-Stem branched, subterete; leavessessile above, about 15 millimeters ($\frac{3}{5}$ inch) leng, spatulate or obovate, obtuse, entire, gray-green, soft hairy ; flowers in clusters, spicate, with a two-lipped calyx, a whitish, somewhat twolipped corolla, and 4 exserted didynamous stamens; fragrantly aromatic and pungent.

Constituents.-Volatile oil (spec. grav. 0.89 , readily soluble in alcohol.)

Properties.-Carminative, stimulant, emmenagogue, cephalic. Dose, 1 to 4 grams (gr. $\mathrm{xx}-3 \mathrm{j}$), in infusion.

SERPYLLUM.-Wild Thyme.

Origin. - Thy'mus Serpy'llum, Linné. Natural order, Labiatæ, Satureineæ.

Habitat.-Northern Asia, Europe ; naturalized in North America; cultivated.

Description. - Stem branched, pubescent; leaves shortpetioled, about 6 millimeters (\ddagger inch) long, ovate, obtuse, entire; flowers in small capitate spikes, with a two-lipped calyx, a purplish-spotted, somewhat two-lipped corolla, and four usually short stamens; aromatic and pungent.

Constituents.-Volatile oil, (about 0.5 per cent., spec. grav. 0.91 , readily soluble in alcohol), tannin, bitter principle.

Properties.-Carminative, stimulant, tonic, emmenagogue. Dose, 1 to 4 grams (gr. gr. $\mathrm{xv}-3 \mathrm{j}$), in infusion.

MELISSA.-BALM.
Origin.-Melíssa officinális, Linne. Natural order, Labiatæ, Satureineæ.

Habitat.-Asia Minor, Southern Europe; naturalized in the United States; cultivated.

Description.-Stem branched, pubescent; leaves petiolate, ovate, about 5 centimeters (2 inches) long, obtuse or somewhat acute, crenate-serrate, the base rounded or rather heart-shaped, somewhat hairy, glandular ; branches quad-

Fig. 187.

Melissa.-Flower and corolla magnified.
rangular; flowers in about four-flowered cymules, with a tubular bell-shaped five-toothed calyx, a whitish or purplish two-lipped corolla, and four didynamous stamens; fragrant, aromatic, and bitterish.

Constituents.-Volatile oil $\frac{1}{4}$ per cent. (spec. grav. 0.89, soluble in alcohol), tannin, bitter principle.

Properties.-Carminative, stimulant, diaphoretic, emmenagogue. Dose, 1 to 4 grams (gr. xv- -j), in infusion.

hedeoma.-Pennyroyal.

Origin.-Hedeóma pulegioídes, Persoon. Natural order, Labiatæ, Satureineæ.
Habitat.-North America, south to Georgia and west to Dakota; in sandy fields.

Description.-Stem subterete, hairy ; leaves opposite, short-petioled, about 12 millimeters ($\frac{1}{2}$ inch) long, oblongovate, obscurely serrate, glandular beneath; flowers in small roundish axillary cymules, with a tubular-ovoid,
two-lipped and five-toothed calyx, and a small pale-blue, pubescent, two-lipped corolla, containing two sterile and

Fig. 188.

Flower and corolla of hedeoma, magnified.
two fertile exserted stamens; odor strong, mint-like ; taste warm and pungent.

Constituents.-Volatile oil, spec. grav. 0.94, readily soluble in alcohol, containing formic, acetic, and isoheptoic ethers, and hedeomol in two modifications (Kremers, 1887).

Properties. - Carminative, stimulant, emmenagogue. Dose, 1 to 4 grams (gr. xv- 3 j), in infusion.

MONARDA.-Horsemint.

Origin.-Monárda punctáta, Linné. Natural order, Labiatæ, Monardeæ.

Habitat.-United States, west to Texas and Colorado; in sandy fields.

Description.-Stem nearly simple; leaves petiolate, lanceolate, about 5 centimeters (2 inches) long, acute, somewhat toothed, glandular, nearly smooth; flowers whorled, with sessile yellow and purple bracts, a tubular, downy, five-toothed calyx, a prominent, two-lipped, pale yellow
and purple-spotted corolla, and two stamens ; aromatic, pungent, and bitterish.

Constituents.-Volatile oil, yellowish or reddish-brown, neutral, spec. grav. 0.92 , readily soluble in alcohol. It

Fig. 189.

Flower of monarda, magnified.
contains about 50 per cent. $\mathrm{C}_{10} \mathrm{H}_{16}, 24$ per cent. thymol, the alcohol $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}$, and its formic, acetic, and butyric ethers.

Properties.-Carminative, stimulant, nervine, emmenagogue. Dose, 1 to 4 grams (gr. $\mathrm{xv}-3 \mathrm{j}$), in infusion.

CATARIA.-CATnep.

Origin.-Népeta Catária, Linné. Natural order, Labiatæ, Nepeteæ.

Habitat.-Asia, Europe, naturalized in the United States.
Deseription.-Stem branched, hairy, gray; leaves petiolate, about 5 centimeters (2 inches) long, triangular-ovate, cordate, crenate-serrate, grayish-green, and hairy ; flowers in terminal panicles with an obliquely five-toothed calyx, a two-lipped, whitish, purple-spotted corolla, and 4 didynamous stamens; it has a peculiar, somewhat mint-like odor, and a bitterish, aromatic, and pungent taste.

Constituents.-Little volatile oil, tannin (?), bitter principle
(crystalline, soluble in ether, acid reaction, not a glucoside), sugar, gum, ash 12.5 per cent.

Properties.-Carminative, stimulant, tonic, diaphoretic, emmenagogue. Dose, 1 to 4 grams (gr. $\mathrm{xv}-\mathrm{zj}$), in infusion.

GLECHOMA.-Ground-Ivy.

Origin.-Népeta Glechóma, Bentham (Glechóma hederácea, Linné). Natural order, Labiatæ, Nepeteæ.

Habitat.-Europe, naturalized in the United States.
Description.-Creeping, short-hairy ; leaves petiolate, roundreniform, crenate, nearly smooth; flowers in axillary cymules ; corolla blue or purplish, much longer than the calyx ; somewhat aromatic and bitter.

Constituents - Volatile oil, bitter principle, etc.
Properlies.-Pectoral, tonic, diuretic. Dose, 2 to 4 grams ($3 \mathrm{ss}-\mathrm{j}$).

MARRUBIUM.-Horehound.

Origin.-Marrúbium vulgáre, Linné. Natural order, Labiatæ, Stachydeæ.

Habitat.-Europe, Central Asia ; naturalized in North America; cultivated.

Description.-Stem branched, white tomentose; leaves opposite, petiolate, roundish-ovate, about 25 millimeters (1 inch) long, obtuse, coarsely crenate, downy above, white hairy beneath; flowers in dense axillary woolly whorls, with a stiffly ten-toothed calyx, a whitish bilabiate corolla and four included stamens; aromatic and bitter.

Constituents.-Little volatile oil, marrubiin, resin, fat, wax, tannin, sugar, gum, albumin, salts. Marrubiin has a bitter taste, is possibly a glucoside, crystallizes in scales or prisms, is soluble in ether, alcohol, chloroform, and hot water, insoluble in benzin, and not precipitated by tannin or salts of metals.

Properties.-Stimulant, tonic, resolvent, deobstruent, anthelmintic. Dose, 1 to 2 grams (gr. $\mathrm{xv}-\mathrm{xxx}$), in infusion.

SCUTELLARIA.-Skullcap.

Origin.-Scutellária lateriffóra, Linné. Natural order, Labiatæ, Stachydeæ.

Habitat.-North America, west to Alabama, New Mexico and Oregon ; in damp thickets.

Description.-Stem about 50 centimeters (20 inches) high, smooth, branched ; leaves opposite, about 5 centimeters (2 inches) long, petiolate, lance-ovate or ovate-oblong, serrate; flowers in axillary one-sided racemes; corolla pale blue; stamens 4, didynamous ; calyx closed in fruit, upper lip helmet-shaped ; odor slight; taste bitterish.

The following species having a more decidedly bitter taste are sometimes collected; they are indigenous to North America, and have a nearly simple stem and blue flowers :

Sc. integrifólia, Linné. Minutely hairy; leaves shortpetioled, lance-oblong or linear-oblong, entire ; racemes terminal.

Sc. pilósa, Michaux. Hairy; leaves petiolate, rhombicovate or oblong-ovate, obtuse, crenate, in distant pairs; racemes terminal.

Sc. galericuláta, Linné. Nearly smooth; leaves shortpetioled, lance-ovate, slightly cordate, crenately serrate; flowers axillary, single.

Constituents.-Bitter principle (crystalline glucoside, soluble in ether), tannin (?), volatile oil (trace), sugar, ash 14 per cent.

Properties.-Tonic, nervine, antispasmodic. Dose, 2 to 4 or 8 grams (3 ss-j-ij), in infusion or fluid extract.

LEONURUS.-MOTHERWORT.

Origin.-Leonúrus Cardíaca, Linné. Natural order, Labiate, Stachydex.

Habitat.-Europe and Asia, naturalized in North America; in waste places.

Description.-Erect, roughish ; leaves petiolate, the lower ones roundish or heart-shaped, the upper ones oblong wedgeshaped, all palmately acutely seven to three-lobed; flowers in dense axillary cymules; calyx spinously five-toothed; corolla exserted, rose-colored, upper lip bearded, lower lip dotted ; stamens 4, didynamous; odor unpleasant ; taste bitter.

Constituents.-Volatile oil, bitter principle.
Properties.-Pectoral, tonic, stimulant. Dose, 2 to 4 grams (${ }^{s 8}$ - j), in infusion.

Plantago.-Plantain.

Origin.-Plantágo lanceoláta and P. májor, Linné. Natural order, Plantaginaceæ.

Habitat.-North America, along roadsides and in grassy places; introduced from Europe; the second species also indigenous in the Northwestern States.

Description.-Leaves all radical, petiolate, nerved, somewhat toothed, more or less hairy, lanceolate, or of the second species ovate or elliptic; scape with a dense ovate-oblong or, in the second species, cylindrical spike; corolla whitish, membranous, salver-form, four-lobed; stamens 4, exserted; capsule few seeded; inodorous; somewhat bitter and astringent.

Pl. Rugélii, Decaisne, indigenous westward to Texas and Minnesota, closely resembles the broad-leaved plantain, but has a long and narrow spike of flowers.

Constituents.-Bitter principle, resin, wax, pectin, citrates, oxalates, ash 12 per cent.

Properties.-Mild astringent, hemostatic; the seeds demulcent.

> Mitchella.-Squaw Vine.

Origin.-Mitehélla répens, Linné. Natural order, Rubiaceæ, Anthospermer.

Habitat.-North America, west to Mississippi; in dry woods.

Description.-Evergreen, slender, creeping; leaves opposite, petiolate, roundish-ovate, entire, smooth; flowers in pairs; corolla salver-form, four-lobed, white or pink, bearded inside, fragrant; fruit a twin-berry, bright-red, four-seeded ; taste somewhat astringent and bitter.

Constituents.-Saponin-like compound, principle precipitated by tannin and picric acid, wax, resin, gum, sugar, albuminoids, ash 5.5 per cent.

Properties.-Tonic, astringent, diuretic. Dose, 2 to 4 grams ($388-\mathrm{j}$).

GALIUM.-Cleavers.

Origin.-Gálium Aparíne, Linné. Natural order, Rubiaсеæ, Galieæ.

Habitat.-Northern Hemisphere, in thickets.
Description. - Stem weak, climbing, quadrangular, retrorsely prickly; leaves in whorls of 6 or 8 , linear-oblanceolate, mucronate, margin and midrib rough; cymes loose and few flowered; corolla small, white, rotate, four-lobed; stamens 4 ; fruit two-seeded, covered with hooked bristles ; inodorous ; taste saline, somewhat astringent and bitter.

Gálium triflórum, Michaux, has whorls of 6 elliptic-lanceolate and cuspidate leaves, and becomes fragrant from coumarin on drying; it grows in most parts of North America, in woodlands.

Constituents.-Tannin, various salts.
Properties.-Diuretic, refrigerant. Dose, 2 to 4 grams ($388-\mathrm{j}$), in infusion.

SABBATIA.-Sabbatia, Centaury.

Origin.-Sabbátia anguláris, Pursh, and S. paniculáta, Pursh. Natural order, Gentianeæ, Chironieæ.

Habitat.-United States, in dry fields.
Descriptions.-Stem branched above, winged, quadrangular, about 60 centimeters (2 feet) high, smooth; leaves opposite, about 25 millimeters (1 inch) long, clasping, oblong-ovate, acute, entire, five-nerved, or (Sab. paniculata) linear-oblong, obtuse, and one nerved ; corolla mostly rose-colored (S. paniculata whitish), wheel-shaped and five-parted; stamens 5 ; inodorous, bitter.

Sabbátia Ellíttii, Steudel, quinine-flower, has leaves about 12 millimeters ($\frac{1}{2}$ inch) long, varying between obovate and linear.

Erythre'a Centat́rium, Persoon. European centaury. Stem 30 centimeters (12 inches) high, leaves oval or ovateoblong, obtuse, three- to five-nerved; otherwise resembling the preceding.

Constituents.-Bitter principle, erythrocentaurin, $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{O}_{8}$
(tasteless crystals, colored red by light; readily soluble in benzol, carbon disulphide, chloroform, alcohol and boiling water, less freely in ether; not precipitated by tannin). The bitter principle of European centaury (Lendrich's erythrocentaurin, 1892) is an amorphous glucoside, readily soluble in alcohol and hot water, less so in ether, precipitated by tannin and other alkaloid reagents, splits into a tasteless fermentable sugar and aromatic oil.

Properties.-Tonic, febrifuge. Dose, 1 to 4 grams (gr xv3 j), in decoction.

CHIRATA.-Chiretta.

Origin.-Swértia Chiráta, Wallich (Ophélia Chiráta, Grisebach, s. Agathótes Chiráyta, Don). Natural order, Gentianeæ, Swertieæ.

Habitat.-Mountains of Northern India.
Description.-Root nearly simple, about 75 millimeters (3 inches) long ; stem branched, nearly 1 meter (40 inches) long, slightly quadrangular above, with a narrow wood circle and thick pith ; leaves opposite, sessile, ovate, entire, five-nerved; flowers numerous, small, with a four-lobed calyx and corolla; the whole plant smooth, pale brown, inodorous, and intensely bitter.

Constituents. - Ophelic acid, $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{10}$ (bitter, amorphous, viscid, soluble in water, alcohol, and ether, not precipitated by tannin), chiratin, $\mathrm{C}_{26} \mathrm{H}_{48} \mathrm{O}_{15}$ (bitter, erystalline, yellow, soluble in ether, alcohol and warm water, precipitated by tannin, glucoside); ash of leaves 7-8 per cent., of stem about 4 per cent.

Properties.-Tonic, febrifuge. Dose, 1 to 3 grams (gr. xy -xlv), in infusion.

Substitution.-Swértia angustifólia, Wallich, s. Ophélia angustifólia, Don, has the entire stem quadrangular and somewhat winged, and a less bitter taste; pith thin and often wanting.

Cannabis indica.-Indian Hemp, Gunja.

Origin.-Cánnabis satíva, Linné. Natural order, Urtiсасеж, Cannabineæ.

Habitat.-Asia, collected in India.
Deseription.-Only the flowering tops of the female plant are collected. About 5 centimeters (2 inches) long, compressed, brittle, branching, with few digitate leaves and lance-linear leaflets, and numerous sheathing and pointed bracts, each containing two small pistillate flowers, sometimes with the nearly ripe fruit, the whole more or less agglutinated with a resinous exudation; it has a brownishgreen color, a peculiar narcotic odor, and a slightly acrid taste.

Cinnabis americína.-The hemp plant grown in the Southern United States. Stem 2 or 3 meters (6 to 10 feet) high, rough ; leaves alternate above, petiolate, digitate, the leaflets linear-lanceolate, serrate; staminate flowers in loose pedunculate clusters, forming compound racemes; pistillate flowers small, mostly in pairs, axillary, sessile, bracteate and with two slender unequal styles ; odor somewhat heavy ; taste bitterish, slightly acrid.

Constituents.-Little volatile oil (mainly $\mathrm{C}_{10} \mathrm{H}_{16}$), brown amorphous resin, about 15 to 20 per cent., cinnabinon (soft resin), choline. Choline (bilineurine), $\mathrm{C}_{5} \mathrm{H}_{15} \mathrm{NO}_{2}$, is syrupy, freely soluble in water and alcohol, and yields with Mayer's solution a yellow crystalline precipitate ; it is contained in Hay's tetanocannabine, and with alkalies gives trimethylamine (Siebold's cannabinine) (E. Jahns, 1887.) American hemp contains a small proportion of resin.

Properties.-Anodyne, nervine, sudorific. Dose, 0.5 to 1 gram (gr. viij-xv), mostly as extract, 0.03 to 020 gram (gr. ss-iij).

8. LEAFY TOPS.-CACUMINA, SUMMITATES.

Among the herbs are included the tops of plants which are usually collected with flowers. The present division embraces a few drugs having imbricated leaves, and collected occasionally with the fruit, but never with the flowers. The plants yielding these drugs are trees of the natural order Coniferæ, group Cupressineæ.

Twigs quadrangular, oil-gland near the base of the Juniperus
leaves.
the leaves with an oil-gland on the back.
Twigs two-edged, the flat leaves with a gland on the back.
virginiana.
Sabina.
Thuja.

JUNIPERUS VIRGINIANA.-Red Cedar.

Origin.-Juníperus virginiána, Linné. Natural order, Coniferæ, Cupressineæ.

Habitat.-North America, excepting Western Texas, California, and Oregon.

Description.-The commercial branchlets are about 25 millimeters (1 inch) long, somewhat quadrangular; leaves in four rows, opposite, scale-like, about 2 millimeters ($\frac{1}{12}$ inch) long, appressed, imbricated, lance-ovate or rhomboid, acute, the older ones much longer, sharply acute and spreading, on the back with a longitudinal furrow and near its base a circular or oblong gland; odor terebinthinate; taste balsamic, bitterish, and acrid. Peduncle of the galbulus (berry) erect.

Constituents. - Volatile oil (not readily soluble in alcohol), resin, tannin, etc. The volatile oil distilled from the wood consists mainly of cedrene, $\mathrm{C}_{15} \mathrm{H}_{24}$, with some camphor, $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}$.

Properties.-Diuretic, emmenagogue, vermifuge, less irritant than savine. Dose, 0.2 to 0.5 or 1 gram (gr. iij-viijxv), in powder or infusion.

SABINA.-Savine.

Origin.-Juníperus Sabína, Linné. Natural order, Coniferæ, Cupressineæ.

Habitat. - Siberia, Europe, Canada, and Northern United States.

Description.-Short, thin, subquadrangular branchlets; leaves in four rows, opposite, scale-like, about 2 millimeters ($\frac{1}{12}$ inch) long, appressed, imbricated, rhombic-lanceolate, the older ones longer, sharply acute and spreading,

Sabina.
on the back with a shallow groove containing an oblong or roundish gland; odor terebinthinate ; taste nauseous, resinous, and bitter. Galbulus (berry) if present, upon a recurved peduncle.

Constituents.-Volatile oil, chiefly $\mathrm{C}_{10} \mathrm{H}_{16}$, about 2 per cent., resin, tannin. The volatile oil, $\mathrm{C}_{10} \mathrm{H}_{16}$, is of spec.
grav. 0.91, not readily soluble in alcohol, and boils near $160^{\circ} \mathrm{C} .\left(320^{\circ} \mathrm{F}\right.$.), the boiling-point rising to over $200^{\circ} \mathrm{C}$.

Properties.- Irritant, diuretic, hæmagogue, emmenagogue, vermifuge. Dose, 0.2 to 0.5 or 1 gram (gr. iij-viijxv), in powder, infusion, or fluid extract.

THUJA.-Arbor Vite.

Origin.-Thúja occidentális, Linné. Natural order, Coniferæ, Cupressineæ.

Habitat.-Canada and United States south to Nerth Carolina and west to Minnesota; also cultivated for ornament.

Description.-Twigs flattish, two-edged, pale green on the lower side, the scale-like leaves appressed in four rows, rhombic-ovate, obtusely pointed, the flat ones about 5 mil limeters ($\frac{1}{5}$ inch) long, elosely imbricate, and with a roundish gland near the apex; the others folded lengthwise, boat-shaped, about 4 millimeters ($\frac{1}{6}$ inch) long, and mostly glandless; odor balsamic, somewhat terebinthinate; taste pungently aromatic, camphoraceous, and bitter.

Chamæcy'paris sphæroídea, Spach (Cupréssus thyoídes, Linné); like the preceding plant, often called white cedar, grows southward to Florida and Mississippi. The twigs resemble those of thuja, but are more slender, less flattened; the leaves are 1.5 to 2 millimeters $\left(\frac{1}{16}-\frac{1}{12}\right.$ inch $)$ long, and the flat leaves have a longitudinal groove on the back.

Constituents.-Volatile oil about 1 per cent. (readily soluble in alcohol, contains O), resin, tannin, pinipicrin, $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}_{11}$ (yellow, bitter, soluble in water and alcohol, insoluble in ether; glucoside, yields ericinol), thujin, $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{12}$ (yellow, crystalline, astringent, dark green with ferric
salts; soluble in alcohol and water, glucoside, precipitated by lead acetate), thujigenin, $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{7}$ (precipitated by basic lead acetate, the alcohol solution green with NH_{3}).

Properties.-Stimulant, diuretic, irritant. Dose, 1 to 4 grams (gr. xv-zj), in infusion and fluid extract.

9. FLOWERS AND PETALS.-FLORES ET PETALA.

Flowers contain the male or female, or both kinds, organs of reproduction, surrounded by two circles of modified leaves, of which those of the inner circle, the petals forming the corolla, very generally have a color differing from green, while those of the outer circle, the sepals forming the calyx, mostly have a green color. The modified leaves of these two whorls are sometimes of the same shape and color, or one of the whorls is entirely wanting; in both these cases they, whether green or of a different color, are called perianth or perigone. The flowers of some plants are placed close together upon a common receptacle, and such a head -is surrounded by one or more whorls of modified, frequently scale-like leaves called the involucre, a term which is also employed to designate the whorl of modified leaves found outside of the calyx of each flower in certain plants. The male organs of reproduction, or stamens, consist each of a filament which is usually thin and filiform, and bears at its apex the mostly two-celled anther; in the cells of the latter the pollen is contained. The female organ of reproduction consists of one or more ovules inclosed by one or more carpels (modified leaves) forming the ovary, and frequently prolonged above into a style bearing the stigma. In the absence of the style, the stigma is attached to the ovary, and is said to be sessile.

The shortened axis upon which the organs of reproduction are attached is the torus, also called the receptacle. The footstalk of a flower is called the peduncle, and its branches, the pedicels.

Classiflcation.

I. Buds, unexpanded flowers.

Calyx superior, four-cleft.
Small heads with an imbricated involucre.
Caryophyllus.
Santonica.
II. Expanded flowers and petals.

1. Petals distinct ; corolla polypetalous.

Calyx inferior, corolla white, ovary one
Inflorescence cymose ; the peduncle partly united with a leafy bract.

Aurantium.

Inflorescence paniculate; sepals 5 , reddish; petals small.
Petals numerous, clawed, rose-colored. deep red.
Petals short-clawed, dull purple, with a black spot.

Rhœeas.
Petal with the claws attached to the column of filaments; involucre six-cleft. involucre three-leaved.

Althra rosea. Malva.
2. Petals united; corolla gamopetalous.

Flowers compound, rays white ; receptacle conical, hollow ; pappus none

Matricaria.
rays white, in many rows; receptacle conical, not hollow ; pappus a short crown.

Anthemis.
rays whitish or rose-colored, receptacle convex ; pappus a short crown. rays yellow ; pappus bristly. akenes curved, pappus none.
Florets tubular, five-lobed, brownish red.
Flowers not compound ; corolla whitish, wheelshaped, five-lobed.
corolla wheel-shaped, five-lobed, yellow. corolla blue, two-lipped; calyx blue-gray, fivetoothed.

Pyrethri flores.
Arnica.
Calendula.
Carthamus.
Sambucus.
Verbascum.
Lavandula.

CARYOPHYLLUS.-Cloves.

Origin.-Eugénia caryophylláta, Thunberg (Caryophy'llus aromáticus, Linné). Natural order, Myrtaceæ, Myrtex.

Habitat.-Molucca Islands ; cultivated in tropical countries.

Description.-About 15 millimeters ($\frac{3}{5}$ inch) long, dark brown, consisting of a subcylindrical, solid, and glandnlar calyx-tube, 3 or 4 millimeters ($\frac{1}{8}$ or $\frac{1}{6}$ inch) thick, and containing near its apex the two-celled, several-ovuled ovary, and terminated by four obtuse teeth; it is surmounted by a globular head, formed by four glandular

petals, which cover numerous curved stamens and one style, the latter situated in the centre, and the former near the base of an elevated disk. Cloves contain numerous oil-glands under the epidermis, emit oil when scratched, and have a strong aromatic odor and a pungent, spicy taste.

Constituents.-Volatile oil 18 per cent., tannin 13 per cent., gum 13 per cent., resin 6 per cent. (tasteless), wax, caryophyllin, $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}$ (white, tasteless needles, blood-red with sulphuric acid), eugenin, $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}$ (pearly scales from distillate, colored red by nitric acid). The volatile oil is readily soluble in alcohol, and consists of a sesquiterpene, $\mathrm{C}_{15} \mathrm{H}_{24}$, spec. grav. 0.91, and eugenol or eugenic acid, $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}$, a colorless oil, spec. grav. 1.076, the solution blue with ferric chloride, by permanganate oxidized to vanillic acid.

Properties.-Stimulant, stomachic, antiemetic. Dose, 0.2 to 0.5 gram (gr. iij-viij), in powder ; mostly used as a condiment.

SANTONICA.-Santonica, Levant Wormseed.

Origin.-Artemísia marítima, Linné, var. Stechmanniána, Besser. Natural order, Compositæ, Anthemideæ.

Habitat.-Turkestan.
Description.-Unexpanded flower-heads, oblong-ovoid, about 2 or 3 millimeters ($\frac{1}{12}-\frac{1}{8}$ inch) long, obtuse, smooth,

FIG. 193.

Santonica.-Head and longitudinal section, magnified 10 diam.
somewhat glossy, grayish-green, after exposure to light brownish-green, with an involucre of about 18 imbricated ovate or oblong glandular scales, inclosing 4 or 5 rudimen-
tary florets ; odor strong, peculiar, somewhat camphoraceous; taste aromatic and bitter.

Constituents.-Volatile oil 2 per cent. (consists mainly of cineol, $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}$, agitated with iodine solution yields greenish crystals of $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{OI}_{2}$), santonin $1 \frac{1}{2}-2$ per cent., resin, gum, etc. Santonin, $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{3}$, is white crystalline, soluble in chloroform, alcohol, and ether, sparingly soluble in water, colored yellow in sunlight, and forms with alkalies bitter soluble compounds. Cold nitric acid dissolves it without color; the colorless solution in sulphuric acid gradually turns red, and with ferric chloride becomes violet-colored. Santonin has been adulterated with boric acid, salicin, and strychnine.

Properties.-Stimulant, anthelmintic. Dose, 1 to 4 grams (gr. xv-3j), in powder, or electuary ; santonin, 0.016 to 0.06 gram (gr. $\frac{1}{4}-\mathrm{j}$), in powder or troches.

aURANTII FLORES.-Orange Flowers.

Origin.-Cítrus vulgáris and Cítrus Aurántium, Risso. Natural order, Rutaceæ, Aurantieæ.

Habitat.-Northern India; cultivated in subtropical countries.

Fig. 194.

Orange flowers, natural size; unexpanded, petals removed, and section.
Description.-The partly expanded flowers are collected and mostly used in the fresh state. About 15 millimeters (3 $\frac{3}{5}$ inch) long ; calyx small, cup-shaped, five-toothed ; petals 5 , oblong, obtuse, rather fleshy, white, and glandular punc-
tate; stamens numerous with the filaments united near the base, in about three sets; ovary globular, about tencelled, situated upon a small disk, with a cylindrical style and globular stigma; odor very fragrant ; taste aromatic, somewhat bitter. Dried flowers are brownish.

When it is desirable to keep fresh orange flowers for some time, they may be preserved by being well mixed with half their weight of chloride of sodium.

Constituents.-Volatile oil (spec. grav. 0.89, fluorescent with alcohol), mucilage, bitter extractive.

Properties.-Stimulant, antispasmodic ; used for preparing orange-flower water.

Tilita.-Linden Flowers.

Origin.-Tília americána, Linné, and T. heterophy'lla, Ventenat. Natural order, Tiliaceæ, Tilieæ.

Habitat.-North America, west to Manitoba and Texas.
Description.-Cymes varying between about seven- and thirty-flowered, the long peduncle partly united to an oblonglanceolate bract, which is about 75 millimeters (3 inches) long, and 10 millimeters ($\frac{2}{5}$ inch) wide; calyx five-parted; petals 5 , yellowish, notched at the base with a large scale; stamens numerous, hypogynous, in 5 groups united with the petaloid scales ; ovary five-celled; stigma five-lobed; odor agreeable, taste sweet, mucilaginous.

Tília ulmifólia, Scopoli, indigenous to Europe, cultivated in the United States, has about seven-flowered cymes and the petals without scales. The cymes of T. platyphy'lla, Scopoli, are mostly three-flowered.

Constituents.-Volatile oil, mucilage, sugar, tannin.
Properties.-Diaphoretic, stimulant, lenitive. Dose, 1 to 2 grams (gr. xy-xxx).

BRAYERA.-Koosso.

Origin.-Brayéra anthelmíntica, Kunth (Hagénia abyssínica, Willdenow). Natural order, Rosaceæ, Poterieæ.

Habitat.-Abyssinia.

Description.-The female inflorescence is collected. In rolls, or compressed bundles, consisting of hairy and glandular panicles about 25 centimeters (10 inches) long, with a sheathing bract at the base of each branch; the two roundish bracts at the base of each flower and the five

Fig. 195.

Brayera anthelmintica, Kunth.-A. Branch of panicle. B. Staminate flower, and C. pistillate flower, magnified 4 diam.
obovate outer sepals are of a reddish color, membranous, and veiny ; flowers about 6 millimeters ($\frac{1}{4} \mathrm{inch}$) broad; calyx top-shaped, hairy, inclosing one or two ovate-
oblong and pointed carpels or nutlets ; odor slight tea-like ; taste bitter and nauseous.

Constituents.-Tannin 24 per cent., bitter acrid resin $6 \frac{1}{4}$ per cent., tasteless resin, little volatile oil, ash about 5 per cent. Kosin or Koussin is yellow, crystalline, tasteless, fusible; soluble in chloroform, benzol, ether, and alcohol; the alcoholic solution reddened by ferric chloride ; insoluble in water ; said to be nearly inert when pure.

Properties.-Anthelmintic, trenifuge. Dose, 16 to 24 or 32 grams ($\left.\overline{5} \mathrm{i} \mathrm{v}-\mathrm{vj}-\tilde{z}_{\mathrm{j}}\right)$, in powder or electuary.

ROSA CENTIFOLIA.-Pale Rose.

Origin.-Rósa centifólia, Linné. Natural order, Rosaсеæ, Roseæ.

Habitat.-Western Asia; cultivated.
Description.-The petals are collected. Roundish-obovate and retuse, or obcordate, pink, fragrant, swcetish, slightly bitter, and faintly astringent.

When it is desirable to keep fresh pale rose for some time, it should be preserved by being intimately mixed with one-half its weight of chloride of sodium, pressing the mixture into a suitable jar, and keeping it in a cool place.

Constituents.-Little volatile oil, mucilage, sugar, tannin (quercitrin?), malates, etc. Oil of rose is obtained from Rósa damascéna, Miller.

Properties.-Mild carminative ; used for preparing rosewater.

> ROSA GALLICA.-Red Rose.

Origin.-Rósa gállica, Linné. Natural order, Rosaceæ, Roseæ.

Habitat.-Asia Minor and Soutbern Europe; cultivated.

Deseription.-The petals are collected before the flowers are expanded. Small cones, consisting of numerous imbricated, roundish, retuse, deep purple-colored, yellowclawed petals, having a roseate odor and a bitterish, slightly acidulous, and distinct astringent taste.

Constituents.-Volatile oil a trace, mucilage, sugar, quercitrin.

Properties.-Tonic, mild astringent. Dose, 1 to 4 grams (gr. $\mathrm{xv}-\mathrm{Jj}_{\mathrm{j}}$), in powder, confection, or infusion.

> RHGEAS.-Red Poppy.

Origin.-Papáver Rhœ'as, Linné. Natural order, Papaveraceæ, Papavereæ.

Habitat.-Asia and Europe, in fields.
Description.-Petals roundish, about 5 centimeters (2 inches) broad, somewhat shorter, below contracted into a short blackish claw, thin, brownish-purple (fresh scarlet-red); odor slight ; taste mucilaginous and bitterish.

Constituents.-Rhœeadine a trace, probably a second alkaloid, rhœadic and papaveric acids (red coloring matters), gum, etc.

Properties.-Demulcent, mildly anodyne, used chiefly for coloring mixtures.

ALTHEA ROSEA.-Ноццуноск.

Origin.-Althæ'a (Alcéa, Linné) rósea, Cavanilles. Natural order, Malvaceæ, Malveæ.

Habitat.-Western Asia, cultivated in gardens.
Description.-Involucre six-cleft, shorter than the five cleft calyx, the lobes lance-ovate, stellately hairy; corolla 7 to 10 centimeters (3-4 inches) broad, in cultivation often double, the five petals broadly obovate, retuse or notched at the apex, the claws attached to the base of the column formed by the united numerous filaments ; the color varies from white to deep red and purple, and becomes deeper on drying; odor slight; taste sweetish, mucilaginous, somewhat astringent.

Constituents.-Mucilage, tannin, coloring matter.
Properties.-Demulcent, emollient.

MalVA.-Mallow.

Origin.-Málva sylvéstris, Linné. Natural order, Malvaсеæ, Malveæ.

Habitat.-Europe, introduced in North America,
Description.-Involucre three-leaved, hairy ; calyx about 5 millimeters ($\frac{1}{5}$ inch) long, five-cleft, hairy; petals five, 2 cen timeters ($\frac{4}{5}$ inch) long, obcordate, the claws attached to the base of the column formed by the united numerous filaments ; the color is rose-red or purplish with darker veins, after dry, ing blue; odor slight, taste mucilaginous, sweetish.

Constituents.-Mucilage, coloring matter, reddened by acids and turned green by ammonia.

Properties.-Demulcent, emollient.

Matricaria.-German Chamomiee.

Origin.-Matricária Chamomílla, Linné. Natural order, Compositæ, Anthemideæ.

Habitat.-Europe and Western Asia.

FIG. 196.

Matricaria.- a. Flower-head. b. Involucre. c. Receptacle and involucre. d. Longitudinal section of receptacle, with disk florets. e. Ray floret. f. Disk floret. g. Stamens and style of disk floret.

Description.-Flower-heads about 10 millimeters ($\frac{2}{5}$ inch) broad; involucre flattish, imbricated, the scales oblong, obtuse, and with a scarious margin ; receptacle conical, pitted, hollow, naked ; ray florets about 15 , white, ligu-
late, three-toothed, pistillate, reflexed, about 8 millimeters ($\frac{1}{3}$ inch) long; disk florets numerous, yellow, tubular, perfect, about 3 millimeters ($\frac{1}{8}$ inch) long; akenes oblong, without pappus; strongly aromatic and bitter.

The similar flower-heads of A'nthemis arvénsis, Linné, and Marúta Cótula, De Candolle, have a conical chaffy receptacle.

Constituents.-Volatile oil $\frac{1}{4}$ per cent. (dark blue, soluble in alcohol), anthemic acid (bitter needles), anthemidin (tasteless), extractive, little tannin, malates, etc.

Propertics.-Stimulant, mild tonic, carminative, nervine, emmenagogue. Dose, 1 to 4 grams (gr. xv- yj), in infusion.

ANTHEMIS.-Chamomile.

Origin-A'nthemis nóbilis, Linné. Natural order, Composite, Anthemideæ.

Habitat.-Southern and Western Europe; cultivated ; naturalized in a few localities in the United States.

Description.-Collected from cultivated plants. The wild-grown flower-heads have about 15 ray florets in one row ; the cultivated plants have the tubular disk florets mostly transformed into ligulate florets. Subglobular, about 2 centimeters ($\frac{1}{5}$ inch) broad; involucre hemispherical, imbricated, the scales ovate-oblong and with a scarious margin ; receptacle solid, conical, densely chaffy ; ray florets numerous, white, pistillate, strap-shaped, three-toothed; disk florets few, yellow, tubular ; akenes obovate with a short crown. Odor strong and pleasant ; taste aromatic, bitter.

Constituents.-Anthemene, $\mathrm{C}_{18} \mathrm{H}_{30}$ (tasteless needles, melt at $63^{\circ} \mathrm{C}$.), volatile oil (nearly 1 per cent., blue, green, or yellow, spec. grav. 0.90 , soluble in alcohol, contains anthe$\mathrm{mol}, \mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}$, and the isobutylic and isamylic esters of
isobutyric and angelic acids), bitter principle (anthemic acid?), resin, little tannin, etc.

Fig. 197.

Anthemis nobilis.-Ray and disk floret, magnified 4 diam. Section through single flower-head.

Properties.-Stimulant, tonic, carminative, nervine, emmenagogue. Dose, 1 to 4 grams (gr. xv-3j), in infusion or fluid extract.

PYRETHRI FLORES.-Insect Flowers.

Origin.-1. Chrysánthemum (Pyréthrum, Treviranus) cinerariæfólium, Visiani; 2. Chrys. (Pyréthrum, Bieberstein) róseum and C. cárneum, Weber. Natural order, Compositæ, Anthemider.

Habitat.-1. Dalmatia. 2. Western Asia.
Description.-Flower-heads depressed roundish, about 25 millimeters (1 inch) broad; involucre hemispherical, imbricate, the scales obtuse, brownish with a whitish scarious margin (No. 1), or greenish and with a red-brown scarious margin (No. 2) ; receptacle somewhat convex, naked; ray florets about 20, whitish (No. 1) or rose colored (No. 2), ligulate, three-toothed, pistillate; disk florets yellow, tubular, five-toothed, perfect; akenes obovate with a short scarious,
somewhat toothed crown ; odor peculiar, aromatic ; taste bitter and acrid.

Constituents.-Volatile oil, a volatile acid, wax, non-volatile balsamic acid, resin acid, chrysanthemine (liquid), glucoside (crystalline), sugar, a hydrocarbon, and a higher homologue of cholesterin.

Properties.-Insecticide; externally as powder or tincture. The Dalmatian insect flowers collected shortly after expansion are considered the most effectual.

ARNICA.-Arnica Flowers.

Origin.-A'rnica montána, Linné. Natural order, Compositæ, Senecionideæ.

Habitat.-Europe, and Northern Asia, in mountainous districts.

Description.-Flower-heads depressed roundish, about 25 millimeters (1 inch) broad; involucral scales lanceolate,

Fig. 198.

acute, hairy, in two rows; receptacle nearly flat, pitted, and hairy; ray florets 15 to 20 , yellow, strap-shaped, 2 or 3 centimeters ($\frac{4}{5}-1 \frac{1}{4}$ inches) long, eight- or ten-nerved, three-toothed, pistillate; disk florets numerous, yellow, about 15 millimeters ($\frac{3}{6}$ inch) long, five-toothed tubular,
perfect ; akenes slender, spindle-shaped, rough, crowned with a hairy pappus, 6 or 8 millimeters ($\frac{1}{4}-\frac{1}{3}$ inch) long; feebly aromatic; acrid and bitter ; the dust sternutatory.

Some pharmacopeias direct the removal of the involucre with the receptacle, which frequently contains the larvæ of an insect (Trypeta).

A'rnica foliósa, Nuttall, A. alpína, Olin, and A. Chamissónis, Lessing, have flowers resembling the preceding; the plants are indigenous to the mountains of Colorado, westward and northward, the last species also eastward to Maine.

Constituents.-Volatile oil (a trace, butyraceous), resin, arnicin (amorphous, yellow, acrid, easily soluble in alcohol and ether).

Properties.-Stimulant, diuretic, vulnerary, irritant. Dose, 0.3 to 1 gram ($\mathrm{gr} . \mathrm{v}-\mathrm{xv}$), in infusion; mostly used externally as tincture.

CALENDULA.-Marigold.

Origin.-Caléndula officinális, Linné. Natural order, Compositæ, Calendulaceæ.

Habitat.-Levant and Southern Europe ; cultivated.
Description.- Flower-heads about 5 centimeters (2 inches) broad, with the involucral scales in two rows, lanceolate, acute, hairy, and equal ; a flat and naked receptacle, and incurved, muricate akenes without pappus; the yellow disk florets tubular, five-toothed, and staminate.

The ray florets, which are usually employed instead of the flower-heads, are in one or occasionally in several rows, pistillate, ligulate, 10 to 20 millimeters ($\frac{2}{5}$ to $\frac{4}{5}$ inch) long, about 3 millimeters ($\frac{1}{8}$ inch) broad, the limb delicately veined in a longitudinal direction, three-toothed at the apex; the short hairy tube enclosing the remnants of the
filiform style which terminates in two elongated branches; odor slightly narcotic; taste somewhat bitter, slightly saline.

Constituents.-Amorphous bitter principle, tasteless yellow calendulin, sugar, gum, etc.

Substitutions.-The flower-heads of Tagétes erécta and Tag. pátula, Linné, cultivated as French or African marigold, have a tubular involucre, yellow or variegated broad ray florets, and straight slender flattish akenes with a chaffy pappus.

Properties.-Stimulant, resolvent, vulnerary. Dose, 0.5 to 1 gram (gr. viij-xv), in infusion, tincture, or extract.

CARTHAMUS.-SAFFLOWER.

Origin.- Cárthamus tinctórius, Linné. Natural order, Compositæ, Cynaroidere.

Habitat.-India; cultivated.
Description.-The tubular florets are collected. Cylindrical, about 2 centimeters ($\frac{4}{5}$ inch) long, five-lobed; lobes nearly linear; tube of the anthers protruding from the throat, and surmounted by the two-cleft style; brownish-red ; odor slight; taste insipid, bitterish.

Constituents. - Carthamin, $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{7}$, about 0.5 per cent. (red-brown, with metallic lustre, soluble in alcohol and alkalies, sparingly so in water, insoluble in ether), yellow coloring matter about 20 per cent. (soluble in water and alcohol), mucilage, etc.

Properties.-Diaphoretic, tonic, laxative. Dose, 0.5 to 1 gram (gr. viij-xv), in infusion.

SAMBUCUS.-Elder.

Origin.-Sambúcus canadénsis, Linné. Natural order, Caprifoliaceæ, Sambuceæ.

Habitat.-North America, west to the Rocky Mountains; in damp places.

Description.-In large corymbose five-rayed cymes ; calyx
half-superior, minutely five-toothed; ovary three-celled, three-ovuled, and with 3 sessile stigmas; corolla creamcolored, after drying yellowish, wheel-shaped, five-lobed, and on the short tube with five stamens; of a peculiar fragrance and mucilaginous, slightly bitter taste.

Elder should be collected in dry weather, rapidly dried, and deprived of the stalks.

The inflorescence and flowers of Sambúcus nígra, Linné, the European elder, closely resemble the preceding.

Constituents.-Volatile oil (butyraceous), little fat, wax, and resin; mucilage, sugar; probably a little tannin; pectin and albuminoids.

Properties.-Stimulant, carminative, diaphoretic. Dose, 2 to 4 grams ($3 \mathrm{ss}-\mathrm{j}$), in infusion.

VERBASCUM.-Mullein.

Origin.-1. Verbáscum phlomoídes, Linné. 2. V. thapsifórme, Schrader. 3. V. Thápsus, Linné. Natural order, Scrophulariaceæ, Verbasceæ.

Habitat.-Europe, in fields; No. 3 naturalized in North America.

Description.-The five-lobed calyx is often rejected. Corolla wheel-shaped, 2 to 4 centimeters ($\frac{4}{5}$ to $1 \frac{1}{2}$ inches) broad; lobes five, roundish-obovate, bright yellow, smooth above, stellately hairy beneath; stamens in the short tube five, three filaments white-woolly and two naked; the corolla of No. 3 about 10 millimeters ($\frac{2}{5}$ inch) broad; odor slight, honey-like; taste mucilaginous and sweet.

Constituents.-Volatile oil a trace, mucilage, sugar, etc.
Properties.-Demulcent, pectoral. Dose, 1 to 4 grams (gr. $\mathrm{xv}-3 \mathrm{j})$.

Lavandula.-Lavender.

Origin.-Lavándula véra, De Candolle. Natural order, Labiatæ, Ocimoideæ.

Habitat.-Southern Europe ; cultivated.
Description.-Bracts rhombic-ovate, pointed, brownish,
and glandular ; calyx tubular, about 5 millimeters ($\frac{1}{5}$ inch) long, blue-gray, hairy and glandular, five-toothed, the upper tooth largest and roundish-rhomboid; corolla violetblue, about 10 millimeters ($\frac{2}{5}$ inch) long, hairy and glandular on the outside, tubular, and two-lipped, the upper lip

Fig. 199.

Lavender flower and corolla, magnified 4 diam.
two-lobed, the smaller lower lip three-lobed; stamens four, didynamous, short, on the corolla-tube; odor fragrant; taste bitterish aromatic, somewhat camphoraceous.

Constituents.-Volatile oil $1 \frac{1}{2}$ to 3 per cent, resin, little tannin. The volatile oil contains $\mathrm{C}_{10} \mathrm{H}_{16}$, and the alcohol $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}$ (linalool), and its acetic ester ; spec. grav. 0.90 ; readily soluble in alcohol, and very fragrant; distilled from the leaves and stalks the odor is more rank.

Properties.-Stimulant, carminative, nervine, errhine. Dose, 1 to 2 grams (gr. xv-xxx), in infusion, but rarely used internally.

10. FRUITS.-FRUCTUS.

The fruit is the ripened ovary of a flower, and consists of the pericarp or fruit-integuments inclosing one or more seeds. The outer layer of the pericarp is called epicarp or exocarp, the inner layer endocarp. A middle layer, the mesocarp or sarcocarp, is present in many, particularly the fleshy, fruits. Fruits are crowned with the style or its remnants, or are marked with a scar where the style had been attached; a second scar is found at the base of the fruit, where it had been connected with the foot-stalk or attached to the floral axis.

With few exceptions, the officinal fruits consist of fructified single pistils ; the exceptions are two aggregate fruits (staranise and raspberry), composed of several separate carpels belonging to one flower; one anthocarpous fruit (rose hip), composed of a fleshy receptacle inclosing several akenes; and a few collective fruits, produced by the aggregation of several or many flowers.

Classification.

Sect. 1. Collective fruits.
Berry-like, containing three seeds with oil-
glands.
Cylindrical spikes of numerous coalesced berrylike fruits; peppery.
Oblong-conical spikes; fleshy, sweet, and acidulous.

Juniperus.
Piper longum.
Morus.
Glandular strobiles with akenes at the base of the leafy bracts.
Pear-shaped fleshy receptacle with numerous akenes upon the inner surface.

Humulus.
Ficus.

Sect. 2. Fruits of single flowers.
I. Pitcher-shaped fleshy receptacle containing akenes.
II. Small drupes and berries, about the size of pep-per; superior.Ten-celled, ten-seeded, with a dark purple juice. Phytolacca.Four-celled, four-seeded, with a convex inferiordisk.

One-celled, one-seeded, bright red, woolly.
black, globular, pericarp prolonged into a stalk. unstalked, the undeveloped embryo in a central cavity. whitish, globular, veined, not hollow.

III. Inferior drupaceous fruits.

Globular, brown, two-celled, two-seeded.
Oval-oblong, dark brown, two-celled, each cell with one or two seeds.
IV. Superior drupes.

Roundish-reniform, blackish, seed semilunar, bitter.
Flattish-reniform, brown, nut-like, sarcocarp caustic.
Flattish-ovate, blackish, nut-like, sarcocarp caustic.
Somewhat five-angled, orange- or blackish-brown, very astringent.
Oblong, dark blue, glaucous, sweet.
Hemispherical, red, finely hairy, composed of many small drupes.

V. Superior berries.

Globular, acidulous, sweet, few-seeded. six-celled, six-seeded, very astringent. ten-celled, many-seeded, very aromatic. twelve-celled, many-seeded, pulp hard, mucilaginous.
Oval, with a nipple-shaped apex ; pulp very acid.
Oblong, two-celled, many-seeded, burningly acrid.
VI. Inferior berries.

Pulp white, spongy, separable into three manyseeded cells.
VII. Capsular fruits, superior.

Cylindrical, with numerous transverse partitions containing a sweet pulp; indehiscent.

Rhamnus cathartica.
Rhus glabra.
Cubeba.
Piper nigrum.
Piper album.
Pimenta.
Caryophylli fructus.

Cocculus.
Anacardium occidentale.
Anacardium orientale.

Myrobalanus.
Prunum.
Rubus idæus.
Uva passa.
Diospyros.
Aurantium.
Bela.
Limon.
Capsicum.

Colocynth.

Cassia fistula.

Broadly linear ; internally fleshy, sweet.
Subglobose; stigmas sessile, radiating; seeds numerous, parietal.
Small utricle ; seed lenticular, black, glossy.
Capsules 3 , two-valved; seeds 1 or 2, black.
Follicles 8, stellate, one-seeded, aromatic.
VIII. Capsular fruits, inferior.

Triangular-ovate, three-celled; pericarp dry, tasteless; seeds spicy.
Long-linear, subtriangular, fleshy, one-celled, many-seeded, aromatic.
IX. Akenes.

Grayish-yellow, grooved; pericarp and testa coalesced.
Brown-gray and black, roughish, somewhat curved.
glossy, straight; the oblique apex margined.
Greenish-gray, veined, glossy.
X. Cremocarps ; fruits of umbellifere.

Celospermous, globular, 2 vitte in each mericarp.
Campylospermous, ovate, laterally compressed, vitte none.
Orthospermous, ovate, laterally compressed, hairy, each mericarp about 15 vitte. ovate, laterally compressed, smooth, each mericarp 12 vitte. smooth, each mericarp 6 vittre. rough, each mericarp 6 vitte.
oblongterete, smooth, each mericarp 6 vitte, ribs obtuse, prominent. ribs obtuse, thin.
oblong, laterally compressed, each mericarp 6 vitte, ribs 9 , rough. ribs 5, smooth.
oblong, dorsally compressed, each mericarp 6 vitte, ribs 5, smooth. ribs 9, bristly.

XI. Parts of fruits.

Pericarp leathery, glandular, orange-colored. Aurantii cortex. yellow.

Ceratonia.
Papaver.
Chenopodium.
Xanthoxylum. Illicium.

Cardamomum.
Vanilla.

Hordei fructus.
Lappæ fructus.
Silybum.
Cannabis.

Coriandrum.
Conium.
Anisum.
Apium.
Petroselinum.
Ajowan.
Feniculum.
Phellandrium.
Cuminum.
Carum.
Anethum.
Carota.

Limonis cortex.
very hard, with adhering mucilaginous pulp.
brittle, brown, crowned with calyx.
Pulp acidulous, red-brown, with flat, subquadrangular, glossy seeds.

Bela
(see Fruits).
Granati fructus cortex.

Tamarindus.

JUNIPERUS.-Juniper.

Origin.-Juníperus commúnis, Linné. Natural order, Coniferæ, Cupressineæ.

Habitat. - Northern hemisphere; in North America throughout Canada, the Northern United States, and in the Rocky Mountains south to New Mexico.

$$
\text { Fig. } 200 .
$$

> Juniperus.-Fertile catkin and longitudinal section. Galbulus, and transverse section. Seed, and longitudinal section.

Description.-Nearly globular, about 8 millimeters ($\frac{1}{3}$ inch) in diameter; dark purplish, with a bluish-gray bloom, at the apex with a three-rayed furrow, and at the base usually with one or two whorls of three small brownish scales; internally pulpy, greenish-brown, with oil cells, and containing three ovate somewhat triangular bony seeds
with several large oil glands on the surface; odor aromatic; taste sweet, balsamic, bitterish, and slightly acrid.

The pulpy portion is produced from the coalesced three scales forming the upper whorl of the pistillate catkin. The galbulus ripens in the second year.

Constituents.-Volatile oil $\frac{1}{2}$ to $1 \frac{1}{2}$ per cent., sugar 15 to 30 per cent., resins 10 per cent., yellowish juniperin (soluble with green color in ether and volatile oils), wax, fat, proteids, mucilage, ash 4 per cent. Oil of juniper berries is colorless, of about the specific gravity 0.88 , levogyre, slightly soluble in 80 per cent. alcohol, fulminates with iodine, and contains pinene, $\mathrm{C}_{10} \mathrm{H}_{10}$, and other hydrocarbons.

Properties.-Stimulant, diuretic, externally used as an anodyne. Dose, 1 to 4 grams (gr. xv-3j), in infusion, the concentrated juice, distilled water, and spirit, etc.

PiPER LONGUM.-Long Pepper.

Origin.-1. Píper (Chavíca, Miquel) officinárum, De Candolle, and, 2. Píper lóngum, Linné (Chavíca Roxbúrghii, Miquel). Natural order, Piperaceæ, Pipereæ.

Habitat.-1. Java and other East Indian islands ; 2. Bengal and Philippine Islands.

Description.-Spikes of the coalesced, immature, but fullgrown fruit, about 35 millimeters ($1 \frac{2}{5}$ inches) long, and 5 millimeters ($\frac{1}{5}$ inch) thick, cylindrical, uneven, dusty, black-ish-gray; the numerous fruits spirally arranged, each crowned with remnant of style ; odor and taste like black pepper. Bengal long pepper is darker colored and shorter, 20 to 25 millimeters ($\frac{4}{5}$ to 1 inch) long.

Constituents, Properties, and Uses.-Same as those of black pepper.
MORUS.-Mulberry.

Origin.-Mórus rúbra, Linné. Natural order, Urticaceæe, Moreæ.

Habitat.-North America, from southern Canada to Florida, and west to Dakota and New Mexico ; in woods.

Description.-Dense spikes of the coalesced perianths, in-
closing the lenticular nutlets; oblong-conical, about 25 millimeters (1 inch) long, dark purple, fleshy and juicy, each fruit crowned with two filiform styles; juice deep purplish-red, sweet and acidulous.

Mórus nígra, Linné, has a shorter ovate or oblong fruit, resembling the preceding. The fruit of Mórus álba, Linné, is white, reddish, or blackish, sweet, scarcely acidulous.

Constituents.-Sugar about 10 per cent., pectin, citrates, malates, etc.

Properties.-Refrigerant ; used for flavoring mixtures.

HUMULUS.-Hops.

Origin.-Húmulus Lúpulus, Linné. Natural order, Urticaceæ, Cannabineæ.

Habitat.-Northern temperate zone; cultivated.
Description.-Ovate, about 3 centimeters ($1 \frac{1}{4}$ inches) long, consisting of a thin, hairy, undulated axis, and many obliquely ovate membranous greenish scales, which are in the upper part reticulately veined, and toward the base parallel-veined, glandular, and surrounding a subglobular akene ; odor aromatic ; taste bitter, aromatic, and slightly astringent.

Constituents.-Volatile oil 0.8 per cent., resin 9-18 per cent., asparagin, choline (see Cannabis), tannin, $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O}_{13}$, 3-4 per cent., ash 7-10 per cent. The aromatic and bitter virtues reside in the glands. (See Lupulinum.)

Properties.-Tonic, sedative, anodyne. Dose, 2 to 20 grams ($\tilde{S}_{s s-v}$), in infusion or tincture ; externally as fomentation and poultice.

FICUS.-Fig.
Origin.-Fícus Cárica, Linné. Natural order, Urtiсасеж, Artocarреæ.

Habitat. - Western Asia; cultivated in subtropical countries.

Description.-Compressed, of irregular shape, fleshy, covered with an efflorescence of sugar, of a sweet fruity odor and very sweet mucilaginous taste. When softened in water, figs are pear-shaped, with a scar or short stalk at base, and a small scaly orifice at apex, near which the

Fig. 201.

Ficus Carica, Linné.-a. Section of fig. b. Staminate, c. Pistillate flowers.
staminate flowers are situated ; hollow internally, the inner surface covered with numerous yellowish, hard akenes. Figs consist of the fleshy receptacle, which in the unripe state contains an acrid milk-juice.

Constituents.-A kenes and cellular tissue 15, water 16, sugar 62 per cent., gum, fat, and salts.

Properties.-Demulcent, laxative; used internally as dietetic ; externally as poultice.

ROSA CANINA.-Hips.

Cynosbata.
Origin.-Rósa canína, Linné. Natural order, Rosaceæ, Roser.

Habitat.-Europe.
Description.-Pitcher-shaped, about 2 centimeters ($\frac{4}{5}$ inch) long, bright red, glossy, fleshy, inner surface bristly, nearly inodorous, and of a sweetish, acidulous somewhat astringent taste. Hips consist of the receptacle (or calyx-tube), are crowned with the five sepals or their remnants, and inclose a number of brown hairy akenes. For medicinal use the akenes and hairs are removed.

Constituents.-Malic acid 7-8, citric acid 2-3, sugar 30, gum 25 per cent., tannin a trace, etc.

Properties.-Refrigerant, mild astringent, diuretic ; used as a dietetic and as an excipient in the form of confection.

PHYTOLACCE BACCA.-Pokeberry.

Origin.-Phytolácca decándra, Linné. Natural order, Phytolaccaceæ, Euphytolacceæ.

Habitat.-North America; naturalized in Europe.
Deseription.-Depressed globular, dark purple, compound berry about 8 millimeters ($\frac{1}{3}$ inch) in diameter, composed of 10 carpels, each containing one lenticular black seed ; juice purplish-red ; inodorous, sweet, slightly acrid.

Constituents.-Sugar, gum, coloring matter (turned yellow by alkalies and bleached by sunlight), phytolaccic acid (brownish, amorphous, acrid, precipitated by lead subacetate, soluble in water, sparingly soluble in alcohol, ether, chloroform and glycerin).

Properties.-Alterative, laxative, emetic. Dose, 0.5 to 1 gram (gr. viij-xv), in infusion, or the expressed juice in dose of half to one teaspoonful.

RHAMNUS CATHARTICA.-BUCKTHORN.

Origin.-Rhámnus (Cervispína, Moench) cathártica, Linné. Natural order, Rhamneæ.

Habitat.-Europe and Northern Asia; naturalized in North America.

Description.-Globular, and, after drying, deeply wrinkled, about 5 millimeters ($\frac{1}{5}$ inch) in diameter, purplish-brown or black, at the base with a convex disk, and a fragile peduncle;

Fig. 202.

Rhamnus; fruit, transverse and longitudinal sections.-Natural size.
fleshy, with a brownish-green pulp and juice; endocarp parchment-like, four-celled, and four-seeded; the seeds dark brown, triangular convex, furrowed on the back; odor slight, unpleasant ; taste disagreeable, bitter, and acrid.

Constituents.-Rhamnocathartin (amorphous, yellowish), rhamnin (yellowish granules, tasteless, olive-green by ferric salts, yields isodulcit and bright yellow rhamnetin), sugar, gum, tannin; ash about 3 per cent.

Properties. - Cathartic; the expressed juice made into syrup in doses of 10 to 20 grams $(f z i j-v)$. The juice of the green fruit treated with lime or alumina yields sap-green.

Allied Drugs.-French berries from Rhámnus infectória, Linné, and Persian berries from Rhámnus saxátilis, Linné, and other species of Rhamnus are collected unripe, resemble buckthorn berries, but are less wrinkled, internally yellowish, from two- to four-seeded, are employed for dyeing yellow, and contain xanthorhamnin, $\mathrm{C}_{48} \mathrm{H}_{68} \mathrm{O}_{29}$ (erystallizes from alcohol in golden-yellow needles; glucoside, yields lemon-yellow rhamnetin), and rhamnegin (yellow powder, freely soluble in alcohol).

RHUS GLABRA.-Sumach.

Origin.-Rhus glábra, Linné. Natural order, Anacardiaceæ, Anacardieæ.

Habitat.-North America, west to Colorado and Idaho, in barren soil.

Description.-Subglobular, about 3 millimeters ($\frac{1}{8}$ inch)
in diameter, drupaceous, crimson, densely hairy, containing a roundish-oblong, smooth putamen; inodorous; taste acidulous.

Constituents.-Acid calcium and potassium malates, tannin, coloring matter, ete.

Properties. - Refrigerant, diuretic, astringent; used mostly as gargle in decoction or fluid extract.

CUBEBA.-Cubeb.

Origin.-Píper Cubéba, Linné filius (Cubéba officinális, Miquel). Natural order, Piperaceæ, Рiрегеæ.

Habitat.-Java ; cultivated.
Deseription.-Collected unripe. Globular, about 4 to 5 millimeters ($\frac{1}{6}-\frac{1}{5}$ inch) in diameter, contracted at the base

$$
\text { Fig. } 203 .
$$

Cubeb; fruit.-Natural size and magnified.
into a stipe about 6 to 8 millimeters ($\frac{1}{4}-\frac{1}{3}$ inch) long, reticulately wrinkled, blackish-gray, the mesocarp with numerous oil cells; internally whitish and hollow, containing a partly developed depressed globular seed with oil cells and starch granules ; odor strong spicy ; taste pungently aromatic.

Cubeb should not be mixed with the nearly inodorous rachis or stalks. Recently the drug often contained a considerable proportion of immature shrivelled cubebs.

Allied Fruits.-Cubéba Lówong, Miquel, and C. Wallíchii, Miquel. Closely resembling cubeb.

Píper (Cubéba, Miquel) canínum, Dietrich. Fruit smaller than cubeb; stipe half the length of the globular portion.

Píper (Cubéba, Miquel) crássipes, Korthals. Fruit larger than cubeb; pedicel stout and flattish; odor agreeable; taste bitter.

False cubebs of unknown origin. Fruit strongly wrinkled, gray-brown, odor macelike; stalk flattened, 4 to 6 millimeters ($\frac{1}{6-\frac{1}{4}}$ inch) long, about equal to diameter of fruit.

Constituents.-Volatile oil 5 to 15 per cent., resin 3 per cent., cubebic acid 1 to 3 per cent., cubebin, fat, wax, starch, ash $5-6$ per cent. Oil of cubeb is colorless, of spec. grav. 0.92 , not freely soluble in 80 per cent. alcohol, levogyre, not fulminating with iodine, of composition $\mathrm{C}_{15} \mathrm{H}_{24}$, colored red by warm $\mathrm{H}_{2} \mathrm{SO}_{4}$. Cubeb resin is amorphous, not precipitated by alcoholic solution of lead acetate Cubebic acid is readily soluble in alkali, alcohol, ether, and chloroform, is precipitated by lead acetate, amorphous, some of its salts crystalline. Cubebin is white, pearly, crystalline, inodorous, its alcoholic solution bitter. The three lastmentioned compounds are colored red by sulphuric acid.

Properties.-Stimulant, local irritant, carminative (volatile oil), diuretic (resin and cubebic acid). Dose, 1 to 8 grams (gr. xv- 3 ij), in powder, fluid extract, or oleoresin.

PIPER.-Black Pepper.

Origin.-Píper nígrum, Linné. Natural order, Piperaсеæ, Pipereæ.

Habitat-India; cultivated in the tropics.
Description.-Collected unripe. Globular, about 4 millimeters ($\frac{1}{6}$ inch) in diameter, reticulately wrinkled, brownish-
black or grayish-black, the mesocarp with scattered oil cells; internally lighter, hollow, with a partly developed embryo; aromatic and of a spicy hot taste.

Constituents.-Volatile oil 1 to 2 per cent., piperine 6 to 8 per cent., volatile alkaloid (probably piperidine) 0.56 per cent., soft, pungent resin or chavicin (soluble in alkalies, alcohol, and ether), fat 7 per cent., proteids 12 per cent., starch in very small granules, ash 5 per cent. Volatile oil of pepper is colorless, not pungent, of spec. grav. 0.864 and composition $\mathrm{C}_{10} \mathrm{H}_{16}$. Commercial oil of black pepper (so called) contains the pungent resin and fat, and is obtained as a by-product in the preparation of piperine. The latter is $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{3}$, forms colorless or yellowish prisms, is inodorous, of a slowly developed peppery taste, soluble in alcohol, ether, and benzol, colored blood-red by $\mathrm{H}_{2} \mathrm{SO}_{4}$, and by alcoholic solution of alkalies decomposed into piperic acid, $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{4}$, and piperidine, $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{~N}$, which has an ammoniacal and peppery odor. Piperic acid, oxidized with permanganate, yields crystals of piperonal, $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{O}_{8}$ (artificial heliotropin).

Properties.-Stimulant, irritant, tonic, febrifuge. Dose, 0.3 to 1.5 gram (gr. v-xxij), in powder, confection, or oleoresin.

PIPER ALBUM.-White Pepper.

Origin.-Píper nígrum, Linné (see above); the ripe fruit deprived of epicarp and mesocarp.

Description.-Globular, smooth, with ten or twelve veins from base to apex, whitish, and, after the removal of the endocarp, reddish-brown; under the testa an albuminous seed containing small starch grains; odor and taste pepperlike, less pungent.

Constituents and Properties.-Same as black pepper, but more starch and less ash (1 to 1.5 per cent.).

PIMENTA.-Pimento.

Semen amomi. Allspice.
Origin.-Eugénia Piménta, De Candolle, s. Piménta officinális, Lindley. Natural Order, Myrtaceæ, Myrteæ.

Habitat.-Tropical America ; cultivated.
Description.-Collected unripe. Nearly globular, about 6 millimeters ($\frac{1}{4}$ inch) in diameter, crowned with the short four-parted calyx limb or its remnants and a short style, brownish or brown-gray, granular and glandular, two-celled, each cell with one brown, plano-convex, roundish-reniform seed; pungently aromatic, clove-like; the pericarp and embryo contain oil cells, the latter also starch grains.

Constituents.-Volatile oil 3 to 4 per cent., resin, fat, tannin, sugar, gum, ash 4 per cent. Oil of pimento has the spec. grav. 1.0374, and contains $\mathrm{C}_{15} \mathrm{H}_{24}$ and eugenol.

Properties.-Stomachic, stimulant, carminative. Dose, 0.5 to 2 grams (gr. viij-xxx), in powder.

CARYOPHYLLI FRUCTUS.-Mother Clove. Anthophyllif.

Fıo. 204. Origin. - Eugénia caryophylláta, Thun-

Caryophylli fructus. berg, s. Caryophy'llus aromáticus, Linné. Natural order, Myrtaceæ, Myrteæ.

Habilat.-Molucca Islands ; cultivated in the tropics.

Description. - Collected while unripe; oval-oblong, about 20 millimeters ($\frac{4}{5}$ inch) long, crowned with four calyx teeth, dark brown, two-celled, each cell with one or two seeds; odor and taste clove-like, mild.

Constituents and Properties.-Similar to cloves.

COCCULUS.-Cocculus Indicus. Fishberry.
Origin-Anamírta Cócculus, Wight et Arnott, s. An. paniculáta, Colebrook. Natural order, Menispermaceæ, Tinosporeæ.

Habitat.-East India.
Deseription -Globular kidney-shaped, about 10 millimeters ($\frac{2}{5}$ inch) long and 6 millimeters ($\frac{1}{4}$ inch) thick, blackish-brown, wrinkled, the basal and apical scars close

Fig. 205.

Cocculus.-Fruit and longitudinal section.
together and united by a distinct ridge through the ventral notch, and by an obscure ridge around the convex back; endocarp whitish, thin, on the concave side projecting deeply into the interior; seed semilunar, oily, very bitter; the pericarp nearly tasteless.

Constituents.-TThe pericarp contains menispermine (soluble in ether) and paramenispermine (insoluble in ether), two tasteless alkaloids, hypopicrotoxic acid, resin, fat, gum, ash 5 per cent. The seed contains picrotoxin, anamirtin (or cocculin ; not bitter or poisonous; sparingly soluble in chloroform and benzol), fat, etc. Picrotoxin $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{O}_{13}$ is bitter, poisonous, colored brick-red by $\mathrm{KNO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4}$, and by fractional crystallization from benzol and water separated into picrotoxinin, $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{6}$ (32 per cent., poisonous), and picrotin, $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{7}$ (66 per cent., bitter, not poisonous); these three principles are gradually colored yellow and orange-red by $\mathrm{H}_{2} \mathrm{SO}_{4}$.

Properties.-Nervine, sedative. Dose, 0.1 to 0.2 gram
(gr. jss-iij), in powder, of picrotoxin 0.001 gram ($\frac{1}{64}$ grain); externally in decoction for killing vermin.

Antidotes.-Emetics ; chloral hydrate; potassium bromide.

ANACARDIUM.-CAshew Nut.

Origin.-A nacárdium occidentále, Linné. Natural order, Anacardiaceæ, Anacardier.

Habitat.-Tropical America; naturalized in Africa and India.

Description.-Kidney shaped, about 25 millimeters (1 inch) long, 18 millimeters ($\frac{3}{4}$ inch) broad, and 10 millimeters ($\frac{2}{5}$ inch) thick, gray-brown, finely punctate; between the brittle epicarp and endocarp a soft sarcocarp containing a black acrid juice; seed large, of a mild oily taste, and consisting of a brown testa, two plano-convex white cotyledons of the shape of the fruit, and a short radicle curved under the lower inner edge of the fruit.

Constituents.-In the pericarp cardol, $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{2}$ (vily, colorless, soluble in alcohol and ether, very acrid and poisonous), anacardic acid, $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{3}$ (hot taste, not vesicating), resin, tannin, gum, etc.; in the seed a bland fixed oil; ash about 1.5 to 2 per cent.

Properties and Uses.-The pericarp as a rubefacient, epispastic, and caustic ; the seed is edible, likewise the fleshy and acidulous pedicel.

SEmECARPUS.-Anacardium Orientale. Oriental Cashew Nut.

Origin.-Semecárpus Anacárdium, Linné filius. Natural order, Anacardiaceæ, Anacardieæ.

Habitat.-East India.
Description.-Ovate heart shaped, flattish, about 20 millimeters ($\frac{4}{5}$ inch) long, blackish-brown, in the pericarp with a brown acrid juice; seed white, mild, oily.

Constituents.-In the pericarp an acrid vesicating oil, 32 per cent., perhaps containing cardol. In the seed a bland fixed oil.

Properties,--Local irritant.

MYROBALANUS.-Myrobalan.

Origin.-Terminália Chébula, Retzius, and T. bellérica, Roxburgh. Natural order, Combretaceæ, Combreteæ.

Habitat.-East India.
Description.-Chebulic myrobalans are oblong, roundishoval, or pyriform, 3 to 5 centimeters (1 to 2 inches) long, more or less distinctly five-angled and five-ribbed, otherwise smooth, orange-colored (smaller and brown or black when collected unripe); sarcocarp of a somewhat resinous fracture; endocarp hard, resinous-dotted, containing a white oily seed; inodorous, strongly astringent. T. citrína, Roxburgh, yields a very similar fruit.

Belleric myrobalans are globular or ovoid, 15 to 25 millimeters ($\frac{3}{5}$ to 1 inch) long, the surface yellowish felt-like.

Constituents.-Gallotannic acid 30 to 45 per cent., gallic acid, resin, mucilage. Belleric myrobalans contain from 6 to 17 per cent. of tannin.

Properties.-Astringent; used for tanning purposes and for preparing tannin.

PRUNUM.-Prune.

Origin. - Prúnus doméstica, Linné. Natural order, Rozaceæ, Pruneæ.

Habitat.--Western Asia; cultivated in many varieties.
Description.-Oblong or subglobular, shrivelled, black-ish-blue, glaucous, the sarcocarp brownish-yellow, sweet and acidulous; putamen hard, smooth or irregularly ridged; the seed almond-like, but smaller, and of a bitter taste. For medicinal use the putamen and seed are rejected.

Constituents.-In the sarcocarp sugar 12 to 25 per cent., pectin, malic acid, salts ; in the seed fixed oil, amygdalin, emulsin.

Properties.-The sarcocarp is nutritious and laxative; used as a corrective for senna in decoction and confection.

RUBUS IDEUS.-Raspberry.

Origin.-Rúbus Idæ'us, Linné. Natural order, Rosaсеж, Rubeæ.

Habitat.-Europe and Asia; cultivated.
Deseription.-Hemispherical, about 12 millimeters ($\frac{1}{2}$ inch) broad, with a conical cavity from the separation of the receptacle; red, finely hairy, composed of about 25 small drupes, which are coalesced at the base and each crowned with the remnant of the style; juicy, of an agreeable odor, and a pleasant acidulous taste. The fruit is used in the fresh state only.

Rúbus strigósus, Michaux, indigenous to North America, south to North Carolina, and west to New Mexico and Manitoba, closely resembles the preceding; the color of the fruit is a lighter red.

Rúbus occidentális, Linné, has a purplish-black fruit. It is indigenous to North America, west to Oregon and south to Georgia and Texas.

The blackberries, Rúbus villósus, Aiton, etc., have the fruit united with the receptacle.

Constituents.-Volatile oil a trace, citric and malic acids, sugar about 5 per cent., pectin, coloring matter.

Properties.-Refrigerant, mild laxative, dietetic.

UVA PASSA.-Raisin.

Origin.-Vítis vinífera, Linné. Natural order, Ampelideæ.

Habitat.-Western Asia; extensively cultivated in Southern Europe, and in California.

Description.-Shrivelled and flattened, in the fresh state globular, one-celled berries, brownish, somewhat translucent, sweet, and acidulous.

Raisins should be freed from the stalks and seeds.
Varieties.-Large raisins, Passulæ majores, produced in

Spain, Italy, Asia Minor, and California ; the Sultana raisins are seedless.

Small raisins, Passulæ minores or Corinthian raisins (often called currants), are chiefly exported from Greece.

Constituents.-In the epicarp tannin and coloring matter ; in the pulp grape sugar, acid potassium tartrate, calcium tartrate, little malic acid, mucilage, etc.

Properties.- Nutritive, demulcent, refrigerant, aperient ; used as a corrective and flavor of mucilaginous and bitter drinks, ete.

DIOSPYROS.-PERSImmon.

Origin.-Diospy'ros virginiána, Linné. Natural order, Ebenaceæ.

Habitat.-United States, south to Florida and Louisiana, west to Kansas ; in low grounds and woods.

Description.-Globular or globular-oblong, about 25 millimeters (1 inch) long, green, smooth, at the base with the fourlobed calyx, at the apex with a short remnant of the style,

Fig. 206.

Diospyros.-Fruit and transverse section, natural size.
six-celled and six-seeded; odor slight, fruit-like; taste very astringent. After exposure to frost the taste is acidulous and sweet.

Constituents.-Tannin, malic acid, pectin.
Properties.-Astringent. Dose, 1 to 4 grams (gr. xv-3j), in infusion or tincture.

aurantil Fructus.-Bitter Orange.

Origin.-Cítrus vulgáris, Risso. Natural order, Rutaceæ, Auranties.

Habitat.-Northern India ; cultivated and naturalized in subtropical countries.

Description.-1.* Orange berries, Aurantia immatura; the unripe fruit; globular or subglobular, 3 to 20 millimeters ($\frac{1}{8}$ to $\frac{4}{5}$ inch) in diameter, black-green or brownish, granular rugose; at the base with about ten round depressions forming a circular scar; at the apex with a short remnant of the style; hard, containing 8 to 12 cells, each with several undeveloped seeds; agreeably aromatic, very bitter.
2. Bitter orange, Aurantii fructus; the ripe fruit; of the size and shape of a sweet orange, but externally rougher, orange-red, the juice acidulous and bitter.

Constituents.-Volatile oil, hesperidin (somewhat bitter, crystalline glucoside; soluble in cold alkalies; insoluble or sparingly soluble in most simple solvents ; yields glucose, isodulcit, and hesperitin, which is sweet and colored red-brown with $\mathrm{Fe}_{2} \mathrm{Cl}_{6}$), resin, fat, gum, etc.; in the seeds limonin (crystalline, very bitter, precipitated by tannin) ; in the juice citric acid. The volatile oil of orange berries was formerly sold as essence de petit grain (now often made of the leaves), and contains hesperidene, $\mathrm{O}_{10} \mathrm{H}_{16}$ (like the oil of bitter orange, obtained by grating the epicarp), linalool, $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}$, and its acetic ester. Orange berries yield 5 to 6 per cent. of ash.

Properties.-Stimulant, stomachic, tonic. Dose, 1 to 2 grams (gr. $x v-x x x$), in tincture or wine. The juice of the ripe fruit is also refrigerant.

BELA.-Bael. Bengal Quince.

Origin.- Aégle (Cratæ'va, Linné) Mármelos, Correa. Natural order, Rutaceæ, Aurantieæ.

Habitat.-Himalaya Mountains; cultivated in India.
Description.-Collected while unripe. Globular or subglobose, 5 to 10 centimeters (2 to 4 inches) in diameter, about twelve celled; in commerce often in fragments, consisting of a brownish-gray, smooth, hard rind, 2 to 3 millimeters ($\frac{1}{12}$ to $\frac{1}{8}$ inch) thick, to which a hard mucilaginous, somewhat acidulous, red-brown and internally whitish pulp is adhering, inclosing oblong flat, woolly seeds; somewhat aromatic ; mucilaginous, slightly acidulous, and faintly astringent; the infusion is scarcely affected by iron salts.

Adulterations.-- Garcínia Mangostána, Linné. Natural order, Guttiferes. Mangosteen rind is thicker than bael rind, deep brown, without adhering pulp, and of an astringent taste; a radiating sessile stigma is attached to some of the pieces.

Constituents.-Mucilage, pectin, sugar, and traces of tannin, bitter principle, and volatile oil; ash 3 per cent.

Properties.-Mild astringent. Dose, 1 to 3 grams (gr. xvxlv), in infusion or fluid extract.

LIMON.-Lemon.

Origin.-Cítrus Limónum, Risso. Natural order, Rutaceæ, Aurantieæ.

Habitat.-India; cultivated in subtropical countries.
Description.-Used in the fresh state. Oval or obovate with a nipple-shaped apex, about 75 millimeters (3 inches) long, yellow, nearly smooth, but ruggedly glandular ; internally divided into from 8 to 12 cells, each with 2 or 3 seeds and containing an acid juice; the rind fragrant and somewhat bitter (see Limonis cortex).

Constituents.-Yield of juice 20 to 30 grams (5 v -vijss); spec. grav. about 1.04 ; yellowish; contains 7 to 9 per cent. of citric acid, a little malic acid, and mucilage, and yields not over $\frac{1}{2}$ per cent. of ash. On keeping lemons for several months, the citric acid is decomposed into sugar and carbonic acid.

Properties.—Refrigerant. Dose of the juice, 8 to 20 grams ($3 \mathrm{ij}-\mathrm{v}$), diluted with water and as syrup.

Capsicum.-Cayenne Pepper, Bird Pepper.

Origin.-Cápsicum fastigiátum, Blume. Natural order, Solanaceæ, Solaneæ.

Habitat.-Probably tropical America; cultivated in tropical countries.

Deseription -Conical or oblong ovate, from 10 to 20 millimeters ($\frac{2}{5}$ to $\frac{4}{5}$ inch) long, obtusely pointed, supported by a flattish, cup-shaped five-toothed calyx ; pericarp red, shining, membranous, and translucent, inclosing two cells,
and about eighteen flat, reniform, yellowish seeds attached to a thick central placenta. It has a peculiar odor and an intensely hot taste.

The fruit of Cápsicum ánnuum, Linné, is larger, 5 to 8 centimeters (2 to $3 \frac{1}{4}$ inches) long, oblong-conical, sometimes curved or subglobular ; the fruit of C. cerasifórme, Willdenow, is of the size and shape of a cherry.

Constituents.-Capsaicin, $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{2}$, about 0.02 per cent. (mainly in the placenta), fixed oil, fat acids, trace of volatile oil, waxy matter, resin, coloring matter, trace of volatile alkaloid having the odor of conine, ash 4-5 per cent. Capsaicin is crystalline, colorless, fusible, volatile, extremely acrid, soluble in alcohol, ether, benzol, and fixed oils. T. Pabst (1892) obtained it as an amorphous resinlike acid, to which the red coloring matter persistently adheres. The alkaloid does not exist in the fresh fruit. The free fat acids are oleic, stearic, and palmitic acids.

Properties.-Stimulant, stomachic, powerful rubefacient. Dose, 0.1 to 0.5 gram (gr. jss-viij), in powder, infusion, tincture, or oleoresin ; externally in liniments and plasters.

COLOCYNTHIS.-Colocynth.

Origin. - Citrúllus (Cúcumis, Linné) Colocy'nthis, Schrader. Natural order, Cucurbitaceæ, Cucumerineæ.

Habitat.-Southern and Western Asia, Northern and Southern Africa, Greece, and Spain.

Description.-Deprived of the smooth, light brownishyellow rind. Globular, 5 to 10 centimeters (2 to 4 inches) in diameter, white or yellowish-white, light, spongy, readily breaking into three wedge-shaped pieces, each containing near the rounded surface many flat, ovate, white or brown seeds; inodorous; taste intensely bitter.

The pulp alone (about 30 per cent. of the peeled fruit),
deprived of the seeds, should be employed. Hard and dark-colored colocynth should be rejected.

Constituents.-Colocynthin, about 0.6 per cent., resin, colocynthitin (tasteless crystalline resin), pectin, gum, 11 per cent. ash; no starch. Colocynthin is yellow, amorphous, or crystalline, soluble in water and alcohol, very

Fig. 207.

Peeled Colocynth.-Longitudinal and transverse section.
bitter, and splits into sugar and resinous colocynthein. The seeds contain little bitter principle, 17 per cent. of fixed oil, no starch, 6 per cent. of albuminoids, and 2.5 to 3 per cent. of ash.

Properties.-Drastic purgative, in overdoses emetic and irritant poison. Dose, 0.1 to 0.5 gram (gr. jss-viij), in powder, tincture, or extract.

Antidotes.-Evacuants ; demulcents ; opium ; stimulants.

CASSIA FISTULA.-Purging Cassia.

Origin. - Cássia (Cathartocárpus, Persoon) Fístula, Linné. Natural order, Leguminosæ, Cæsalpineæ, Cassieæ.

Habitat.-East India; naturalized in tropical Africa and America.

Description.-Cylindrical, 45 to 60 centimeters (18 to 24 inches) long, nearly 25 millimeters (1 inch) in diameter ; pericarp blackish-brown, woody, somewhat veined, the
sutures smooth, forming two longitudinal bands, the ventral band with a shallow groove, and the dorsal one with a fine ridge; indehiscent; internally divided transversely into numerous cells, each containing an ovate, flattish, red-dish-brown and glossy seed imbedded in a blackish-brown sweet pulp; odor resembling prunes.

$$
\text { Fig. } 208 .
$$

Cassia Fistula.-Part of pod, natural size.
Other Varieties. - Cássia moscháta, Kunth, of New Granada, perhaps also C. bacciláris, Linné filius, of Surinam. 30 to 50 centimeters (12 to 20 inches) long, about 15 millimeters ($\frac{3}{5}$ inch) thick; often curved ; the pericarp and pulp of a lighter color than in Cassia Fistula.

Cássia brasiliána, Lamarck, s. C. grándis, Linné filius, of Brazil. 60 centimetere (24 inches) or more long, laterally compressed, about 40 millimeters ($1 \frac{1}{2}$ inches) broad, black-brown, coarsely veined, the sutures prominent.

Constituents.-The pulp (yield about 30 per cent.) con-
tains sugar 60 per cent., mucilage, pectin, albuminoids, salts (calcium oxalate).

Properties.-Laxative. Dose, 4 to 10 grams ($3 \mathrm{j}-\mathrm{ijss}$); used for confection of senna.

CERATONIA.-St. John's Bread.

Siliqua dulcis.
Origin.-Ceratónia Síliqua, Linné. Natural order, Leguminoser, Cresalpiniere, Cassiex.

Habitat.-Southern Europe.
Description.-Broadly linear, about 15 centimeters (6 inches) long, 2 centimeters ($\frac{4}{5}$ inch) broad, and 4 millimeters ($\frac{1}{6}$ inch) thick, flat, thickened and grooved on the edges; epicarp leathery, brown, glossy; sarcocarp red-brown, pulpy ; internally divided transversely into from 6 to 12 cells, each containing an ovate, flattish, glossy brown hard seed; odor sweetish, taste mucilaginous and sweet.

Constituents.-Sugar 40 to 50 per cent., mucilage, pectin, albuminoids, isobutyric acid 0.6 per cent., little tannic, capronic, and other acids.

Properties.-Demulcent, laxative; used as an addition to expectorant mixtures.

PAPAVER.-POPPY.

Origin.-Papáver somníferum, Linné. Natural order, Papaveraceæ, Papaverese.

Habitat.-Western Asia; cultivated.
Description.-The capsules are collected when nearly ripe and freed from the seeds. Globular-ovate or ovate-oblong, grayish green or light yellowish-brown, smooth, crowned with the sessile, peltate, many-rayed stigma, one-celled, but on the inner surface furnished with numerous vertical projecting placentas ; of a slight odor and bitter taste.

Constituents.-Alkaloids in variable proportion, from traces to 0.10 , occasionally as much as 2 per cent., consisting of morphine, narcotine, rhœadine, narceine, codeine, and papaverosine; little meconic acid; citric and tartaric acids, mucilage, wax, ash about 14 per cent.

Properties.-Anodyne, hypnotic, sedative. Dose, 1 to 2 grams (gr. $\mathrm{xv}-\mathrm{xxx}$), in decoction, syrup, and extract; externally as poultice.

Poppy capsules and seeds (a, natural size ; b, magnified).

CHENOPODIUM.-Wormseed.

Origin.-Chenopódium ambrosoídes, Linné, var. anthelmínticum, Gray. Natural order, Chenopodiaceæ, Euchenopodieæ.

Habitat.-W West Indies and Central America ; naturalized in the United States.

Description.-Nearly 2 millimeters ($\frac{1}{12}$ inch) in diameter, depressed globular, glandular, dull greenish or brownish, the integuments friable, containing a lenticular, obtuselyedged, glossy, black seed, with a strongly curved embryo ; odor peculiar, somewhat terebinthinate; taste bitterish, pungent.

Constituents.-Volatile oil, spec. grav. 0.91, consists of $\mathrm{C}_{10} \mathrm{H}_{16}$ and $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}$.

Properties.-Anthelmintic. Dose, 1 to 3 grams (gr. $x v-x l v$), in powder or electuary; the volatile oil 5 to 10 or 15 drops.

Xanthoxyli fructus.-Prickly Ash Fruit.

Origin.-Xanthóxylum (Zanthóxylum) caroliniánum, Lambert (X. Cláva-Hérculis, L.), and X. fraxíneum, Willdenow (X. americánum, Miller). Natural order, Rutaceæ, Zanthoxylea.

Habitat.-United States; the first species near the coast from Virginia to Eastern Texas ; the second species in rocky woods in the Northern and Central States.

Description.-Two or three carpels sessile on the thin receptacle (X. carolinianum), or three to five carpels upon short stalks from the thin peduncle (X. fraxineum) ; each capsule somewhat obliquely globular, 4 or 5 millimeters ($\frac{1}{6}$ or $\frac{1}{5}$ inch) in diameter; pericarp brown-greenish or yellowish-brown, pitted and somewhat wrinkled, firm, two-valved, dehiscent by the inner suture and the upper half of the outer suture, valves spreading; each carpel contains one subglobular, or two somewhat flattened, black, glossy, and more or less wrinkled seeds, with a crustaceous testa inclosing a white fleshy albumen and embryo; odor somewhat aromatic ; taste pleasantly pungent, the seeds slightly bitter.

Constituents.-Little volatile oil, resin, fat.
Properties.-Stimulant, tonic. Dose, 1 to 2 grams (gr. xvxxx).

ILLICIUM.-Staranise.

Origin.-Illícium vérum, Hooker filius. Natural order, Magnoliaceæ, Wintereæ.

Habitat.-Northern Anam.
Deseription.-Eight follicles, stellately arranged around a central column about 5 millimeters ($\frac{1}{5}$ inch) long; carpels 12 to 15 millimeters ($\frac{1}{2}$ to $\frac{3}{5}$ inch) long, boat-shaped, somewhat woody, wrinkled, with a straight beak, rusty-brown, split along the upper suture; internally red-brown and glossy, containing a flattish, oval, glossy brown seed ; odor anise-like ; taste sweet, aromatic; the seeds oily. 100 parts of fruit yield 78 parts of capsules and 22 parts of seed.

Adulteration.-Illícium religiósum, Siebold, indigenous to China and Corea, cultivated in Japan. Shikimi fruit.

Poisonous. The fruit resembles the preceding, but the carpels are more woody, shrivelled and wrinkled, and have a

Fig. 210.

Illicium anisatum.

Fig. 211.

Illicium religiosum.
thin beak, mostly turned upward, a faintly aromatic, somewhat clove-like odor, and a disagreeable taste.

Constituents.-Volatile oil (from the capsules 5.3 per cent., from the seeds -1.8 per cent.), fat (from the capsules 2.8 per cent., from the seeds 20 per cent.), saponin, protocatechuic acid, shikimic acid, $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{O}_{5}$ (crystalline, not poisonous), resin, mucilage, ash about 2 per cent. The volatile oil differs slightly from that of anise fruit in odor and taste, and also in that it usually congeals, if at rest, at about $1^{\circ} \mathrm{C}$. $\left(34^{\circ} \mathrm{F}\right.$.), the temperature rising to about $10^{\circ} \mathrm{C}$. $\left(50^{\circ} \mathrm{F}\right.$.) ; it acquires a pale brown color with an alcoholic solution of HCl ; it consists chiefly of anethol, $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}$, with small quantities of terpenes, safrol, ethylester of hydroquinone, anisic acid, etc.

Shikimi (Sikimi) fruit contains 0.44 per cent. of nonsolidifying volatile oil, spec. grav. 1.006 , shikimic acid, sikimipicrin (crystalline, bitter), and sikimin, the poisonous crystalline principle, soluble in alcohol, glacial acetic acid, ether, and chloroform ; sparingly soluble in water and alkali; insoluble in benzin. The volatile oil contains safrol and eugenol.

Properties.-Carminative, anodyne, stimulant, diuretic.

Dose, 0.5 to 1.5 grams (gr. viij-xxiij); mostly used for flavoring.

CARDAMOMUM.-CARDAMOM.
Origin.—Elettária(Alpínia, Roxburgh, A mómum, White) Cardamómum, Maton. Natural order, Scitamineæ, Zingiberex.

Habitat.-Malabar ; cultivated in India.

Fig. 212.

Malabar Cardamom.- a, short; b, medium ; c, long.

Fig. 213.

Cardamom seed.-Transverse and longitudinal section, magnified 5 diam.

Fig. 214.

Ceylon Cardamom.- a, capsules ; b, transverse section of capsule ; c, seeds : d, section of seed with embryo, magnified.

Description.-Ovoid or oblong, from 1 to 2 centimeters ($\frac{2}{5}$ to $\frac{4}{5}$ inch) long, obtusely triangular, rounded at the base, short-beaked, longitudinally striate, of a pale buff color, three-celled, with a thin, leathery, nearly tasteless pericarp and a central placenta; seeds about 20 , about 4 millimeters ($\frac{1}{6}$ inch) long, reddish-brown, irregularly angular, trans-
versely rugose, depressed at the hilum, surrounded by a thin membranous arillus, of an agreeable odor, and a pungent aromatic taste ; the integuments nearly tasteless. 100 parts of fruit yield 22 parts of capsules and 78 parts of seeds.

Varieties.-Malabar Cardamom, the most esteemed, of a light buff color, plump.

Aleppy Cardamom, mostly short, of a greenish tint.
Madras Cardamom, of a pale color, oblong, somewhat attenuated above.

The following varieties are of a somewhat different and inferior flavor :

Ceylon Cardamom, from Elettária májor, Smith, s. E. Cardamómum, var. β. Nearly 40 millimeters ($1 \frac{3}{5}$ inches) long, triangular, prolonged into a beak about 15 millimeters ($\frac{3}{5}$ inch) long, dark gray-brown.

Round Cardamom, globular or globular-ovate, from Amómum Cardamómum, Linné, of Siam and Java, and Am. globósum, Loureiro, of China

Bengal Cardamom, from Amómum aromáticum, Roxburgh, near the apex with 9 wings.

Winged Java Cardamom, from Am. máximum, Roxburgh, with from 9 to 12 wings from base to apex.

Constituents.-Volatile oil 4 to 5 per cent., fixed oil 10 to 11 per cent., starch in minute granules, albuminoids, mucilage, ash about 6 per cent., and in Ceylon cardamom 15 per cent, containing 0.8 per cent. of manganese.

Properties.-Carminative, stomachic, stimulant. Dose, 0.3 to 1 gram (gr. v-xv), in powder, infusion, or tincture.

> VANILLA.--VANILLA.

Crigin.-Vanílla planifólia, Andrews. Natural order, Orchidex, Neottieæ.

Habitat.-Eastern Mexico, in hot damp woods; cultivated in the tropies.

Description.-Collected before ripe ; the color and aroma developed by sweating. Linear, obscurely triangular, from 15 to 25 centimeters (6 to 10 inches) long, narrowed and bent or hooked at the base, rather oblique at the apex, wrinkled, somewhat warty, dark brown, glossy, leathery, one-celled, containing a blackish-brown fragrant pulp with numerous minute black seeds and more or less acicular crystals.

Varieties.-Mexican Vanilla, the finest quality.
Bourbon Vanilla, rather shorter and lighter than the preceding, the odor suggestive of tonka.

Venezuelan Vanilla, about 10 centimeters (4 inches) long, thick; resembling tonka in odor; probably from Vanílla guianénsis, Splitberger.

Brazilian Vanilla, vanillon, from Vanílla Pompóna, Schiede, longer and thicker than the preceding; of an inferior vanilla odor ; contains about 0.5 per cent. vanillin.

Constituents.-Vanillin, $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{3}(1.7$ per cent. in Mexican, 2 per cent. in Bourbon, and 2.75 in Java vanilla, in the last two associated with odorous oil), fixed oil 11 per cent., resin, sugar, mucilage, ash 4 to 5 per cent. Vanillin is the aldehyd of methyl-protocatechuic acid, and is prepared artificially from coniferin (in the sap-wood of pines), carbolic acid, eugenol, and guaiacol. It forms colorless needles, melts at 81° C.; is easily soluble in alcohol, ether, and chloroform, also in carbon disulphide and water; combines with bases, and the solution is colored blue or green with $\mathrm{Fe}_{2} \mathrm{Cl}_{6}$.

Properties.-Carminative, stimulant, aphrodisiac, antihysteric. Dose, 0.3 to 2 grams (gr. v-xxx), in powder, tincture, or syrup.

HORDEI FRUCTUS.-Barley.

Origin.-Hórdeum dístichum, Linné. Natural order, Gramineæ, Hordeeæ.

Habitat.-Probably Western Asia; cultivated.
Description.-Elliptic, about 9 millimeters ($\frac{3}{8}$ inch) long, tapering toward both ends, and somewhat truncate, flattish upon the back, somewhat angled on the sides, with a groove along the front, smooth and grayish-yellow from the adherent paleæ, after their removal pale brownish; pericarp coalesced with the testa, and inclosing a layer of gluten, covering the central parenchyme filled with starch; taste farinaceous.

Maltum.--Malt is barley germinated until the thin germ reaches nearly the length of the fruit, then dried; taste sweetish. Loss in weight from 10 to 20 per cent.

Constituents.-Barley : starch 60-68, proteids 12-16, fat 3 , ash 3 per cent., little sugar.

Malt : diastase, dextrin, sugar, starch, etc. ; about 60 to 65 per cent, soluble in water.

Properties.-Nutritious.

Lappe Fructus.-Burdock Fruit.

Origin.- A'retium Láppa, Linné(Láppa officinális, Alloini). Natural order, Compositæ, Cynaroïdeæ.

Habitat.-Asia and Europe ; naturalized in North America, in waste places.

Description.-Obovate-oblong, about 6 millimeters ($\frac{1}{4}$ inch) long, somewhat curved and angled, roughish-wrinkled, browngray, easily deprived of the short stiff-hairy pappus; inodorous, bitter.

The fruit of Silybum mariánum, Gaertner, or Marythistle of Southern Europe, is of similar appearance, obovate, about 5 millimeters ($\frac{1}{5}$ inch) long, flattish, smooth, mucilaginous, and somewhat bitter.

Constituents.-Bitter principle (white glucoside, granular, soluble in water, alcohol, and chloroform), fixed oil, resin.

Properties.-Tonic, in psoriasis. Dose, 1 to 2 grams (gr. $\mathbf{x v}-\mathbf{x x x}$), in tincture.

CANNABIS.-Hempseed.

Origin.-Cánnabis satíva, Linné. Natural order, Urticaсеæ, Cannabineæ.

Habitat.-Asia ; cultivated in many countries.
Description.-Oval or subglobular, about 4 millimeters ($\frac{1}{6}$ inch) long, slightly compressed, with a whitish keel on the margin ; testa greenish-gray or brownish, veined, glossy, brittle, inclosing a single oily seed; odor slight; taste oily and sweet.

Constituents.-Greenish drying oil 30 per cent., albuminoids 24 per cent., sugar, mucilage, resin, ash 5 per cent.

Properties.-Demulcent and anodyne in the form of emulsion ; mostly used for obtaining the oil.

CORIANDRUM.-Coriander.

Origin.-Coriándrum satívum, Linné. Natural order, Umbelliferæ, Caucalineæ.

Habitat.-Central Asia and Southern Europe; cultivated.

Fig. 215.

Coriandrum.-Fruit and longitudinal section, magnified 3 diam.; transverse section, magnified 8 diam.

Description.-Globular, 4 or 5 millimeters ($\frac{1}{6}$ or $\frac{1}{5}$ inch) in diameter, crowned with the calyx teeth, brownishyellow, smooth ; the two mericarps cohering, inclosing a
lenticular cavity, and each furnished on the face with two oil-tubes, and on the back with five wavy slightly raised ribs and with four rather more prominent ridges; odor and taste agreeably aromatic.

Constituents.-Volatile oil $\frac{1}{2}$ to 1 per cent., fat 13 per cent., mucilage, ash 5 per cent. The volatile oil contains dextropinene and coriandrol, $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}$, the latter boiling at $195^{\circ} \mathrm{C}$.

Properties.-Carminative, stimulant, stomachic. Dose, 0.5 to 2 grams (gr. viij-xxx).

CONII FRUCTUS-Conidm Fruit, Hemlock Fruit.
Origin.-Coníum maculátum, Linné. Natural order, Umbelliferæ, Ammineæ.

Habitat.-Europe and Asia; naturalized in North America.

Description.-The fruit is gathered when full grown, while yet green. About 3 millimeters ($\frac{1}{8}$ inch) long,

Fig. 216.

Conium.-Fruit and longitudinal section, magnified 3 diam.; transverse section, magnified 8 diam.
broadly ovate, laterally compressed, gray-green, smooth, often divided into the two mericarps, and these with five crenate ribs, without oil-tubes, and containing a seed which is grooved on the face ; odor and taste slight ; triturated with solution of potassa, a strong disagreeable odor is given off.

Constituents.-Conine, $\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{~N}$, $\frac{1}{5}-\frac{1}{2}$ per cent., methylconine, $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{CH}_{3} \mathrm{~N}$, conydrine and pseudoconydrine, $\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{NO}$, little volatile oil, fixed oil, ash 6 per cent. Conine is colorless, oily, of spec. grav. 0.88 , boiling-point $166^{\circ} \mathrm{C}$. $\left(331^{\circ} \mathrm{F}\right.$.), of a disagreeable odor and an acrid taste, soluble in alcohol, ether, and water, less in hot water. Methylconine resembles conine. Conydrine is in iridescent scales, melts at $120.6^{\circ} \mathrm{C} .\left(249^{\circ} \mathrm{F}\right.$.), boils at $224.5^{\circ} \mathrm{C}$. $\left(436^{\circ} \mathrm{F}\right.$.), is less poisonous than conine, and with $\mathrm{P}_{2} \mathrm{O}_{5}$, yields poisonous coniceine, $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{~N}$. Pseudoconydrine melts at $100^{\circ} \mathrm{C}$., and boils at $230^{\circ} \mathrm{C}$. $\left(446^{\circ} \mathrm{F}\right.$.).

Properties.-Sedative, narcotic. Dose, 0.1 to 0.3 gram (gr. jss-v); of conine, 0.005 gram (gr. $\frac{1}{12}$).

Antidotes.-Evacuants (stomach pump, emetics); astringents; stimulants ; friction of extremities.

ANISUM.-Anise.

Origin.-Pimpinella Anísum, Linné. Natural order, Umbelliferæ, Ammineæ.

Habitat.-Western Asia, Egypt, Southeastern Europe; cultivated.

Deseription.-Four or 5 millimeters ($\frac{1}{8}-\frac{1}{5}$ inch) long, ovate, compressed at the sides, grayish, finely hairy, and consisting of two mericarps, each with a flat face, five light brownish filiform ridges, and about fifteen or more thin oil-tubes; odor agreeable, aromatic; taste sweet, spicy.

Italian anise often contains a small quantity of the fruit of conium, which is usually in separate mericarps, smooth, grooved upon the face, and has no oil-tubes.

Constituents.-Volatile oil $1 \frac{1}{2}-3$ per cent., fixed oil 3-4 per cent., sugar, mucilage, ash about 7 per cent. Oil of anise is colorless or yellowish, of spec. grav. 0.98, and
congeals, if at rest, at about $10^{\circ} \mathrm{C} .\left(50^{\circ} \mathrm{F}\right.$.), the temperature rising to about $15^{\circ} \mathrm{C}$. ($59^{\circ} \mathrm{F}$.). With alcoholic solution of HCl it affords a pink color. It consists chiefly of

Fig. 217.

Anisum.-Fruit and longitudinal section, magnified 3 diam.; transverse section, magnified 8 diam.
anethol, $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}$, having the melting-point $21^{\circ} \mathrm{C} .\left(70^{\circ} \mathrm{F}\right.$.), and spec. grav. 0.986 at $25^{\circ} \mathrm{C}$. $\left(77^{\circ} \mathrm{F}\right.$.).

Properties.-Carminative, stimulant, stomachic. Dose, 0.5 to 2 grams (gr. viij-xxx), in powder, spirit, volatile oil.

APIUM--Celery Fruit.

Origin.-A'pium gravéolens, Linné. Natural order, Umbelliferæ, Ammineæ.

Habitat.-Levant and Southern Europe ; cultivated.
Description.-About 1 millimeter ($\frac{1}{25}$ inch) long, roundishovate, laterally compressed, brown, smooth, mostly divided into the two mericarps, and these with 5 filiform ribs, flat on the face, and containing about 12 oil-tubes; aromatic.

Constituents.-Volatile oil, spec. grav. 0.88, fixed oil, mucilage.

Properties.-Carminative, stimulant, used for flavoring.

PETROSELINUM.-Parsley Fruit.

Origin.-Cárum (A'pium, Linné) Petroselínum, Baillon (Petroselínum satívum, Hoffinann). Natural order, Umbellifere, Ammineæ.

Habitat.-Levant, Southern Europe, extensively cultivated. Description.-About 2 millimeters ($\frac{1}{12}$ inch) long, ovate,
laterally compressed, greenish- or brownish-gray, smooth, mostly divided into the two mericarps, and these with 5 filiform pale-colored ribs, flat on the face, and containing 6 oiltubes; aromatic.

Constituents.-Volatile oil $1 \frac{1}{2}$ to 3 per cent., fixed oil 12 per cent., resin 5 per cent., apiin, apiol, mucilage, ash 7 per cent. The crude volatile oil contains much stearopten, volatilizing with difficulty. Pure apiol, $\mathrm{C}_{12} \mathrm{H}_{41} \mathrm{O}_{4}$, forms long needles, has a faint parsley odor, spec. grav. 1.015, melting point $30^{\circ} \mathrm{C}$. $\left(86^{\circ} \mathrm{F}\right.$.), boiling point $294^{\circ} \mathrm{C}$., soluble readily in alcohol and ether, in $\mathrm{H}_{2} \mathrm{SO}_{4}$ with blood-red color, with HNO_{3} yields oxalic acid. Apiin is tasteless, crystallizes in silky needles, with hot water forms a jelly, and with acids yields glucose and apigenin.

Properties.-Carminative, stimulant, diuretic. Dose, 0.5 to 2 grams (gr. viij-xxx), in powder, infusion, or spirit. Impure apiol, 0.2 to 0.5 gram (gr. iij-viij), was recommended as a febrifuge.

AJOWAN.-AJowan.

Origin.-Cárum (Ptychótis, De Candolle) A'jowan, Bentham et Hooker. Natural order, Umbellifere, Amminese.

Habitat.-India, Persia, Egypt.
Deseription.-About 2 millimeters ($\frac{1}{12}$ inch) long, ovate, laterally compressed, gray-brown, rough and finely warty, usually divided into the two mericarps, and these with five thin ribs, flat on the face, and with 6 oil-tubes; odor aromatic, thyme-like ; taste pungent, aromatic.

Constituents.-Volatile oil 5 to 6 per cent. (spec. grav. 0.896 ; contains cymene, $\mathrm{C}_{10} \mathrm{H}_{14}$, and thymol, $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}$), ash about 10 per cent.

Properties.-Carminative, stimulant; used for preparing thymol.

FCENICULUM.--Fennel.

Origin.-Fenículum vulgáre, Gaertner, s. F. capilláceum, Gilibert. Natural order, Umbellifere, Seselinex.

Habitat.-Levant and Southern Europe ; cultivated.
Deseription.-Oblong, nearly cylindrical, slightly curved, 5 or 6 millimeters ($\frac{1}{6}$ or $\frac{1}{4}$ inch) long, brownish or green-ish-brown; readily separable into the two mericarps, and these with five light brown conspicnous obtuse ribs, 4 oil-
tubes on the back and 2 or 4 oil-tubes upon the flat face; odor and taste aromatic, anise-like.

Varieties.-Saxon or German Fennel, described above.
Roman Fennel. Larger than the preceding, 8 to 12 millimeters ($\frac{1}{3}$ to $\frac{1}{2}$ inch) long.

Fig. 218.

Fœniculum.-Fruit, 3 diam.; transverse section, 8 diam.

Bitter Fennel, collected in Southern France from wild growing plants; smaller, 3 to 5 millimeters ($\frac{1}{8}$ to $\frac{1}{5}$ inch) long ; taste bitterish and spicy.

Constituents.-Volatile oil 2 to 6 per cent., fixed oil 12 per cent., sugar, mucilage, ash about 7 per cent. Oil of fennel is colorless or yellowish, sweet, of spec. grav. 0.97, congeals below $10^{\circ} \mathrm{C}$. ($50^{\circ} \mathrm{F}$.), and contains phellandrene, $\mathrm{C}_{10} \mathrm{H}_{16}$, and both solid and liquid anethol.

Properties.-Carminative, stimulant, stomachic, galactagogue. Dose, 0.5 to 2 grams (gr. viij-xxx), in powder, spirit, volatile oil.

PHELLANDRIUM.-WATER-DROPWORT.

Five-leaved water hemlock.
Origin.- Enánthe Phellándrium, Lamarck, s. Phellándrium aquáticum, Linné. Natural order, Umbelliferæ, Seselineæ.

Habitat.-Europe and Northern Asia.
Description.-Oblong or oblong-ovate, 4 or 5 millimeters ($\frac{1}{6}$ to $\frac{1}{5}$ inch) long, nearly terete, brown or blackish-brown, smooth, each mericarp with five broad and obtuse ribs, four
narrow grooves, and 6 oil-tubes; odor caraway-like, but unpleasant ; taste aromatic bitter, somewhat acrid.

Constituents.-Volatile oil 1 to $1 \frac{1}{2}$ per cent., fixed oil, resin, mucilage, ash about 8 per cent.

Properties.-Carminative, stimulant, diaphoretic, diuretic. Dose, 1 to 2 or 4 grams (gr. $\mathrm{xv}-\mathrm{xxx}-\mathrm{zj}$), in powder or infusion.

cuminum.-Cumin Fruit.

Origin.-Cumínum Cymínum, Linné. Natural order, Umbelliferæ, Caucalineæ.

Habitat.-Northeastern Africa; cultivated.
Description.-Oblong, 5 or 6 millimeters ($\frac{1}{5}$ or $\frac{1}{4}$ inch) long, narrowed at both ends, laterally compressed, brown, rough-

Fig. 219.

Cumin.-Fruit and longitudinal section, 3 diam.; transverse section, 8 diam.
hairy ; each mericarp with 5 filiform yellowish ribs, 4 broader ones of a brown color, and 6 oil-tubes; odor and taste peculiar, somewhat like caraway.

Constituents.-Volatile oil 1 to 3 per cent., fixed oil, resin, mucilage, ash 8 per cent. Oil of cumin is of spec. grav. 0.92, and consists chiefly of cymol or cymene, $\mathrm{C}_{10} \mathrm{H}_{14}$, and cuminol or cuminaldehyd, $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}$.

Properties.-Carminative, stimulant, antispasmodic. Dose, 0.5 to 2 grams (gr. viij-xxx), in powder or volatile oil.

CARUM.-CARAWAY.

Origin.-Cárum Cárui, Linné. Natural order, Umbelliferæ, Ammineæ.

Habitat.-Central and Western Asia; cultivated.

Description.-Oblong, laterally compressed, 4 or 5 millimeters ($\frac{1}{6}$ or $\frac{1}{5}$ inch) long, brown, smooth, usually separated into the two mericarps, and these curved, narrower at both ends, with five pale-colored filiform ribs, and with

Fig. 220.

Carum.-Fruit and longitudinal section, 3 diam.; transverse section, 8 diam.
six oil-tubes; seed upon transverse section pentagonal; odor aromatic, agreeable; taste sweetish, spicy.

Constituents.-Volatile oil 5 to 7 per cent., fixed oil, resin, sugar, mucilage, little tannin, ash 5 per cent. Oil of caraway has the spec. grav. 0.96 , and consists of carvene, $\mathrm{C}_{10} \mathrm{H}_{16}$, and chiefly of carvol, $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}$ (boiling-point $227^{\circ} \mathrm{C}$.). A strong solution of the oil in alcohol mixed with ammonia and treated with $\mathrm{H}_{2} \mathrm{~S}$, yields white needles of $\left(\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}\right)_{2} \mathrm{H}_{2} \mathrm{~S}$.

Properties.-Carminative, stimulant, diuretic. Dose, 0.5 to 2 grams (gr. viij-xxx), in powder, infusion, spirit, and volatile oil.

ANETHUM.-Dill.

Origin.-Anéthum (Peucedánum, Hiern) gravéolens, Linné. Natural order, Umbelliferæ, Peucedanex.

Habitat.-Levant and Southern Europe; cultivated.
Description.-Oblong or oval, about 4 millimeters ($\frac{1}{6}$ inch) long, dorsally compressed, brown, smooth, usually separated into the two thin mericarps, and these with six oil-tubes and with five ribs, of which three are filiform and the two
lateral ones broadly winged and light-colored; odor and taste spicy, caraway-like.

Constituents.-Volatile oil 3 to 4 per cent., fixed oil, mucilage. Oil of dill has the spec. grav. 0.87 , and contains 60

Fig. 221.

Anethum.-Fruit, 3 diam.; transverse section, 5 diam.
per cent. anethene, $\mathrm{C}_{10} \mathrm{H}_{16}$ (of a lemon-like odor, and boiling point $170^{\circ} \mathrm{C}$.), 10 per cent. of terpene, $\mathrm{C}_{10} \mathrm{H}_{16}$ (boiling point $155^{\circ} \mathrm{C}$.), and 30 per cent. of carvol.

Properties.-Carminative, stimulant, stomachic. Dose, 0.5 to 2 grams (gr. viij-xxx), in powder, infusion, or volatile oil.

Carota.-Carrot Fruit.

Origin.-Daúcus Caróta, Linné. Natural order, Umbelliferæ, Caucalineæ.

Habitat. - Northern Asia and Europe; naturalized in North America; cultivated.

Description.-About 4 millimeters ($\frac{1}{6}$ inch) long, oval, dorsally compressed, gray-brown, each mericarp with six thin oil-tubes and with nine ribs, of which five are hairy and four beset with long spiny bristles; odor slightly aromatic; taste pungent.

The fruit is collected from wild plants.
Constituents.-Trace of volatile oil, fixed oil. The volatile oil consists of $\mathrm{C}_{10} \mathrm{H}_{16}$ and $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}$, the latter probably identical with cineol.

Properties.-Stimulant, diuretic. Dose, 1 to 2 grams (gr. $\mathrm{xy}-\mathrm{xxx}$), in infusion.

AURANTII CORTEX.-Orange Peel.

Origin.-1. Cítrus vulgáris, Risso, bitter orange. 2. Cítrus Aurántium, Risso, sweet orange. Natural order, Rutaceæ, Aurantieæ.

Habitat.-Northern India; cultivated in subtropical countries.

Description.-Narrow thin bands, the epidermis glandular and dark brownish-green (Aurantii amari cortex), or

Orange peel.-Transverse section, magnified 65 diam.
orange-yellow (Aurantii dulcis cortex), and with very little of the spongy white inner layer adhering to it ; odor fragrant; taste aromatic and bitter, or, in the sweet orange peel, faintly bitter. In commerce frequently met with in curved elliptical sections, about 75 millimeters (3 inches) long, with a rather thick layer of the white zest. The epicarp consists under the epidermal layer of parenchyme containing numerous large oil-cells and distant delicate vascular bundles.

Constituents. - Volatile oil, hesperidin (see Aurantii fructus ; in the white zest a principle giving a black color with ferric salts ; ash 4-5 per cent. Oil of bitter orange peel (essence de Bigarade) and oil of sweet orange peel
(essence de Portugal) consist mainly of hesperidene, $\mathrm{C}_{10} \mathrm{H}_{16}$, with a small portion of geranial, $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}$, having a strong orange odor, and boiling at $225^{\circ} \mathrm{C}$. ($437^{\circ} \mathrm{F}$.).

Properties.-Stimulant, tonic. Dose, 1 to 2 grams (gr. $\mathrm{xv}-\mathrm{xxx})$, in infusion or tincture. The volatile oil used for flavoring and in perfumes.

LIMONIS CORTEX.-Lemon Peel.

Origin.-Cítrus Limónum, Risso. Nutural Order, Rutaceex, Aurantiex.

Habitat.-Northern India; cultivated in subtropical countries.

Description.-Narrow thin bands, the epidermis deep lemon-yellow and ruggedly glandular, and with very little of the spongy white inner layer adhering to it ; odor fragrant ; taste aromatic bitterish. In commerce frequently met with in curved elliptical sections with a rather thick layer of white zest.

Constituents.-Volatile oil, hesperidin, principle reacting black with ferric salts, ash 4 per cent. Oil of lemon is pale yellow, of spec. grav. 0.87, and consists mainly of several hydrocarbons, $\mathrm{C}_{10} \mathrm{H}_{16}$, with a little cymene, $\mathrm{C}_{10} \mathrm{H}_{14}$, a compound ether, and citral, $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}$, boiling at $228^{\circ} \mathrm{C}$., and chemically identical with geranial.

Properties.-Stimulant ; used for its flavor.
granati fructus cortex.-Pomegranate Rind.
Origin.-Púnica Granátum Linné. Natural order, Lythrariex, Lythree.

Habitat.-India and Southwestern Asia; cultivated and naturalized in subtropical countries.

Description.-In irregular curved brittle fragments, 1 or 2 millimeters ($\frac{1}{25}$ to $\frac{1}{12}$ inch) thick, some of them with the tubular six- to nine-toothed calyx attached; externally
roughish-tubercular and reddish-brown; inner surface lighter colored, marked with depressions; fracture granular; inodorous; taste astringent.

Fig. 223.

Fruit of Punica Granatum.
Constituents.-Tannin 28 per cent., gum, little sugar, ash 6 per cent.

Properties.-Astringent, anthelmintic. Dose, 1 to 2 grams (gr. $\mathrm{xv}-\mathrm{xxx}$), in powder or decoction.

TAMARINDUS.-Tamarind.

Pulpa tamarindorum.
Origin.-Tamaríndus índica, Linné, s. T. officinális, Hooker. Natural order, Leguminosæ, Cæsalpinieæ, Amherstiea.

Habitat.-India and tropical Africa; naturalized in the West Indies.

Description.-The indehiscent legume is flattish, from 5 to 15 centimeters (2-6 inches) long, and about 25 millimeters (1 inch) broad; the gray-brown pericarp having a corky texture is removed, and the remainder constitutes commercial tamarind. A reddish-brown, sweet, acidulous, pulpy, rather tough mass, containing strong somewhat branching fibres, and polished brown flattish subquadrangular seeds, each inclosed in a tough membrane.

Varieties.-West Indian tamarinds; described above; the inner part of the fruit is mixed with syrup.

East Indian tamarinds; usually preserved without syrup; tough, dark-colored masses, of a strong acid taste.

Egyptian tamarinds ; preserved without sugar, formed into cakes, and dried ; hard flattish acid cakes, frequently mouldy.

Constituents.-Tartaric, citric, a little malic, and acetic acids, mostly as potassium compounds ; sugar, pectin, tannin, the latter in the testa of the seeds.

Properties.-Refrigerant, laxative. Dose, 2 to 20 grains ($3_{\mathrm{ss}}-\mathrm{v}$) or more, in infusion, whey, confection.

11. SEEDS.-SEMINA.

The seed is the fertilized and fully developed ovule, and contains the embryo. It is invested with one or two integuments, the outer one being called testa or spermoderm, and the inner one tegmen or endopleura. In many seeds the tegmen is blended with the testa or coheres with the kernel. The seed stalk, called funiculus or podosperm, is usually absent in the officinal seeds; the scar left by its detachment is the hilum. The continuation of the funiculus along the testa is the raphe, and where it is confluent with the nucleus the chalaza or inner hilum is located. The micropyle, a small depression of the testa, marking the location of the radicle, is in nearly all officinal seeds near the hilum ; most of the seeds are anatropous, and have the hilum and chalaza at nearly opposite ends and united by a raphe, while the campylotropous seeds, which are more or less kidney-shaped, have hilum, chalaza, and micropyle close together.

Within the seed-integuments is contained the embryo, consisting of caulicle, plumule, and one or two cotyledons,
and either completely filling the seed-coats, in which case the seed is exalbuminous, or it is invested with another tissue, usually horny, oily, or amylaceous, which is called the albumen (endosperm, also perisperm). The kernel of exalbuminous seeds consists chiefly of the cotyledons, the caulicle (radicle), and plumule being usually small; but albuminous seeds have frequently a small embryo, the greater portion of the seed-kernel consisting often of the albumen.

The testa of the different seeds varies greatly, not only in color, but likewise in texture, in external appendages (hairs, epithelia, etc.) and more particularly in the character of the cells and their thickening layers, all of which may afford microscopic characteristics for distinguishing seeds even in the powdered condition. The embryo is in most cases formed of delicate parenchyme cells, among which rudimentary or but partly developed vascular bundles are found ; these cell-elements, therefore, offer few characteristics, except through the nature of their contents. Although the albumen (endosperm) is often made up of cells similar to those of the embryo, their variations in shape, thickness, texture and contents are much greater.

Classification.

Sect. 1. Dicotyledonous seeds.

I. Exalbuminous.
a. Embryo straight.

Angular ovate; testa mucilaginous. Cydonium.
Flattish ovate; testa membranous, brown, and Amygdala scurfy; taste bland. taste bitter.
testa coriaceous, black or whitish; seed small. testa coriaceous, white. dulcis.
Amyg. amara.
Sesamum.
Melo.
Flat ovate; testa white, grooved near the margin, edge obtuse.

Pepo.
testa white, ungrooved, edge thickish, acute. Cucumis. testa marbled or orange-brown, edge obtuse. Citrullus.

Oblong; testa blackish, fragile; fragrant. Dipterix.
Ovate-oblong, testa brown, fragile; cotyledons crumbling when cut.

Theobroma.
testa reddish-brown; cotyledons dark colored, differing in size.
b. Embryo curved.

Reniform-oblong, with a long furrow on the convex side.
Rhomboid, with a diagonal furrow.
Subglobular; scarlet red with a black spot. Globular ; testa yellowish, finely pitted. testa blackish-brown, finely reticulate. testa blue-black, finely pitted, larger.
II. Albuminous.
a. Embryo straight.

Orbicular, horny. Nux vomica.
Oblong, angular.
Tetrahedral ; testa black, pitted. testa gray-brown, pitted.
Triangular-ovate, black, fragrant when rubbed.
Flattish-ovate; testa brown, mucilaginous.
Oblong-lanceolate, silky, gray-green.
Globular-ovate ; testa removed; albumen marbled.
Ovate-oblong; testa dull brownish-gray; kernel brown, oily.
Oval-oblong; testa glossy, grayish, variegated with red-brown.
surface dull gray-brown mottled with black. testa dull black, with fine fissures.
b. Embryo curved.

Elliptic plano-convex, grooved on the flat side.
Reniform ; testa black, reticulate, and pitted. testa gray-brown, finely pitted.
testa blackish, bluish, or whitish, with shallow pits.
Sect. 2. Monocotyledonous seeds; all albuminous.
Linear-oblong; blackish-brown.
Subspherical ; testa granular; albumen horny. Colchicum.

Ignatia.
Delphinium.
Staphisagria.
Nigella.
Linum.
Strophanthus.
Myristica.
Gynocardia.
Ricinus.
Tiglium.
Curcas.
Caffea. Stromonium. Hyoscyamus. Papaver.

Sabadilla.

Roundish-angular, spicy; hilum depressed.	Granum
paradisi.	
hilum tufted.	Melegueta.
Roundish-conical, veined externally and inter- nally.	Areca.

CYDONIUM.-Quince Seed.

Origin.- Py^{\prime} rus Cydónia, Linné (Cydónia vulgáris, Persoon). Natural order, Rosaceæ, Роmeæ.

Habitat.-Western Asia ; cultivated.
Description.-About 6 millimeters ($\frac{1}{4}$ inch) long, ovate or ovate-obloug, triangularly compressed; hilum near the pointed end; chalaza at the blunt end ; testa brown, covered

Fig. 224.

Quince seed.-Natural size and section. Section through epithelium, testa, and tegmen, into a cotyledon; magnified 150 diam.
with a whitish mucilaginous epithelium, causing the seeds of each cell to adhere together, and, on immersion in water, forming a gelatinous zone; taste of the unbroken seed insipid; embryo white, oily, and of a bitter-almond taste; cotyledons thick, plano-convex.

Constituents.-Mucilage 20 per cent., not precipitated by borax ; fixed oil, proteids, ash 3.5 per cent.

Properties.-The unbroken seeds are demulcent and protective. A thick mucilage is yielded from 1 part of seeds to 50 parts of water.

AMYGDALA.-Almond.

Origin.-Prúnus Amy'gdalus, Baillon (Amy'gdalus commúnis, Linné, var. a amára, β dúlcis, De Candolle). Natural order, Rosaceæ, Pruneæ.

Habitat.-Western Asia ; naturalized in the Mediterranean basin ; cultivated.

Description.-Flattish ovate or ovate-lanceolate, 20 to 25 millimeters ($\frac{4}{5}$ to 1 inch) long; testa brown, scurfy, with about 16 longitudinal veins; hilum near the pointed end;

$$
\text { Fig. } 225 .
$$

Almond.-Seed. Section through seed coats and portion of the cotyledon.
chalaza broad at the rounded end; embryo white, oily, consisting of two ovate-lanceolate plano-convex cotyledons and a short projecting conical radicle ; inodorous.

Amygdala dulcis. Mostly large, and sides rather convex ; taste bland.

Amygdala amara. Mostly smaller and flattish ; taste bitter; the emulsion with water has an odor resembling that of hydrocyanic acid.

Constituents.-Fixed oil, 45 (in bitter almonds) to 56 per cent. (in sweet almonds), mucilage 3 per cent., sugar 6 per cent., proteids precipitated by acetic acid (myosin, vitellin, and conglutin) 25 per cent., ash about 3 per cent., and in the testa tannin; the unformed ferment (enzyme) of almonds is emulsin or synaptase, which is coagulated by heat, and is precipitated by alcohol, but not precipitated by acetic acid. Bitter almonds contain, in addition to these compounds, 1 to 3 per cent. of amygdalin, $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NO}_{11}$, which crystallizes in prisms, is soluble in water, less freely in alcohol, insoluble in ether, is slightly bitter, and splits into glucose, hydrocyanic acid (1 part from 17 parts amygdalin), and benzaldehyd, $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}$, or oil of bitter almond. The latter (yield about 1 per cent., or after the expression of the fat, about 2 per cent. of the seed) in the crude state has the spec. grav. 1.06-1.075; when freed from hydrocyanic acid it is 1.049 . It is sometimes adulterated with nitrobenzol.

Properties.-Demulcent, used in emulsion ; the bitter almond sedative. Dose of the volatile oil $\frac{1}{4}$ to 1 drop; poisonous in overdoses. Treatment of poisoning necessitates rapid evacuation ; then stimulants and douches.

SESAMUM.-Benne Seed.

Origin-Sésamum orientále and S. índicum, Linné., Natural order, Pedalineæ, Sesameæ.

Habitat.-Southern Asia; cultivated in tropical and subtropical countries.

Description.-Flattish ovate, 3 to 4 millimeters ($\frac{1}{8}$ to $\frac{1}{6}$ inch) long, 2 millimeters ($\frac{1}{12}$ inch) broad, and 1 millimeter ($\frac{1}{25}$ inch) thick ; testa black or purplish-brown (S. orientale),
pale brown, yellowish or whitish (S. indicum), finely punctate, with four delicate longitudinal ridges; hilum near the pointed end, somewhat prominent; tegmen (endosperm?) thin, white, oily ; cotyledons plano-convex, white and oily; inodorous; taste bland.

Constituents.-Fixed oil $50-56$ per cent., proteids 22 per cent., mucilage 4 per cent., ash 6-8 per cent.

Properties.-Laxative; mostly used for preparing benne seed oil.
MELO.-Melon Seed.

Origin.-Cúcumis Mélo, Linné. Natural order, Cucurbitaсеж, Cucumeriner.

Habitat.-Central Asia ; cultivated.
Description.-Flattish ovate or lance-ovate, 10 to 13 millimeters ($\frac{2}{5}-\frac{1}{2}$ inch) long; testa white or whitish, smooth, the edge rather blunt; hilum near the pointed end; cotyledons plano-convex, white, and oily ; inodorous; taste bland.

Constituents.-Fixed oil, proteids.
Properties.—Anthelmintic. Dose, 30 to 65 grams ($\mathbf{3 j}-\mathrm{ij}$), in emulsion.

PEPO.-Pumpkin Seed.

Origin.-Cucúrbita Pépo, Linné. Natural order, Cucurbitaceæ, Cucumerineæ.

Habitat.-Tropical Asia and America ; cultivated.
Description.-Flat, broadly ovate, about 2 centimeters ($\frac{4}{5}$ inch) long; testa white or whitish with a shallow groove

Fig. 226.

Pepo.-Seed and cotyledon with radicle and plumule.
and flat ridge parallel to the margin; hilum near the pointed end ; cotyledons flat, white, and oily ; radicle short, conical; inodorous ; taste bland.

Constituents.--Fixed oil 44 per cent., proteids (myosin and vitellin), starch, acrid resin, sugar, ash 3 or 4 per cent. The infusion of the seeds on being saturated with NaCl , precipitates myosin, and on the further addition of CO_{2}, separates vitellin of same behavior as vitellin of yolk of eg.

Properties.-Tænifuge. Dose, 30 to 65 grams (${ }^{(5 j} \mathrm{j}-\mathrm{ij}$), in powder or emulsion.

CUCUMIS.-Cucumber Seed.

Origin.-Cúcumis satívus, Linné. Natural order, Cucurbitaceæ, Cucumeriner.

Habitat.-Central Asia; cultivated.
Description.-Flat and thin, 8 to 12 millimeters ($\frac{1}{3}-\frac{1}{2}$ inch) long, lance-oblong, ungrooved, acutely edged, dingy white; otherwise resembling pumpkin seed.

Constituents.-Fixed oils, proteids, etc.
Properties.-Diuretic, anthelmintic. Dose, 8 to 65 grams ($\mathrm{zij}-\overline{z i j}$).

CITRULLUS.-Watermelon Seed.

Origin.-Cúcumis (Cucúrbita, Linné) Citrúllus, Séringe, s. Citrúllus vulgáris, Schrader. Natural order, Cucurbitaceæ, Cucumeriner.

Habitat.-Southern Asia ; cultivated.
Description.-Flat, ovate, 10 to 15 millimeters ($\frac{2}{5}-\frac{3}{5}$ inch) long; testa blackish and marbled, or orange-brown, ungrooved, blunt on the edge; otherwise resembling pumpkin seed.

Constituents.-Fixed oil 30 per cent., and proteids.
Properties.-Diuretic, anthelmintic. Dose, 8 to 65 grams ($3 \mathrm{ij}-\mathrm{z}_{\mathrm{z}} \mathrm{j}$).

Dipteryx.-Tonco. Tonka Bean.

Origin.-1. Dípteryx (Coumaroúna, Aublet) odoráta, Willdenow ; 2. D. oppositifólia, Willdenow. Natural order, Leguminosæ, Papilionaceæ, Dalbergieæ.

Habitat.-Guiana.
Description.-Oblong, somewhat compressed, 4 to 5 centimeters ($1 \frac{1}{2}$ to 2 inches) long, about 1 centimeter ($\frac{2}{5}$ inch) broad; hilum near the thin end; testa blackish, fragile, thin,
somewhat glossy, veined and wrinkled ; embryo pale brown, eily; radicle short and thick; cotyledons plano convex, inclosing a rather large pinnate plumule and acicular crystals; fragrant; taste aromatic bitter.

Varieties.-Dutch Tonka. About 5 centimeters (2 inches) long, frequently covered with a crystalline inflorescence.

English Tonka. About 4 centimeters ($1 \frac{1}{2} \mathrm{inch}$) long; its surface with little or no efflorescence.

Constituents.-Fixed oil about 25 per cent., coumarin, $\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{O}_{2}$, sugar, mucilage, ash 3.5 per cent. Coumarin is in glossy aromatic prisms, is freely soluble in alcohol and fats, sparingly soluble in cold water, and melts at $67^{\circ} \mathrm{C}$. (152.6° F.).

Properties.-Stimulant; used only for its flavor.

THEOBROMA.-Cacao.

Origin.-Theobróma Cacáo, Linné. Natural order, Sterculiaceæ, Buettnerieæ.

Habitat.-Tropical America; cultivated.
Description.-The seeds are either dried when removed from the fruit, or are previously fermented in the sweat-ing-box or buried in the ground (claying), until the astringency disappears. Ovate or ovate-oblong, somewhat flattened, obtuse, 15 to 25 millimeters ($\frac{3}{5}$ to 1 inch) long; testa reddish-brown to brown-gray, thin, fragile, with numerous longitudinal veins; hilum at the broad end; chalaza at the narrow end ; embryo red-brown, oily; radicle short; cotyledons ribbed upon the face, irregularly lobed from the back through the folds of the tegmen, and readily breaking into angular fragments; taste oily, aromatic and bitterish. Unsweated cacao has a more bitter and astringent taste. 100 parts of cacao yield about 12 parts of shells and 88 parts of kernels.

Constituents.-Fat about 50 per cent., starch 16 per cent., proteids 18 per cent., ash $3.5-4.5$ per cent., sugar 0.6 per cent. ; coloring matter, a little caffeine, and 1.5 to 4.5
per cent. (somewhat less in the testa) of theobromine (dimethylxanthine) $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O}_{2}$, which is white, crystalline, bitter, not altered by potassa solution, slightly soluble in cold water, alcohol, and ether, and may be converted into caffeine by treating theobromine-silver with methyl-iodide.

Properties.-Nutritive, stimulant; used for preparing chocolate.
COLA.-COLA.

Origin.-Cóla (Stercúlia, Beauvaiz) acumináta, R. Brown. Natural order, Sterculiaceæ, Sterculieæ.

Habitat.-Tropical Western Africa.
Description.-Oblong-ovate, about 25 millimeters (1 inch) long, somewhat flattened; testa brown or reddish-brown, often with blackish spots, brittle; embryo usually dark-colored, when freshly cut yellow or whitish, the cotyledons differing in size, thick, variously bent; odor faintly nutmeg-like; taste somewhat aromatic.

Constituents.-Caffeine 2 per cent., little theobromine,starch 42 per cent., sugar, gum, proteids, little volatile oil, fat and tannin; ash 3 per cent.

Properties.-Tonic, stimulant, nervine; used also roasted like coffee.

PHYSOSTIGMA.-Calabar Bean.

Origin.-Physostígma venenósum, Balfour. Natural order, Leguminosæ, Papilionaceæ, Phaseoleæ.

Habitat.-Tropical Western Africa, near the mouth of the Niger and old Calabar.

Description.-Oblong and somewhat reniform, 25 to 30 millimeters ($1-1 \frac{1}{5}$ inches) long, 15 to 20 millimeters ($\frac{3}{5}-\frac{4}{5}$ inch) broad, and 12 millimeters ($\frac{1}{2}$ inch) thick; testa granular, chocolate brown ; hilum in a broad black groove extending over the entire length of the convex edge, bordered on each side by a reddish-brown ridge, marked along the centre by the linear raphe, and having at one end the micropyle, at the other, end the chalaza; embryo with a
short curved radicle and two large white concavo-convex cotyledons, which adhere with the back to the integuments,

Fig. 227.

Physostigma.-View from the side and edge, showing length of hilum.
and between their faces enclose an elliptic cavity ; inodorous, taste bean-like. The integuments weigh about 28 , and the embryo 72 per cent.

Fig. 228.

Physostigma split, showing cotyledons.

Fig. 229.

Physostigma cylindrospermum.

On moistening the embryo with solution of potassa it acquires a pale yellow color.

The seed of Physostigma (Mucúna, Oliver) cylindrospérmum, Holmes, is 4 centimeters ($1 \frac{3}{5}$ inches) long, nearly cylindrical, has a shorter groove and hilum, otherwise closely resembles the preceding.

Constituents.-Physostigmine or eserine, $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2}$ (in the embryo; amorphous, tasteless, soluble in alcohol, ether, chloroform, benzol, carbon disulphide, less freely in water, reddened by alkalies and by chlorinated lime), calabarine (derivative of physostigmine ; tetanic; insoluble in ether), eseridine (causes diarrhœa; by warm dilute acids converted into physostigmine), physosterin (indifferent, crystalline), starch 48 per cent., proteids 23 per cent., mucilage, ash 3 per cent.

Properties.-Sedative, poisonous; contracts the pupil. Dose, 0.06 to 0.26 gram (gr. j-iv), in powder, tincture, or extract; eserine, 0.001 to 0.005 gram (gr. $\frac{1}{64}$ to $\frac{1}{12}$).

Antidotes.-Evacuation (stomach-pump, emetics) ; atropine ; chloral ; strychnine ; stimulants.

FEENUM GRACOUM.-Fenugreek.

Origin.-Trigonélla Fœ'num gre'cum, Linné. Natural order, Leguminosæ, Papilionaceæ, Trifolieæ.

Habitat.-India, naturalized in the Mediterranean basin; cultivated.

Deseription.-Rhomboid, about 3 millimeters ($\frac{1}{8}$ inch) long, and 2.5 millimeters ($\frac{1}{10}$ inch) broad, compressed, four-edged; from the hilum on one edge, diagonally furrowed on both sides; testa brownish or yellowish, finely granular, hard; tegmen (endosperm ?) colorless, horny ; embryo light yellow, oily, the radicle curved upon the edge of the cotyledons; odor peculiar; taste mucilaginous, bitter.

Constituents.-Mucilage 28 per cent. (chiefly in the inner seed coat), fat 6 per cent., volatile oil a trace, trigonelline (crystalline, soluble in water, not poisonous; yields nicotic acid), choline (probably from decomposition of lecithin), proteids 22 per cent., bitter principle, ash about 4 per cent., free from starch.

Adulteration.-Powdered fenugreek is sometimes adulterated with ground amylaceous seeds.

Properties.- Demulcent, discutient; used in veterinary practice.

ABRI SEMEN.-Prayer Beads, Jequiriti.

Origin.-A'brus precatórius, Linné. Natural order, Leguminosse, Papilionacere, Vicier.

Habitat.-India, naturalized in other tropical countries.
Description.-Subspherical or globular-ovate, 5 to 8 millimeters ($\frac{1}{5}-\frac{1}{3}$ inch) long, scarlet-red, with a black spot at the hilum; testa hard; cotyledons plano-convex ; radicle short, curved; inodorous ; taste bean-like.

Constituents.-Abric acid (crystalline, soluble in alcohol sparingly soluble in water), fixed oil, lecithin or protagon (yields phosphoric acid, glycerin, etc.), alkaloid (probably decomposition product), ash about 3 per cent. The irritating principles are two proteids rendered inactive by moist heat, a paraglobulin (soluble in 15 per cent. NaCl solution, coagulated near $80^{\circ} \mathrm{C}$.) and an albumose (not coagulated by heat, but precipitated by HNO_{3}, this redissolved on heating, and reprecipitated on cooling).

Properties.-Irritating to the eyes; infusion used in granular ophthalmia.

SINAPIS ALBA.-White Mustard.

Origin.-Brássica (Sinápis, Linné) álba, Hooker filius. Natural order, Cruciferæ, Brassiceæ.

Habitat.-Asia and Southern Europe; cultivated.
Description.-Almost globular, nearly 2 millimeters ($\frac{1}{12}$ inch) in diameter; hilum circular ; testa yellowish, finely pitted, hard ; embryo greenish yellow, oily, with a curved radicle and two cotyledons, one folded over the other; inodorous; taste pungent and acrid.

Constituents.-Fixed oil (20-25 per cent., bland), lecithin (small quantity), mucilage (mainly in the testa), myrosin and other proteids, sinalbin, sinapine sulphocyanide, ash 4.5 per cent. ; free from starch. Sinalbin, $\mathrm{C}_{30} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{~S}_{2} \mathrm{O}_{16}$, forms colorless prisms, is soluble in water, sparingly soluble in cold alcohol ; insoluble in ether and carbon disulphide, colored yellow by alkali, blood-red by HNO_{3}, and splits into sugar, sinapine sulphate, $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{5} \mathrm{H}_{2} \mathrm{SO}_{4}$, and
acrinyl sulphocyanide, $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{O} . \mathrm{NCS}$; the latter is a yellow acrid non-volatile oil, readily soluble in alcohol and ether. Sinapine sulphocyanide forms colorless bitter prisms, soluble in water and alcohol. On boiling with alkalies sinapine yields choline (bilineurine) or sinkaline, $\mathrm{C}_{5} \mathrm{H}_{15} \mathrm{NO}_{2}$, and sinapic acid, $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{5}$.

Properties.-Tonic, laxative, diuretic, stimulant, emetic ; externally rubefacient and epispastic. Dose, 1 to 4 grams (gr. $x \mathrm{v}-3 \mathrm{j}$), entire, in powder, or infusion; externally as poultice.

SINAPIS NIGRA.-Black Mustard.

Origin.-Brássica (Sinápis, Linné) nígra, Koch. Natural order, Cruciferæ, Brassiceæ.

Habitat.-Asia and Southern Europe ; cultivated.
Fig. 230.

Description.-Almost globular, about 1 millimeter ($\frac{1}{25}$ inch) in diameter, with a circular hilum ; testa blackishbrown, finely reticulate, hard ; embryo greenish-yellow, oily, with a curved radicle and two cotyledons, one folded over the other ; inodorous when dry, but when moist of a pungent, penetrating, irritating odor; taste pungently acrid.

Constituents.-Fixed oil 25 per cent. (bland), mucilage (mainly in the testa), lecithin (minute quantity), myrosin
and other proteids, sinigrin or potassium myronate about 0.5 per cent., sinapine sulphocyanide, ash 4 per cent., no starch. Sinigrin, $\mathrm{KC}_{10} \mathrm{H}_{18} \mathrm{NS}_{2} \mathrm{O}_{10}$, forms silky white needles, is soluble in water, slightly sohuble in absolute alcohol, insoluble in ether, chloroform, and benzol ; splits into sugar, acid potassium sulphate, and allyl sulphocyanide or volatile oil of mustard, $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{CNS}$; the latter is very pungent and acrid, has the density 1.018 , dissolves in sulphuric acid without coloration, and contains also variable quantities of CS_{2}. Myrosin coagulates at $60^{\circ} \mathrm{C} .\left(140^{\circ} \mathrm{F}\right.$.).

Properties and Dose similar to Sinapis alba.
Allied Seeds.-Turnip seeds, from Brássica Rápa, Linné. Larger than the preceding, $1.5-2$ millimeters $\left(\frac{1}{16}-\frac{1}{12}\right.$ inch $)$ thick, brown or nearly black, finely pitted; slightly acrid.

Rape seed, Cole or Colza seed, from Brássica Nápus, Linné. Larger than turnip seed, 2-2.5 millimeters $\left(\frac{1}{12}-\frac{1}{10}\right.$ inch) thick, finely pitted, mostly blue-black, slightly acrid.

nux Vomica.-Nux Vomica.

Origin.-Stry'chnos Nux vómica, Linné. Natural order, Loganiacex, Euloganiex.

Habitat.-India and East India Islands.

Nux vomica.-Whole seed ; cut longitudinally ; cut transversely.
Description.-Orbicular, about 25 millimeters (1 inch) in diameter, grayish or greenish-gray ; soft-hairy, of a silky
lustre, with a slight ridge extending from hilum in the centre of one side to the edge, where the radicle is located; testa thin, tough, and closely blended with the albumen, which is horny, yellowish or whitish, somewhat translucent, very tough, and has a large circular cavity, into which the heart-shaped nerved cotyledons project ; inodorous, persistently bitter.

Constituents.-Alkaloids (total amount 2.5-4.0 or 5.3 per cent.), strychnine, brucine, and igasurine (probably impure brucine), combined with igasuric acid (amorphous,

Nux vomica.-Section through hilum and albumen, magnified 60 diam.
dark green by ferric salts) ; loganin, proteids 11 per cent., fat, gum, sugar 6 per cent., ash 1-1.5 per cent. Strychnine constitutes from 33 to 50 per cent. of the total alkaloids.

Strychnine, $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$, is in four sided prisms, very bitter, insoluble in absolute ether, soluble in 5 parts of chloroform, 110 parts of cold 90 per cent. alcohol, 1600 parts of benzol, 7000 parts of cold water; melting point $268^{\circ} \mathrm{C}$. Sulphuric acid with potassium bichromate colors
deep violet or blue; similar color by sulphuric acid and lead peroxide or potassium ferricyanide, changing to red and yellow; heated with strong nitric acid yields picric acid ; but diluted nitric acid does not affect the alkaloid (Gerock, 1889). The salts are very bitter. Commercial strychnine contains some homostrychnine, $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}$ (Koefoed, 1889). Strychnine oxidized with permanganate yields amorphous strychnic acid, $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{3}$. Boiled with soda in absolute alcohol strychnine is converted into strychnol (also called strychnic acid), $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}$, which is readily soluble in alkalies, does not give the strychnine reaction with chromic acid, is colored red by mixture of nitric and sulphuric acids, and is reconverted by heating at $190^{\circ} \mathrm{C}$. in a current of hydrogen.

Brucine, $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4}$, is in rectangular octahedra, containing $4 \mathrm{H}_{2} \mathrm{O}$, is readily soluble in alcohol and in 7 parts of chloroform, insoluble in pure ether, melting point (of anhydrous) $178^{\circ} \mathrm{C}$.; nitric acid colors blood-red, changing to orange and yellow, and the yellow liquid becomes violet on the addition of stannous chloride, or sulphide of ammonium or sodium; even nitric acid of 1.06 spec. grav. decomposes brucine on heating (Gerock, 1889). The salts are very bitter.

Loganin, $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{14}$, forms colorless prisms, is easily soluble in alcohol and water, turns red and purple with sulphuric acid, and splits into sugar and loganetin.

Properties.-Tonic, spinal nervine, poisonous. Dose, 0.03 to 0.3 gram (gr. ss-v), in tincture or extract. Strychnine, 0.001 to 0.01 gram (gr. $\frac{1}{64}-\frac{1}{6}$).

Antidotes.-Evacuants (stomach pump, emetics, purgatives); tannin, or animal charcoal ; chloroform inhalation ; chloral hydrate. Also potassium bromide, curare, cannabis indica, amyl nitrite, etc., have been recommended.

IGNATIA.-Bean of St. Ignatius.

Origin.-Stry'chnos Ignátia, Lindley, s. Ignatiána philippínica, Loureiro. Natural order, Loganiaceæ, Euloganieæ.

Habitat.-Philippine Islands.
Description.-Oblong or ovate, irregularly angular, about 3 centimeters ($1 \frac{1}{5}$ inches) long, dull brownish or blackish, very hard, horny; hilum at one end; fracture granular

Fig. 233.

Ignatia.-Vertical section.
irregular ; the albumen brownish, somewhat translucent, inclosing an irregular cavity with an oblong embryo; inodorous, very bitter.

Constituents.-Strychnine 0.5 to 1.5 per cent., brucine 0.5 to 1.4 per cent., proteids 10 per cent., fat, gum, ash 2.5 per cent.

Properties.-Like nux vomica. Dose, 0.03 to 0.2 gram (gr. ss-iij).

Antidotes.-Same as for nux vomica.

DELPHINIUM,-Larkspur Seed.

Origin.-Delphínium Consólida, Linné. Natural order, Ranunculaceæ, Helleboreæ.

Habitat.-Central Europe ; cultivated.
Description.-Flattish tetrahedral, 1 to 1.5 millimeters ($\frac{1}{25}$ to $\frac{1}{16}$ inch) broad, acute on the edges; testa black, roughly
pitted; albumen whitish, oily, inclosing a small straight embryo; inodorous, taste bitter and acrid.

Constituents.-Fixed oil, probably also delphinine.
Properties.-Diuretic, cathartic, emetic, poisonous; externally rubefacient ; rarely employed.

STAPHISAGRIA.-Stavesacre.

Origin.-Delphínium Staphiságria, Linné. Natural order, Ranunculaceæ, Helleborex.

Habitat.-Basin of the Mediterranean ; cultivated.
Description.-Flattish tetrahedral, about 5 millimeters ($\frac{1}{5}$ inch) long and 3 or 4 millimeters ($\frac{1}{8}$ to $\frac{1}{6}$ inch) broad, the broadest side convex, testa brown or brown-gray, with

Fig. 234.

Stavesacre seed and section; magnified 2 diam.
reticulate ridges; albumen whitish, oily, inclosing a small straight embryo ; nearly inodorous; taste bitter and biting.

Constituents.-Delphinine (white, crystalline, acrid), delphinoidine (amorphous), delphisine (crystalline); the three alkaloids soluble in alcohol, ether, and chloroform, the last two becoming brown by sulphuric acid; staphisain (yellow, insoluble in ether, acrid, red and violet by sulphuric acid), fixed oil 25 per cent., trace of volatile oil, proteids, mucilage; ash 9 per cent.

Properties.-Diuretic, cathartic, emetic, poisonous; externally rubefacient ; mostly used for killing vermin.

NIGELLA.-Nigella.

Origin.-1. Nigélla damascéna, Linné. 2. N. satíva, Linné. Natural order, Ranunculaceæ, Helleboreæ.

Habitat.-Levant and Southern Europe; cultivated.

Description. -1 . Triangular-ovate, 2.5 millimeters ($\frac{1}{10}$ inch) long, finely pitted, dull black ; testa brittle; albumen oily ; embryo straight, small, in the pointed end; odor on rubbing strawberry-like; taste bitter, somewhat acrid ; imparts fluorescence to petroleum benzin. No. 2. Similar, but netted-wrinkled, rounded at the edges, odor on rubbing cajuput-like; benzin not rendered fluorescent.

Constituents.-Fixed oil, volatile oil (odor different from that of the seeds); in No. 1 damascenine (melting point $27^{\circ} \mathrm{C}$., fluorescent; solutions of the salts not fluorescent); in No. 2 melanthin (acrid glucoside, soluble in alcohol, red or violet by $\mathrm{H}_{2} \mathrm{SO}_{4}$) ; ash 4 per cent.

Properties.-Emmenagogue, diuretic, expectorant; rarely used.

LINUM.-Flaxseed.

Origin.-Línum usitatissimum, Linné. Natural order, Lineæ, Eulineæ.

Habitat.-Levant and Southern Europe; cultivated and spontaneous in most temperate countries.

Description.-Flattish ovate or oblong ovate, about 5 millimeters ($\frac{1}{5}$ inch) long, obliquely pointed at one end;

Fig. 235.

Flaxseed.-Entire; magnitied 3 diam. Transverse section near the edge, magnified 65 diam.
testa brown, glossy, very finely pitted, covered with a transparent mucilaginous epithelium, which swells considerably in water; hilum near the pointed end ; embryo whitish, oily; cotyledons large, plano-convex, covered with a thin albumen ; inodorous, mucilaginous, oily, and bitter.

Constituents.-Fixed oil 30-35 per cent. (in the nucleus), mucilage 15 per cent. (in the epithelium), proteids 25 per cent., amygdalin (minute quantity), resin, wax, sugar, ash $3-4$ per cent. After expressing the oil, cake meal yields 5 to 6 or 8 per cent. of ash. Starch is absent.

Properties.-Demulcent. Dose, 4 to 10 grams (Oj -ijss) or more, in infusion ; externally as poultice.

STROPHANTHUS.-Strophanthus.

Origin.-Strophánthus Kombé, Oliver, now regarded by Oliver as a variety of Str. híspidus, De Candolle. Natural order, Apocynaceæ, Eehitex.

Habitat.-Tropical Africa.
Description.-Oblong-lanceolate, 15 to 20 millimeters ($\frac{3}{5}-\frac{4}{5}$ inch) long, and 4 or 5 millimeters ($\frac{1}{6}-\frac{1}{5}$ inch) broad, narrowed, but blunt at the base, flattened on the sides and obtusely two edged, grayish-green, covered with appressed silky hairs, one side with a longitudinal ridge prolonged through the attenuated, pointed apex into a brittle awn, which is 7 to 10 centimeters (3 to 4 inches) long, bare in the lower half, and above on all sides beset with delicate, straight, white silky hairs, about 5 centimeters (2 inches) in length; kernel white, oily, consisting of a straight embryo with two thin cotyledons and surrounded by a thin layer of endosperm; inodorous, taste very bitter.

The seeds are met in the market deprived of the awns; but are sometimes imported in the follicles, which are 20 to 30 centimeters ($8-12$ inches) long, linear-oblong and pointed; for medicinal purposes the awns and pericarps are to be removed, the seed alone being used.

The decoction is brownish and not changed in color by solu tions of iodine, ferric chloride, or Mayer's test.

False Kombé Seeds.-The seeds of Str. híspidus, De C., and Str. dichótomus, De C., resemble the above, but are brown or chestnut-brown, and less densely covered with hairs.

The seed of Kícksia africána, Bentham, is pointed at both ends, has the cotyledons irregularly folded, and is awnless, but provided with a long funiculus covered with long hairs.

Constituents.-Kombic acid (precipitated by lead acetate) and strophantin, $\mathrm{C}_{31} \mathrm{H}_{48} \mathrm{O}_{12}$. The latter is imperfectly erystalline, neutral, very bitter, soluble in water and alcohol, nearly
insoluble in ether, benzol, and chloroform, precipitated by tannin, colored green and brown by $\mathrm{H}_{2} \mathrm{SO}_{4}$, and blue by

Fig. 236.

$\mathrm{H}_{2} \mathrm{SO}_{4}$ and $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$, and is by most acids easily split into glucose and crystals of strophanthidin.

Properties. - Heart sedative. Dose of tincture ($1: 16$ alcohol) 4-8 minims.

MYRISTICA.-Nutmeg.

Origin.-Myrística frágrans, Houttuyn (M. moscháta, Thunberg, M. aromática, Lamarek, M. officinális, Linné filius). Natural order, Myristicacee.

Habitat.-Molucca Islands ; cultivated in tropical countries.
Description.-Roundish-ovate, about 25 millimeters (1 inch) long; deprived of the brittle woody testa, which shows shallow impressions from mace ; kernel externally light brown, reticulately furrowed; internally of a fatty lustre, pale brownish with dark brown veins containing the folds of the inner seed-coat; hilum and micropyle on

Fig. 237.

Nutmeg, with mace and transverse section.

Fig. 238.

Wild nutmeg, with mace.
the broad end, chalaza near the upper end, united by a groove corresponding to the raphe; embryo small, in a cavity at the base ; strongly aromatic, somewhat bitter.

Varieties.-Limed or Dutch nutmegs; covered with a white powder, lime.

Penang and Singapore nutmegs; unlimed.
False Nutmegs.-Myrística fátua, Houttuyn, wild or male nutmegs ; 4 to 5 centimeters ($1 \frac{1}{2}$ to 2 inches) long; kernel pale colored, slightly aromatic.

Torréya califórnica, Torrey (Natural order, Coniferæ), testa smooth, brittle ; kernel oblong, marbled, terebinthinate.

Constituents.-Volatile oil 2 to 8 per cent., fixed oil 25 to 30 per cent., starch, proteids, mucilage, ash 2 per cent. Volatile oil of nutmeg has the spec. grav. 0.93 , and consists of myristicene, $\mathrm{C}_{10} \mathrm{H}_{16}$, and a little myristicol, $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}$. Expressed oil of nutmeg consists chiefly of myristin, with some myristic acid, palmitin, olein, resin, and about 6 per cent. volatile oil.

Properties.—Stimulant, stomachic. Dose, 0.5 to 1.5 grams (gr. viij-xxij).

gYNOCARDIA.-Chaulmugra.

Origin.-Gynocárdia (Chaulmoógra, Roxburgh) odoráta, R. Brown. Natural order, Bixineæ.

Habitat.-Malayan peninsula and Northeastern India.
Description.-Irregular ovate oblong, 2 to 3 centimeters ($\frac{4}{5}-1 \frac{1}{5}$ inches) long, 10 to 12 millimeters ($\frac{2}{5}-\frac{1}{2}$ inch) broad, somewhat angular and flattish; testa dingy brown-gray, brittle; tegmen brown, thin; albumen brown, oily; embryo nearly of the length of the seed, with a thick club-shaped radicle, and two broad leafy-veined and somewhat heartshaped cotyledons; odor slight ; taste oily.

Constituents.-Fat 50 per cent., proteids, mucilage.
Properties.-Alterative, tonic ; in larger doses emetic. Dose, 0.3 to 0.6 gram (gr. $\mathrm{v}-\mathrm{x}$) ; mostly used for preparing chaulmugra oil.

RICINUS.-Castor Oil Seed.

Origin.-Rícinus commúnis, Linné. Natural order, Euphorbiacex, Crotonex.

Habitat.-India ; cultivated in tropical and warm temperate countries.

Description.-Variable in size and color ; 10 to 20 millimeters ($\frac{2}{5}-\frac{4}{5}$ inch) long, about 8 millimeters ($\frac{1}{3}$ inch) broad, oval-oblong, flattened on the ventral surface; on one end with a whitish caruncle, covering the hilum and micropyle; chalaza near the broader end; raphe on the flat side ; testa glossy, grayish or pale grayish-brown variegated with redbrown, brittle; tegmen white, thin, adhering to the white

oily albuxmen ; embryo straight, with a short conical radicle and two thin broad and veined cotyledons; inodorous; taste oily, acrid.

Constituents.-Fixed oil 45 to 50 per cent. (see Oleum ricini), ricinin (crystalline, soluble in water and alcohol, sparingly soluble in ether and benzol), proteids 20 per cent., mucilage, sugar, ash (testa 10 per cent., kernel 4 per cent.). The poisonous principle is an albuminoid compound, ricin (Stillmark, 1888); it is soluble in 10 per cent. NaCl solution, precipitated by acids and re-dissolved
by excess, coagulated by heat, precipitated by Mayer's reagent and by phosphotungstic acid.

Properties.-Violently cathartic and emetic; used for preparing castor oil.

TIGLIUM.-Croton Seed.

Origin.-Cróton Tíglium, Linné, s. Tíglium officinále, Klotzsch. Natural order, Euphorbiaceæ, Crotoneæ.

Habitat.-China ; cultivated in India.
Description.—About 12 to 15 millimeters ($\frac{1}{2}$ or $\frac{3}{5}$ inch) long; oval-oblong, somewhat quadrangular, more or less flattened on the ventral side; surface dull gray-brown, or

$$
F: G .240 .
$$

Croton Tiglium.-Lateral and ventral view, and longitudinal section of seed.
mottled with black from the removal of the outer coat; the caruncle usually absent from the commercial seed; otherwise like castor-oil seeds.

Constituents.-Fixed oil 50 to 60 per cent. (see Oleum Tiglii), proteids, including a poisonous phytalbumose, ash 3 per cent.

Properties.-Violently drastic; used for preparing croton oil.
Curcas.-Purging Nut.

Origin.-Játropha Cúrcas, Linné (Cúrcas púrgans, Adanson). Natural order, Euphorbiaceæ, Crotoneæ.

Habitat.-Tropical America; naturalized in other tropical countries.

Description.-About 20 millimeters ($\frac{4}{5}$ inch) long; resembles croton seed, but the testa is dull black and marked with numerous small fissures; taste less acrid.

Constituents.-Fixed oil 40 per cent. (yellowish or colorless, vesicating), proteids, including a poisonous phytalbumose.

Properties.-Drastic and emetic; similar to, but milder than croton seed.

CAFFEA.-Coffee.

Origin.-Cofféa (Cóffea) arábica, Linné. Natural order, Rubiaceæ, Ixoreæ.

Habitat.-Tropical Africa; cultivated in tropical countries.

Deseription.-Elliptic or oval, from 8 to 12 millimeters ($\frac{1}{3}$ to $\frac{1}{2}$ inch) long, yellowish or bluish-gray, plano-convex, on the flat side with a longitudinal groove, penetrating with a curve deeply into the horny albumen; somewhat oblique on one end; hilum near the groove beneath the rounded end; testa membranous, brittle, usually wanting on the back; embryo small, at the oblique end, slightly curved under the convex side; odor faint, peculiar ; taste somewhat bitter, astringent.

Varieties.-The cultivated varieties vary in size, color, and flavor. The large and well-flavored Liberian coffee is obtained from Cofféa libérica, Hiern.

Constituents.-Fat 13 per cent., glucose and dextrin 15 per cent., proteids 13 per cent., caffeine 1 to 1.3 per cent., caffeotannic acid, trace of volatile oil, ash 3 to 4 or 5 per cent. Caffeine, $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}$, is methyltheobromine (trime-thyl-xanthine) in white silky needles, faintly bitter, sublimable, soluble in water, more so in alcohol and chloroform ; on boiling with barium hydrate (or with potassa) converted into carbonic anhydrid, CO_{2}, and caffeidine, $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}$, and the latter ultimately into sarkosine, formic acid, methylamine, and ammonia. It is said not to pro-
duce spasms like theine, and its lethal dose to be smaller than that of theine.

Caffeotannin is amorphous, yields by oxidation viridinic acid, with boiling potassa yellow crystalline caffeic acid, and with fusing potassa protocatechuic acid.

By the roasting of coffee the fat, sugar, and tannin are destroyed, a little caffeine is lost with the water, and empyreumatic volatile oils (caffeone) are produced. The loss by roasting amounts to about 8 per cent. of water and 9 per cent. of organic matter.

Properties.-Tonic, stimulant, nervine, antiemetic. Dose, 4 to 16 grams ($3 \mathrm{j}-\mathrm{iv}$), in infusion ; caffeine 0.1 to 0.2 gram (gr. jss-iij).

Stramonil semen.--Stramonium Seed.

Thornapple seed.
Origin.-Datúra Stramónium, Linné. Natural order, Solanacex, Hyoscyamee.

Habitat.-Asia ; naturalized in most countries.

Fig. 241.

Stramonium.-Capsule and longitudinal section.

Stramonium seed and section, magnified 3 diam.

Description.-Reniform, flattened, about 4 millimeters ($\frac{1}{6}$ inch) long; hilum and micropyle on the concave edge; testa dull brownish-black, pitted and wrinkled ; albumen whitish, oily, inclosing a cylindrical embryo curved par-
allel with the edge of the seed; inodorous; taste oily and bitter.

Constituents.-Fixed oil 25 per cent., resin, mucilage, proteids, ash 3 per cent., alkaloids 0.3 per cent. Daturine is a mixture of hyoscyamine and atropine. Scopolamine is also present. The oil contains daturic acid, $\mathrm{C}_{17} \mathrm{H}_{34} \mathrm{O}_{2}$.

Properties.-Diuretic, dilating the pupil, narcotic. Dose, 0.06 to 0.2 gram (gr. j-iij), in powder, tincture, or extract.

Antidotes.-Evacuants (stomach pump, emetic) ; stimulants (brandy, coffee, etc.) ; hot and cold douches ; morphine; pilocarpine.

hyoscyami semen.-Hyoscyamus Seed.

Origin.-Hyoscyámus (Hyoscy'amus) níger, Linné. Natural order, Solanaceæ, Hyoscyameæ.

Habitat.-Europe and Asia; naturalized in some parts of North America.

Description.-Roundish-reniform, flattened, 1 to 1.5 millimeters ($\frac{1}{25}$ to $\frac{1}{16}$ inch) long; hilum and micropyle on the concave edge; testa finely pitted, roughish, light gray-brown ;

Fig. 242.

Hyoscyamus niger.-Fruit (pyxis) removed from calyx. Seed, natural size, magnified, and section.
albumen whitish, oily, inclosing a cylindrical embryo curved parallel with the edge of the seed, but with the tip of the cotyledons incurved; inodorous; taste oily, bitter, somewhat acrid.

Constituents. - Fixed oil 25 per cent., resin, mucilage, proteids, hyoscyamine, hyoscine (scopolamine), hyoscypicrin (bitter glucoside), ash 3 to 4 per cent.

Properties.-Anodyne, hypnotic, dilating the pupil, nar-
cotic. Dose, 0.1 to 0.3 gram (gr. jss-v), in powder or emulsion.

Antidotes.-Same as for stramonium.

Papaver.-Poppy Seed, Maw Seed.

Origin.-Papáver somníferum, Linné. Natural order, Papaveraceæ, Papavereæ.

Habitat.-Western Asia ; cultivated.
Description.-Reniform, 1 to 1.5 millimeters ($\frac{1}{25}$ to $\frac{1}{16}$ inch) long; hilum and micropyle on the concave side ; testa varying in color, bluish, blackish, or whitish, with shallow pits; albumen whitish, oily, inclosing a cylindrical semilunar embryo; inodorous; taste oily.

Constituents.-Fixed oil 45 to 55 per cent., proteids about 16 per cent., mucilage, morphine (?), ash 6 to 7 per cent.

Properties.-Demulcent, mild anodyne. Dose, 1 to 4 grams (gr. $\mathrm{xv}-\mathrm{zj}$), in emulsion.

SABADILLA.-Cevadilia.

Schœnocaúlon (Asagre'a, Lindley; Helónias, Don) officinále, Asa Gray, s. Verátrum Sabadílla, Schlechtendal. Natural order, Liliaceæ, V eratreæ.

Habitat.-Mexico to Venezuela.
Description. - Narrow-oblong or lance-linear, about 6 millimeters ($\frac{1}{4}$ inch) long, rounded below, rather beaked

Fig. 243.

Sabadilla.-Fruit natural size ; seed and longitudinal section, magnified.
above, somewhat angular ; testa brownish-black, rugosely wrinkled, thin ; albumen whitish and oily, with a small
linear embryo near the base ; inodorous, bitter, persistently acrid, sternutatory.

The papery follicles sometimes present should be rejected.
Constituents.--V eratrine, $\mathrm{C}_{37} \mathrm{H}_{53} \mathrm{NO}_{11}$, cevadine, $\mathrm{C}_{32} \mathrm{H}_{49} \mathrm{NO}_{9}$, cevadilline, $\mathrm{C}_{34} \mathrm{H}_{53} \mathrm{NO}_{8}$, sabadine, $\mathrm{C}_{29} \mathrm{H}_{51} \mathrm{NO}_{8}$, sabadinine, $\mathrm{C}_{27} \mathrm{H}_{43} \mathrm{NO}_{8}$, angelic acid, $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}_{2}$ (needles melt at $45^{\circ} \mathrm{C}$.), methylcrotonic acid, $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}_{2}$ (scales melt at $64.5^{\circ} \mathrm{C}$.), cevadic acid (sublimable, odor of butyric acid, probably identical with the preceding), veratric acid (sublimable in prisms, melt at 180° C.), fixed oil, ash 3.5 per cent. Veratrine (of Wright and Luff) is amorphous, melts at $180^{\circ} \mathrm{C}$., is sternutatory, and by potassa is split into veratric acid and amorphous verine, $\mathrm{C}_{25} \mathrm{H}_{45} \mathrm{NO}_{8}$. Cevadine (Merck's veratrine) crystallizes from alcohol in prisms, melts at 205° C., is sternutatory, with sugar and $\mathrm{H}_{2} \mathrm{SO}_{4}$ is colored deep green and blue, and by potassa is split into methylcrotonic acid and amorphous cevine, $\mathrm{C}_{27} \mathrm{H}_{43} \mathrm{NO}_{8}$. Cevadilline is amorphous and nearly insoluble in ether and benzol. Sabadine crystallizes from ether in needles, and is then nearly insoluble in ether, melts at $238^{\circ} \mathrm{C}$., is not sternutatory, and, like the preceding alkaloids, is colored yellow, afterward red, by $\mathrm{H}_{2} \mathrm{SO}_{4}$. Sabadinine resembles sabadine, but is at once colored blood-red by $\mathrm{H}_{2} \mathrm{SO}_{4}$. Medicinal veratrine is a white powder, consisting of a mixture of the foregoing alkaloids, and probably of their derivatives, acrid, sternutatory, readily soluble in alcohol, ether, and chloroform, less freely soluble in glycerin and olive oil, and is colored yellow and deep red by sulphuric acid, yellow by nitric acid, and deep red by hot hydrochloric acid.

Properties.-Powerful irritant ; used for preparing veratrine, and for killing vermin. Dose, of veratrine, 0.002 to 0.005 gram (gr. $\frac{1}{32}$ to $\frac{1}{12}$), in pills; mostly externally in ointment.

Antidotes.-Evacuation (stomach pump or emetic) ; tan-
nin; stimulants (brandy, coffee, ammonia, etc.); application of warmth.

COLCHICI SEMEN.-Colchicum Seed.

Origin.-Cólchicum autumnále, Linné. Natural order, Liliaceæ, Colchiceæ.

Habitat.-Europe, in meadows.
Deseription.-Subglobular, 2 to 3 millimeters ($\frac{1}{12}$ to $\frac{1}{8}$ inch) thick ; hilum circular, furnished with a soft caruncle ; testa dull reddish-brown, finely pitted, thin, but hard; albumen whitish, oily, horny, and tough, inclosing a small embryo nearly opposite the hilum ; inodorous; taste bitter, somewhat acrid.

Constituents.-fixed oil 6 to 8 per cent., gum, starch sugar, ash 2.6 per cent., colchicine about 0.3 per cent., and derivatives of the latter. Colchicine, $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{6}$ (Zeisel, 1888); is a weak alkaloid, colorless or yellow, amorphous,

Colchici semen.-a. Natural size. b. Section, magnified.
fusible at $145^{\circ} \mathrm{C}$., soluble in water, alcohol, and chloroform, less soluble in ether and benzol, of a saffron-like odor and bitter taste, precipitated by tannin, turns moist litmus paper slowly blue, and in aqueous solution is colored yellow by hydrochloric acid. It is the methylic ether of colchicein, $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{6}+\frac{1}{2} \mathrm{H}_{2} \mathrm{O}$ (white crystals, melting and becoming anhydrous at $140^{\circ} \mathrm{C}$., inodorous, soluble in alcohol, chloroform, and hot water, colored green by ferric chloride, and, after several days' standing, precipitated by
tannin). Colchicoresin is brown, amorphous, soluble in chloroform and alcohol, insoluble in ether, and very sparingly soluble in cold water. Beta-colchicoresin is blackishbrown, soluble in strong alcohol and chloroform, and insoluble in water and ether. The last two principles are not, or but slightly, affected by tannin, are colored browngreen by ferric chloride, and dissolve in potassa with a brown color. Colchicine and colchicein yield with potassa yellow solutions. The four principles yield with sulphuric acid and potassium nitrate a deep blue or purplish-blue color, and, when this has disappeared, concentrated potassa solution gives a more permanent brick-red color. They are extracted from the unbroken seeds by digestion with alcoholic liquids, while maceration in the same exhausts only about two-thirds of the principles.

Properties.-Cathartic, emetic, sedative; in gout and rheumatism. Dose, 0.1 to 0.3 or 0.5 gram (gr. jss-v-viij), in powder, tincture, wine, or fluid extract.

Antidotes.-Evacuation (stomach pump or emetics); tannin ; demulcents ; stimulants.

GRandm Paradisi.-Grain of Paradise.

Origin.-1. Amómum Gránum-paradísi, Afzelius. 2. Am. Meleguéta, Roscoe. Natural order, Scitamineæ, Zingibereæ.

Habitat.-Western Africa.
Deseription.-Roundish-angular, 2 to 3 millimeters ($\frac{1}{12}$ to $\frac{1}{8}$ inch) long; hilum at the slightly conical end, rather broad and depressed (Granum-paradisi), or grayish tufted (Melegueta) ; testa reddish-brown, finely warty ; albumen whitish, mealy, and oily, inclosing a small embryo; odor slightly spicy; taste pungent, pepper-like.

Constituents.-Volatile oil 0.3 per cent., paradol, $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{2}$, (viscid, pungent), tannin, fat, resin, starch, gum, ash 2 to 3 per cent.

Properties.-Stimulant; used mainly in cattle powder, and for imparting artificial strength to spirits.

areca.-Areca Nut.

Origin.-Aréca Cátechu, Linné. Natural order, Palmeæ, Areceæ.

Habitat.-East Indies ; cultivated.
Description.-Roundish conical, about 25 millimeters (1 inch) long, flattish at the hilum, externally brown, veined, internally horny, white, with dark brown veins; embryo near the hilum, small, conical ; odor faint; taste slightly astringent.

Constituents.-Fat 14 per cent., several alkaloids, tannin, resin, mucilage, ash 2.2 per cent. Arecoline (methylarecaidine), $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{NO}_{2}$, is oily, soluble in ether, alcohol, chloroform, and water; poisonous; yields crystallizable salts, and probably represents the tænifuge principle. Arecaine, $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{NO}_{2}$, melts at $213^{\circ} \mathrm{C}$. ; the isomeric arecaidine melts at $222^{\circ} \mathrm{C}$., and guvacine, $\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{NO}_{2}$, fuses at $271^{\circ} \mathrm{C}$. ; these three alkaloids crystallize, are soluble in water and diluted alcohol ; insoluble, or nearly so, in absolute alcohol, ether, chloroform, and benzol, and are not poisonous.

Properties.-Astringent, trenifuge. Dose, 8 to 12 grams ($\mathrm{gij}-\mathrm{iij}$).

12. CELLULAR DRUGS NOT READILY RECOGNIZED AS DISTINCT ORGANS OF PLANTS.

This class embraces excrescences, hairs, glands, sporules, and such other vegetable drugs which do not belong to any of the preceding classes, and do not constitute a distinct organ of a plant, or are not readily recognizable as such. The starches, though not truly cellular, but being of a definite shape, are embraced in this class.

Classification.

Sect. 1. Not farinaceous.

Globular, tuberculated above.
Irregular-ovate, tuberculated or lobed, hollow ; shell thin.

Galla.
Galle chinenses et japonice.

Irregular pieces, white, friable, very bitter.
Felt-like pieces, soft, brown, glossy, tasteless.
Irregular-globose, falling into a brown-black powder.
Narrow oblong and subtriangular, three-grooved. Cylindrical, brownish, horn-like.
Cylindrical, white, spongy, mucilaginous.

Flat, divided into narrow bands, aromatic.
Thread-like, notched above, orange-brown red. Long, silky, thread-like, yellowish.

Curling, white filaments; under the microscope band-like.
Curling, brown, glossy filaments, under the microscope jointed.
Stiff, brown-red, under the microscope retrorsely serrate.
Pulverulent, brick-red, consisting of hairs and glands.
brown or dark purple, mixed with wood fibres.
brown-yellow, aromatic, under the microscope subglobular or hood-shaped.
pale yellow, tasteless, under the microscope tetrahedral.
Viscid liquid, containing roundish cells.
Sect. 2. Farinaceous.
I. Unaltered starch granules, consisting of more or less distinct layers.
II. Granules partly altered.

Globular grains; granules oblong, truncate.
Irregular lumps; granules muller-shaped.
III. Granules wholly or partly inclosed in tissue.

Globular grains with a brown groove ; granules similar to wheat starch.
Meal; granules polyhedral, small, united to globules.

Fungus laricis.
Fungus
chirurgorum.

Ustilago.
Ergota.
Laminaria.
Sassafras medulla.
Macis.
Crocus.
Stigmata maydis.

Gossypium.

Cibotium.

Mucuna.

Kamala.
Araroba.

Lupulinum.
Lycopodium.
Fermentum.

Amylum.

Sago.
Tapioca.

Hordeum.

Avena.

GALLA.-Nutgall.

Origin.-Excrescences on Quércus lusitánica, Webb, var. infectória, De Candolle, s. Q. infectória, Olivier (Natural order, Cupuliferæ), caused by the punctures and deposited ova of Cy'nips gállæ tinctóriæ, Olivier (Class, Insecta. Order, Hymenoptera).

Habitat.-Levant.
Description.-Subglobular, 2 centimeters ($\frac{4}{5}$ inch) or less in diameter, with a short stipe, more or less tuberculated above, otherwise smooth ; heavy, hard, often with a circular

FIG. 245.

Entire.

Section.
hole near the middle, blackish-olive-green or blackish-gray ; fracture granular, grayish; in the centre a subglobular cavity containing either the partly developed insect or pulverulent remains left by it, with remnants of the starchy parenchyme. The cavity is inclosed by a hard shell, composed of stone cells; outside of it the tissue consists of parenchyme, chiefly containing tannin, and of a few soft wood bundles. Nutgalls are nearly inodorous, and have a strongly astringent taste.

Light, spongy, and whitish-colored nutgall should be rejected.

Varieties.-Aleppo, or Syrian nutgalls, dark colored and heavy.

Smyrna nutgalls, of a grayish-olive color, intermixed with white galls.

Sorian nutgalls, size of a pea; blackish.
Indigenous nutgalls, globular, smooth, or tuberculate, white or blackish, spongy or firm, varying according to

origin ; the galls of Quércus vírens, Aiton, are of a firm texture, dark color, and rich in tannin (40 per cent.).

California oak balls, from Quércus lobáta, Engelmann, are globular, 5 centimeters (2 inches) in diameter, orangebrown, internally white and spongy; very astringent.

Chinese nutgalls, from Rhus semialáta, Murray, by the sting of A^{\prime} phis chinénsis, Bell ; about 4 or 5 centimeters ($1 \frac{1}{2}$ to 2 inches) long, ovate, but very irregular, tuberculate, grayish-downy, hollow ; shell thin, fragile, inclosing the remnants of numerous insects.

Japanese nutgalls, from Rhus semialáta or an allied species ; about 2 to 3 centimeters ($\frac{4}{5}$ to $1 \frac{1}{5}$ inches) long, usually lobed, and the lobes tuberculate, densely pubescent; contains starch granules; otherwise like the preceding.

Constituents.-Tannin 50 to 60 per cent. (white galls about 30 per cent.), gallic acid 2 to 3 per cent., mucilage,
sugar, resin, and, in the nucleus, starch. Tannin, gallotannic acid or digallic acid, $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{9}$, is yellowish-white, amorphous, insoluble in absolute ether, chloroform, benzol, benzin, and carbon disulphide, soluble in glycerin, alcohol, and water, precipitated blue-black by ferric salts and white by gelatin. Commercial tannin contains a little odorous

Fig. 247.

Gallw japonice.
and coloring matter and variable quantities of glucose. Gallic acid, $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{6} \cdot \mathrm{H}_{2} \mathrm{O}$, is in white silky needles, soluble in alcohol and boiling water, less so in ether, and sparingly soluble in cold water ; the aqueous solution is colored red by potassium cyanide, is precipitated blue-black by ferric salts, the color disappearing on boiling, and is not affected by gelatin, except in the presence of gum. The tannin of Chinese nutgalls differs somewhat from that of the officinal nutgalls.

AGaricus albus.-Fungus Laricis, White Agaric.

Origin. - Poly'porus officinális, Fries, s. Bolétus láricis, Jaequin. Natural order, Fungi, Hymenomycetes.

Habitat.-Asia and Europe, on the larch (Larix).
Description.-Deprived of the outer rind; hoof-shaped or conical, about 15 centimeters (6 inches) broad, usually in irregular pieces, white, light, somewhat fibrous and spongy,
very friable, but not readily pulverizable; odor faint; taste sweetish, acrid, and very bitter.

Constituents.-Agaricin, $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{O}_{5}$ (also known as agaric acid or laricin; white, crystalline, soluble in hot alcohol and glacial acetic acid, less soluble in ether and chloroform, almost insoluble in benzol), about 25 per cent. of bitter resin (brown-red, soluble in cold alcohol, chloroform, benzol, etc., purgative), resins sparingly soluble in cold alcohol, an indifferent crystalline substance about 4 per cent., white amorphous substance separating jelly-like, 3 or 4 per cent., sugar (mannit?), and fumaric, citric, and malic acids.

Properties.-Antisudoral, purgative, in large doses emetic. Dose, 0.2 to 0.6 gram (gr. iij-x), in powder, tincture, or extract; of agaricin $0.005-0.010$ gram (gr. $\frac{1}{12}-\frac{1}{6}$) as antisudoral.

FUNGUS Chirurgorum. -Surgeon's Agaric.
Origin.-Poly'porus (Bolétus, Linné) fomentárius, Fries. Natural order, Fungi, Hymenomycetes.

Habitat.-Europe, on the oak (Quercus) and beech (Fagus).

Description.-Deprived of the harder rind, cut into slices, boiled in lye, washed and beaten. Felt-like, soft-velvety pieces, brown, glossy, nearly inodorous, tasteless; consists of interlaced filiform cells. Impregnated with potassium nitrate it constitutes spunk or touchwood.

Uses.-Externally for arresting hemorrhage.

- USTILAGO.-Cornsmut.

Origin.-Ustilágo May'dis, Léveillé. Natural order, Fungi, Æcidiomycetes.

Habitat.-Upon all parts of Zea Mays, Linné, most frequently upon the inflorescence.

Description.-Irregular globose masses, sometimes 15 centimeters (6 inches) in diameter, consisting of a blackish gelatinous membrane, inclosing innumerable brown-black, globular, and nodular spores ; odor and taste disagreeable.

Constituents.-Fixed oil 2.5 per cent., probably sclerotic acid, crystalline principle (soluble in carbon disulphide),
crystalline alkaloid (bitter, soluble in ether), volatile base, sugar, mucilage, ash 5 per cent.

Properties.-Emmenagogue, parturient. Dose, 1 to 2 grams (gr. xv-xxx).

ERGOTA.-Ergot.

Secale cornutum.
Origin.-Cláviceps purpúrea, Tulasne. Natural order, Fungi, Ascomycetes.

Habitat.-In the inflorescence of Secále cereále, Linné, and other grasses.

Description.-Somewhat fusiform, obtusely triangular, usually curved, about 20 to 40 millimeters ($\frac{4}{5}-1 \frac{1}{2}$ inches) long, 3 or 4 millimeters ($\frac{1}{8}-\frac{1}{6}$ inch) thick, three-furrowed, attenuated and obtuse at both ends, purplish-black, often transversely fissured, internally whitish, breaking with a short fracture ; odor peculiar, heavy, increased by trituration with solution of potassa ; taste oily, unpleasant.

Ergot grows from a loose white mycelium, which in its early stage is accompanied by an unpleasantly sweet mucus, and penetrates into the ovary. In the following spring stiped fruit-heads are produced, containing numerous bottle-shaped conceptacles (perithecia) with fusiform sporesacs (asci) inclosing 8 filiform spores.

Ergot should be kept in a dry place, and renewed every year.

Constituents.-Mostly difficult to isolate and purify, owing to their amorphous condition and changeable nature. The following have been obtained: Fixed oil 30 per cent., mannit, mycose, proteids, cholesterin, ash about 3 per cent. (mainly phosphates), scleromucin 2-3 per cent. (brown, tasteless, after drying insoluble in water; ecbolic ; according to Kobert, impure ergotic acid), sclererythrin $\frac{1}{100}$ per
cent. (soluble in alcohol, ether, and in alkalies with a deep red color), scleroiodin (not soluble in simple solvents,

violet in alkalies), picrosclerotin (poisonous), sclerocrystallin and scleroxanthin (crystalline, soluble in ether, inert).

Two acids possessing ecbolic properties have been obtained in different stages of purity and named sphacelic and sclerotic (ergotic) acid; both are amorphous and nearly tasteless ; the former, also known as sphacelotoxin, is insoluble in water, but soluble in alkalies; the latter is soluble in water. Of alkaloids prepared from ergot, ergotinine is colorless, crystalline, fluorescent in alcohol, ether, and chloroform solutions, by $\mathrm{H}_{2} \mathrm{SO}_{4}$ colored red, violet, and blue, and is regarded as harmless. Cornutine is an active alkaloid, and is probably present to some extent in the impure alkaloids ecboline and ergotine; it is of a reddish color and entirely insoluble in ether and water and is the chief active constituent of alcoholic extracts of ergot, which contain also sphacelic acid. A queous extracts contain principally ergotic acid and sphacelates.

Bonjean's ergotin is the aqueous extract of ergot, precipitated by alcohol, filtered and evaporated.

Properties.-Emmenagogue, ecbolic, parturient, hemostatic, poisonous. Dose, 0.3 to 1.5 grams (gr. v-xxij), in powder (freshly prepared), infusion, wine, or fluid extract; ergotin 0.06 to 0.2 gram (gr. j-iij).

Antidotes.-Evacuants (stomach pump, emeties, purgatives) ; stimulants ; amyl nitrite inhalation ; frictions.

LAMINARIA.-Laminaria.

Origin.-Laminária Cloústoni, Edmonston, s. L. digitáta, Lamouroux. Natural order, Algæ, Fucoider.

Habitat.-North Atlantic Ocean.
Description.-The stipitate portion of the plant is used. Cylindrical or somewhat flattened pieces about 1 centimeter (${ }_{5}^{2}$ inch) thick, deeply wrinkled, brownish or brown, often with a saline efflorescence, horn-like, sometimes hollow in the centre (from old plants); after soaking in water brown-green, elastic, and four or five times the former thickness; in the outer layer with large mucilage cells; odor slight seaweedlike ; taste mucilaginous, saline.

Constituents.-Mucilage, mannit, salts.
Properties.-Absorbent, dilatant; turned cylindrical or conical, used as tents.

SASSAFRAS MEDULLA.-Sassafras Pith.

Origin.—Sássafras officinális, Nees. Natural order, Laurinex, Litseacex.

Habitat.-North America, from Ontario to Florida and Eastern Texas.

Description.-Slender cylindrical pieces, often curved or coiled, light, spongy, white, inodorous, insipid ; consisting entirely of parenchyme.

Constituents.-Mucilage; from its aqueous solution it is not precipitated by alcohol or subacetate of lead.

Properties.-Demulcent ; used mostly in collyria.

MACIS.-Mace.

Origin.-Myrística frágrans, Houttuyn. Natural order, Myristicacer.

Habitat.-Molucea Islands ; cultivated in the tropies.
Description.-It is the arillus of nutmeg. In narrow bands, aboft 25 millimeters (1 inch) long, and 1 millimeter ($\frac{1}{25}$ inch) thick, somewhat branched and lobed above, united to broader pieces at the base ; of a brownish-orange color, fatty when scratched or pressed; fracture short, showing numerous yellow oil cells ; fragrant ; taste warm, aromatic.

Constituents.-Volatile oil 8 per cent. (mostly macene, $\mathrm{C}_{10} \mathrm{H}_{16}$, with little oxygenated compound), resin, fat, sugar, dextrin, mucilage, proteids, no starch granules, ash 1.5-2 per cent.

Properties.-Stimulant, tonic; used chiefly for flavoring.

CROCUS.--SAFFRON.

Origin.-Crócus satívus, Linné. Natural order, Irideæ, Sisyrinchiee.

Habitat. - Western Asia; cultivated for commerce mainly in Spain and France.

Description.-It consists of the stigmas, which are separate, or three attached to the top of the style, about 3 centimeters ($1 \frac{1}{5}$ inches) long, flattish-tubular, almost threadlike, broader and notched above ; orange-brown red ; crisp and somewhat elastic ; odor peculiar, aromatic ; taste bitterish and aromatic. When chewed it tinges the saliva deep orange-yellow. It consists of thin-walled elongated parenchyme and of delicate vascular veins, repeatedly forked, a vein terminating in each tooth.

Saffron should not be mixed with the yellow styles, and should not be sticky (glycerin). When pressed between filtering paper, it should not leave an oily stain. When soaked in water, it colors the liquid orange-yellow, and should not deposit any pulverulent mineral matter, nor show the presence of organic substances differing in shape from that described (stamens, corolla-tubes, safflower, calendula, etc.). For adulterating saffron mineral matters are made to adhere to the drug by means of syrup or glycerin, or it is impregnated with concentrated solutions of alkali salts, or with cheaper coloring matters. Sodium nitrocresylate dissolves in petroleum spirit with a lemon-yellow color; the coloring matter of saffron is insoluble.

Varieties.-Commercial saffron is mostly of Spanish or French (Gatinais) origin. African saffron is usually safflower (carthamus). Cape saffron consists of the corolla of Lypéria crócea, Ecklon, natural order, Scrophularineæ.

Constituents.-Volatile oil, $\mathrm{C}_{10} \mathrm{H}_{16}, 1$ per cent., fixed oil,
wax, mucilage, sugar, proteids, ash 5 per cent., moisture about 12 per cent., picrocrocin and crocin (polychroit), $\mathrm{C}_{44} \mathrm{H}_{70} \mathrm{O}_{28}$. The latter is amorphons, brown-yellow, insoluble in ether, soluble in ordinary alcohol and water, and is split into sugar (crocose), and red crocetin (formerly called crocin), $\mathrm{C}_{34} \mathrm{H}_{46} \mathrm{O}_{9}$, which is soluble in ether and alcohol,

Fig. 252.

Crocus - a. Stigma, upper part, magnified 4 diam. b. Style with stigmas. c. Papillose margin of stigma, magnified 120 diam.
nearly insoluble in water, and is colored blue by sulphuric acid, like crocin. Picrocrocin, $\mathrm{C}_{38} \mathrm{H}_{66} \mathrm{O}_{17}$, forms colorless bitter needles, is readily soluble in alcohol and water, less so in chloroform, sparingly soluble in ether, and with acids or alkalies yields crocose and the volatile oil, $\mathrm{C}_{10} \mathrm{H}_{16}$.

Properties.- Diaphoretic, carminative, emmenagogue, anodyne, mildly sedative. Dose, 0.3 to 2 grams (gr. vxxx), in powder, infusion, tincture, or syrup.

MAYDIS STIGMATA.-Cornsilk.

Origin.-Zéa Mays, Linné. Natural order, Gramineæ, Maydeæ.

Habitat.-Tropical America; cultivated in the warm temperate zone.

Description.-The stigmas are collected. Fine thread-like, 15 centimeters (6 inches) or more long, about 0.5 millimeter ($\frac{1}{50}$ inch) broad, yellowish or greenish, soft-silky, finely hairy, inodorous, taste sweetish.

Constituents.-Sugar, mucilage; maizenic acid (composition? soluble in water, alcohol, and ether), fixed oil, resin, salts.

Properties.-Diuretic, lithontriptic. Dose, about 2 grams (3 ss) in decoction or syrup; of the aqueous extract, 0.3 to 0.5 gram (gr. v-viij).

GOSSYPIUM.-Cotton.

Origin. - Gossy'pium herbáceum, Linné, and other species of Gossypium. Natural order, Malvaceæ, Hibisсеæ.

Cotton fibres.
Hobitat.--Tropical Asia and Africa ; cultivated in tropical and subtropical countries.

Description.-The hairs attached to the seeds are used. One-celled filaments, about 2 (short staple) to 4 (long
staple) centimeters ($\frac{4}{5}-1 \frac{3}{5}$ inches) long, and about 0.02 millimeter (0.0008 inch) broad; white, soft, curling, under the microscope appearing as flattened, hollow, and twisted bands, which are spirally striate and slightly thickened at the obtuse edges ; inodorous, tasteless, insoluble in water, alcohol, ether, and potassa salution ; blackened by warm solution of stannic chloride, not dyed by pieric acid, soluble in ammoniacal solution of copper sulphate.

Constituents.-Cellulose, inorganic constituents 1.5 per cent., fixed oil $9-10$ per cent., the latter removed by repeated boiling with caustic alkali (absorbent cotton).

Uses.-For preparing collodion and for surgical dressings.

CIBOTIUM.-PENGHAWAR.

Penghawar-Djambi, Paku-kidang, Pulu.
Origin.-Cibótium Báromez, J. Smith, Cib. djambiánum, Hasskarl, and other species of ferns. Natural order, Filices, Cyatheacee.

Habitat.-Sumatra, Java, and islands of the Pacific.
Deseription.-The chaffy hairs of the bases of the fronds and stem are collected. Curling filaments, about 0.05 millimeter (0.002 inch) broad, glossy, brown or brown-yellow; under the microscope flat and jointed; inodorous, tasteless. Penghawar is about 25 millimeters (1 inch) long, and of a yellowish tint. Paku-kidang, from Alsóphila lúrida, Hooker, etc., is about 5 centimeters (2 inches) long, and of a brown color. Pulu, or Pulu-pulu, from Cibótium glaúcum, Hooker, ete., is slightly curling and very soft.
Cibótium Schiédei, Schlechtendal, of Mexico, yields a similar product.

Constituents.-Humin compounds, little resin, wax, trace of tannin (green with iron).
Properties.-Hemostatic through the mechanical absorption of the blood serum.

MUCUNA.-Cowage.

Origin.-Mucúna (Stizolóbium, Persoon; Dólichos, Linné) prúriens, De Candolle. Natural order, Leguminosæ, Papilionacer, Phaseolese.

Habitat.-East and West Indies.

Description.-The hairs attached to the legumes are used. One-celled, 2 or 3 millimeters ($\frac{1}{12}-\frac{1}{8}$ inch) long, stiff, brownred, under the microscope appearing sharp-pointed, retrorsely serrate, rather thick-walled and partly filled with a brown granular matter. The hairs easily penetrate the skin, causing violent itching.

Constituents.-Little tannin and resin.
Mucúna úrens, De Candolle, yields shorter and darker hairs, which are equally irritating.

Properties.-Anthelmintic, externally irritant. Dose, 0.1 to 0.2 gram (gr. jss-iij), mixed with syrup.

KAMALA.-Kamala.

Origin.-Mallótus philippinénsis, Mueller Arg. (Rottléra tinctória, Roxburgh). Natural order, Euphorbiaceæ, Crotoneæ.

Habitat.-India, China, Philippine Islands, Australia; possibly also in Abyssinia.

Description.-The glands and hairs of the capsules are collected. Granular, mobile, brick-red, inodorous and nearly tasteless powder, imparting a deep red color to alkaline liquids, alcohol, ether, and chloroform ; boiling water yields a pale yellow solution, becoming brown with ferric chloride. Under the microscope Kamala is seen to consist of stellately arranged colorless hairs, mixed with depressed globular glands, containing from 40 to 60 red club-shaped vesicles. When heated in a crucible to redness, it leaves an ash, weighing not over 8 per cent. of the drug.

Constituents.-Resins nearly 80 per cent., one soluble in cold, the other in hot alcohol; rottlerin, $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{6}$ (yellowish needles, soluble in hot alcohol, in ether, benzol, carbon disulphide and, with a red color in alcohol ; altered on exposure to air), albuminous matter and cellulose, each 7 per cent., ash about 3 per cent.

Adulteration.-Earthy matters, sometimes to the extent of 60 per cent. ; best detected by incineration.

Properties.-Tænifuge. Dose, 4 to 8 or 12 grams (3j-ij-iij), in powder or electuary.

Substitute.-Wars or Wurrus from Flemíngia rhodocárpa, Baker; Papilionaceæ, Phaseoleæ; indigenous to Eastern Africa. The powder is coarser than Kamala, is deep purple, has a slight odor, becomes black in the water-

Kamala.-Magnified 190 diam.
bath, and consists of cylindrical or subconical glands, enclosing several tiers of oblong vesicles. Used as a vermifuge, in skin diseases, and as a dye. An inferior kind of wars consists of altered starch of flemingia seeds mixed with red sand (Flückiger). It contains resins 73, albuminous matter 8 , cellulose 7.5 , and ash 6 per cent.

ARAROBA.-Goa Powder.

Origin.-Andíra Araróba, Aguiar. Natural order, Leguminosæ, Papilionaceæ, Dalbergieæ.

Habitat.-Brazil.
Description.-Collected from radial clefts of the wood. When fresh, light yellow, after exposure ochre-colored, umber-brown, or brown-purple ; somewhat crystalline, rough, mixed with wood-fibres ; inodorous, bitter. Water
dissolves about 7 per cent., the solution being brownish; benzol dissolves about 80 per cent., and subsequently alcohol about 2 per cent. ; the insoluble portion consists mostly of wood fibres.

Constituents.-Gummy matter, resin, and chrysarobin, $\left(\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{O}_{7}\right.$ (orange-yellow, crystalline, soluble in alcohol and ether, more freely soluble in chloroform and benzol; the solution in potassa is yellow, has a green fluorescence, and becomes red, when it contains chrysophanic acid) ; ash about 0.5 per cent.

Properties.-Irritant ; used externally in skin diseases.

LUPULINUM.--Lupulin.

Origin.-Húmulus Lúpulus, Linné. Natural order, Urticaceæ, Cannabineæ.

Habitat.-Northern temperate zone ; cultivated.
Description.-The glands attached to the axis and bracts of the strobiles are collected. Bright, brownish-yellow, becoming yellowish-brown ; resinous, aromatic, and bitter,

Fig. 255.

Lupulin (fresh).
consisting of minute granules, which, under the microscope, are subglobular or rather hood-shaped, and reticulate, the lower half being obtusely conical. When agitated with water and allowed to stand, no appreciable sediment consisting of sand should be deposited.

Constituents.-V olatile oil 3 per cent., choline (formerly called lupuline, strongly alkaline liquid, not bitter, proba-
bly from the decomposition of lecithin; on boiling yields trimethylamine), resin, wax (myricin), lupamaric acid, $\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{O}_{4}$ (bitter prisms, insoluble in water, freely soluble in diluted and strong alcohol, ether, chloroform and other solvents, turns yellow and resinous on exposure, with HNO_{3} turns red, changing to orange on dilution or with an alkali), ash about 5 per cent. The volatile oil, on exposure, yields valerianic acid.

Properties.-Stimulant, tonic, anodyne. Dose, 0.2 to 0.5 or 1 gram (gr. iij-viij-xv), in powder, tincture, fluid extract, or oleoresin.

LYCOPODIUM.-Lycopodium.

Origin.-Lycopódium clavátum, Linné, and other species of Lycopodium. Natural order, Lycopodiaceæ.

Habitat.-Europe, Asia, and North America, in dry woods.

Deseription.-A fine powder, pale yellowish, very mobile, inodorous, tasteless, not wetted by water, burning quickly when thrown into a flame. Viewed under the microscope the granules are seen to be tetrahedral, reticulated, rounded on one side and on the edge with short projections.

Fig. 256.

Lycopodium.
Constituents.-Fixed oil 47-49 per cent., cane sugar 2 per cent., volatile base (methylamine) in minute quantity ; ash 1.15 per cent. (and 3 or 4 per cent. of sand, etc.), containing 45.7 per cent. of $\mathrm{P}_{2} \mathrm{O}_{5}$. The oil contains a peculiar oleic acid, $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{O}_{2}$ (Langer, 1889).

Uses.-For protecting excoriated surfaces, and for preventing the mutual adhesion of pills.

Fig. 257.

Pollen of pine.
Adulterations.-Pine pollen consists of an elliptic cell, at both ends of which a globular cell is attached. Starch is colored blue by iodine. Powdered turmeric is colored redbrown by alkalies. Mineral admixtures subside in carbon disulphide and increase the yield of ash.

FERMENTUM.-YeAst.

Origin.-Tórula (Saccharomy'ces, Meyen) cerevísiæ, Turpin. Natural order, Fungi, Saccharomycetes.

Habitat.-In fermenting malt liquors.
Description.-A viscid liquid or semifluid frothy mass, containing numerous isolated roundish or oval cells (bottom

Fig. 258.

Yeast cells.
yeast), or the cells are arranged in short branching rows (top yeast); odor peculiar, taste bitter.

Properties.-Tonic, stimulating, laxative, antiseptic. Dose, 30 to 65 grams ($\overline{3} \mathrm{j}-\mathrm{ij}$); externally for poultices.

AMYLUM.-Starch.

Origin.-In most vegetables. For medicinal and dietetic purposes, and for uses in the arts, starch is prepared from amylaceous seeds, tubers, rhizomes, and palm stems.

Description.-Fine white powder, sometimes superficially adhering so as to form irregular angular or columnar masses, white, inodorous, tasteless, insoluble in ether, alcohol, and cold water; under the microscope, appearing as minute granules, varying in size and shape according to origin, and consisting of more or less distinct concentric or excentric layers, which are arranged around a cavity called

Fig. 259.

Wheat starch.

Fig. 260.

Corn starch.

Fig. 261.

Rice starch.
the hilum or nucleus. Its ultimate composition is, $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5}$, but it consists of a mixture of various modifications of starch-cellulose and starch-granulose, the latter becoming blue with iodine. Boiled with water the granules are ruptured and dissolve, yielding, on cooling, a jelly or mucilaginous liquid acquiring a blue color with iodine. Heated to $180^{\circ} \mathrm{C}$. ($356^{\circ} \mathrm{F}$.) starch is converted into dextrin. Boiled with dilute sulphuric acid, starch yields different
dextrins (colored violet or red, or not affected by iodine), and finally glucose (dextrose).

Maranta starch.

Fig. 263.

Starch soluble in water has been observed in the epidermal layers of some plants. Some starches acquire a yellow and brown color with iodine, and probably consist mainly of starch cellulose.

The most important starches found in commerce may be distinguished by the microscopic appearance of the granules, as follows (the cuts represent the starch granules magnified 250 diameters):

Lenticular, large and minute granules; layers indis- Tríticum
tinct; hilum slight, near the centre.
Polyhedric, uniform; size of wheat starch (nearly); hilum central, large.
Polyhedric, uniform; much smaller; hilum small.
Ovate ; layers delicate, distinct; hilum at broad end, often cleft.
Ovate or roundish ovate; larger than preceding; layers very distinct; hilum rather small at the narrow end.
Ovate or ovate-oblong; larger than preceding; layers numerous, delicate; hilum inconspicuous, mostly at the narrow end.
Elliptic, flat, contracted at one end; layers numerous, delicate; hilum small at the narrow end.
vulgáre.

Zéa Mays.
Ory'za satíva.
Maránta arundinácea.

Solánum tuberósum.

Cánna spec.

Cúrcuma spec.
SAGO.-Pearl Sago.

Origin.-Metróxylon Ságu, Rottboell, and M. Rúmphii Martius (Ságus Rúmphii, Willdenow), and other palms. Natural order, Palmæ, Lepidocaryæ.

Habitat.-East India Islands; cultivated.

Sago starch.

Description.- Globular, pearl-like grains, prepared by granulation with heat; white or brownish, somewhat diaphanous; the unaltered starch granules oblong, elliptic, or ovate, truncate at one end; layers more or less distinct; hilum at the rounded end often cleft.

TAPIOCA.-TAPIOCA.
Origin. - Mánihot utilíssima, Pohl (Játropha Mánihot, Linné), and Mánihot Aípi, Pohl (Jatr. dúlcis, Gmelin). Natural order, Euphorbiaceæ, Crotoneæ.

Habitat.-Brazil; cultivated in the tropics.

Fig. 267.

Cassava starch.

Fig. 268.

Altered starch granules from tapioca.

Description.-The starch of the rhizome (cassava starch), while still moist, is dried on heated plates. Irregular lumps, white and opaque or somewhat diaphanous; the unaltered starch granules muller-shaped ; layers indistinct; hilum near the rounded end, small, often cleft.

Hordeum.-Pearl Barley.

Origin.-Hórdeum dístichum, Linné, and other cultivated species of Hordeum. Natural order, Gramineæ, Hordeeæ.

Habitat.-Asia; cultivated.

Barley starch.
Description.-The fruit is almost completely deprived of the integuments. Globular, white, mealy, on one, side_with
a groove, containing remnants of the brown integuments; the starch granules resemble those of wheat, but are rather smaller; a portion of the gluten is present.

AVENE FARINA.-Oat Meal.

Origin.-Avéna satíva, Linné. Natural order, Gramineæ, A veneæ.

Habitat.-Probably Asia; cultivated.
Description.-Meal not uniform, grayish-white, containing the gluten and fragments of the integuments; taste

Oat starch.
bitterish ; the starch granules polyhedric, or muller-shaped, often united to subspherical or ovoid masses ; layers scarcely observable ; hilum rather indistinct.

Properties.-Starches are demulcent; farinaceous substances containing both starch and gluten, are demulcent and nutritive.
20.

埌 7x mantax

$$
4
$$ (20)

chatentarity

 Ry 2

N

PART III.
 DRUGS WITHOUT CELLULAR STRUCTURE.

These comprise secretions, exudations, and other organic products which are destitute of cellular structure, though fragments of tissue are in some of them always present, and which, if of animal origin, like some of the fats, are not readily recognized as such.

1. EXTRACTS AND INSPISSATED JUICES. EXTRACTA ET SUCCI INSPISSATI.

These are of black or brown color, either wholly or partly soluble in water or alcohol, yielding brown-colored solution; two of the inspissated milk-juices are completely insoluble in both menstruums.

Classification.

Sect. 1. Wholly or partly soluble in water and alcohol.

I. Taste bitter.

Containing fragments of tissue ; also starch and tannin ; red-brown, black-green by ferric salts.
Fragments of tissue; neither starch nor tannin; red-brown, blood-red by ferric salts.
Neither tissue, starch, nor tannin; gray-brown, not altered by ferric salts. dark orange-brown, black by ferric salts. blackish-brown, poisonous.

Guarana.
Opium.
Lactucarium.
Aloe.
Curare.
II. Taste sweet.Brown black, glossy.
III. Taste astringent and sweetish.Dark brown, more or less glossy; black-green byferric salts.Brown, earthy, crystalline; black-green by ferricsalts.Brown-red, angular pieces; black-green by ferricsalts.
Black-brown, somewhat acrid; blue-black by ferric salts.
Brown-red; violet-black by ferric salts.
Sect. 2. Insoluble in water and alcohol.
Plastic in hot water.
Elastic at ordinary temperature.

Extractum glycyrrhize.

Catechu.

Gambir.

Kino.

Monesia.
Extr.
hæmatoxyli.
Gutta percha.
Elastica.

GUARANA.-Guarana.

Origin.-Paullínia sórbilis, Martius. Natural order, Sapindaceæ, Sapindex.

Habitat.-Northern and Western Brazil.
Preparation.-The seeds are subglobular, 8 to 10 millimeters ($\frac{1}{3}-\frac{2}{5}$ inch) in diameter, glossy blackish-brown and with a broad light brown hilum and a whitish embryo. They are roasted, then broken, kneaded with water into a pasty mass, formed into cakes, and dried by artificial and solar heat.

Description.-Subglobular, elliptic, or cylindrical cakes, hard, dark reddish-brown ; fracture uneven, lighter colored, showing fragments of the seeds; odor slight, peculiar; taste astringent and bitter ; partly soluble in water and alcohol. The powder is light reddish-brown, and contains thick-walled cells and thin-walled parenchyme with pasty starch, starch granules, crystals, oil drops, ete.

Constituents.-Caffeine, $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}, 4$ to 5 per cent., tannin 26 per cent. (coloring ferric salts black-green),
starch, mucilage, fat, saponin, resin, volatile oil, ash 2.5 per cent.

Properties.-Mild astringent, tonic, stimulant, nervine. Dose, 0.5 to 4 grams (gr. viij-3j), in powder, syrup, or fluid extract. The extract (made with diluted alcohol), 0.2 to $1 \operatorname{gram}(\mathrm{gr} . \mathrm{ij}-\mathrm{xv})$.

OPIUM.-OPIUM.

Meconium, Thebaicum, Succus thebaicus.
Origin.-Papáver somníferum, Linné. Natural order, Papaveraceæ, Papavereæ.

Habitat. - Western Asia; cultivated.
Preparation.-The green capsule is scarified transversely by a one-bladed knife (Asia Minor and Egypt), or longitudinally by a several-bladed knife (India, Japan); the white milk-juice assumes a brown color, thickens, and is then scraped off and formed into cakes. In Asia Minor the cakes are wrapped in a poppy leaf and packed with rumex-capsules ; this constitutes the officinal opium.

Description.-Subglobular or irregularly angular and flattened cakes, with the remains of poppy leaves and some fruits of a species of rumex adhering to the surface, plastic, and chestnut-brown, or harder, darker, somewhat shining, and with a coarsely granular fracture; internally with some tears and fragments of the epicarp of the poppy capsules; odor heavy narcotic ; taste bitter and nauseous.

10 grams of opium-previously dried at a temperature of $105^{\circ} \mathrm{C}$. ($220^{\circ} \mathrm{F}$.), exhausted with cold water, and the solution evaporated to dryness-yield an extract weighing between 5.5 and 6 grams (or between 55 and 60 grains from 100 grains of well-dried opium). Opium should contain about 10 per cent., and powdered opium 12 to 16 per cent., of morphine.

Varieties.-Smyrna, Turkey, or Constantinople opium, described above.

Egyptian opium. Flattish cakes, enveloped in poppy leaf, free from rumex fruit ; now rarely exported.

Persian opium. Cylindrical sticks, short cones, or small balls of a rather light brown color; wrapped in paper or oftener packed in poppy trash ; oily and of rather firm consistence.

East Indian opium. In globular balls weighing about 1900 grams (nearly $4 \frac{1}{2}$ lbs. avoirdupois), and enclosed in a hard shell formed of poppy petals (provision opium) ; or in flat square or circular cakes wrapped in oiled paper (Abkari opium).

European and American opium, prepared experimentally, but never on a large scale.

Factitious opium has been occasionally met with ; it was probably the aqueous extract of the poppy plant, of a blackish-brown color, soft consistence, and deficient in odor and taste.

Adulterations.-Lead balls, shot, pebbles, starch, and gum have been used for the purpose.

Constituents.-Free from starch, tannin, and oxalates. Contains odorous principle, glucose, mucilage, pectin, caoutchoue, wax, fatty matter, coloring principle, ash 6 per cent., meconic acid, $\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{7}$ (present in free state; ferric salts produce a deep red color, which is not discharged by hydrochloric acid or mercuric chloride), lactic acid $1 \frac{1}{4}$ per cent., meconin, $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{4}$ (bitter, soluble in alcohol and ether), meconoiosin, $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{2}$ (red, changing to purple when evaporated with slightly diluted sulphuric acid, while meconin turns green), and numerous alkaloids, mostly present as sulphates.

Narcotine, $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{7}, 1.3$ to 10 per cent. Soluble in ether, benzol, chloroform and boiling alkali solutions;
melts at $176^{\circ} \mathrm{C}$. ($349^{\circ} \mathrm{F}$.) ; dissolves blood-red in sulphuric acid containing some nitric acid, and with orange carmine and dingy violet colors in hot sulphuric acid; Fröhde's reagent colors green, brown, yellow, and reddish ; heated with nitric acid yields opianic acid, meconin, and cotarnine, $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{3}$, a stronger base.

Morphine, $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}, 2.5$ to 15 or 22.8 per cent. Nearly insoluble in ether, chloroform, and benzol, soluble in alkalies; blood-red, orange, then yellow with nitric acid ; orange-colored by chlorinated alkalies; deep blue by ferric chloride, the color disappearing on heating or on the addition of acids; liberates iodine from iodic acid; Fröhde's reagent colors violet, brown, and greenish ; heated with hydrochloric acid under pressure yields apomorphine, $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{2}$, which is emetic, and in moist air turns green.

Codeine, $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{3}, 0.2$ to 0.7 per cent. Soluble in ether, chloroform, benzol, and water ; melts in hot water ; crystallized from anhydrous ether melts at $153^{\circ} \mathrm{C}$. $\left(307.4^{\circ} \mathrm{F}\right.$.) ; colored yellow by nitric acid; blue by sulphuric containing a trace of nitric acid or ferric salt. It is the methyl ether of morphine, $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}_{2} . \mathrm{OCH}_{3}$.

Pseudomorphine, phormine or oxydimorphine, $\mathrm{C}_{34} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{6}$, 0.2 per cent. Insoluble in ether and chloroform ; red by nitric acid, and blue by ferric chloride ; tasteless, not poisonous.

Thebaine (paramorphine), $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{3}, 0.15$ to 1 per cent. Soluble in ether, chloroform, and benzol ; somewhat soluble in alkalies ; colored red and yellow by sulphuric acid; yellow by nitric acid ; easily decomposed by mineral acids.

Narceine, $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NO}_{9}, 0.02$ to 0.1 or 0.7 per cent. Insoluble in ether and benzol; freely soluble in boiling water and alcohol ; sparingly so in chloroform ; colored violet and cherry-red by warm dilute sulphuric acid ; tran-
siently yellow by nitric acid; blue by a little iodine; brown and yellow by Fröhde's reagent.

Papaverine, $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{4}$, 1 per cent. Soluble in chloroform and benzol ; slightly soluble in ether ; melting point 147° C. ($297^{\circ} \mathrm{F}$.) ; violet-blue by warm sulphuric acid, changing to green with a nitrate ; Fröhde's reagent colors violet, blue, and yellowish.
Rheadine, $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{6}$. Nearly insoluble in simple solvents; solutions in dilute acids tasteless and colorless, turning purple by sulphuric acid.

Cryptopine, $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{5}$. Freely soluble in chloroform, sparingly soluble in other simple solvents ; melting point $217^{\circ} \mathrm{C}$. (422.6 F.) ; salts gelatinize from hot water; blue by sulphuric acid, changing to orange-yellow by a nitrate.

Gnoscopine, $\mathrm{C}_{34} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{11}$. Soluble in chloroform, carbon disulphide, and benzol ; carmine-red by sulphuric containing nitric acid.

Oxynarcotine, $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{8}$. Soluble in alkalies ; sparingly so in alcohol ; insoluble in ether, chloroform, and benzol ; on oxidation yields cotarnine and hemipic acid.

Lanthopine, $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}_{4}$. Readily soluble in chloroform; melts near $200^{\circ} \mathrm{C}$. ($392^{\circ} \mathrm{F}$.) ; orange-red by nitric acid; pale violet color by sulphuric acid, dark brown on heating.

Meconidine, $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{4}$. Amorphous; readily soluble in ether, benzol, and chloroform; melts at $58.6^{\circ} \mathrm{C}$. $\left(136.4^{\circ} \mathrm{F}\right.$.) ; olive-green by sulphuric acid ; orange-red by nitric acid.
Laudanine, $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{4}$. Sparingly soluble in cold alcohol or ether, soluble in chloroform and benzol ; melts at $166^{\circ} \mathrm{C}$. $\left(331^{\circ} \mathrm{F}\right.$.) ; rose-red by sulphuric acid containing ferric salt, violet on heating ; orange-red by nitric acid; emerald green with ferric chloride ; the salts bitter.

Codamine, $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{4}$. Readily soluble in simple solvents ; melting point $121^{\circ} \mathrm{C}$. ($250^{\circ} \mathrm{F}$.) ; blue with sul-
phuric acid containing ferric salt, on heating green and dark violet ; dark green by nitric acid or ferric chloride; salts amorphous.

Deuteropine, $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{5}$. Not known in pure state.
Laudanosine, $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NO}_{4}$. Soluble in ether, chloroform, and benzol ; melts at $89^{\circ} \mathrm{C} .\left(192.2^{\circ} \mathrm{F}\right.$.) ; colored yellow by light; brown-red by sulphuric acid containing ferric salt, changed to green and dark violet on heating.

Protopine, $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{5}$. Slightly soluble in ether, benzol, and alcohol ; more soluble in chloroform; melting point $202^{\circ} \mathrm{C}$. ; crude $\mathrm{H}_{2} \mathrm{SO}_{4}$ colors deep violet.

Hydrocotarnine, $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{3}$. Soluble in ether, chloroform, and be:zzol ; melts at $50^{\circ} \mathrm{C}$. $\left(122^{\circ} \mathrm{F}\right.$.) ; hot $\mathrm{H}_{2} \mathrm{SO}_{4}$ colors red ; on oxidation yields cotarnine.

The last twelve alkaloids are present only in minute quantities.

Properties.-Narcotic, sedative, anodyne, antispasmodic, hypnotic, chiefly due to the morphine present. Narcotine is antiperiodic and tetanizing, in doses of 1 to 2 grams (gr. $x v-x x x$) hypnotic ; of similar action is hydro-cotarnine. Codeine is hypnotic, in large doses tetanic, used in diabetes. Thebaine is soporific, excitant, and tetanizing. Narceine is feebly hypnotic. Papaverine and cryptopine are hypnotic and sedative. Laudanine and laudanosine have a tetanizing action. Dose, opium 0.06 to 0.13 gram ($\mathrm{gr} \mathrm{j}-\mathrm{ij}$) or more. Morphine 0.01 to 0.03 gram (gr. $\frac{1}{6}-\mathrm{ss}$) or more.

Antidotes.-Evacuation preferably by mechanical means, (stomach-pump, etc.) ; ambulatory treatment; stimulants (strong coffee, brandy, etc.) ; cold douches ; atropine.

Lactucarium.-Lactucarium.

Origin.-Lactúca virósa, Linné, L. satíva, Linné, and L. Scaríola, Linné. Natural order, Compositæ, Cichoriaсеж.

Habitat.--Southern and Central Europe; the second species extensively cultivated (garden lettuce); the third species naturalized in some parts of North America.

Preparation.-The top of the flowering stalk is cut off, and the milk-juice scraped into earthen vessels to harden.

Description.-In sections of plano-convex circular cakes, or in irregular angular pieces; externally gray-brown or dull reddish-brown; internally whitish or yellowish, of a waxy lustre ; odor narcotic ; taste bitter.

It is partly soluble in alcohol and ether, is softened by hot water, and, when triturated with water, yields a turbid mixture. Diluted alcohol dissolves between 36 and 44 per cent. of the lactucarium. Spirit of chloroform dissolves between 55 and 60 per cent., chiefly lactucon.

Lactúca canadénsis, Linné, at the time of flowering, yields a good lactucarium ; earlier in the season its milkjuice is not bitter, or but slightly so.

Constituents.-Lactucin, $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ (bitter scales soluble in 60 parts of cold water, insoluble in ether; turns red and brown by alkalies, and loses its bitter taste), lactucic acid (crystalline, bitter, red by alkalies), lactucopicrin (amorphous, bitter), lactucerin or lactucon about 50 per cent. (tasteless needles; composition variable), caoutchouc, resin, sugar, mucilage, asparagin, trace of volatile oil, ash 7 to 10 per cent., etc.

Properties.-Anodyne, hypnotic, sedative. Dose, 0.1 to 0.3 or 0.5 gram (gr. jss-v-viij), in syrup or fluid extract.

Thridace or French lactucarium is not the milk-juice, but the extract of the herb.
ALOE.-A Loes.

Origin.-1. A'loe socotrína, Lamarck. 2. A. vulgáris, Lamarck. 3. A. férox, Miller, and other species of Aloe. Natural order, Liliaceæ, Alocineæ.

Habitat.-1. Eastern Africa (A'loe Pérryi, Baker, in the island of Socotra). 2. India and Northeastern Africa; naturalized in the West Indies. 3. Southern Africa, where A. spicáta, Thunberg, and 6 or 8 additional species and hybrids are used in the preparation of aloes.

Preparation.-The leaves are cut off and the juice exuding from them is collected without using any pressure, after which it is evaporated.

Description.-Of different shades of brown, opaque, and in thin layers translucent or transparent ; fracture somewhat conchoidal, dull waxy or glossy resinous; odor peculiar, when breathed upon saffrou-like; taste bitter, nauseous. Aloes is almost completely soluble in alcohol, in boiling water, and in alkalies ; nearly insoluble in ether, chloroform, benzol, benzin, and carbon disulphide.

Varieties.-Aloe socotrina ; Socotrine aloes. Hard, or the interior occasionally soft, opaque, yellowish-brown or orange-brown, not greenish, translucent ; odor rather pleasant. Mixed with alcohol, and examined under the microscope, it exhibits numerous crystals. It is exported from Zanzibar and other places of Eastern Africa, frequently via Bombay.

A'loe barbadénse ; Barbadoes aloes. Deep orange-brown, opaque, translucent ; odor differing somewhat from that of the preceding; under the microscope crystalline. It is exported from the island of Barbadoes. Bonare and Curagao aloes, also derived from Aloe vulgaris, are more glossy.

A'loe capénsis; Cape aloes. Blackish-brown or oliveblack, transparent and red-brown on the edges, glossy; odor unpleasant ; not crystalline under the microscope.

Natal aloes. Light yellowish-gray-brown, dull, and opaque; odor and taste weaker than in the other varieties; crystalline under the microscope; medicinally of little value. The plant yielding it is unknown; it is exported from Port Natal.

Moka aloes. Brown-black, opaque, impure, and of disagreeable odor; from the interior of A rabia.

Caballine aloes; Horse aloes. Dark colored, opaque, and fetid.

Constituents.-Volatile oil a minute quantity, ash about 1 per cent., aloin and so-called resin. The latter amounts to about 60 per cent., is soluble in hot water, and almost wholly reprecipitated on boiling; soluble in alcohol and colored brown-black by ferric salts. The crystalline aloin is yellow or pale yellow, and not freely soluble in simple solvents. Cape aloes does not yield aloin.

Socaloin or zanaloin, $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{7}$, is little affected by cold nitric acid.

Nataloin, $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{7}$, is colored crimson by cold nitric acid. If added to cold sulphuric acid, and the vapor of nitric acid passed over it, the orange color will rapidly change to green, red, and blue; the other aloins are little affected by this test. Oxidation with HNO_{3} yields picric and oxalic acids.

Barbaloin, $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{7}$, is colored crimson by cold nitric acid. Yields like socaloin, on oxidation with HNO_{3}, chrysammic, aloetic, picric, and oxalic acids.

Properties.-Laxative, drastic, emmenagogue, vermifuge. Dose, 0.12 to 0.3 or 0.5 to 1 gram (gr. $\mathrm{ij}-\mathrm{v}$ or viij-xv), in pills, tincture, wine, enema, or suppository.

> CURARA.-Curare.

Origin.-Stry'chnos Castelnæána, Weddell, Str. toxífera, Schomburgk, and other species of Strychnos. Natural order, Loganiaceæ, Euloganieæ.

Habitat.-Brazil and Guiana.
Preparation.-An infusion or decoction is made from the bark with the addition of various other substances; afterward evaporated.

Description. - Blackish-brown, extract-like, and hygro-
scopic, or firmer, brittle, and friable; about 75 per cent. soluble in cold water.

Constituents.-Curarine, $\mathrm{NC}_{18} \mathrm{H}_{35}$, resin, fat, gum, inorganic matters. Curarine is crystalline, very bitter, hygroscopic, sparingly soluble in ether and chloroform, and is colored dark red by nitric acid ; sulphuric acids colors carmine-red, becoming violet with potassium chromate.

Properties.-Diaphoretic, nervous sedative, irritant. Dose, 0.006 to 0.02 gram (gr. $\frac{1}{10}-\frac{1}{\frac{1}{3}}$).

EXTRACTUM GLYCYRRHIZÆ.-Liquorice.

Licorice.

Succus liquiritiæ.
Origin.-Glycyrrhíza glábra, Linné. Natural order, Leguminosæ, Papilionaceæ, Galegeæ.

Habitat.-Southern Europe ; cultivated.
Preparation.-The bruised root is boiled with water, expressed, the liquid evaporated, and the stiff extract while warm rolled out into sticks.

Deseription.-Cylindrical brown-black sticks of varying dimensions, somewhat flexible when warm, breaking with a glossy and flat conchoidal fracture, and yielding a brown powder ; odor slight; taste sweet, somewhat acrid.

Licorice loses on drying from 10 to 15 per cent. of moisture, and if now treated with cold water, yields to it from 60 to 70 per cent. of its weight, and subsequently an additional quantity to dilute ammonia.

Constituents.-Glycyrrhizin, free and combined with bases, the former soluble in ammonia ; glucose, pasty starch, fragments of tissue, ash 6 to 8 per cent.

Adulteration.-Dextrin and gum are precipitated from the aqueous infusion by alcohol ; glucose is not precipitated.

Properties.—Demulcent, expectorant. Dose, 1 to 2 grams (gr. xv-xxx); used for correcting the taste of bitter medicines.

CATECHU.-Catechu. Cutch.

Origin.-Acácia Cátechu, Willdenow, and Ac. Súma, Kurz. Natural order, Leguminosæ, Mimoseæ, Acacieæ.

Habitat.-India; the second species also in Eastern Africa.

Preparation.-The brown heartwood is boiled with water, and the concentrated decoction poured upon mats of leaves or into moulds.

Description.-In irregular masses, containing fragments of leaves, dark brown, glossy, brittle, breaking with a conchoidal fracture, often somewhat porous in the interior; the powder of a red-brown color; nearly inodorous; taste strongly astringent and sweetish; partly soluble in cold water, the solution having an acid reaction, and the undissolved portion containing numerous acicular crystals; yields with hot water a dark brown turbid liquid; hot alcohol leaves not over 15 per cent. undissolved; the tincture diluted is turned green by ferric salts.

Constituents.-Catechutannic acid, about 35 per cent. (brown, insoluble in ether, black-green with ferric salts), catechin, $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{8}$ (white needles, sparingly soluble in cold water, soluble in ether, sweetish, green with ferric salts, precipitated by albumen, but not by gelatin ; melting-point $217^{\circ} \mathrm{C}$., on dry distillation yields pyrocatechin, phenol, and acetic acid), catechu red, little quercetin, gum, ash 0.6 to 6 per cent. Catechin, fused with potas a, yields phloroglucin and protocatechuic acid, $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{4}\left(\mathrm{Fe}_{2} \mathrm{Cl}_{6}\right.$ colors the solution dark green, changing by alkali carbonate to blue and red). Pyrocatechin or catechol has the formula $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{2}$; $\mathrm{Fe}_{2} \mathrm{Cl}_{6}$ colors it dark green, changing by ammonia, etc., to violet.

Properties.-Tonic, astringent. Dose, 0.5 to 2 grams (gr. viij-xxx), in powder, pills, troches, or tincture.

CATECHU PALLIDUM.-Gambir.

Pale Catechu. Terra japonica.
Origin.-Uncária (Naúclea, Hunter) Gámbir, Roxburgh. Natural order, Rubiaceex, Nauclex.

Habitat.-East India Islands.
Preparation.-The leaves and young shoots are boiled in water and the decoction is evaporated.

Description.-Irregular masses or cubes about 25 millimeters (1 inch) square; externally reddish brown, internally pale brown-gray or light cinnamon-brown; fracture dull earthy, under the microscope crystalline, friable, inodorous, bitterish, astringent, and sweetish ; slightly soluble in cold water.

Constituents.-Catechin (predominating in the pale colored varieties), catechutannin, quercetin, ash 2 to 5 per cent. Three catechins have been isolated, differing in melt-ing-points and in composition, also from that of catechu.

Properties.-Tonic, astringent. Dose, 0.5 to 2 grams (gr. viij-xxx), in powder, pills, troches, or tincture.
KINO.-Kino.

Origin.-Pterocárpus Marsúpium, Roxburgh. Natural order, Leguminosæ, Papilionaceæ, Dalbergiex.

Habitat.-East Indies.
Preparation.-Incisions are made into the trunk of the tree and the exuding red juice is inspissated without the use of artificial heat.

Description.-Small, angular, dark brown-red, shining pieces, brittle, in thin layers ruby-red and transparent; not crystalline; the powder of a red color; inodorous, very astringent, and sweetish ; when masticated, becomes adhesive to the teeth and tinges the saliva deep red ; soluble in
alcohol and in alkalies, mostly soluble in cold water, nearly insoluble in ether ; separates gelatinous from hot water.

Constituents.-Kinotannic acid (black-green by ferric salts; in neutral solution violet by ferrous salts); kino-red (tasteless, nearly insoluble in water), pyrocatechin or catechol (trace, soluble in ether and water), kinoin (colorless prisms, soluble in ether ; slightly soluble in cold water; by ferric chloride red ; at $125^{\circ} \mathrm{C}$. converted into kino-red), ash 1.3 per cent.

Varieties.-Malabar kino, described above.
Bengal or Palas kino, from Bútea frondósa, Roxburgh, Papilionaceæ, Phaseoleæ. Blackish-red, in transparent light ruby-red tears or fragments, often with impressions of leafveins, brittle, not adhesive on mastication.

Gambia kino, from Pterocárpus erináceus, Poiret, is now not an article of commerce.

Australian or Botany Bay kino, from Eucaly'ptus amygdalína, Labillardière, and other species of Eucalyptus, Myrtaceæ ; varying in solubility and composition ; some varieties contain much gum. Ceratopétalum gummíferum and C. apétalum, Smith (Saxifragaceæ), also yield kino-like exudations, that of the last species containing coumarin.

West Indian kino, from Coccóloba uvífera, Linné, Polygonaceæ. Dark brown-red, almost wholly soluble in water and alcohol ; taste astringent and bitterish.

Properties.-Tonic, astringent. Dose, 0.5 to 2 grams (gr. viij-xxx), in powder, pills, troches, or tincture.

MONESIA.-Monesia.

Origin.-Lucúma glycyphlæ'a, Martius et Eichler (Chrysophy'llum glyciphœ'um, Casaretti). Natural order, Sapotaсеж.

Habitat.-Brazil.
Preparation.-By boiling the bark in water and evaporating.

Deseription.-Black-brown cakes or angular fragments, soluble in water, inodorous; taste sweet, astringent, and acrid.

Constituents.-Tannin 62 per cent. (blue-black by ferric salts) ; sweet principle (resembling glycyrrhizin, but not precipitated by acids), monesin (resembling saponin, acrid, foaming in aqueous solution), pectin, coloring matter, ash 3 per cent.

Properties.-Stimulant, tonic, astringent. Dose, 0.3 to 1.5 grams (gr. $v-x x i j$), in powder, tincture, and syrup.

Substitutions.-The astringent extracts described above have been sold in place of it ; also

Extractum Hæmatoxyli, extract of logwood, which is redbrown, not acrid, and yields with water a red solution.

GUTTA PERCHA.-Gutta Percha.

Origin.-Paláquium oblongifólium, Burck, and several allied species. Natural order, Sapotaceæ, Eusapoteæ.

Habitat.-Malay peninsula and islands. Isonándra (Dichópsis, Paláquium) Gútta, Hooker, is said to be nearly extinct.

Collection.-The trees are felled, and the bark is incised or strips of it are removed; the milky juice is collected, allowed to harden, then softened in hot water, and freed from pieces of wood and bark.

Properties.-Grayish or yellowish masses, often with red-brown streaks, hard, heavier than water if free from cavities; rather horny, somewhat flexible, but scarcely elastic; spec. grav. about 0.98 ; plastic above $50^{\circ} \mathrm{C}$. $\left(122^{\circ} \mathrm{F}.\right)$, very soft at the temperature of boiling water; decomposed on melting; nearly inodorous and tasteless; insoluble in water, cold alcohol, alkalies, and dilute acids ; soluble in ether, benzol, chloroform, oil of turpentine, and carbon disulphide.

Balata, chicle or tuno gum from Mímusops globósa, Gaertner (Sapóta Múlleri, Belkrode), the Central America
bully tree, closely resembles gutta percha in appearance and properties.

Constituents.-Gutta, $\mathrm{C}_{20} \mathrm{H}_{32}$, about 80 per cent. (white fine powder), a yellow resin, fluavil, $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}$, and a white crystalline resin, albane, $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{2}$; the last two separate on cooling from hot alcohol. Ash 3 or 4 per cent.

Uses.-As an adhesive and protective agent for wounds and abrasions, and for the preparation of bougies, pessaries, and caustic pencils.

ELASTICA. RESINA ELASTICA.-Caoutchouc. India Rubber.

Origin.-In the milk juices of many plants; prepared chiefly from trees of the natural order of Euphorbiacea (Siphonia, Hevea, Jatropha, etc.), Apocynaceæ (Urceola, Vahea, Landolphia, etc.), and Artocarpaceæ (Ficus, Urostigma, Castilloa, etc.) ; these grow in tropical countries.

Preparation.-Incisions are made, and the milk-juice is allowed to congeal in mass, or it is dried over clay or wooden moulds with or without the aid of artificial heat.

Description.-In cakes, balls, or hollow bottle-shaped pieces, externally blackish-brown, internally brownish; spec. grav. about 0.96 ; very elastic ; odor slight, peculiar, nearly tasteless ; soluble in carbon disulphide, chloroform, benzol, and oil of turpentine. It melts at about $125^{\circ} \mathrm{C}$. ($257^{\circ} \mathrm{F}$.) , and after cooling, remains soft and adhesive ; on dry distillation it yields caoutchoucin, containing caoutchin, $\mathrm{C}_{10} \mathrm{H}_{16}$, isoprene, $\mathrm{C}_{5} \mathrm{H}_{8}$ and other hydrecarbons.

Constituents.-Crude caoutchouc contains some fat, volatile oil, albumin, and coloring matters; but the principal constituent is a colorless solid hydrocarbon, $\mathrm{C}_{20} \mathrm{H}_{32}$. On combining it with about 10 per cent. of sulphur, vulcanized rubber is obtained; and on incorporating half its
weight of sulphur and hardening by pressure, vulcanite or ebonite is produced.

Uses.-For plasters, bougies, pessaries, syringes, etc.

2. SUGARS.-SACCHARA.

Sugars have a sweet taste, are soluble in water and diluted alcohol, and insoluble in ether.

Classifleation.

Sect. 1. Solid sugars.
Crystalline; not fermentable; does not reduce cupric oxide.
Fermentable; reduces cupric to cuprous oxide; Saccharum often contains dextrin.
contains mucilage and mannit.
White, gritty, not forming a syrup.
Sect. 2. Liquid sugars.
Brown, somewhat empyreumatic.
Brownish, aromatic ; gradually becomes granular.

Saccharum. uveum.
Manna.
Saccharum lactis.

Syrupus fuscus. Mel.

Saccharum.-Sugar. Cane Sugar.

Saccharose, Sucrose.
Origin.-Sáccharum officinárum, Linné. Natural order, Gramineæ, A ndropogoneæ.

Habitat.-Southern Asia ; cultivated in tropical and subtropical countries.

Preparation.-Sugar cane yields by expression about 80 per cent. of juice, containing about 80 per cent. of water and 18 per cent. of sugar. The juice is evaporated, the residue granulated, the treacle or molasses drained off, and the raw sugar refined by dissolving in water, heating with blood or albumen, filtering through animal charcoal, and
concentrating in a vacuum pan, until, after cooling, it congeals to a crystalline mass, from which the mother liquor is washed out by percolation with water or sugar solution. Sugar is also prepared from the sugar-beet (Béta vulgáris, Linné), (Chenopodiaceæ), which contains about 14 per cent. of it.

Description.-White crystalline pieces of transparent granules, of spec. grav. 1.59, not hygroscopic, inodorous, very sweet; fusible at $160^{\circ} \mathrm{C}$. ($320^{\circ} \mathrm{F}$.) ; soluble in half its weight of cold water, forming a colorless slightly dextrogyre syrup; sparingly soluble in strong alcohol ; insoluble in ether. In contact with ferments contained in the air, or on boiling with dilute acids, its aqueous solution is converted into invert sugar (mixture of glucose and lævulose), is then directly fermentable, and reduces red cuprous oxide from an alkaline solution of cupric oxide. If kept for some time at $180^{\circ} \mathrm{C}$. sugar is converted, without loss of weight, into a mixture of levulosane, $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5}$, and dextrose (glucose), $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$.

Composition. $-\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$.
Adulterations.-Inferior segars are whitened with ultramarine or Prussian blue.

Derivatives.-Saccharum crystallisatum, rock candy, is cane sugar in large crystals.

Saccharum hordeatum, barely sugar, is cane sugar carefully melted and cooled ; it is amorphous, transparent, and gradually becomes crystalline and opaque upon the surface.

Caramel. Cane sugar is heated to about $200^{\circ} \mathrm{C} .\left(392^{\circ}\right.$ F.), the conversion is hastened by alkalies. Dark brown of a bitter taste; consists of colorless bitter caramelan $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{9}$, red-brown caramelene, and other compounds; used for coloring liquors.

Properties.-Demulcent, lenitive ; externally in certain ulcerations.

SACCHARUM UVEUM.-Grape Sugar.

Saccharum amylaceum. Starch sugar. Glucose. Dextrose.

Origin and Preparation.-Starch is boiled for a considerable time with dilute sulphuric acid, the free acid removed by calcium carbonate, and the filtered solution evaporated.

Description.-Whitish or yellowish masses or irregular granules, crystallizes with and without water, inodorous, sweet (less so than cane sugar), soluble in about one part of cold water, but in all proportions in hot water; sparingly soluble in strong alcohol, insoluble in ether ; melts near $85^{\circ} \mathrm{C}$. ($185^{\circ} \mathrm{F}$.), the anhydrous crystals at $144^{\circ} \mathrm{C} .\left(291^{\circ} \mathrm{F}\right.$.). Ordinarily, commercial grape sugar contains about 60 per cent. of glucose, 20 per cent. of dextrin and allied substances, and 20 per cent. of water with 0.3 ash . The cold aqueous solution rotates to the right; mixed with twice its bulk of alcohol, it yields a whitish precipitate if dextrin is present, and a white precipitate with ammonium oxalate from the presence of calcium sulphate. Commercial liquid grape sugar is called glucose, and contains much dextrin. The dilute solution in water is readily fermentable, is colored brown when heated with potassa, speedily reduces red cuprous oxide from an alkaline solution of cupric oxide, and separates a metallic mirror from an ammoniacal solution of silver.

Composition. $-\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \cdot \mathrm{H}_{2} \mathrm{O}$; on heating it caramel is obtained.

Properties.-Similar to cane sugar.

> MANNA.-MANNA.

Origin.-Fráxinus O^{\prime} rnus, Linné, s. O'rnus europæ'a, Persoon. Natural order, Oleaceæ, Oleineæ.

Habitat.-Basin of the Mediterranean.
Collection.-In Sicily transverse incisions are made through the bark, and the exuding juice is allowed to harden on the trunk of the tree or on tiles.

Description.-Flattish three-edged pieces occasionally 20 centimeters (8 inches) long, and 5 centimeters (2 inches) broad, usually smaller pieces and irregular fragments; friable, externally yellowish-white, internally white, porous,
and crystalline. Or in brownish-white fragments of different size, somewhat glutinous on the surface, internally white and crystalline. Odor honey-like; taste sweet, slightly bitter, and faintly acrid; soluble in water and alcohol, except fragments of bark and similar impurities.

Manna consisting of brownish viscid masses which contain few or no fragments having a crystalline structure, should be rejected.

Varieties.-Large flake manna; the larger yellowishwhite pieces.

Small flake manna; smaller pieces, occasionally of a brownish hue.

Manna in sorts ; minute tears or small glutinous fragments, internally crystalline.

Fat manna ; brownish viscid masses, without crystalline fragments.

Constituents.-Mannit 90 per cent. in the best varieties, glucose, mucilage, resin, fraxin, $\mathrm{C}_{32} \mathrm{H}_{36} \mathrm{O}_{20}$. Mannit, $\mathrm{C}_{6} \mathrm{H}_{8}(\mathrm{OH})_{6}$, crystallizes in white prisms, dissolves in 6.5 parts of cold water, and sparingly in strong alcohol; on careful oxidation yields fermentable mannitose and various acids The amount of glucose and mucilage is largest in the inferior kinds of manna, which also contain a larger portion of fraxin, to which the fluorescence of the aqueous solution is due.

The following mannas are not met with in commerce: Briançon from Lárix europæ'a, De Candolle, (Coniferæ); Armenian from Quércus vallónea, Kotschy (Cupuliferæ); Persian from Alhági camelórum, Fischer (Papilionaceæ, Hedysareæe); Australian from Eucaly'ptus mannífera, Mudie, and E. viminális, Labillardière (Myrtaceæ) ; lerp produced in Tasmania upon Eucaly'ptus dumósa, Cunningham; trehala, the cocoon of Larínus mellíficus, Jeckel (Coleoptera), and others.

Properties.-Demulcent, laxative. Dose, 4 to 32 grams ($3 \mathrm{j}-\mathrm{J}_{\mathrm{j}}$), in solution, syrup, or as addition to otber medicines.

SACCHARUM LACTIS.-Milk Sugar.

Lactose, Lactin.
Origin.-The milk of mammals, especially of Bos Taúrus, Linné ; order Ruminantia, family Bovidæ.

Preparation.-After the removal of the butter and casein from cow's milk, the whey is concentrated and allowed to erystallize upon sticks or cords.

Description. - Hard whitish translucent four-sided prisms, usually aggregated into cylindrical masses; spec. grav. 1.525 ; becomes anhydrous at $130^{\circ} \mathrm{C}$. $\left(266^{\circ} \mathrm{F}\right.$.), and melts at $203.5^{\circ} \mathrm{C}$. $\left(398^{\circ} \mathrm{F}\right.$.) ; soluble in 6 parts of cold water without forming a syrupy solution, insoluble in strong alcohol and in ether; inodorous; of a sandy and sweetish taste.

The solution in water boiled with potassa turns yellow-ish-brown, slowly reduces cuprous oxide from alkaline solutions of cupric oxide, and deposits a metallic mirror from an ammoniacal solution of silver. On boiling milk sugar with lead acetate, and adding ammonia, a red precipitate is formed.

Composition. $-\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11} \cdot \mathrm{H}_{2} \mathrm{O}$; on boiling with dilute acids splits into dextrose (see page 441) and gálactose $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ (melting-point $145^{\circ} \mathrm{C} .=293^{\circ} \mathrm{F}$.) ; on heating caramel is obtained.

Properties. - Demulcent, laxative; chiefly used as a vehicle.

SYRUPUS FUSCUS.-Molasses.

Sacchari fex, Theriaca, Treacle.
Origin.-Obtained in the manufacture and refining of sugar.

Description.-Syrupy liquid of various shades of brown, clear or nearly clear, spec. grav. about 1.40 ; reaction slightly acid ; odor slightly empyreumatic ; taste very sweet ; is not precipitated by an equal bulk of alcohol.

Varieties.-West India and sugar-house molasses ; the former has a lighter color and somewhat different odor.

Properties.-Like sugar.

MEL-Honey.

Origin and Preparation.-Honey is deposited in the honeycomb by the bee, A'pis mellífica, Linné. Class, Insecta. Order, Hymenoptera. It is obtained either by draining or by melting the honeycomb.

Description.-Syrupy, of spec. grav. 1.38 to 1.40 ; light yellowish or pale brownish-yellow, translucent, gradually becoming crystalline and opaque, the specific gravity increasing to about 1.43 ; polarization slightly to the left, or occasionally slightly to the right; reaction slightly acid; odor agreeably aromatic ; taste sweet, mildly aromatic and faintly acrid.

Boiled with water and allowed to cool, it does not become blue on the addition of compound solution of iodine ; and when diluted with one part of water, and the solution mixed with an equal bulk of alcohol, no precipitate, or but a very slight one, is produced. The solution of pure honey is but faintly rendered turbid by silver nitrate and barium nitrate. Adulteration with glucose may be determined by polarization ; and with cane sugar by the difference in the effect of Fehling's solution before and after the inversion with a mineral acid.

Constituents.-Grape sugar or dextrose (becomes crystalline), fruit sugar or levulose (remains liquid), little wax, proteids, volatile oil, coloring matter, mucilage, and a minute quantity of formic acid; ash 0.1 to 0.3 per cent.

Crude honey usually contains pollen grains in suspension.

Properties.-Demulcent, laxative; externally as a mild stimulant.

3. GUMS.-GUMMATA.

Gums have an insipid taste, are insoluble in alcohol and ether, but dissolve in water, forming a mucilaginous liquid, or form with water a jelly-like adhesive mass.

Classification.

Soluble in water; distinct tears, transparent, but fissured internally.

Acacia.
Swelling in water; curved bands, translucent, composed of several layers.

Tragacantha.

ACACIA.-Gum Arabic.

Origin.-A cácia Sénegal, Willdenow, s. A. Vérek, Guillemin et Perottet, and other species of Acacia. Natural order, Leguminosæ, Mimoseæ, Acacieæ.

Habitat.-Eastern Africa, principally Kordofan ; Western Africa near the river Senegal.

Production.-The gum exudes spontaneously and from incisions made into the bark.

Deseription.-Roundish brittle tears of various sizes, or broken into angular fragments, with a glass-like, sometimes iridescent fracture, opaque from numerous fissures, but transparent and nearly colorless in thin pieces ; spec. grav. 1.49 ; nearly inodorous; taste insipid, mucilaginous; insoluble in alcohol ; soluble in water, forming a thick mucilaginous liquid. This solution has an acid reaction to testpaper, yields gelatinous precipitates with subacetate of lead,
ferric chloride, and concentrated solution of borax, is rendered turbid by oxalates, and is not colored blue by iodine.

Varieties. - Kordofan gum, the best kind, described above.

Senaar gum, nearly equal to the preceding, is produced by Acácia fístula, Schweinfurth, and A. stenocárpa, Hochstetter.

Savakin (Suakin) gum, of handsome appearance, very brittle ; does not completely dissolve in water except after the addition of a little alkali.

Senegal gum. The tears are often larger, color more yellow or reddish; fissures fewer in number, therefore more transparent and less brittle; taste sometimes bitterish; usually collected with African bdellium.

East India gum was formerly produced from Eastern Africa, and shipped by way of Bombay. In recent years much gum of Indian origin from various sources has been sent to market, varying from colorless to yellow and redbrown. The following gums are completely soluble in water : Acácia Cátechu, Willdenow; Pithecolóbium dúlce, Bentham; Prosópis spicígera, Willdenow; Mélia Azadiráchta, Linné; Swieténia Mahogáni, Linné; and Ferrónia elephántum, Correa; the last four gums are not gelatinized by borax. The gum of Anogeíssus latifólia, Wallich, is not gelatinized by ferric chloride.

Mezquit gum from Prosópis (Algaróbia) juliflóra, De Candolle, s. P. glandulósa, Gray, in Western Texas and Mexico ; resembles gum Arabic, but is mostly yellow or red-brown; its solution in water is not precipitated by subacetate of lead, ferric chloride, or borax.

Considerable gum is also produced from different species of Acacia in Morocco, the Cape Colony, and Australia.

Composition.-Arabic acid, $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$, combined with calcium, magnesium, and potassium ; moisture about 14
per cent.; trace of sugar ; ash 3 to 4 per cent. Arabic or gummic acid, after drying, swells with water, but does not dissolve in it, except after the addition of an alkali (Savakin gum) ; on boiling with acids yields arabinose (crystallizes in prisms ; sweet ; not directly fermentable), possibly also galactose (granular, less sweet).

Properties.-Demulcent.

TRAGACANTHA.-Tragacanth.

Origin.-Astrágalus gúmmifer, Labillardière, and other species of Astragalus. Natural order, Leguminosæ, Papilionaceæ, Galegeæ.

Habitat.-Western Asia.
Production.-The tissue of the pith and medullary rays is gradually altered to a compound swelling with water, and in this condition exuding spontaneously and from incisions into the stem of the shrubs.

Description.-Narrow or broad bands, more or less curved or contorted, marked by parallel wavy lines or ridges; white or faintly yellowish, translucent, horn-like, tough, rendered more pulverizable by a heat $50^{\circ} \mathrm{C} .\left(122^{\circ} \mathrm{F}\right.$.) ; inodorous; taste insipid, sometimes faintly bitterish. It swells with water into a gelatinous mass which is tinged blue by iodine, and the fluid portion of which is precipitated by alcohol and lead acetate, but not disturbed by ferric chloride and borax.

Varieties.-Flake tragacanth, the bands described above.
Vermiform tragacanth; very narrow bands or strings, variously coiled.

Tragacanth in sorts. Stratified or nodular, conical, and subglobular pieces, more or less brown, often adulterated with the gum of the almond and plum trees.

Constituents.-Traganthin or bassorin, $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5}$, and the
calcium compound of a gummic acid, not identical with arabic acid; starch, fragments of cells, moisture 14 per cent., ash 3 per cent.

Properties.-Demulcent.

Gum resins are milky exudations of plants and consist of gum which is wholly or partly soluble in water, and resin which is soluble in alcohol. Many gum-resins contain also volatile oil. Fragments of vegetable tissue, small fruits, or seeds are occasionally met with in the commercial gum-resins, all of which yield emulsions on being triturated with water.

Classification.

Sect. 1. Gum-resins containing volatile oil.
Tears internally white, turning red on exposure, imbedded in a brown sticky mass.
Tears small, internally whitish, superficially adhesive ; occasionally brownish, semifluid.

Galbanum.
Tears few, imbedded in a brown sticky mass; emulsion brown ; odor garlic-like.
Tears brownish-yellow, internally milk-white, distinct, or superficially adhering.
Tears or masses, dull reddish-brown.
Tears yellowish, translucent.
Tears or masses, reddish-brown, translucent; fracture waxy.

Sagapenum.

Resembling myrrh ; but tincture not colored purple by nitric acid.

Ammoniacum.
Opopanax.
Olibanum.

Myrrha.
Bdellium.
Sect. 2. Gum-resins free from volatile oil.
Pipes or cakes; bright orange-yellow.
Tears frequently hollow; light brown-yellow.
Cambogia.
Euphorbium.
Cakes greenish-black or grayish ; internally porous; odor cheese-like.

Scammonium.

ASAFETTIDA.-Asafetida.

Origin.-1. Férula Nárthex, Boissier (Nárthex Asafee'tida, Falconer). 2. Férula Asafo'tida, Regel. 3. Férula foe'tida, Regel (Scorodósma fe'tidum, Bunge). Natural order, Umbelliferæ, Peucedaneæ.

Habitat.-1. Western Thibet and probably Kashmir. 2, 3. Persia, Turkestan, and Afghanistan.

Collection.-The top of the large root is laid bare, thin slices are cut off, and the exuding milk-juice is scraped off.

Description.-In irregular masses composed of whitish tears, imbedded in a yellowish-gray or brown-gray sticky mass. The tears when hard break with a conchoidal fracture, having a milk-white color which turns gradually to pink and finally to brown. The sticky mass always contains vegetable fragments and earthy impurities (calcium sulphate, etc.). The odor is alliaceous; the taste bitter, acrid, and alliaceous. It is partly soluble in ether and in alcohol, and yields with water a milk-white emulsion, which becomes yellow on the addition of ammonia. Good asafetida yields to alcohol about 60 per cent. of soluble matter. Moistened with alcohol, asafetida acquires a greenish color on the addition of hydrochloric acid.

Varieties.-Liquid asafetida ; white, opaque, syrupy, or semifluid mass, gradually turning brown.

A safetida in tears; tears of various sizes, distinct or adhesive and agglutinated.

Amygdaloid asafetida; the kind described above.
Stony asafetida; various sized angular or rounded pieces of gypsum and other earthy matters, agglutinated or merely coated with the milk-juice ; unsuited for medicinal purposes.

Constituents.-Aside from the impurities asafetida contains 3 to 6 or 9 per cent. of volatile oil, 20 to 30 per cent.,
sometimes more of gum (partly soluble in water, mostly soluble in alkalies), and 50 to 70 per cent. of resin, of which a small portion (3 to 4 per cent.) is insoluble in ether, and which contains a little ferulaic acid, $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{4}$. The volatile oil has the spec. grav. 0.98 , and a strongly alliaceous odor, and contains two terpenes, a sesquiterpene, and two sulphur-compounds, $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{~S}_{2}$ and $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{~S}_{2}$. The tears yield 3 to 4 per cent. of ash. The earthy additions consist of calcium sulphate, calcium carbonate, and sand, occasionally to the amount of 40 per cent. On dry distillation the resin yields umbelliferon, and fused with potassa gives resorcin and protocatechuic acid.

Properties.-Stimulant, expectorant, laxative, antispasmodic. Dose, 0.3 to 1.5 grams (gr. v-xxij), in pills, emulsion, or tincture.

GALBANUM.-Galbanum.

Origin. - Férula (Peucédanum, Baillon) galbaníflua, Boissier et Buhse, and other species of Ferula. Natural order, Umbelliferæ, Peucedaneæ.

Habitat.-Persia.
Production-Galbanum exudes spontaneously, chiefly from the lower part of the stem.

Description.-In tears, from the size of a pin's head to that of a pea, or larger, mostly agglutinated, forming a more or less hard mass; externally pale brownish, with a yellow or green tint, internally milk-white or yellowish, with a waxy lustre; odor peculiar, balsamic ; taste bitter and acrid ; partly soluble in ether and alcohol ; yields with water a milk-white emulsion. When moistened with alcohol, it acquires a purple color on the addition of a little hydrochloric acid.

Varieties.-Galbanum in tears, the kind described above.

Lump galbanum ; soft or hard masses, of a more or less brown color, inclosing tears or free from the same; it differs more or less in odor from the preceding and is often not colored by alcohol and hydrochloric acid. It may, in part, be derived from Férula rubricaúlis, Boissier.

Constituents.-Volatile oil 6 to 9 per cent., $\mathrm{C}_{10} \mathrm{H}_{16}$, resin 60 to 66 per cent. (soluble in ether, alcohol, carbon disulphide, and alkalies; yields on dry distillation a blue volatile oil and umbelliferon; fused with HKO, resorcin is obtained), gum 15 to 20 per cent., umbelliferon, $\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{O}_{3}$ (soluble in alcohol and ether, sparingly soluble in cold water, the latter solution blue fluorescent with ammonia). The volatile oil has the spec. grav. 0.91 and a mild aromatic taste, and consists of terpenes and sesquiterpenes.

Properties.-Stimulant, expectorant, antispasmodic. Dose, 0.3 to 2 grams (gr. $v-\mathrm{xxx}$), in pills or emulsion, externally in plasters.

Allied Gum Resin.-Sagapenum ; probably obtained from a species of Ferula; yellowish-brown or brown, amygdaloid or free from tears; blue by hydrochloric acid; contains umbelliferon, the volatile oil free from sulphur.

AMMONIACUM.-Ammoniac.

Origin.-Doréma (Peucédanum, Baillon) Ammoníacum, Don. Natural order, Umbelliferæ, Peucedaneæ.

Habitat.-Eastern Persia and Turkestan.
Production.-Ammoniac exudes from the stem and root spontaneously, and in consequence of stings by insects.

Deseription.-Globular or irregular roundish, often somewhat flattened tears, either distinct or agglutinated, pale brownish-yellow externally, and breaking with a conchoidal waxy milk-white fracture. It softens by the heat of the hand, yields a white emulsion when triturated with water,
and has a peculiar somewhat balsamic odor, and a bitter, acrid, and nauseous taste. When moistened with alcohol, it is not colored on the addition of hydrochloric acid.

Cake ammoniac, which exudes from the root, contains vegetable fragments, sand, and tears imbedded in a brown resinous mass ; it should not be employed internally.

Constituents.-Volatile oil $\frac{1}{2}$ to 4 per cent. (free from sulphur), resin 70 per cent. (an acid and an indifferent resin; does not yield umbelliferon), gum 18 to 22 or 28 per cent. (partly soluble in water, mostly soluble in alkalies), moisture 5 per cent., ash 3 per cent. The resin fused with HKO, yields protocatechuic acid and resorcin, $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{2}$, which is soluble in simple solvents, volatile and inflammable, reddened on exposure and becomes purplish-black with ferric chloride.

Properties.-Stimulant, expectorant. Dose, 0.3 to 2 grams (gr. v-xxx), in pills and emulsion.

Allied Gum Resins.-African ammoniac from Férula tingitána, Linné, in Northern Africa; darker colored than the preceding, of a rather more agreeable odor and acrid not bitter taste ; yields umbelliferon.

Opopanax from Opópanax Chirónium, Koch, of Southern Europe; dull reddish-brown masses or tears, friable, of waxy lustre ; odor unpleasant ; taste balsamic, bitter.

OLIBANUM.-Frankincense.

Origin.-Boswéllia Cartérii, Birdwood, and other species of Boswellia. Natural order, Burseraceæ, Bursereæ.

Habitat.-Eastern Africa and Southern Arabia.
Production.-Frankincense exudes from incisions made into the bark.

Description.-Roundish, oblong, or irregular tears, variable in size, externally dusty ; fracture flattish, waxy, yellowish or pale reddish, translucent; odor balsamic terebinthinate, on burning strongly aromatic; softened by mastication; taste
balsamic, bitterish; partly soluble in alcohol; yields with water a milk-white emulsion.

Lump olibanum consists of irregular impure masses which have been gathered from the ground.

Constituents.-Volatile oil 4 to 7 per cent. (olibene, $\mathrm{C}_{10} \mathrm{H}_{16}$, and little oxygenated portion), resin 56 to 72 per cent., gum about 30 per cent. (resembles arabin), bitter principle (soluble in alcohol and water), ash about 3 per cent.

Properties.-Stimulant, expectorant. Dose, 1 to 3 grams (gr. xv-xlv), in emulsion, mostly used in plasters and for fumigations.

MYRRHA.-Myrrh.

Origin.-Commíphora (Balsamodéndron, Nees), My^{\prime} rrha, Engler. Natural order, Burseraceæ, Bursereæ.

Habitat.-Eastern A frica and Southwestern Arabia.
Production.-Myrrh exudes spontaneously from the bark.
Description. - Roundish or irregular tears or masses, dusty, brown-yellow or reddish-brown; fracture waxy, somewhat splintery, translucent on the edges, sometimes marked with whitish veins ; odor balsamic ; on mastication adhesive ; taste aromatic, bitter and acrid. When triturated with water, myrrh yields a brown-yellow emulsion. Alcohol yields a brown-yellow tincture which acquires a purple hue on the addition of nitric acid. Dark-colored pieces the alcoholic solution of which is not rendered purple by nitric acid, and pieces of gum which dissolve completely or merely swell in water, and are but slightly soluble in alcohol, should be rejected.

Constituents.-Volatile oil 2 to 4 per cent. (contains $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}$, is easily resinified), resin 25 to 40 per cent. (about 14 per cent. soluble in $\mathrm{CS}_{2}, 12$ soluble in ether, 5 insoluble in ether), gum 40 to 60 per cent. (precipitated by lead acetate), bitter principle (soluble in alcohol and water), ash 3 to 4 per cent. With fusing potassa the resin yields protocatechuic acid and pyrocatechin.

Properties.-Stimulant, tonic, expectorant, emmenagogue, vulnerary. Dose, 0.3 to 2 grams (gr. v-⿹\zh26ss), in pills and emulsion ; externally in powder and tincture.

Impurities.-Besides vegetable fragments and sand, occasionally bdellium (see below) and dark-colored gums, the latter becoming adhesive when moistened.

Balsam of Mecca, a greenish, slightly turbid oleoresin, having a rosemary-like odor, is believed to be the exudation of Commíphora (Balsamodéndron, Kunth) Opobálsamum, Engler, which as B. Ehrenbergiánum, Berg, had been described as a source of myrrh.

BDELLIUM.-Bdellium.

Origin. - 1. Commíphora (Balsamodéndron) Múkul, Hooker ; 2. C. africána, Engler. Natural order, Burseraceæ, Bursereæ.

Habitat.-1. East India; 2. Western Africa.
Description.-1. Globular or irregular pieces, externally dusty; fracture flat conchoidal, dark brown or blackish, translucent in thin fragments. 2. Irregular, globular, or oval tears, externally dusty; fracture angular, waxy, yellowish to brown-red, translucent. Odor and taste myrrh-like; the tincture is not colored red by nitric acid.

Constituents.-Volatile oil, resin, gum, bitter principle.
Properties and Uses.-Similar to myrrh, mostly used in plasters.

CAMBOGIA.-Gamboge.

Gutti. Gambogia.
Origin.-Garcínia Hanbúrii, Hooker filius, s. G. Morélla, Desrousseaux, var. pedicelláta, Hanbury. Natural order, Guttiferæ (Clusiaceæ), Garcinieæ.

Habitat-Anam, Camboja, and Siam.
Production.-The milk-juice exudes from incisions, and is collected in bamboo joints.

Description.-In cylindrical pieces, sometimes hollow in the centre, 25 to 50 millimeters (1 to 2 inches) in diameter,
longitudinally striate on the surface ; fracture flattish conchoidal, smooth, of a waxy lustre ; orange-red or in powder bright yellow ; inodorous ; taste at first mild, afterward very acrid ; the powder sternutatory. It is partly soluble in alcohol and ether; when triturated with water yields a yellow emulsion, and forms with solution of potassa an orange-red solution, from which, on the addition of hydrochloric acid, yellow resin is precipitated. Boiled with water, gamboge yields a liquid which after cooling does not become green with compound solution of iodine.

Varieties.-Pipe gamboge; the kind described above. Cake gamboge ; in irregular lumps or cakes, dried in flat vessels; more liable to be adulterated.

Constituents.-Gum 16 to 26 per cent. (not precipitated by lead acetate or ferric chloride), resin or cambogic acid 66 to 80 per cent. (soluble in alcohol and ether; colored blackbrown by ferric chloride; soluble in alkalies with a red color), wax about 4 per cent. (soluble in alcohol and alkalies), ash 1 per cent.

Properties.-Hydragogue cathartic. Dose, 0.03 to 0.3 gram (gr ss-v), in pills, in combination with other medicines.

EUPHORBIUM.-EUPHorbIUM.

Origin.-Euphórbia resinífera, Berg. Natural order, Euphorbiaceæ, Euphorbieæ.

Habitat.-Morocco.
Production.-Euphorbium exudes from incisions made into the stem.

Description.-In conical or globular nodular pieces, often hollow or inclosing fragments of the spines or flowers, dull brownish-yellow, slightly translucent, brittle; nearly inodorous, the dust violently sternutatory ; taste very acrid ; partly soluble in alcohol and ether; triturated with water, a turbid mixture is obtained, but not a complete emulsion.

Constituents.-Gum 18 per cent. (precipitated by lead acetate), resin, $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{2}, 38$ per cent. (soluble in cold alcohol, very acrid), euphorbon, $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}$ (tasteless, crystalline, soluble
in ether, chloroform, and boiling alcohol), little starch, malates 12 per cent., ash about 10 per cent.

Properties.-Drastic purgative and emetic; sternutatory, rubefacient, vesicant, suppurant; only used externally.

SCAMMONIUM.-Scammony.

Origin.-Convólvulus Scammónia, Linné. Natural order, Convolvulaceæ, Convolvuleæ.

Habitat.-Western Asia.
Production.-The top of the root is laid bare, thin slices are cut off, and the milk-juice is collected in shells.

Description.-Irregular angular pieces or circular cakes, greenish-gray or blackish, internally porous and of a resinous lustre, breaking with an angular fracture; odor peculiar, somewhat cheese-like; taste slightly acrid; powder gray or greenish-gray. When triturated with water, scammony yields a greenish emulsion. It does not effervesce with acids, and the decoction, when cold, is not colored blue by iodine. Ether dissolves at least 80 per cent. of it, and when the residue left on evaporating the ether is treated with a hot solution of potassa it yields a solution which is not precipitated by acids.

Constituents.-Resin 75 to 90 or 95 per cent., gum. The resin is scammonin, $\mathrm{C}_{34} \mathrm{H}_{56} \mathrm{O}_{16}$, soluble in alcohol, ether, and benzol, and is identical with orizabin of Ipomea orizabensis; it is by alkalies converted into scammonic acid, which is soluble in water.

Adulterations.-Calcium carbonate, starch, occasionally other resins.

Properties.-Hydragogue cathartic. Dose, 0.06 to 03 or 0.5 gram (gr. j -v-viij), in pills, powder, or emulsion, usually combined with other medicines.

5．RESINS．－RESIN屈．

Resins are solid，rarely crystalline，fusible，not volatile， combustible with a sooty flame，insoluble in water，but soluble in one or more of the following menstruums ：alco－ hol，ether，chloroform，carbon disulphide，fixed oils，vola－ tile oils，the fixed alkalies，carbonated alkalies，and ammo－ nia．Those soluble in alkaline liquids（resin soaps）are called resin－acids．

Resins are excretions or secretions of plants，and are found either diffused in the other constituents，or contained in cells（heartwood of guaiacum），in ducts or upon the surface of plants．When exuding from plants，resins are dissolved in volatile oils．

The natural resins are usually mixtures of two or more resins；a few contain also benzoic or cinnamic acid ；all are free from nitrogenated compounds．Those containing col－ oring matters may often be bleached by means of chlorine or by repeatedly precipitating them from their alcoholic solution with water．

Classification．

Sect．1．Resins free from benzoic and cinnamic acids． Greenish or gray friable fragments ；bitter，contain－ ing crystals．

Elaterium．
Tears yellowish，transparent；on mastication plastic．
on mastication pulverulent．
Masses yellowish to brown，transparent，brittle．
Masses roundish，yellowish，transparent，harder than preceding．
Roundish or angular，often verrucose，yellowish to brownish，hard．
Irregular，yellow to red－brown，hard and brittle； when heated，aromatic．

Copal．
Mastiche．
Sandaraca．
Colophonium．
Dammara．

Succinum．

> Brown-red sticks, or thin glossy brownish or brown fragments.

> Lacca.
> Tears or masses, greenish-brown, by tincture of ferric chloride blue or green.

> Guaiaci resina.

Sect. 2. Resins containing benzoic or cinnamic acid.
Sticks or cakes, brittle, dark brown-red; powder bright red.
Milk-white tears, imbedded in dull light brown or glossy reddish-brown mass.
Brittle pieces, externally brownish-yellow, internally yellow.

Draconis resina.
Benzoinum.
Xanthorrhœет resina.

ELATERIUM.-Elaterium.

Origin. - Ecbállium (Momórdica, Linné) Elatérium, Richard. Natural order, Cucurbitaceæ, Cucumerineæ. Habitat.-Western Asia, Northern Africa, and Southern Europe; cultivated.

Production.-The nearly ripe fruit is cut lengthwise, slightly pressed, the juice passed through a hair sieve and then set aside ; the deposit is collected on calico and rapidly dried between bibulous paper or on porous tiles.

Description.-In light, friable, flattish, opaque fragments, pale green when fresh, afterward gray or light buff colored with minute crystals on the surface; fracture granular ; odor slight, tea-like; taste acrid and very bitter. It does not effervesce with acid, and the decoction with water, after cooling, is not colored blue on the addition of a drop of compound solution of iodine. When 1 gram (16 grains) is exhausted with chloroform, and ether is added to the solution, a crystalline deposit of elaterin is obtained weighing not less than 25 centigrams (4 grains). About one-half of elaterium is soluble in hot alcohol.

Constituents.-Elaterin 25 to 33 per cent., chlorophyll, ash 8 to 10 per cent., perhaps also prophetin (soluble in ether, brown-red with sulphuric acid, bitter), ecballin (soft,
yellow, acrid, and bitter), hydroelaterin (soluble in water), and elaterid (bitter, insoluble in ether and water). Elaterin, $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{5}$, is crystalline, fusible at $200^{\circ} \mathrm{C}$. $\left(392^{\circ} \mathrm{F}\right.$.), readily soluble in chloroform and hot alcohol, sparingly soluble in ether, insoluble in water, alkalies and petroleum benzin, very bitter in alcoholic solution, and is not colored by chlorinated alkalies, but colored red by warm sulphuric acid; its solution in melted carbolic acid, on the addition of sulphuric acid, acquires a crimson color, rapidly changing to scarlet.

Adulterations.-Starch and calcium carbonate or other mineral substances are used for this purpose.

Properties.-Hydragogue cathartic. Dose, 0.008 to 0.016 gram (gr. $\frac{1}{8}-\frac{1}{4}$); elaterin, 0.004 to 0.005 gram (gr. $\frac{1}{16}$ to $\frac{1}{12}$), in pill or alcoholic solution.

MASTICHE.-Mastic, Mastich.

Origin.-Pistácia Lentíscus, Linné. Natural order, A nacardiaceæ, Anacardieæ.

Habitat.-Mediterranean basin.
Production.-Mastic exudes from vertical incisions into the bark of the staminate trees, and is collected in the island of Scio.

Description -Globular or elongated tears, of the size of a pea, or larger, sometimes covered with a whitish dust, pale yellow, transparent, of a glass-like lustre, brittle, becoming plastic when masticated ; spec. grav. 1.07 ; melt-ing-point about $106^{\circ} \mathrm{C}$. ($223^{\circ} \mathrm{F}$.) ; odor weak, balsamic, stronger on heating ; taste slight terebinthinous and faintly bitter; soluble in ether and volatile oils; benzol dissolves from 65 (old mastic) to 90 (recent mastic) per cent.

Bombay mastic from Pistácia cabúlica and P. Khínjuk,

Stocks, closely resembles Scio mastic, but is usually less clean and more opaque.

Constituents.-Volatile oil, $\mathrm{C}_{10} \mathrm{H}_{16}, 1$ to 2 per cent. alpha resin or mastichic acid, $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{2}, 90$ per cent. (soluble in alcohol), masticin (insoluble in alcohol).

Adulterations.-Sandarac, see below.
Properties.-Mild stimulant, mostly used as a masticatory, for filling decayed teeth, for cements and varnishes.

SANDARACA.-SANDARAC.

Origin.-Callítris quadriválvis, Ventenat. Natural order, Coniferæ, Cupressineæ.

Habitat.-Northwestern Africa.
Production.-Sandarac exudes spontaneously or from incisions made through the bark.

Description.-Elongated, pale yellow tears, 5 to 15 millimeters ($\frac{1}{5}-\frac{3}{5}$ inch) long, covered with a whitish dust, of a glass-like lustre, transparent, hard but brittle, becoming pulverulent when masticated; spec. grav. about 1.07 ; meltingpoint near $135^{\circ} \mathrm{C}$. ($275^{\circ} \mathrm{F}$.) ; odor and taste somewhat terebinthinous, balsamic, and faintly bitter; soluble in hot alcohol and ether, partly soluble in volatile oils and chloroform.

Constituents.-Three resins, differing in solubility; bitter principle, soluble in water.

Properties.-Mild stimulant; used chiefly for varnishes.

COLOPHONIUM.-Resin, Rosin.

Resina.
Origin.-Pínus palústris, Miller (P. austrális, Michaux), and other species of Pinus. Natural order, Coniferæ, Abietiner.

Habitat.-United States.
Production.-The volatile oil is distilled from turpentine; the residue constitues colophony.

Description.-Transparent amber-colored brittle masses, having a glossy and shallow conchoidal fracture, melting
at about $100^{\circ} \mathrm{C} .\left(212^{\circ} \mathrm{F}\right.$.) ; odor and taste faintly terebinthinate; soluble in alcohol, ether, volatile oils, fixed oils, chloroform, benzol, glacial acetic acid, and alkalies.

Varieties.-Distinguished according to color.
Constituents.-Abietic anhydrid, $\mathrm{C}_{44} \mathrm{H}_{62} \mathrm{O}_{4}$, in the presence of dilute alcohol converted into abietic acid, which is crystalline and dissolves in carbon disulphide, benzol, alcohol, ether, chloroform, glacial acetic acid and alkalies.

Properties.-Mild stimulant; used in plasters and ointments.

DAMMARA.-Dammar.

Origin.-1. A'gathis Dámmara, Richard (Dámmara orientális, Lambert) ; A'gathis austrális, Salisbury (Dámmara austrális, Lambert). Natural order, Coniferæ, Abietineæ.

Habitat.-1. East India islands; 2. New Zealand.
Production. - Dammar exudes spontaneously; the New Zealand dammar or kauri resin is also found fossil.

Description.-Transparent straw-colored roundish masses, about 1.08 spec. grav., having a glossy conchoidal fracture, melting near $120^{\circ} \mathrm{C}$. $\left(248^{\circ} \mathrm{F}\right.$.) to a thick liquid; barder than rosin, but softer than copal ; nearly inodorous and tasteless; partly soluble in alcohol and benzin; more soluble in ether, chloroform, benzol, and carbon disulphide.

Kauri resin has the spec. grav. 1.11, softens somewhat between the teeth, is often in large masses, melts at or above $180^{\circ} \mathrm{C}$. (356 ${ }^{\circ} \mathrm{F}$.) and is also sold as copal.

Several species of Vatéria and Hópea (order Dipterocarpexe) and of Engelhárdtia (Juglandeæ) of India yield resins likewise known as dammar.

Constituents.-Resin acid 1 per cent. (soluble in solution of $\mathrm{K}_{2} \mathrm{CO}_{3}$), resin insoluble in alcohol, about 40 per cent., and resin soluble in alcohol about 60 per cent. (Graf, 1889). By distillation in a current of steam, a terpene, $\mathrm{C}_{10} \mathrm{H}_{16}$, of the boiling point $158^{\circ} \mathrm{C}$. ($316^{\circ} \mathrm{F}$.), is obtained.

Uses.-Mostly for varnishes, and rarely in plasters.

> COPAL.-COPAL.

Origin.-Fossil in Zanzibar and probably in Western tropical Africa; also the exudations of different species of

Trachylobium, Hymenæa, and Guibourtia. Natural order, Leguminosæ, Cæsalpinieæ, Amhersties.

Habitat.-Africa, South America, West Indies.
Description.-Irregular spherical or flattish and angular, the surface often finely verrucose (goose skin), varying between pale yellowish, reddish, and brownish, and after melting darker colored, spec. grav. 1.04, nearly as hard as amber, transparent, or translucent; fracture conchoidal, glossy ; inodorous and tasteless; melting points of the different varieties vary between about 180° to $300^{\circ} \mathrm{C}$. $\left(356^{\circ}\right.$ and $572^{\circ} \mathrm{F}$.); partly soluble in solvents; after fusion more readily soluble in alcohol and oil of turpentine.

Constituents.-Several resins, differing in solubility.
Uses.-For the preparation of varnishes.

SUCCINUM.-Amber.

Origin.-Fossil, from Pícea succinífera, Conwentz (Pinítis succínifer, Geeppert), and other extinct coniferous trees of the southern coast of the Baltic and other localities.

Description.-Roundish or flattish pieces, the surface usually rough and dull; hard and brittle ; fracture conchoidal, glossy, transparent or translucent, pale yellowish to brown-red ; inodorous but aromatic when heated ; tasteless; spec. grav. 1.09 ; slightly soluble in chloroform, nearly insoluble in alcohol, ether, and oils, melts at $287.5^{\circ} \mathrm{C}$. $\left(550^{\circ} \mathrm{F}\right.$.), giving off succinic acid ; and at a higher heat also water, volatile acids, and empyreumatic oil.

Constituents.-Succinic acid, $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{4}$, and several resins.
Uses.-For fumigations, and for the preparation of succinic acid and (empyreumatic) oil of amber ; also used in the arts.

LACCA.-LAC.

Origin.-1. Aleurítes laccífera, Willdenow; 2. Fícus índica, Roxburgh, and other trees. Natural order, 1. Euphorbiacere, Crotoneæ; 2. Urticaceæ, Artocarpeæ.

Habitat.-East Indies.

Origin.-Exudation resulting from punctures by the impregnated female Cóccus Lácca, Kerr, order Hemiptera.

Description.-Stick lac. Thin branches, covered with a brown-red resin, containing a blackish-red powder; softens between the teeth and colors the saliva red ; taste bitterish, slightly astringent ; on being heated, of an aromatic odor.

Seed lac. Irregular, somewhat glossy fragments, detached from the twigs.

Lump lac. Made by boiling with water and melting. Brown translucent cakes, deprived of the purplish-red coloring matter.

Shellac. Thin, glossy, more or less transparent fragments, varying from amber-colored to dark brown; brittle, tasteless; soluble in the fixed alkalies and in borax solution; almost wholly soluble in cold alcohol, ether, and volatile oils.

Constituents.-Coloring matter (lac dye), five resins, waxy matter.

Uses.-For the preparation of varnish and sealing-wax.

guaiaci Resina.-Guaiac Resin.

Origin.-Guaíacum officinále, Linné. Natural order, Zygophylleæ.

Habitat.-West India Islands and Northern South America.

Production.-Guaiac resin exudes from incisions through the bark, but it is mostly obtained by melting the resin of the heartwood with fire.

Description.-Irregular brittle masses, or subglobular tears about 10 to 25 millimeters ($\frac{2}{5}-1$ inch) in diameter, greenish-brown or reddish-brown, internally of a glassy lustre, transparent in thin splinters; spec. grav. 1.20; melting point $85^{\circ} \mathrm{C}$. ($185^{\circ} \mathrm{F}$.) ; feebly aromatic, somewhat acrid ; powder grayish, turning green on exposure; soluble in alkalies, alcohol, acetone, ether, chloroform; partly soluble in oil of cloves; sparingly so in carbon disulphide, benzin, and benzol; the alcoholic solution is
colored blue on the addition of ferric chloride, chlorine, chromic acid, or other oxidizing agents.

Guaiac resin fused with KHO yields protocatechuic acid.

Impurities.-Fragments of wood and bark, sometimes amounting to 30 per cent.

Constituents.-Guaiacic acid and guaiac yellow (both crystalline, dissolved by milk of lime), guaiaretic acid, $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{4}$, about 10 per cent. (crystalline, not colored blue by nitric acid), guaiaconic acid, $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{5}$, about 70 per cent. (amorphous, colored blue by oxidizing agents), betaresin about 10 per cent. (insoluble in ether), little gum and ash, 0.3 per cent. By dry distillation are obtained guaiacene, $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}$ (odor of bitter almond), guaiacol, $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}_{2}$ (colorless aromatic oil, green by $\mathrm{Fe}_{2} \mathrm{Cl}_{6}$), creosol, $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{2}$ (resembling guaiacol), and pyroguaiacin, $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{3}$ (inodorous scales, colored green by $\mathrm{Fe}_{2} \mathrm{Cl}_{6}$ and blue by warm sulphuric acid).

Properties.-Stimulant, diaphoretic, alterative. Dose, 0.5 to 2 grams (gr. viij-xxx), in pills, mixture, or tincture.

DRACONIS RESINA.-Dragon's Blood.

Sanguis draconis.
Origin.-Cálamus (Dæmónorops, Martius) Dráco, Willdenow. Natural order, Palmeæ, Lepidocaryæ.

Habitat.-Borneo, Sumatra, and adjacent islands.
Production.-Dragon's blood exudes spontaneously from the fruit while ripening, is separated by beating and sifting, softened by heat, and moulded. Inferior qualities are obtained by heating the fruit, or boiling it in water.

Description.-In tear-like grains; in globular pieces about 35 millimeters ($1 \frac{2}{6}$ inches) in diameter; in cylindrical sticks about 30 centimeters (12 inches) long and 15 millimeters ($\frac{3}{5}$ inch) thick, or in irregular cakes; externally dark brownred; internally brighter red, transparent in thin splinters; brittle; fracture irregular and rather dull; inodorous-when heated aromatic, resembling benzoin; nearly tasteless; soluble (except the impurities) in alcohol, chloroform, benzol, and alkalies.

Constituents.-Red resin (by nitric acid converted into benzoic, nitrobenzoic, oxalic, and a little picric acid), waxy matter, benzoic acid 3 per cent., the latter obtainable by dry distillation. In place of the latter, cinnamic acid appears to be sometimes present, or both acids may be wanting. Fused with KHO, phloroglucin, benzoic and oxybenzoic acids are produced.

Properties.-Mild stimulant and astringent ; used for plasters, tooth-powders, and varnishes.

BENZOINUM.-Benzoin.

Origin.-Sty'rax Bénzoin, Dryander. Natural order, Styraceæ.

Habitat.-Sumatra, Java, probably also Siam.
Production.-Benzoin exudes from incisions made into the bark of the tree.

Description.-In lumps consisting of agglutinated yellow-ish-brown tears, which are internally milk-white, or of a brown mass more or less mottled from whitish tears imbedded in it. It has a somewhat aromatic and acrid taste and an agreeable balsamic odor, gives off when heated fumes of benzoic acid, and is soluble in alcohol and in solution of potassa; the alcoholic solution is colored dark greenishbrown with ferric chloride; soluble in carbon disulphide and in benzol.

Varieties.-Sumatra benzoin. Mass brown-gray, somewhat porous, melting at $95^{\circ} \mathrm{C}$. $\left(203^{\circ} \mathrm{F}\right.$. $)$, becoming sandy and finally plastic on mastication, and containing white tears melting at $85^{\circ} \mathrm{C}$. $\left(185^{\circ} \mathrm{F}\right.$.) ; partly soluble in carbon disulphide; odor rather weak, and in Penang benzoin somewhat like storax. Inferior kinds contain few or no tears, and sometimes a large percentage of chips.

Siam benzoin. Mass red-brown, translucent, with a variable proportion of large or small tears, almost wholly soluble in CS_{2}, softened and plastic on mastication, and melting
at 75° C. $\left(167^{\circ}\right.$ F.) ; odor agreeable, vanilla-like; taste slight.

Constituents.-Benzoic acid, $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{2}, 12$ to 20 or 24 per cent. (usually fragrant from adhering volatile oil ; needles or scales ; when pure, melts at 121° C. $\left(250^{\circ} \mathrm{F}\right.$. $)$, boils at 249° C. ($480^{\circ} \mathrm{F}$.) ; sublimable; soluble in alcohol and ether, sparingly soluble in cold water), vanillin (in Siam benzoin), cinnamic acid, $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{2}$ (variable quantity in Siam and Penang benzoin), several resins, yielding with melted potassa paroxybenzoic acid, $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{3}$, protocatechuic acid, $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{4}$, and pyrocatechin, $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{2}$. Cinnamic acid is detected by boiling benzoin with milk of lime, filtering while warm, and adding potassium permanganate, when the odor of oil of bitter almond will become apparent. Benzoic acid may be prepared from toluol, from phthalic acid, and from hippuric acid (present in the urine of horses and cows).

Properties.-Stimulant, expectorant. Dose, 0.5 to 2 grams (gr. viij-xxx), in powder or tincture. Externally as a protective ; also in tooth-powders, lotions, and fumigations.

Xanthorrhgex Resina.-Acaroid Resin.

Botany Bay resin ; Grasstree resin.

Origin.-Xanthorrhœ'a hástilis, R. Brown. Natural order, Liliaceæ, Lomandreæ.

Habitat.-Australia.
Production.-The spontaneous exudation on the leaves and in the stem is separated by crushing and sifting.

Description.-Brownish-yellow, brittle masses, opaque, internally light yellow, resembling gamboge, fusible; odor agreeable balsamic; taste balsamic, somewhat acrid; nearly insoluble in water; soluble in ether and alcohol, the solution turned brown-black by ferric chloride.

Red acaroid resin from Xanthorrhe'a austrális, R. Brown, resembles dragon's blood, is deep brown-red, internally bright red, in thin splinters ruby-red and transparent; fracture glass-like ; odor balsamic.

Constituents.-Benzoic acid, some cinnamic acid, resins. With melting potassa pyrocatechin, paroxybenzoic and protocatechuic acids are obtained. Oxidation with nitric acid gives pieric acid.

Properties.-Mild stimulant, tonic. Dose, 0.5 to 1 or 2 grams (gr. viij-xy-xxx), in powder, mixture, or tincture. Mostly used in the preparation of colored varnishes.

6. BALSAMS AND OLEORESINS.-

The term balsam is often used to designate unctuous or liquid preparations, chiefly intended for external use, and to which valuable curative powers are attributed. It is also employed for those liquid or soft exudations of plants which are wholly or chiefly composed of resins and volatile oils, and are properly designated as oleoresins. The British and United States Pharmacopeias restrict the use of the word balsam to those liquid or soft products which contain resin, an odorous principle, and benzoic and cinnamic acids. Some authors recognize as solid balsams those resins which contain benzoic or cinnamic acid.

Classification.

Sect. 1. Containing benzoic or cinnamic acid: Balsams.
Liquid, black-brown, aromatic, slightly soluble in oil of turpentine.
Semi-liquid or soft, in the cold brittle mass; aromatic, in thin layers; transparent.
Thick liquid, brown-yellow, transparent, aromatic, drying to a yellowish-brown resin.

Balsamum peruvianum.
Balsamum tolutanum.

Liquidambar.
Thick liquid, brown-gray, opaque ; after the evaporation of the water, dark-brown, transparent.

Styrax liquidus.
Sect. 2. Free from benzoic or cinnamic acid: Oleoresins.

Thin or viscid liquid, light yellow or brownish, transparent; odor peculiar.

Copaiba.
Viscid liquid, opaque and grayish in reflected light, transparent and brown in transmitted light ; odor like copaiba.
Thick liquid, transparent, pale yellow; odor pleasantly terebinthinate.
Thick liquid, slightly turbid, pale yellow, somewhat fluorescent; odor terebinthinate.

Gurjun.
Terebinthina canadensis.
Terebinthina Veneta.
Viscid, yellowish opaque liquid, becoming granular; or
Yellowish-white opaque mass; fracture crummy; odor terebinthinate.

Terebinthina.

Yellowish-brown, opaque, brittle in the cold; fracture conchoidal, translucent.
Dark red-brown, opaque, translucent on the edge, brittle in the cold.
Yellowish mass, internally white, granular, opaque.
Thick liquid, black-brown, becoming granular; odor empyreumatic, terebinthinate; soluble in oil of turpentine.

Pix burgundica.
Pix canadensis.
Elemi.

Pix liquida.

BaLSamum PERUVIANUM.-Balsam of Peru.

Origin.-Myróxylon (Myrospérmum, Royle; Toluífera, Baillon) Pereíræ, Klotzsch. Natural order, Leguminosæ, Papilionaceæ, Sophoreæ.

Habitat.-Central America.
Production.--The bark is loosened by beating, and charred; the exudation is collected on rags, and these are placed in hot water and expressed.

Description.-A rather thick, but not viscous, brownishblack liquid, in thin layers red-brown and transparent, of a syrupy consistence; spec. grav. about 1.135 to 1.150 ; odor agreeably balsamic and somewhat smoky ; taste warm bitterish, afterward acrid. It has an acid reaction to testpaper, is completely soluble in five parts of alcohol, and in all proportions of absolute alcohol and chloroform ; partly
soluble in ether and volatile or fixed oils, and does not diminish in volume when agitated with an equal volume of cold petroleum benzin or water.

Constituents. - Cinnamein or benzylic cinnamate, $\mathrm{C}_{9} \mathrm{H}_{7}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right) \mathrm{O}_{2}$, about 60 per cent. (colorless aromatic oil), resin about 32 per cent. (insoluble in carbon disulphide; on dry distillation yields benzoic acid, styrol, $\mathrm{C}_{8} \mathrm{H}_{8}$, and toluol, $\mathrm{C}_{7} \mathrm{H}_{8}$), cinnamic acid, and small quantities of benzalcohol, $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}$, benzylic benzoate, $\mathrm{C}_{7} \mathrm{H}_{5}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right) \mathrm{O}_{2}$, stilbene, $\mathrm{C}_{14} \mathrm{H}_{12}$, styrol, styracin, and benzoic acid.

Adulterations.-Fixed oils (soluble in petroleum benzin ; on trituration with sulphuric acid and washing with water, leave a sticky mass ; mixed with lime and gradually heated to charring, a fatty odor is given off'), resins, oleoresins, alcohol.

Properties.-Stimulant, expectorant, vulnerary. Dose, 0.5 to 2 grams (gr. viij-xxx), in emulsion, syrup, or alcoholic solution ; externally in ointment.

balsamum Tolutanum.-Balsam of Tolu.

Origin.-Myróxylon (Myrospérmum, Richard) Toluífera, Kunth, s Toluffera Bálsamum, Miller. Natural order, Leguminosæ, Papilionaceæ, Sophoreæ.

Habitat.-Venezuela and New Granada.
Production.-The balsam exudes from V-shaped incisions and is received in calabash cups.

Deseription.-Semifluid or nearly solid, and then crystalline under the microscope; brittle in the cold, yellowish or brownish-yellow and transparent in thin layers; odor agreeably balsamic ; taste aromatic, acidulous, faintly acrid. It is completely soluble in chloroform, ether, and alcohol, the solution being of an acrid reaction to test-paper, and is
almost insoluble in water, petroleum benzin, and carbon disulphide.

Constituents.-Resins (not investigated; the principal constituents), benzylic benzoate, $\mathrm{C}_{7} \mathrm{H}_{5}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right) \mathrm{O}_{2}$ (colorless aromatic oil, spec. grav. 1.114 ; crystallizes, when pure, below $20^{\circ} \mathrm{C}$. ($68^{\circ} \mathrm{F}$.) in laminæ), benzylic cinnamate, tolene, $\mathrm{C}_{10} \mathrm{O}_{16}, 1$ per cent. (colorless, thin, aromatic oil), cinnamic and benzoic acids.

Adulterations.- Turpentine (soluble in carbon disulphide), sweet gum (yields to warm petroleum benzin styracin, which crystallizes on cooling), storax or resins (the extract with carbon disulphide turns brown with $\mathrm{H}_{2} \mathrm{SO}_{4}$, but rose-red from pure tolu).

Properties.-Stimulant, expectorant, vulnerary. Dose, 0.5 to 2 grams (gr. viij-xxx), in emulsion or tincture, mostly used as an agreeable flavor.

LIQUIDAMBAR.-Sweet Gum.

Origin.-Liquidámbar Styracíflua, Linne. Natural order, Hamamelideæ.

Habitat.-United States from New York southward and southwestward; Mexico, and Central America.

Production.-The balsam exudes spontaneously under a subtropical climate.

Description.-Thick brownish-yellow clear liquid, or a transparent yellowish-brown resin, breaking in the cold with a resinous fracture, showing whitish streaks; softened by the warmth of the hand; odor pleasantly balsamic, storax-like; taste aromatic and pungent; soluble (except the impurities) in alcohol, ether, and chloroform.

Constituents.-Aromatic hydrocarbon 3! per cent. (not identical with styrol), cinnamic acid $5 \frac{1}{2}$ per cent., styracin, and brown tasteless resin, containing storesin.

Properties.-Stimulant, expectorant, diuretic. Dose, 0.5 to 2 grams (gr. viij-xxx), in emulsion, also externally in ointment or cerate ; mostly used as an agreeable flavor.

STYRAX.-Storax.

Origin.-Liquidámbar orientális, Miller. Natural order, Hamamelideæ.

Habitat.-Asia Minor.

Production.-The inner bark is steeped in hot water, and the melted balsam is skimmed off and expressed from the bark.

Description.-Semi-liquid, viscid, gray, opaque, separating on standing a heavier dark-brown, in thin layers transparent stratum ; odor agreeably balsamic ; taste balsamic and acrid; soluble (the impurities excepted) in alcohol, ether, chloroform, and carbon disulphide ; warm petroleum benzin, agitated with storax, remains colorless, and, on cooling, deposits white crystals.

Constituents.-Styrol or cinnamene, $\mathrm{C}_{8} \mathrm{H}_{8}$ (colorless fragrant liquid, spec. grav. 0.906 ; boiling-point $145^{\circ} \mathrm{C}$. ($293^{\circ} \mathrm{F}$.) ; at $200^{\circ} \mathrm{C}$. converted into solid metacinnamene), cinnamic acid, $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{2}$, little benzoic acid, styracin or cinnamyl ciunamate, $\mathrm{C}_{9} \mathrm{H}_{7}\left(\mathrm{C}_{9} \mathrm{H}_{9}\right) \mathrm{O}_{2}$ (crystallizing from hot benzin), phenylpropyl cinnamate, $\mathrm{C}_{9} \mathrm{H}_{7}\left(\mathrm{C}_{9} \mathrm{H}_{17}\right) \mathrm{O}_{2}$ (inodorous thick liquid), ethyl cinnamate, $\mathrm{C}_{9} \mathrm{H}_{7}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right) \mathrm{O}_{2}$, a small quantity, probably ethyl-vanillin in minute quantity, storesin, $\mathrm{C}_{30} \mathrm{H}_{58} \mathrm{O}_{3}$, in considerable quantity, and the cinnamic ether of this alcohol ; also a resinous compound. Water and other impurities amount to from 25 to 30 per cent. Storesin is amorphous, melting near $145^{\circ} \mathrm{C}$. $\left(293^{\circ}\right.$ F.) or near $165^{\circ} \mathrm{C}$. ($329^{\circ} \mathrm{F}$.); the latter variety forms with KHO a compound crystallizing in needles.

Properties.-Stimulant, expectorant, diuretic. Dose, 0.5 to 2 grams (gr. viij-xxx), in emulsion or tincture; mostly externally in liniment or ointment.

COPAIBA.-Coparva.

Origin.-1. Copaífera Langsdórffii, Desfontaines. 2. Cop. officinális, Linné, and other species of Copaifera. Natural order, Leguminosæ, Cæsalpinieæ, Cynometreæ.

Habitat.-1. Brazil. 2. Venezuela and New Granada.
Production.-The oleoresin flows from bore-holes or boxes cut through the bark into the heart-wood of the tree.

Description.-A more or less viscid liquid, pale yellow or brown-yellow, transparent or slightly turbid, lighter than water (spec, grav. 0.94-0.99); odor peculiar ; taste bitter and acrid ; soluble in absolute alcohol, ether, chloroform, benzol, carbon disulphide, and petroleum benzin; also in fixed and volatile oils.

Varieties.-Para copaiva; pale colored and limpid; usually contains 60 to 90 per cent. of volatile oil.

Maranham and Rio Janeiro copaiva ; of the consistence of olive oil ; contains 40 to 60, but sometimes 80 per cent. of volatile oil ; yields, like Para copaiva, a clear mixture with one-third or one-half ammonia water.

Maracaibo copaiba ; viscid, dark yellow or brownish, slightly turbid ; contains 20 to 40 per cent. of volatile oil; solidifies with magnesia.

Constituents.-Volatile oil, $\mathrm{C}_{15} \mathrm{H}_{24}$ (spec. grav. 0.89 ; boiling-point about $255^{\circ} \mathrm{C} .-491^{\circ} \mathrm{F}$.), bitter principle (soluble in water), and resins, bitterish, and mostly amorphous; copaivic acid, $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{2}$, oxycopaivic acid, $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{3}$ (from Para copaiva), and metacopaivic acid, $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{O}_{4}$ (from Maracaibo copaiva), are crystalline.

Adulterations.-Turpentine (recognized by odor on warming) ; fixed oils (mostly insoluble in alcohol ; on evaporation a soft and sticky residue is left ; after completely neutralizing with KHO, more of the same alkali would be
required for saponifying the fat) ; Gurjun balsam (is fluorescent, and on heating becomes gelatinous).

Properties.-Stimulant, expectorant, diuretic, laxative, nauseant. Dose, 0.5 to 2 or 4 grams (gr. viij-3ss-j), in emulsion, pills, suppositories, etc.; the resin 0.3 to 0.6 gram (gr. $v-x$). Copaiba is also used as an addition to certain varnishes.

GurJun.-Gurjun Balsam, Wood Oil.

Origin.-Dipterocárpus turbinátus, Gaertner, D. alátus, Roxburgh, and other species of Dipterocarpus. Natural order, Dipterocarpeæ.

Habitat.-India and East Indian Islands.
Production.-The oleoresin exudes from excavations cut into the wood and charred by fire.

Deseription.-Thick viscid liquid, opaque and grayish, greenish or brownish in reflected light, transparent and redbrown or brown in transmitted light; spec. grav. 0.9470.964 ; odor resembling that of copaiba; taste bitter; soluble in chloroform, acetone, volatile oils, and carbon disulphide, partially soluble in alcohol, ether, and petroleum benzin. Above $130^{\circ} \mathrm{C}$. ($266^{\circ} \mathrm{F}$.) it becomes permanently gelatinous or solid. On agitation with a mixture of nitric and sulphuric acids it is colored red and purplish.

Constituents.-Volatile oil, $\mathrm{C}_{15} \mathrm{H}_{24}, 40$ to 70 per cent. (dissolved in carbon disulphide, and agitated with a drop of mixed sulphuric and nitric acids, red or violet color is produced), gurjunic acid, $\mathrm{C}_{46} \mathrm{H}_{68} \mathrm{O}_{8}$ (a small quantity ; crystalline), resin (insoluble in potassa solution), and bitter principle.

Properties and Uses.-Similar to Copaiva.

TEREBINTHINA CANADENSIS.-CANADA Turpentine.

Balsam of fir.
Origin.-A'bies balsámea, Marshall. Natural order, Conifere, Abietinex.

Habitat.-Canada and Northern United States, west to Minnesota, and south along the mountains to Virginia.

Production.-The oleoresin is secreted in vesicles in the bark, and collected by puncturing them.

Description.-A yellowish or faintly greenish transparent viscid liquid, of an agreeable terebinthinate odor, and a bitterish, slightly acrid taste, on exposure drying slowly into a transparent mass; completely soluble in ether, chloroform, and benzol ; partly soluble in alcohol.

Constituents.-Volatile oil, $\mathrm{C}_{10} \mathrm{H}_{16}, 20$ to 30 per cent., uncrystallizable resin, bitter principle soluble in water.

Allied Turpentines.-Oregon Balsam of Fir, from A'bies Menziésii, Lindley, resembles the preceding in physical properties when fresh ; but becomes gradually granular and opaque.

Strassburg Turpentine, Terebinthina argentoratensis, from A'bies pectináta, De Candolle; like Canada turpentine, but completely soluble in absolute alcohol ; odor slightly lemon-like; taste bitter, not acrid.

Venice Turpentine, Terebinthina veneta, from Lárix europæ'a, De Candolle, procured from the heart-wood by bore-holes ; yellowish, greenish-yellow, or brownish, nearly transparent, slightly fluorescent ; odor terebinthinate balsamic; taste bitter and acrid ; completely soluble in 90 per cent. alcohol ; dries to a clear varnish without becoming crystalline.

Adulterations.-Solutions of rosin in oil of turpentine, the turpentine odor disguised through the addition of another volatile oil, are sometimes sold.

Properties. -Stimulant, diaphoretic, diuretic; mostly used externally.

TEREBINTHINA.-Turpentine.

Terebinthina communis, s. vulgaris.
Origin.—Pínus austrális, Michaux (P. palústris, Miller),
and P. Tæ'da, Linné. Natural order, Coniferæ Abietineæ.

Habitat.-United States, in the Atlantic and Gulf States from Virginia to Eastern Texas.

Production.-Turpentine exudes spontaneously, but is mostly collected in boxes cut into the alburnum.

Description.-Rarely seen in the American commerce as a yellowish, viscid, more or less opaque liquid. Usually as yellowish, opaque, tough masses, brittle in the cold, softened by the heat of the hand, crummy crystalline in the interior, of a peculiar odor, and bitter and acrid taste ; known as white turpentine; also as Thus americanum or common frankincense, and corresponds to the galipot of French commerce.

European Turpentine is obtained from Pínus Pináster, Solander, P. Larício, Poiret, P. sylvéstris, Linné, and other allied species.

Constituents.-Volatile oil 20 to 30 per cent., abietic anhydrid, crystallizing as abietic acid, $\mathrm{C}_{44} \mathrm{H}_{64} \mathrm{O}_{5}$; bitter principle soluble in water ; small quantities of formic and succinic acids ; perhaps also other resin acids (pinic and sylvic acids). Oil of turpentine, $\mathrm{C}_{10} \mathrm{H}_{16}$, is colorless, dextrogyre, or (the French oil) levogyre; spec. grav. 0.87 ; boilingpoint $150^{\circ}-160^{\circ} \mathrm{C}$. $\left(300^{\circ}-320^{\circ} \mathrm{F}\right.$.) ; readily soluble in strong alcohol ; forms with HCl a crystalline compound, $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{HCl}$ (artificial camphor). Abietic acid is soluble in carbon disulphide, alcohol, ether, benzol, and glacial acetic acid, and on oxidation yields formic and acetic acids; the salts are amorphous and insoluble in ether, if pure.

Properties.-Stimulant, diuretic, diaphoretic, astringent, hæmostatic. Dose, 1 to 4 grams (gr. xv-2j), in pills (hardened with magnesia); externally in ointments and plasters. Oil of turpentine, 0.3 to 1 to 2 grams (gr. $v-x v-x x x$), in emulsion ; externally in liniments.

Terebinthina Chia, Chian turpentine, from Pistácia Terebínthus, Linné (Anacardiacee), is greenish-yellow or brownish, hardens to a transparent mass, and has a fennellike terebinthinate odor, and a mild bitterish taste.

PIX BURGUNDICA.-Burgundy Pitch.

Origin.-A'bies excélsa, De Candolle, s. Pínus A'bies, Linné. Natural order, Coniferæ, Abietinex.

Habitat.-Europe, in the southern part in mountainous districts.

Production.-The oleoresin exudes spontaneously and from incisions, is melted in hot water, and strained.

Description.-Yellowish-brown or reddish-brown, opaque or translucent, not crystalline ; hard, yet gradually taking the form of the vessel in which it is kept; brittle when cold; fracture shining, conchoidal ; aromatic, not bitter; soluble in glacial acetic acid and strong alcohol.

Allied Products.--Resina pini ; white turpentine fused in hot water and strained ; resembles the preceding, but gradually becomes crystalline.

Terebinthina cocta; the residue from the distillation of turpentine with water, strained.

Constituents.-Volatile oil, $\mathrm{C}_{10} \mathrm{H}_{16}$, in variable proportion, water, and resin.

Substitution.-A mixture of rosin, palm oil or other fat, and water; incompletely soluble in warm glacial acetic acid.

Properties.-Stimulant, irritant; used in plasters.

PIX CANADENSIS.-Canada Pitch. Hemlock Pitch.

Origin.-Tsúga (Pínus, Linné; A’bies, Michaux) canadénsis, Carrière. Natural order, Conifere, Abietineer.

Habitat.-North America, from Nova Scotia west to Lake Superior, and southward, in the mountains, as far as Georgia and Alabama.

Production.-The oleoresin exudes from incisions; the wood and bark, rich in oleoresin, are heated in water, the melted oleoresin is skimmed off, remelted and strained.

Description.-Dark reddish-brown, opaque or translucent, not crystalline ; hard, yet gradually taking the form of the vessel in which it is kept; brittle when cold; fracture shining, conchoidal ; odor weak, terebinthinate, balsamic.

Adulteration.--Rosin.
Constituents.-Little volatile oil, water, and resins.
Properties.-Stimulant, irritant; used in plasters.

ELEMI.-Elemi.

Origin.-Probably from Canárium commúne, Linné. Natural order, Burseraceæ, Bursereæ.

Habitat.-Philippine Islands.
Production.-The oleoresin exudes from incisions.
Description.-Soft, yellowish, granular, more or less crystalline; when old friable; odor strong, resembling fennel and lemon, somewhat terebinthinate; taste bitter, disagreeable, and pungent.

Constituents.-Volatile oil (terpene and polyterpenes) 10 per cent., breïn 60 per cent. (amorphous resin, readily soluble in cold alcohol), amyrin 25 per cent. (resin crystallizing from hot, strong alcohol), bryoidin (easily soluble in alcohol, bitter and acrid, crystallizes from hot water), breïdin (crystalline, less soluble in water and ether), elemic acid, $\mathrm{C}_{35} \mathrm{H}_{50} \mathrm{O}_{4}$ (crystalline).

Varieties.-Manila elemi, described above.
Brazilian elemi, from I'cica (Burséra, Baillon) Icicaríba, De Candolle, and allied species; yellowish-white or greenishwhite, fragrant.

Mauritius elemi, from Colophónia (Canárium) mauritiána, De Candolle, resembles Manila elemi.

Mexican elemi, probably from A'myris elemífera, Royle; yellow or greenish, more or less translucent, of waxy lustre.

Properties.-Stimulant, irritant ; used in plasters and ointment.

PIX LIQUIDA.-Tar.

Origin.-The wood of different species of Pínus. Natural order, Coniferæ, Abietineæ.

Production.-The wood is subjected to destructive distillation, either in retorts or packed in stacks covered with earth.

Description.-Thick viscid semifluid, heavier than water, blackish-brown, transparent in thin layers, becoming granular and opaque by age ; odor empyreumatic, terebinthinate; taste sharp, empyreumatic, and bitterish; of an acid reaction ; soluble in alcohol, ether, chloroform, volatile oils, and potassa solution ; partly soluble in water.

Constituents. - Acetic acid, and smaller quantities of formic, propionic, and capronic acids; acetone, methylic alcohol, mesit, toluol, xylol, cumol, methol ; these pass over with the light oil of tar. Naphthalin, pyrene, chrysene, retene, paraffin, phenols, creasote, pyrocatechin, empyreumatic resin. The composition of commercial tar is variable.

Pyrocatechin or catechol, $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{2}$, is crystalline, sublimable, readily soluble in water, alcohol, ether, and benzol, has a sharp persistent taste, and in aqueous solution becomes dark green with ferric chloride, changing to violet with alkali (sodium bicarbonate).

Naphthalin, $\mathrm{C}_{10} \mathrm{H}_{8}$, more largely present in coal-tar, forms pearly scales, has a strong aromatic odor and warm taste, is readily volatilized, melts at $79^{\circ} \mathrm{C} .\left(174^{\circ} \mathrm{F}\right.$.), boils at $218^{\circ} \mathrm{C}$. ($425^{\circ} \mathrm{F}$.), dissolves freely in ether and hot alcohol. Dose, $0.1-0.5$ gram (gr. jss-viij); externally as insecticide and anti-parasitic.

Creasote and phenol are poisonous; when taken in excessive doses, treatment consists in evacuation (stomach-pump,
emetics, alkali sulphates); milk or white of egg; saccharated lime; stimulants.

Allied Products.-Juniper tar, Oil of Cade, Oleum cadinum, from the wood of Juníperus Oxycédrus, Linné ; it is more liquid, and of a somewhat different odor.

Birch tar, Dagget, Oleum Rusci, from the wood of Bétula álba, Linné, has the peculiar odor of Russian leather, and contains much pyrocatechin.

Properties.-Stimulant, irritant, insecticide. Dose, 0.3 to 1.5 grams (gr. v-xxij), in pills, mixtures, and aqueous or vinous infusions ; externally in ointment, plaster, and as fumigation.

7. VOLATILE OILS AND CAMPHORS.-OLEA VOLATILIA ET CAMPHOR出.

Volatile oils are odorous volatile liquids which produce upon paper a greasy stain, disappearing on the application of heat. They are readily soluble in absolute alcohol, ether, chloroform, petroleum benzin, benzol, carbon disulphide, and fixed oils, and many of them dissolve also freely in 80 per cent alcohol. All are but slightly soluble in water. They exist ready-formed in plants, but in some cases (volatile oils of mustard, almond, etc.) are the results of chemical action in the presence of water. They are mostly obtained by distillation with water, occasionally by expression of the parts containing them, like the volatile oils of lemon, orange-peel, etc.

Volatile oils are usually mixtures of two or more compounds, differing in volatility and odor, the portion volatilizing first being sometimes designated as elcropten, and the portion volatilizing last as stearopten or camphor. The
latter usually contains oxygen, the former mostly consists of carbon and hydrogen ; a few volatile oils (of mustard, garlic, asafetida) contain sulphur, and in the volatile oils of amygdaleæ (almond, etc.) nitrogen is found combined with hydrocyanic acid. The compounds existing in volatile oils are mostly imperfectly known ; but besides the hydrocarbons, some of these have been proved to belong to the classes of alcohols, aldehyds, ethers, and compound ethers. The yellow, blue, and brown color of volatile oils is due to distinct compounds, which may be removed, in most cases, by careful rectification.

On exposure to the air, more particularly in the presence of light and moisture, volatile oils become darker and thicker or even solid from resinification; the addition of a little alcohol will usually retard or prevent these changes.

As a class, the volatile oils consisting of hydrocarbons are lightest in color and in specific gravity (the latter generally ranging between 0.85 and 0.91), are less prone to resinification, and are not freely soluble in 85 per cent. alcohol. The oxygenated volatile oils have usually a density from 0.90 to 0.99 , and several of them are heavier than water, some being 1.10 . They are mostly more freely soluble in 80 per cent. alcohol, are usually more or less colored, and the color is deepened on exposure.

Adulterations.-Chloroform (adapted only to the heavy volatile oils) is readily detected on fractional distillation at a temperature of about $70^{\circ} \mathrm{C}$. $\left(158^{\circ} \mathrm{F}\right.$.).

Alcohol will dissolve or soften fragments of fused calcium chloride or dry potassium acetate. Agitation with water will cause a diminution of volume.

Fixed oils will leave a permanent greasy stain on paper; on agitation with 80 per cent. alcohol, the volatile oil will be dissolved and the fixed oil left behind.

Cheap volatile oils are recognized by their odor on the
slow evaporation from bibulous paper or from the hands. The behavior to alcohol and to various chemical reagents is sometimes of value, and it has been suggested to determine for essential oils the " iodine number" in a similar manner as is done for fixed oils. The variations in the proximate composition of the volatile oils, and the presence or absence of coloring principles, often render the detection of adulteration, by means of reagents, very difficult.

Properties.-Externally employed volatile oils are stimulant and rubefacient ; used internally they are carminative, diaphoretic, antispasmodic, and sedative.

Antidotes.-The effects of overdoses are counteracted by evacuants (stomach-pump, emetics, and purgatives), demulcent drinks, and opium.

CAMPHORA.-CAMPHOR.

Origin.-Cinnamómum (Laúrus, Linné) Cámphora, F. Nees et Ebermaier, s. Cámphora officinárum, C. Bauhin. Natural order, Laurineæ, Perseaceæ.

> Habitat.-China and Japan.

Production.--The branches and chipped wood are exposed to the vapors of boiling water, the volatilized camphor is condensed, drained and pressed from the adhering volatile oil (oil of camphor), and subsequently refined by sublimation in vessels of glass or iron.

Description.-Crude camphor is in whitish granular masses, that from Japan having often a reddish tint, while Formosa camphor is grayish or blackish and more impure. Refined camphor is in translucent masses of a tough consistence and crystalline texture, readily pulverizable in the presence of a little alcohol or ether, has the spec. grav. 0.99 , melts at $175^{\circ} \mathrm{C}$. $\left(347^{\circ} \mathrm{F}\right.$.), boils at $205^{\circ} \mathrm{C} .\left(401^{\circ} \mathrm{F}\right.$.), sublimes and burns without leaving any residue; odor pene-
trating, peculiar ; taste pungent and bitter, afterward cooling; readily soluble in alcohol and most other solvents, but sparingly soluble in water; the solutions are dextrorotatory. It is liquefied in contact with chloral hydrate, phenol, thymol, resorcin, and other substances.

Composition. $-\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}$. Heated with zine chloride it yields cymol, $\mathrm{C}_{10} \mathrm{H}_{14}$, and with nitric acid, camphoric acid, $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{4}$, and camphoronic acid, $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{5}$. Camphoric acid forms colorless, inodorous prisms, melts at $180^{\circ} \mathrm{C} .\left(356^{\circ}\right.$ F.), is freely soluble in alcohol, sparingly so in water, insoluble in carbon disulphide. Camphoronic acid melts at $136^{\circ} \mathrm{C}$. $\left(277^{\circ} \mathrm{F}\right.$.) with decomposition, and is freely soluble in water and alcohol.

Allied Camphor.-Borneo, Sumatra, or Barus camphor, from Dryobálanops Cámphora, Colebrook. Natural order, Dipterocarpeæ. It has a somewhat different odor, is slightly heavier than water, less readily volatile, and with nitric acid yields ordinary camphor. Composition $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}$.

Properties.-Stimulant, antispasmodic, sedative, rubefacient, resolvent. Dose, 0.06 to 0.5 or 1 gram (gr. j-viijxv), in pills or emulsion ; externally in liniments and ointments. Camphoric acid in catarrhal affections externally and internally, 1 gram (gr. xv) or more.

THYMOL.-Thymol.

Origin.-Thy'mus vulgáris, Linné, Monárda punctáta, Linné, Cárum A'jowan, Bentham et Hooker. Natural order, Labiatæ (Thymus, Monarda); Umbelliferæ (Ajowan).

Production.-From the volatile oil by fractional distillation, by freezing, or by means of alkali solution. Oil of monarda yields about 24 per cent. of thymol.

Properties.-Colorless rhombic scales or flat prisms, spec. grav. 1.06, of a thyme-like odor and pungent taste;
melts at $50^{\circ} \mathrm{C}$. $\left(122^{\circ} \mathrm{F}\right.$.), boils at $230^{\circ} \mathrm{C}$. ($446^{\circ} \mathrm{F}$.) ; freely soluble in simple solvents (sparingly in water) and in alkalies; liquefied by camphor. The aqueous solution is rendered turbid by bromine water, but is not colored by ferric chloride. Thymol dissolves in $\mathrm{H}_{2} \mathrm{SO}_{4}$ with yellow color, becoming rose-red on warming; on diluting with water, agitating with excess of lead carbonate and filtering, the liquid (containing thymolsulphonate) becomes violet with ferric chloride. The solution of thymol in glacial acetic acid becomes blue green on the addition of $\mathrm{H}_{2} \mathrm{SO}_{4}$, followed by a drop of nitric acid.

Composition. $-\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}$.
Properties.-Stimulant, antiseptic. Dose, 0.1 to 0.3 gram (gr. jss-v) ; used most externally.

MENTHOL.-Pipmenthol.

Origin.-Méntha piperíta, Linné. Natural order, Labiatæe, Satureinee.

Production.-By fractional distillation of the volatile oil, and freezing the higher boiling product.

Properties.-Fine white needles, transparent when examined singly, of an agreeable peppermint odor and taste; spec. grav. 0.89 ; melts at $43^{\circ} \mathrm{C}$. ($109^{\circ} \mathrm{F}$.) ; boils at $212^{\circ} \mathrm{C}$. ($414^{\circ} \mathrm{F}$.) ; freely soluble in most simple solvents, sparingly soluble in water; liquefied by chloral hydrate; produces a red color with bromine. The solution in $\mathrm{H}_{2} \mathrm{SU}_{4}$ is turbid redbrown, slowly separates a colorless oil and loses the mint odor.

Japanese or Chinese menthol, from Mentha canadensis, Linné, var. piperascens, resembles pipmenthol, but is usually moist from presence of oil, and has a mint-like odor, differing somewhat from that of peppermint.

Composition. $-\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}$.
Properties.-Stimulant, rubefacient, anodyne. Dose, 0.1 to 0.3 gram (gr. jss-v); used externally.

OLEUM CAMPHOR无-OIL OF CAMPHOR.

Origin and Production.-See Camphora.

Descriptions.-Deep yellow or yellowish-brown ; spec. grav. about 0.94 ; boiling-point about $180^{\circ} \mathrm{C}$. ($356^{\circ} \mathrm{F}$.); com-
pletely soluble in alcohol. Formosa camphor oil has a strong camphoraceous odor and in the cold separates camphor. Japanese camphor oil is more limpid, has a sassafras-like odor, and separates little or no camphor.

Composition.-Terpenes, cineol and terpineol, $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}$, eugenol, safrol, camphor, and other compounds.

Properties.-Like camphor, mostly used in liniments.

OLEUM CAJUPUTI.-Oil of Cajeput.

Origin.-Melaleúca Cujupúti, Roxburgh, s. M. mínor, Smith, s. M. Leucadéndron, var., Bentham. Natural order, Myrtaceæ, Leptospermeæ.

Habitat.-East Indian Islands.
Production.-The leaves are distilled with water.
Deseription.-Green or, after rectification, colorless or yellowish, neutral, very mobile, easily soluble in alcohol; levogyre; spec. grav. about 0.925 ; odor aromatic; taste warm, camphoraceous, cooling; not congealing at $-25^{\circ} \mathrm{C}$. $\left(-13^{\circ} \mathrm{F}\right)$. It dissolves iodine without violent reaction ; the solution containing 20 per cent. iodine congeals in the cold crystalline.

Constituents.-Chiefly cajuputol (cineol), $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}$; also hydrocarbons, $\mathrm{C}_{10} \mathrm{H}_{16}$ and $\mathrm{C}_{15} \mathrm{H}_{24}$, and acetic, butyric, and valerianic ethers of terpilenol $\left(\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}\right)$. The crude (green) oil often contains a trace of copper, which yields a redbrown color or precipitate on agitating the oil with warm dilute hydrochloric acid and adding potassium ferrocyanide to the watery liquid.

Properties.-Carminative, stimulant, diaphoretic, rubefacient, counter-irritant. Dose, 0.1 to 0.5 or 1 gram (gr. jss-viij-xv), in mixtures ; externally in liniments.

OLEUM ROSA.-Oil of Rose. Attar of Rose.
Origin.-Rósa damascéna, Miller. Natural order, Rosaсеæ, Roseæ.

Habitat.-Cultivated in Bulgaria.

Production.-The flowers are distilled with water, cohobation being resorted to ; yield about 0.03 per cent.

Description.-Pale yellow liquid, spec. grav. 0.87 , of an agreeable rose odor when diluted, and a sweetish taste; reaction neutral ; slightly dextrogyre ; separates at or below $15^{\circ} \mathrm{C}$. ($59^{\circ} \mathrm{F}$.) transparent scaly crystals, which remain suspended in the liquid.

Constituents.-Rhodinol, $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}$ (possibly also $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}$) very fragrant, readily soluble in alcohol ; stearopten, 1214 per cent., probably several hydrocarbons of formula $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 n}$; inodorous, iridescent crystals, melt at $32.5^{\circ} \mathrm{C}$. ($90.5^{\circ} \mathrm{F}$.) ; require about 100 parts of alcohol for solution.

Adulterations.-Spermaceti and paraffin crystallize in a rather opaque crust. An addition of oil of ginger-grass or roshé oil from Andrópogon Schœonánthus, Linné, lowers the congealing point of attar of rose, and imparts to it an acid reaction ; the chief constituent is the alcohol geraniol, $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}$.

Uses.-For perfuming ointments and mixtures.

OLEUM SUCCINI.-Oil of Amber.

Production-Amber is subjected to destructive distillation, and the thick brown liquid distillate is rectified.

Description.-Pale yellow, spec. grav. $0.91-0.95$; odor empyreumatic, balsamic ; taste warm and acrid; soluble in 4 parts of strong alcohol; with nitric acid it acquires a red color, and after some time is almost wholly converted into a brown resinous mass, having a musk-like odor.

Adulterations.-Petroleum and the empyreumatic oils of resins.

Properties.-Stimulant, antispasmodic, irritant. Dose,
0.2 to 0.5 or 1 gram (gr. iij-viij-xv), in capsules or emulsion ; externally in liniments.

Syllabus of the Officinal Volatile Oils.

Magnoliacea.

Oleum Anísi stelláti, from the fruit of Illfcium vérum, Hooker filius. Pale yellow, sweet ; congeals at about $10^{\circ} \mathrm{C} .\left(50^{\circ} \mathrm{F}\right.$.), while at rest, at about $1^{\circ} \mathrm{C} .\left(34^{\circ} \mathrm{F}\right.$.) ; spec. grav. 0.98 , levogyre ; consists of $\mathrm{C}_{10} \mathrm{H}_{16}$ and anethol, $\mathrm{C}_{10} \mathrm{H}_{12}$ O, with little safrol, anisic acid, hydroquinone ethylester, etc.; with alcoholic HOl becomes brownish.

Cruciferes.

Oleum Sinápis, from the seeds of Brássica nígra, Koch; yield 0.5 per cent. Yellow, neutral, spec. grav. 1.018, pungent and acrid, soluble in 3 parts of sulphuric acid without change of color ; boiling-point $148^{\circ} \mathrm{C}$. ($298^{\circ} \mathrm{F}$.) ; without rotating power ; chiefly allyl sulphocyanide, $\mathrm{C}_{3} \mathrm{H}_{5}$. CNS with some CS_{2}.

Rutacees.

Oleum Rútæ, from the herb of Rúta graveólens, Linné. Greenish yellow, neutral, spec. grav. 0.88 , bitterish; congeals below $0^{\circ} \mathrm{C} .\left(32^{\circ} \mathrm{F}\right.$.) ; solution in sulphuric acid brown-red ; chiefly methyl-nonyl-ketone, $\mathrm{CH}_{3} \mathrm{CO}_{3} \mathrm{C}_{9} \mathrm{H}_{19}$.
Oleum Limónis, from the rind of Cítrus Limónum, Risso. Yellowish, neutral, spec. grav. 0 852, bitterish ; dextrogyre ; boil-ing-point about $175^{\circ} \mathrm{C} .\left(347^{\circ} \mathrm{F}\right.$.) ; chiefly citrene, $\mathrm{C}_{10} \mathrm{H}_{16}$, with citral, $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}$.
Oleum Bergámii, from the rind of Cítrus Bergámia, var. vulgáris, Risso. Greenish, faintly acid, spec. grav. 0.87 , bitterish; boiling-point about $185^{\circ} \mathrm{C}$. ($365^{\circ} \mathrm{F}$.) ; dextrogyre ; consists of citrene, $\mathrm{C}_{10} \mathrm{H}_{18}$, and the acetic ester of linalool.
Oleum Aurántii amári, from the rind of Cítrus vulgáris, Risso. Yellowish, neutral, bitterish, spec. grav. about 0.86 ; chiefly hesperidene (citrene), $\mathrm{C}_{10} \mathrm{H}_{16}$.
Oleum Aurántii dúlcis, from the rind of Cítrus Aurántium, Risso. Yellowish, neutral, spec. grav. about 0.86 ; chiefly hesperidene, $\mathrm{C}_{10} \mathrm{H}_{16}$, with some geranial $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}$; readily altered on exposure.
Oleum Aurántii fiórum, from the flowers of Cítrus vulgáris, Risso. Colorless or brownish, neutral, bitterish, spec. grav-
about 0.88 ; boiling-point about $190^{\circ} \mathrm{C}$. $\left(874^{\circ} \mathrm{F}\right.$.) ; dextrogyre; gives violet fluorescence with alcohol; chiefly $\mathrm{C}_{10} \mathrm{H}_{16}$; the stearopten melts at $55^{\circ} \mathrm{O}$. ($181^{\circ} \mathrm{F}$.).

Leguminosce.

Oleum Copaíbæ, from the oleoresin of Copaifera spec. Colorless, neutral, spec. grav. 0.89 ; boiling-point about $255^{\circ} \mathrm{C}$. (491° F.) ; levogyre ; consists of $\mathrm{C}_{15} \mathrm{H}_{24}$. The oil of Maracaibo copaiva becomes dark blue with gaseous HCl .

Rosacec.

Oleum Amy'gdalæ amáræ, from the seeds of Prúnus Amy'gdalus, Baillon (Amy'gdalus commúnis, Linné, var. amára, De Candolle). Yellowish, slightly bitter, spec. grav. 1.07 (1.049, if deprived of HCN by lime and ferric chlotide) ; chiefly benzaldehyd, $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}$ with HCN , in old oil benzoic acid. Evaporated with potassa and alcohol, the residue, dissolved in distilled water, yields a nearly transparent solution, free from brown-yellow sediment (nitrobenzol). The bitter almond odor disappears on treatment with potassium permanganate, which has no action on nitrobenzol.
Oleum Rosæ (see page 484).

Myrtacecs.

Oleum Cajupúti (see page 484).
Oleum Eucaly'pti, from the leaves of Eucaly'ptus glóbulus and Euc. amygdalina, Labillardière. Yellowish, neutral, spicy, and cooling; contains $\mathrm{C}_{10} \mathrm{H}_{16}, \mathrm{C}_{10} \mathrm{H}_{16}$, and $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}$. Eucalyptol, $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}$, is chemically identical with cajuputol and cineol.
Oleum Caryophy'lli, from the flower-buds of Eugénia caryophylláta, Thunberg. Yellowish-brown, slightly acid, taste hot, aromatic; faintly levogyre; spec. grav. 1.05 ; boiling-point about $250^{\circ} \mathrm{C} .\left(482^{\circ} \mathrm{F}\right.$.) ; contains $\mathrm{C}_{15} \mathrm{H}_{26}$, and eugenol, $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}$.
Oleum Piméntæ, from the fruit of Eugénia Piménta, De Candolle. Colorless or pale yellow, slightly acid, spec. grav. 1.040 1.050 ; contains $\mathrm{C}_{15} \mathrm{H}_{24}$, and $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}$.

Oleum $\mathbf{M y}$ 'rciæ, from the leaves of $\mathbf{M y}^{\prime}$ rcia ácris, De Candolle. Yellowish or brownish-yellow, slightly acid, spec. grav. 0.965 -0.985 , contains terpenes, eugenol, and little methyl eugenol. The last three oils congeal with potassa, and their alcoholic: solution is colored purplish-blue or green by $\mathrm{Fe}_{2} \mathrm{C}_{6}$.

Umbelliferce.

Oleum Cárui, from the fruit of Cárum Cárui, Linné. Colorless or yellowish, neutral, dextrogyre; spec. grav. 0.96 ; boilingpoint about $175^{\circ} \mathrm{C}$. ($347^{\circ} \mathrm{F}$.) ; contains carvene (chemically identical with limonene, citrene, hesperidene), $\mathrm{C}_{10} \mathrm{H}_{16}$, and carvol, $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}$; the latter is colored light violet by $\mathrm{Fe}_{2} \mathrm{Cl}_{6}$, and congeals with ammonia and sulphydric acid.
Oleum Fcenículi, from the fruit of Fœnículum vulgáre, Gaertner. Colorless, neutral, sweet, dextrogyre; spec. grav. 0.97 ; congeals below $0^{\circ} \mathrm{C} .\left(32^{\circ} \mathrm{F}\right.$.) ; contains phellandrene, $\mathrm{C}_{10} \mathrm{H}_{16}$, and anethol, $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}$.
Oleum Anísi, from the fruit of Pimpinélla Anísum, Linné. Colorless or yellowish, neutral, sweet, slightly levogyre or dextrogyre; spec. grav. 0.98 ; if at rest congeals near $10^{\circ} \mathrm{C}$. ($50^{\circ} \mathrm{F}$.), the temperature rising to $15^{\circ} \mathrm{O} .\left(59^{\circ} \mathrm{F}.\right)$; becomes pink with alcoholic HCl ; contains phellandrene, $\mathrm{C}_{10} \mathrm{H}_{16}$, and anethol, $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}$.
Oleum Anéthi, from the fruit of Anéthum (Peucédanum, Hiern) gravéolens, Linné. Pale yellow, neutral, sweetish, dextrogyre ; spec. grav. 0.88 ; citrene, $\mathrm{C}_{10} \mathrm{H}_{16}$, and carvol.
Oleum Coriándri, from the fruit of Coriándrum satívum, Linne. Colorless or yellowish, neutral, sweet, dextrogyre ; spec. grav. 0.87 ; chiefly coriandrol, $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}$ (boiling at $195^{\circ} \mathrm{C}$.), with little dextropinene.

Valerianece.

Oleum Valeriánæ, from the rhizome and rootlets of Valeriana officinális, Linné. Yellowish or brownish, somewhat viscid, slightly acid, levogyre; spec. grav. 0.95 : contains borneene $\mathrm{C}_{10} \mathrm{H}_{16}$, borneol, $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}$, its ether $\left(\mathrm{C}_{10} \mathrm{H}_{17}\right)_{2} \mathrm{O}$, and its valerianic formic and acetic esters.

Compositce.

Oleum Anthémidis, from the flowers of A^{\prime} 'nthemis nóbilis, Linné. Pale blue, green, or yellow, slightly acid; spec. grav. 0.90 ; contains anthemol, $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}$, and the butyl and amyl esters of angelic, valerianic and tiglinic acids.
Oleum Erigeróntis, from the berb of Erígeron canadénse, Linné. Pale yellow, neutral, strongly levogyre; spee. grav, 0.86 ; limonene, $\mathrm{C}_{10} \mathrm{H}_{16}$, and oxygenated compound. Its solution in acetic acid yields with bromine crystals of $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{Br}_{4}$ (Flückiger).

Ericacea.

Oleum Gaulthéris, from the leaves of Gaulthéria procúmbens, Linné. Yellowish or reddish, slightly acid, sweetish, slightly dextrogyre; spec. grav. 1.175-1.185; boiling-point $216^{\circ} \mathrm{C}$. (421° F.) ; chiefly methyl salicylate, $\mathrm{CH}_{3} \cdot \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{3}$, about 0.4 per cent. of $\mathrm{O}_{15} \mathrm{H}_{24}$ and some benzoic ester; yields with nitric acid colorless crystals. Much of the commercial oil of wintergreen is distilled from the bark of the sweet birch, Bétula lénta, Linné (Natural order, Cupuliferæ Betuleæ), which consists of methyl salicylate.

Labiata.

Oleum Lavándulw, from the flowers (and leaves) of Lavándula vera, De Candolle. Colorless or yellowish, neutral, bitterish, levogyre; spec. grav. about 0.90 ; boiling-point about $185^{\circ} \mathrm{C}$. ($365^{\circ} \mathrm{F}$.) ; contains $\mathrm{C}_{10} \mathrm{H}_{16}$, and as chief constituents the alcohol $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}$ (linalool) and its acetic ester. The oil from the flowers is most fragrant.
Oleum Ménthæe víridis, from the herb of Méntha víridis, Linné. Pale yellow, neutral, levogyre; spec. grav. 0.90 , contains $\mathrm{C}_{10} \mathrm{H}_{16}$ and a compound, $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}$.
Oleum Menthæ piperítæ, from the herb of Móntha piperíta, Linné. Pale yellow or greenish, neutral, taste warm and cooling, strongly levogyre; spec. grav. 0.90 ; contains menthol, $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}$ (see page 483), and other compounds.
Oleum Thy'mi, from the herb of Thy'mus vulgáris, Linné. Redbrown or yellowish, neutral, slightly levogyre; spec. grav. 0.88 ; contains cymene, $\mathrm{C}_{10} \mathrm{H}_{16}$, thymene, $\mathrm{C}_{10} \mathrm{H}_{16}$, and thymol, $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}$ (see page 482).
Oleum Hedeómæ, from the herb of Hedeóma pulegioides, Persoon.
Colorless or pale yellow, neutral, spec. grav. 0.94 ; dextrogyre; contains hedeomol, $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}$, and formic, acetic, and isoheptoic esters.
Oleum Rosmaríni, from the leaves of Rosmarínus officinális, Linné. Colorless, neutral, dextrogyre ; spec. grav. 0.90 ; contains about 80 per cent. $\mathrm{C}_{10} \mathrm{H}_{16}$, besides $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}$, borneol and cineol, $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}$.
Oleum Monárdæ, from the herb of Monárda punctáta, Linné, Reddish or browhish; spec. grav. $0.920-0.925$. Contains $\mathrm{C}_{10} \mathrm{H}_{16}$ (levogyre), thymol (about 24 per cent.), and formic, acetic, and butyric esters.

Chenopodiacecs.

Oleum Chenopódii, from the fruit of Chenopódium ambrosioídes, Linné, var. anthelminticum, Gray. Pale yellow, neuiral, bitterish ; spec. grav. 0.92 ; boiling-point about $180^{\circ} \mathrm{C}$. $\left(365^{\circ}\right.$ F.) ; $\mathrm{C}_{10} \mathrm{H}_{16}$ and $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}$.

Piperacea.
Oleum Cubébæ, from the fruit of Cubéba officinalis, Miquel. Colorless or faintly greenish or yellowish, neutral, dextrogyre ; spec. grav. 0.92 ; boiling-point about $250^{\circ} \mathrm{C}$. ($482^{\circ} \mathrm{F}$.) ; contains little $\mathrm{C}_{10} \mathrm{H}_{16}$, and two hydrocarbons, $\mathrm{C}_{15} \mathrm{H}_{24}$.

Myristicea.
Oleum Myrísticæ, from the kernel of Myrística frágrans, Houttuyn. Colorless, neutral, dextrogyre; spec. grav. 0.93 ; boilingpoint $160^{\circ} \mathrm{C}$. ($320^{\circ} \mathrm{F}$.) ; chiefly myristicene, $\mathrm{C}_{10} \mathrm{H}_{16}$, also myristicol, $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}$.

Laurinear.
Oleum Cinnamómi, from the bark of Cinnamómum zeylanicum, Breyne. Yellow or reddish, slightly acid, sweet and spicy, somewhat levogyre; spec, grav. 1.05 ; chiefly cinnamic aldehyd, $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}$, also cinnamyl acetate and hydrocarbons; in old oil cinnamic acid.
Oleum Cinnamómi Cássiæ, from the bark of Cinnamómum Cássia, Blume. Like the preceding; flavor less agreeable; slightly levogyre or dextrogyre; spec. grav. about 1.07.
Oleum Sássafras, from the root of Sássafras officinale, Nees. Yellowish or brownish, neutral, slightly dextrogyre; spec. grav. 1.09 ; contains safrene, $\mathrm{C}_{10} \mathrm{H}_{16}$, and chiefly safrol, $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{2}$ (melts at $12^{\circ} \mathrm{C} .=53.6^{\circ} \mathrm{F}$.; no rotating power) ; with nitric acid dark red and resinous.

Santalacere.

Oleum Sántali, from the wood of Santalum album, Linné. Light yellow, rather thick, slightly acid; dextrogyre or levogyre; spec. grav. $0.97-0.99$; boiling-point about 275° C. ($527^{\circ} \mathrm{F}$.); contains $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}$ and $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}$.

Conifera.
Oleum Terebinthinæ, from the oleoresin of different species of Pinus. Colorless, neutral, bitterish; spec. grav. 0.87 ; consists of $\mathrm{C}_{10} \mathrm{H}_{16^{*}}$. American oil of turpentine is dextrogyre.

Oleum Juníperi, from the fruit of Juníperus commúnis, Linné. Colorless or faintly greenish, neutral, sweetish, slightly levogyre ; spec. grav. 0.87 ; boiling-point $155^{\circ} \mathrm{C}$. ($311^{\circ} \mathrm{F}$.); consists of $\mathrm{C}_{10} \mathrm{H}_{16}$ (pinene and other hydrocarbons).
Oleum Sabinæ, from the branches (tops) of Juníperus Sabína, Linné. Colorless, neutral, bitterish, dextrogyre; spec. grav. 0.91 ; boiling-point near $160^{\circ} \mathrm{C} .\left(320^{\circ} \mathrm{F}.\right)$, rising to over 200° C. ; consists of $\mathrm{C}_{10} \mathrm{H}_{16}$.

Oleum Pícis líquidæ, from pine-wood tar. Yellowish or redbrown, acid, odor and taste tar-like; consists mainly of $\mathrm{C}_{10} \mathrm{H}_{16}$.

8. FIXED OILS AND WAXES.-OLEA PINGUIA ET CER厌.

Fats are found in plants and animals, and are mostly colorless, or white, inodorous and tasteless; but some commercial fats always contain coloring matter and volatile oil or other odorous principle, and the fats of the volatile fatty acids have a distinct odor. All fats are lighter than water (spec. grav. mostly between 0.913 and 0.956), are insoluble in water and mostly also in cold alcohol ; they are soluble in ether, chloroform, petroleum benzin, benzol, and carbon disulphide. The liquid fats are transparent; the solid fats melt, by heat, to a transparent liquid, and in that condition produce upon paper a greasy stain which does not disappear by heat. Fats are not volatile; when heated to about 300° C. (572° F.) they are decomposed with ebullition, at the same time darkening in color. They ignite with difficulty, but aided by a wick will burn readily with a luminous flame.

Fats may be obtained by treating the tissues with a solvent like carbon disulphide or benzin, or more generally by expression and by heat. Crude fats usually contain mucilaginous and protein compounds, from which they are freed by decantation or filtration ; or they must be treated
with certain chemicals for the removal of impurities, like alum, lead acetate, zinc chloride, a small quantity of alkali, or about $\frac{1}{2}$ to 2 per cent. of sulphuric acid. The color of certain fats is destroyed by heat, or by exposure to sunlight, or by treatment with potassium dichromate and sulphuric acid.

Most fats are mixtures of two or more glycerides or glyceryl-esters, the most important of which are tristearin, $\mathrm{C}_{3} \mathrm{H}_{5} \cdot 3 \mathrm{C}_{18} \mathrm{H}_{35} \mathrm{O}_{2}$; tripalmitin, $\mathrm{C}_{3} \mathrm{H}_{5} \cdot 3 \mathrm{C}_{16} \mathrm{H}_{31} \mathrm{O}_{2}$; trimyristin, $\mathrm{C}_{3} \mathrm{H}_{5} \cdot 3 \mathrm{C}_{14} \mathrm{H}_{27} \mathrm{O}_{2}$; trilaurin, $\mathrm{C}_{3} \mathrm{H}_{5} \cdot 3 \mathrm{C}_{12} \mathrm{H}_{23} \mathrm{O}_{2}$; and triolein, $\mathrm{C}_{3} \mathrm{H}_{5} \cdot 3 \mathrm{C}_{18} \mathrm{H}_{33} \mathrm{O}_{2}$; these are usually designated as stearin, palmitin, olein, etc. The drying oils which gradually harden on exposure to the air contain linolein, the acid having the formula $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{4}$. The same compound is stated to be present also in small proportion in most vegetable non-drying oils. Fats become rancid throngh the generation of volatile fatty acids, and perhaps of other compounds. On saponification most of the liquid and solid fats yield glycerin, $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{3}$. Soaps made with potassa are softer than soda soaps, and the soaps of drying oils are softer than those prepared from non-drying oils. Woolfat or lanolin consists of cholesterin esters, is miscible with its weight of water, and saponified with difficulty.

Fats having a high fusing-point are often called waxes; but this name is more properly applied to the compounds of the fatty acids with the radicals of monatomic alcohols, such as cetyl, $\mathrm{C}_{16} \mathrm{H}_{33}$ (in spermaceti, ceryl, $\mathrm{C}_{27} \mathrm{H}_{55}$ (in Chinese wax), and myricyl, $\mathrm{C}_{30} \mathrm{H}_{61}$ (in beeswax).

Adullerations.-The detection is difficult. The specific gravity of the fat, and the melting and congealing points of the fat and of the isolated mixed fat acids, should be observed. Drying and non-drying oils are distinguished by the effect of nitrous acid, which causes the latter to congeal in the course of two or three hours to one or two days,
through the conversion of liquid olein into solid elaidin ; linolein and allied oils are not solidified by this agent. Trielaidin melts at about $38^{\circ} \mathrm{C} .100^{\circ} \mathrm{F}$.), and elaidic acid at $45^{\circ} \mathrm{C}$. ($113^{\circ} \mathrm{F}$.). The test is applied by mixing 2 parts of nitric acid, spec. grav. 1.42, 3 parts of water, and 5 parts of the oil, and adding 1 part of copper. Maumenés sulphuric acid test is applied by stirring together 50 grams of the oil and 10 cubic centimeters of strong sulphuric acid, and noting the rise of temperature. Heydenreich's test consists in adding to 10 or 12 drops of the oil 2 or 3 drops of sulphuric acid, and noting the color, then stirring and again noting the color. For Calvert's test, 1 volume of sulphuric acid, spec. grav. 1.53 , is agitated for about five minutes with 5 volumes of the oil, after which the color is observed. Hirschsohn's test for cottonseed oil consists in heating for twenty minutes in a water bath 3 cubic centimeters of the oil with 6 drops of chloroformic solution of crystallized auric chloride (0.5 per cent.), when a red color is produced. Arachis, ben, hemp, maize, poppy, and walnut oils are likewise colored red or dark, or precipitate metallic gold (Moerck). The other oils in the next table are not affected (Hirschsohn).

Oil of	Tests,			
	Nitrous acid.	Maumené's.	Heydenreich's.	Calvert's.
Almond	Whitish, solid	${ }_{67}^{52^{\circ}} \mathrm{c}$.	Yellow	White,
Arachis	Whitish, solid		Yellow, green-brown	
Cod-liver	Yellow, liquid Yellow, soft	102	Purple, red	Purple.
Hemp	Yollow, liquid	98	Brown, black, solid	Dark green.
Lard	Yellow, solid	27	Yellow, brown	Yellowish,
Linseed	Brownish, liquid	103	Brown-red, blackish	Dark green.
Mustard	Yellowish, solid		Green, brown	Greenish-brown.
Olive	Yellowish, solid	42	Yellow, brownish	Greenish.
Poppy	Yellow, liquid,		Yellow, brown-green	Grayish.
Rapeseed	Brownish, soft	58	Green or brownish	Brown.
Ricinus	Whitish, soft	47	Brownish	Grayish-white.
Sesame	Red-brown, soft Yellow, soft	68	Browa-red, gelatinous Red-brown, brown	Dirty-green
Sunflower	Yellow, soft		Red-brown, brown	Yellow.

In many cases the action of iodine or bromine upon the fat acids affords indication of the purity of fats. The fat acids of the acetic acid group are not altered at ordinary temperatures by these haloids; those of the oleic acid group take up two atoms, and those of the linoleic acid group four atoms of the haloid, and any excess of the latter may be determined in the usual manner. The amount of haloid thus taken up differs greatly for various oils, and varies comparatively little for each fat in its natural condition. Iodine is usually employed for this purpose, and the percentage of iodine combining with the oil is called the "iodine number."

Oils and fats.	Spec, grav. at $15^{\circ} \mathrm{C}$.	Iodine number.	Melting-point of fat acids.	Saponification value.
Almond	0.9186	97.5-98	$14^{\circ} \mathrm{C}$.	194.5-196
A pricot	09191	99-102	4.5	192.9
Arachis	0.919	101-105	27-32	191.3
Butter.	0.930	26-35	38.0	227.0
Butterin		55.3	42.0	
Cocoanut .	0.870	8.9-9.3	24.6	257.3-268.4
Cod-liver .	0.923	123-140		213.2
Cottonseed	0.9228	105-115	30.0	195.0
Hemp .	0.9276	143	19.0	193.1
Japan wax	0.980	4.2		222.0
Lanolin (suint).	0.973	36	41.8	170.0
Lard ${ }^{\text {a }}$.	0.940	58-64	44	195.3-196.6
Lard oil	0.918		191-196
Laurel. . .		49	27.0	
Linseed . .	0.935	154-160	17.0	189-196
Neatsfoot.	0.916	66-70	300	190.9
Nut. .	0.926	142-144	200	196.0
Nutmeg .	0.990	${ }^{31.0}$	42.5	
Olive.	0.9149	81.6-90.2	25-29	191.7
Olive seed	0.9202	81.8		188.5
Palm .	0.95	50 4-53.4	47.8	202-202.5
Poppy .	0.925	135-137	19-24	194.6
Pumpkin.	0.9241	121	28.0	189.5
Rape .	0.9172	$97-105$	18-22	177.0
Ricinus	0.9613	84-93.9	13.0	181-181.5
Sesame	0.9213	105-108	25-30	190
Tallow .	0.916	40-42	45.0	196.5
Theobroma .	0.950	34.0	52.0	

Hübl prepares the "iodine solution" by dissolving 25 grams iodine in 500 cubic centimeters strong alcohol, and

30 grams mercuric chloride in 500 cubic centimeters strong alcohol, mixing the two solutions and setting aside for ten hours. For testing, about 0.2 gram of a drying oil (or 0.3 gram non-drying oil, or 0.8 gram of solid fat) is dissolved in 10 cubic centimeters of chloroform, mixed with 20 cubic centimeters of the iodine solution, and set aside for about 2 hours, when the excess of free iodine is determined by sodium thiosulphate. The "iodine number" of the fat acids is determined in the same manner, using the mixed fat acids separated from the saponified fat by a mineral acid.

Free fat acids are estimated, in the presence of alcohol and phenolphthalein, by titration with KHO (acid number). Valenta's saponification value is an extension of Koettstorfer's method for butter-testing : 1 gram of fat is saponified by warming with 25 cubic centimeters of alcoholic solution of KHO (about $\frac{1}{2}$ normal), and the excess of alkali determined by titration ; the weight of KH() in milligrams required for combining with the fat acids gives the "saponification value;" ou deducting from this the "acid number," the "ester number" is found-i.e., the amount of KHO in milligrams required for neutralizing the fat acids present in combination.

Classification.

Sect. 1. Liquid fats.

I. Non-drying oils.

Yellowish, slightly nutty, not congealing at Ol. Amygdalæ $-10^{\circ} \mathrm{C}$.
Pale yellow, deposits granules near $0^{\circ} \mathrm{C}$.
Yellow or brownish-yellow, solid at $-18^{\circ} \mathrm{C}$.
expressum.
OI. Olivæ.
O1. Sinapis
expressum.
Ol. Bubulum.
Ol. Adipis.

II. Drying oils.

Yellow or brownish ; not solid at $-15^{\circ} \mathrm{C}$. O1. Lini.
Pale yellow, bland, congeals at $-18^{\circ} \mathrm{C}$.
O1. Papaveris.

$$
\begin{array}{ll}
\text { Nearly colorless, nutty ; congeals at }-20^{\circ} \mathrm{C} . & \text { Ol. Juglandis. } \\
\text { Green, unpleasant; congeals at }-15^{\circ} \mathrm{C} . & \text { Ol. Cannabis. }
\end{array}
$$

III. Intermediate oils.

Yellow, odor and taste fishy.
O1. Morrhuæ.
Brownish-yellow, acrid.
Ol. Tiglii.
Yellowish, mawkish, slightly acrid.
Yellow, bland, congeals below $0^{\circ} \mathrm{C}$.
Yellow, bland, congeals at $-5^{\circ} \mathrm{C}$.
Yellow, bland, congeals at $-10^{\circ} \mathrm{C}$.
O1. Ricini.
O1. Gossypii.
Ol. Sesami.
Ol. Maydis.

Sect. 2. Solid fats.

I. Containing volatile oil.

Butyraceous, granular, green, spicy.
Mottled orange-brown, melting at $45^{\circ} \mathrm{O}$.
Ol. Lauri.
Ol. Myristica expressum.
II. Odorous, but free from volatile oil.

Yellowish-white, chocolate odor, melting at $30^{\circ} \mathrm{C}$.

O1. Theobromæ.
Orange-red, violet odor, melting at $27^{\circ} \mathrm{C}$.
Brownish-white, acrid, melting at $40^{\circ} \mathrm{C}$.
O1. Palmæ.
Ol. Gynocardiæ.
White, disagreeable odor, melting at about $25^{\circ} \mathrm{C}$.

Ol. Cocois.
Yellow, sweet, melting at $28^{\circ} \mathrm{C}$.
Whitish (the crude greenish-brown), animal odor, melting at $40^{\circ} \mathrm{C}$.

Butyrum.
Lanolinum.

III. With no characteristic odor.

White, melting at $35^{\circ} \mathrm{C}$.
White, melting at $45^{\circ} \mathrm{C}$.
Adeps.
Sevum.
Sect. 3. Waxes.
White, crystalline, melting at $50^{\circ} \mathrm{O}$.
Yellow, or white, melting at $62^{\circ} \mathrm{C}$.

Cetaceum. Cera.

OLEUM AMYGDALE EXPRESSUM.Almond Oil.

Grigin.-Prúnus Amy'gdalus, Baillon (Amy'gdalus commúnis, Linné). Natural order, Rosaceæ, Pruneæ.

Habitat.-Western Asia, naturalized in the Mediterranean basin ; cultivated.

Production.-Crushed bitter almonds are subjected to powerful pressure preceding their being used for preparing oil of bitter almond. Sweet almonds are likewise occasionally expressed. Yield 40 to 50 or 55 per cent.

Description.-Yellowish, thin, spec. grav. 0.918 , congealing near $-20^{\circ} \mathrm{C} .\left(-4^{\circ} \mathrm{F}\right.$.), of a slight nutty odor and bland taste. A mixture of the oil with an equal bulk of nitric acid, spec. grav. 1.16 , on being warmed to $60^{\circ} \mathrm{C}$. $\left(140^{\circ} \mathrm{F}\right.$.) does not acquire a yellow or orange color. The mixed fat acids melt near $14^{\circ} \mathrm{C}$. ($57^{\circ} \mathrm{F}$.) and solidify near $5^{\circ} \mathrm{C} .\left(41^{\circ} \mathrm{F}\right.$.).

Constituents.-Chiefly olein, very little palmitin.
Substitution.-The fixed oils expre-sed from the seeds of the peach (Prúnus Persica, Linné) and apricot (Prúnus Armeníaca, Linné) closely resemble almond oil ; but warmed with nitric acid, spec. grav. 1.16 , speedily turn yellow and orange-red. The fat acid of apricot oil melts near $5^{\circ} \mathrm{C}$. ($41^{\circ} \mathrm{F}$.).

Properties.-Lenitive. Dose, 2 to 16 grams (3ss-iv), in emulsion ; externally in liniments and ointments.

OLEUM OLIV $\underset{\text { ®.-Olive On. }}{ }$

Origin.-O'lea europæ'a, Linné. Natural order, Oleaсеæ, Oleineæ.

Habitat.-Asia and Southern Europe ; cultivated.
Production.-The crushed fruit, subjected to cold pressure, yields virgin oil ; a second quality of oil is obtained by mixing the press cake with hot water, and again expressing; and an inferior more or less rancid oil is yielded from the residue after it has undergone decomposition.

Description.-Pale yellow or light greenish-yellow, spec. grav. 0.915 at $15^{\circ} \mathrm{C} ., 0.911$ at $24^{\circ} \mathrm{C}$.; near $5^{\circ} \mathrm{C} .\left(41^{\circ} \mathrm{F}\right.$.) separating white crystalline granules; solid below $0^{\circ} \mathrm{C}$.
$\left(32^{\circ} \mathrm{F}.\right)$; of a slight agreeable odor, and a bland, faintly acrid taste. The mixture, made upon a porcelain slab, of 10 drops of the oil and 5 or 6 drops of sulphuric acid, does not acquire a brown-red or greenish-brown color. Agitated with a cold mixture of sulphuric and nitrie acids it remains pale yellow or greenish. The mixed fat acids separated after saponification, melt at about $26.5^{\circ} \mathrm{C}$. $\left(80^{\circ}\right.$ F.) and begin to solidify at $17.5^{\circ} \mathrm{C}$. $\left(63.5^{\circ} \mathrm{F}.\right)$.

Constituents.-Mainly olein; the solid fats are chiefly palmitin with arachin and possibly stearin ; also cholesterin, $\mathrm{C}_{26} \mathrm{H}_{44} \mathrm{O}$, soluble in alcohol.

Properties and Uses.-Like Almond Oil. Olive oil, containing about 6 per cent. of free oleic acid, has been recommended as a substitute for cod-liver oil, under the name of lipanin.

OLEUM SINAPIS EXPRESSUM.-Expressed

Mustard Oil.
Origin.-The seeds of Brássica álba, Hooker filius, and Br. nígra, Koch. Natural order, Cruciferæ, Brassiceæ.

Habitat.-Asia and Southern Europe; cultivated.
Production.-The crushed seeds are subjected to cold pressure ; yield about 22 per cent.

Properties.-Bright yellow (from white mustard) to brown-ish-yellow (from black mustard), spec. grav. 0.916, solid near $-18^{\circ} \mathrm{C}$., nearly inodorous, of a bland taste ; iodine number 96.0. Nitroso nitric acid colors reddish; zinc chloride colors dingy green.

Constituents.-Glycerides of oleic, stearic, erucic ($\mathrm{C}_{22} \mathrm{H}_{42} \mathrm{O}_{2}$) and behenic $\left(\mathrm{C}_{22} \mathrm{H}_{44} \mathrm{O}_{2}\right)$ acids.

Uses.-Like olive oil.
OLEUM BUBULUM.-Neat's-foot Oil.
Production.-The fatty tissue of neat's feet is boiled with water and the fat skimmed off, strained and pressed.

Description.-Pale yellow, spec. grav. about 0.916 , opaque
at or below $0^{\circ} \mathrm{C} .\left(82^{\circ} \mathrm{F}\right.$.) ; odor slight; nearly tasteless. The fat acid melts near $30^{\circ} \mathrm{C}$. $\left(86^{\circ} \mathrm{F}\right.$.).

Constituents.-Olein and solid fats.
Uses.-Chiefly externally.

OLEUM ADIPIS.-Lard Oil.

Production.-Lard is exposed to a low temperature and expressed. Yield about 50 to 60 per cent.

Description.-Pale yellowish or colorless, spec. grav. about 0.918 , solidifying near $0^{\circ} \mathrm{C}$. $\left(32^{\circ} \mathrm{F}\right.$.) ; odor and taste slight.

Constituents.-Olein with palmitin and stearin.
Uses.-Externally.

OLEUM LINI.-Flaxseed Oif. Linseed Oil.

Origin.-Línum usitatíssimum, Linné. Natural order, Lineæ.

Habitat.-Levant and Southern Europe ; cultivated.
Production.-The crushed seeds are expressed ; yield by cold pressure 16 to 20 per cent. ; by hot pressure 25 to 28 per cent.

Description.-Yellow, limpid, spec. grav. about 0.935, congealing at $-27^{\circ} \mathrm{C}$. $\left(-16.5^{\circ} \mathrm{F}\right.$.) ; odor slight ; taste bland. The fresh pure oil dissolves in absolute alcohol in all proportions, and in 1 or 2 parts of 95 per cent. alcohol, becoming turbid with more. Expressed with heat, linseed oil is of a darker color, stronger odor, and acrid taste. The mixed fat acids melt near $17^{\circ} \mathrm{C} .\left(62.5^{\circ} \mathrm{F}\right.$.) The iodine number of linseed oil is $154-160$ (Hübl), or $170-180$ (Benedict).

Constituents.-Chiefly linolein, with palmitin and myristin. By exposure it dries to linoxyn, $\mathrm{C}_{32} \mathrm{H}_{54} \mathrm{O}_{11}$.

Properties.-Demulcent, laxative. Dose, 4 to 65 grams ($3 \mathrm{j}-\mathrm{z} \mathrm{ij})$; externally as a protective.

OLEUM PAPAVERIS.-Poppyseed Oil.

Origin. - Papáver somníferum, Linné. Natural order, Papaveraceæ, Papavereæ.

Habitat.-Western Asia; cultivated.
Production.-The crushed seeds are expressed. Yield 40 to 50 per cent.

Description.-Pale yellow, limpid, spec. grav. 0.925 ; congealing at about $-18^{\circ} \mathrm{C}$. $\left(0^{\circ} \mathrm{F}\right.$. $)$; odor slight; taste bland. The mixed fat acids melt near $20^{\circ} \mathrm{C}$. ($68^{\circ} \mathrm{F}$.).

Constituents.-Chiefly linolein, with palmitin and perhaps other fats.

Properties.-Demulcent and protective.

OLEUM JUGLANDIS.-Nut Oil.

Origin.-1. Júglans régia, Linné. 2. Júglans cinérea, Linné. 3. Cárya amára, Nuttall. Natural order, Juglandeæ.

Habitat.-1. Central Asia ; cultivated. 2, 3. North Åmerica, westward to Nebraska.

Production.-The crushed seeds are expressed ; yield about 25 per cent.

Description.-Pale greenish or nearly colorless, somewhat thicker than the preceding, spec. grav. 0.92 ; congealing at about $-18^{\circ} \mathrm{C} .\left(0^{\circ} \mathrm{F}.\right)$; odor and taste nutty. The mixed fat acids melt near $20^{\circ} \mathrm{C}$. $\left(68^{\circ} \mathrm{F}\right.$.).

Constituents.-Probably linolein with some solid fats.
Properties.--Like Poppyseed Oil.

OLEUM CANNABIS.-Hempseed.

Origin.-Cánnabis satíva, Linné. Natural order, Urticaсеæ, Cannabineæ.

Habitat.-Southern and Central Asia; cultivated.
Production.-The crushed fruit (hempseed) is expressed; yield about 30 per cent.

Description.-Green, becoming lighter and brownish on exposure ; spec. grav. 0.93 ; odor hemp-like; taste rather mild; thickens at $-15^{\circ} \mathrm{C}$. ($5^{\circ} \mathrm{F}$.). The mixed fat acids melt near 19° C. ($66^{\circ} \mathrm{F}$.).

Constituents.-Linolein, probably with palmitin.
Properties.-Like Poppyseed Oil.

OLEUM MORRHUE.-Cod LIVER Oil.

Oleum jecoris aselli.
Origin.-Gádus Mórrhua, Linné, and other species of Gadus. Class, Pisces. Order, Teleostia. Family, Gadida.

Habitat.-North Atlantic Ocean.
Production.-The fresh livers are slowly heated and the oil is decanted from the water, and sometimes deprived of a portion of the solid fat by partial freezing.

Description.-Pale yellow, limpid, faintly acid, spec. grav. 0.923 ; near $0^{\circ} \mathrm{C} .\left(32^{\circ} \mathrm{F}\right.$.), separating a white granular deposit ; odor and taste mild, fishy. Sulphuric acid colors it deep violet, changing to brown red. If obtained by means of a greater heat, by boiling with water, or from stale livers, cod-liver oil is denser, has an amber-brown or dark-brown color, a stronger acid reaction, a more disagreeable odor and more or less bitter taste, and deposits granules at a higher temperature.

Constituents.-Chiefly olein, with pamitin and stearin, iodine 0.001 to 0.002 per cent., traces of chlorine, bromine, phosphorus, and sulphur, 0.3 cholesterin and other biliary compounds, probably also butyric and acetic acids. With 90 per cent. alcohol the oil yields about 3.5 per cent. of extract called morrhuol. A lecithin-like compound of the oil, when heated with acids or alkalies, is decomposed into glycerin, phosphoric acid, and morrhinic acid; the latter is oily or crystalline, soluble in hot water, and combines with acids and alkalies. Of the two alkaloids, aselline and morrhuine, the latter acts as a diuretic and diaphoretic (Gautier, 1888).

Adulteration with rosin oil or paraffin oil is recognized
by saponifying with KHO in alcoholic solution ; the soap of the pure oil is completely soluble in water.

Lipanin, recommended as a substitute for cod-liver oil, is olive oil containing about 6 per cent. of oleic acid, liberated after partial saponification.

Properties.-Demulcent, alterative. Dose, 8 to 16 grams ($3 \mathrm{j}-\mathrm{z} s \mathrm{~s}$).

OLEUM TIGLII.-Croton Oif.

Origin.-Cróton Tíglium, Linné. Natural order, Euphorbiaceæ, Crotoneæ.

Habitat.-India and Philippine Islands ; cultivated.
Production.-The crushed seeds are expressed or are exhausted by carbon disulphide ; yield 30 to 40 per cent., or about 50 per cent. of the kernels.

Description. - Yellow or brownish-yellow, somewhat viscid, slightly acid, spee. grav. about 0.95 ; odor slight, unpleasant ; taste oily, afterward acrid and burning. Croton oil is soluble in 1 part, but only partly soluble in 7 parts of absolute alcohol; it dissolves more readily in alcohol when old than when fresh. Croton oil dissolves in sulphuric acid, and the slightly darkened solution remains clear for some time.

Constituents.-Glycerides of formic, acetic, isobutyric, tiglinic $\left(\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}_{2}\right)$, valerianic, lauric, myristic, palmitic, and stearic acids ; also crotonol, $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{4}$ (?). The purgative principle appears to be insoluble in alcohol, and the vesicating properties are due to a fat, the acid of which is closely related to oleie and ricinoleic acids (Senier); but Kobert (1887) considers crotonolic acid and its glyceride to possess purgative and vesicating properties.

Properties.-Powerful purgative, irritant poison, rubefacient. Dose, 0.016 to 0.12 gram (gr. $\frac{1}{4}-\mathrm{ij}$), in fixed oil or emulsion ; externally as an addition to liniments.

Antidotes. - Evacuants (stomach-pump or emeties); demulcents (white of egg, gruel, etc.) ; stimulants ; morphine.

OLEUM RICINI.-Castor Oil.

Origin.-Rícinus commúnis, Linné. Natural order, Euphorbiacex, Crotonex.

Habitat.-India ; cultivated.
Production.-The seeds are crushed, freed from integuments by winnowing, kiln-dried, and expressed; the oil is clarified by mixing with warm water and decanting. Yield by cold pressure about 30 per cent., by warm pressure about 45 per cent.

Description.-Viscid, transparent after filtration, nearly colorless ; congeals near -18° C. (0° F.) ; spec. grav. about 0.965 at $15^{\circ} \mathrm{C}$., 0.960 at $24^{\circ} \mathrm{F}$.; odor mild, rather mawkish, taste mild, afterward slightly acrid; soluble in an equal weight of strong alcohol, partly soluble in petroleum benzin. The mixed fat acids melt near $13^{\circ} \mathrm{C}$. (55.4° F.). Oxidation with dilute nitric acid yields œenanthic acid.

Conslituents.-Ricinolein and palmitin ; acrid principle. Ricinolic acid, $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{O}_{3}$, is a viscid oil and by nitrous acid is converted into ricinelaidic acid, which crystallizes and melts at $50^{\circ} \mathrm{C}$. ($122^{\circ} \mathrm{F}$.).

Properlies.-Demulcent, purgative. Dose, 4 to 16 or 32 grams ($3 \mathrm{j}-\mathrm{iv}-\frac{\mathrm{z}}{\mathrm{j}}$).

OLEUM GOSSYPII SEMINIS.-Cotton-seed Oil.
Origin-Gossy'pium herbáceum, Linné, etc. Natural order, Malvaceex, Hibisceex.

Habitat.-Asia and Africa ; cultivated.
Production -The seeds are expressed and the crude red-
brown oil is bleached with boiling water, followed by a little alkali. Yield $15-20$ per cent.

Description.-Yellowish or yellow ; spec. grav. 0.922 0.925 at $15^{\circ} \mathrm{C} ., 0.917$ at $24^{\circ} \mathrm{C}$. of the crude oil about 0.930 ; neutral ; congeals below $0^{\circ} \mathrm{C} .\left(32^{\circ} \mathrm{F}\right.$. $)$; odor and taste mild, nutty. The mixed fat acids melt near $38^{\circ} \mathrm{C}$. $\left(100.4^{\circ} \mathrm{F}\right.$.), and solidify near $30^{\circ} \mathrm{C}$. $\left(86^{\circ} \mathrm{F}\right.$.).

Constituents.-Olein, palmitin, and non-saponifiable yellow coloring matter.

Properties.-Demulcent.

OLEUM SESAMI.-Benne-seed Oil.

Origin.-Sésamum indicum, Linné, including the variety S. orientále. Natural order, Pedalineæ, Sesameæ.

Habitat.-India; cultivated.
Production.-The seeds are expressed ; yield $4 \check{5}-50$ per cent.

Description.-Yellow, limpid, transparent ; spec. grav. 0.922 at $15^{\circ} \mathrm{C} ., 0.917$ at $24^{\circ} \mathrm{C}$. ; congeals at about -5° C. $\left(23^{\circ} \mathrm{F}.\right)$; nearly inodorous, bland ; colored green, red, and brown-red on being agitated with a cold mixture of sulphuric and nitric acids. On agitating the oil with a solution of pyrogallol in HCl , and afterward heating the acid liquid to boiling, it will acquire a deep purple color. (Olive, almond and other oils are not thus affected.Tocher.) The mixed fat acids melt near 38° C. (100.4° F.), and solidify near $32^{\circ} \mathrm{C}$. (89.6° F.) ; when dry, they are colored red by HCl and sugar (Baudouin).

Constituents.-Olein, myristin, palmitin, stearin ; resinoid compound.

Properties.-Demulcent.

OLEUM MAYDIS.-Maize Oil.

Origin.-Zéa Mays, Linré. Natural order, Gramineæ, Maydeæ.

Habitat.-Tropical America, cultivated in the warm temperate zone.

Production.-The fruit is broken, and the embryo, separated from the farinaceous endosperm, by sifting and winnowing, is expressed; yield 6-7.5 per cent. of the fruit, or about 12-15 per cent. of the embryo.

Description.-Yellow, rather viscid, transparent; spec. grav. 0,916 at $15^{\circ} \mathrm{C}$.; congeals at about $-10^{\circ} \mathrm{C}$. $\left(14^{\circ} \mathrm{F}\right.$.); readily saponifiable; odor peculiar, resembling that of cornmeal; taste bland; colored green by sulphuric acid, yellow-ish-red by nitric acid or by a mixture of nitric and sulphuric acids, and brown by nitroso-nitric acid.

Constituents.-Free fat acids 0.9 per cent., olein, palmitin, and stearin.

Properties.-Demulcent.

OLEUM LAURI.-Laurel Oil. Oil of Bays.

Origin.-Laúrus nóbilis, Linné. Natural order, Laurineæ, Litseacer.

Habitat.-Levant and Southern Europe.
Production.-The fruit is steeped in hot water and expressed ; yield about 30 per cent.

Description.-Of the consistence of butter, green, granular ; melts near $40^{\circ} \mathrm{C} .\left(105^{\circ} \mathrm{F}\right.$.) ; odor strongly aromatic ; taste aromatic, spicy, bitter; completely soluble in ether; coloring matter and aromatic principle soluble in alcohol; this solution is not colored red by ammonia (turmeric).

Constituents.-Laurin, olein, chlorophyll, volatile oil, resin.
Properties.-Stimulant, nervine; used in liniments and ointments.

OLEUM MYRISTICE EXPRESSUM.-Expressed

Oil of Nutmeg.
Oleum nucistre. Butyrum nueistæ. Nutmeg butter. Origin.-Myrística frágrans, Houttuyn. Natural order, Myristicaceæ.

Habilat.-Molucea Islands ; cultivated.

Production.-Crushed nutmegs are expressed between hot plates ; yield 28 per cent.

Description.-In blocks, of the consistence of tallow, unctuous, marbled whitish and orange-brown ; spec. grav. $0.990-$ 0.995 ; fusing point near $45^{\circ} \mathrm{C} .\left(113^{\circ} \mathrm{F}\right.$.) ; odor aromatic ; taste spicy ; soluble in 4 parts of hot strong alcohol. The mixed fat acids melt at $42.5^{\circ} \mathrm{C}$. $\left(108.5^{\circ} \mathrm{F}\right.$.).

Constituents.-Mainly myristin, with little myristic acid, olein, palmitin, resin, coloring matter, and 6 to 8 per cent. of volatile oil.

Properties.-Stimulant, carminative, digestive. Dose, 0.3 to 1 gram (gr. v-xv), in emulsion; mostly used externally.

OLEUM THEOBROM E.--Oil of Theobroma.
Butyrum (Oleum) cacao. Butter of cacao.
Origin.-Theobróma Cacáo, Linné. Natural order, Sterculiaceæ, Buettneriex.

Habitat.-South America.
Production.-The seeds are deprived of the testa and expressed between heated plates; yield $35-45$ per cent.

Description.-Yellowish-white, becoming white on keeping, harder than tallow, yet melting in the mouth; spec. grav. about 0.95 ; fusing-point between 30° and $33^{\circ} \mathrm{C}$. (86° and $91.4^{\circ} \mathrm{F}$.) ; aromatic, of a bland chocolate-like taste. On dissolving 2 grams (gr. xxx) of the oil in 4 grams (3 j) of petroleum benzin or of ether, by immersing the test-tube in water of $17^{\circ} \mathrm{C} .\left(62.6^{\circ} \mathrm{F}.\right)$, and afterward plunging the test-tube into water of $0^{\circ} \mathrm{C} .\left(32^{\circ} \mathrm{F}\right.$.), the mixture does not become turbid, and does not produce a granular deposit, in less than three minutes.

Constituents.-Stearin, laurin, arachin, and olein, with glycerides of formic, acetic, and butyric acids, and probably a little resin.

Properties.-Demulcent. Dose, 2 to 4 grams ($\boldsymbol{J}_{\text {ss-j), in }}$ emulsion, mostly used for suppositories and in ointments.

OLEUM PALM Æ.-Palm Oil.

Origin.-Elg'is guineénsis, Jacquin. Natural order, Palmex, Cocainer.

Habitat.-Western Africa ; cultivated in tropical America.
Production.-The fruit is heated with water and expressed.
Description.-Harder than butter, orange-red, bleached by exposure to light, and by rapidly heating to $240^{\circ} \mathrm{C} .\left(464^{\circ}\right.$ F.) ; spee. grav. 0.95 ; fusing-point 27° C. ($80.6^{\circ} \mathrm{F}$.) ; odor agreeable, violet-like; taste bland. It rapidly becomes rancid, and acquires an acid reaction, a higher melting-point, and an acrid taste.

Constituents.-Palmitin, olein, coloring matter.
Properties.-Demulcent; used in ointments, mostly for soap and candles.

OLEUM GYNOCARDIE.-Chaulmugra Oil.
Origin.-Gynocárdia (Chaulmoógra, Roxburgh) odoráta, R. Brown. Natural order, Bixineæ.

Habitat.-Malayan Peninsula.
Production.-The seeds are boiled in water and expressed; yield about 35 per cent., with ether 50 per cent. of oil.

Description.-Of the consistence of tallow, brownish-white, of an acid reaction; fusing-point about $40^{\circ} \mathrm{C} .\left(104^{\circ} \mathrm{F}\right.$.) ; odor-peculiar ; taste acrid; partly soluble in cold alcohol; by sulphuric acid colored red-brown, afterward olive-green; after agitation with warm water, the oil separates as a milky emulsion.

Constituents.-Albuminoids; glycerides of cocinic, hypogreic, palmitic, and gynocardic $\left(\mathrm{C}_{48} \mathrm{H}_{24} \mathrm{O}_{2}\right)$ acids, the last two also in the free state. The acrid taste and reaction with sulphuric acid are due to gynocardic acid.

Properties.-Alterative, emetic. Dose, about 0.3 gram (gr. v), in emulsion or dissolved in other oils.

OLEUM COCOIS.-Cocoandt Oil.

Origin.-Cócos nucífera, Linné. Natural order, Palmeæ, Cocaines.

Habitat.-Tropical countries.
Production.-The seeds are boiled with water and expressed; yield 50 to 60 per cent.

Description.-Of butyraceous consistence, white; melting-
point about $25^{\circ} \mathrm{C}$. $\left(77^{\circ} \mathrm{F}\right.$.) ; odor disagreeable; becomes rapidly rancid. The soap is soluble in salt water. The mixed fat acids melt at $24.6^{\circ} \mathrm{C}$. $\left(76^{\circ} \mathrm{F}\right.$.).

Constituents.-Glycerides of lauric (predominating) with palmitic, myristic, caprinic, caprylic, and capronic acids, and very little olein.

Properties.-Demulcent ; mostly used for soap.

BUTYRUM.-Butter.

Origin.-Bos Taúrus (femina), Linné. Class, Mammalia ; Order, Ruminantia; Family, Bovidæ.

Habitat.-Domesticated.
Production.-The cream rising upon cows' milk is churned.
Description.-Soft, yellow, neutral, spec. grav. about 0.93 , fusing-point near $32^{\circ} \mathrm{C}$. ($89.6^{\circ} \mathrm{F}$.), congealing-point near 23° C. ($73^{\circ} \mathrm{F}$.). ; odor delicate and sweet ; taste bland. For medicinal use, butter should be freed from salt and casein by melting it in warm water and decanting the clear liquid. 100 parts of pure butter on being saponified by an alkali, and the soap decomposed by hydrochloric acid, yield fat acids, which, after washing (to remove about 8 per cent. of volatile fat acids) and drying, weigh between 85 and 88 parts. Most other fats yield over 95 per cent. of fat acids insoluble in water.

Constituents.-Odorous principle a trace, olein about 30 per cent., palmitin and stearin about 68 per cent., and about 2 per cent. of the glycerides of butyric, capronic, caprylic, and caprinic acids. Butter having an acid reaction contains free butyric acid.

Properties.-Demulcent ; lenitive; used as a dietetic and in ointments.

LaNOLINUM,-Lanolin. Woolfat.

Adeps Lanæ; Esypum.
Origin.-O'vis A'ries, Linné. Class, Mammalia; Order, Ruminantia; Family, Bovidæ.

Habitat.-Domesticated.
Production.-Sheeps' wool is treated with a weak soda solution and the solution acidulated. The remaining wool is treated with benzin, the liquid distilled and the residue deprived of color by oxidizing agents or sunlight. Or crude woolfat is emulsionized with alkali solution; and the nonsaponified portion separated and decolorized.

Description.-Rather firm, the crude woolfat of various shades of greenish-brown and strong animal odor; after decolorizing yellowish or whitish, of weak animal odor, and of neutral reaction; readily absorbed by the skin ; spec. grav. 0.973 ; melting-point about $40^{\circ} \mathrm{C}$. ($104^{\circ} \mathrm{F}$.) ; miscible with its weight of water, also with glycerin ; saponified with difficulty. On being heated in the water-bath, it should lose not over 30 per cent. of water. When heated with soda, ammoniacal vapors should not be given off. Anhydrous lanolin is soluble in ether and chloroform, and but slightly soluble in hot alcohol.

Constituents.-Cholesterin esters of stearic, palmitic, oleic, valerianic, and other acids ; ash about 0.2 per cent.

Properties.-Lenitive; used in ointments.

ADEPS.-Lard.

Axungia porci.
Origin.-Sus scrófa, Linné. Class, Mammalia; Order, Pachydermata; Family, Suidæ.

Habitat.-Domesticated.
Production.-The fat attached to the mesentery, omentum and kidneys is melted with water and strained.

Description.-Soft, white, neutral, spec. grav. 0.940 ; melting-point near $38^{\circ} \mathrm{C}$. ($100.4^{\circ} \mathrm{F}$.) ; odor faint; taste bland; completely soluble in ether. Distilled water boiled with lard does not acquire an alkaline reaction, is not precipitated by silver nitrate, and is not colored blue by iodine. Lard boiled for five minutes with a 2 per cent. solution of silver nitrate, remains clear and free from color (absence of NaCl , cottonseed oil, etc. ; Ritsert, 1889). Hot alcohol agitated with lard does not acquire an acid reaction (resins, stearic, and other acids). The mixed fat acids melt at $44^{\circ} \mathrm{C}$. ($111^{\circ} \mathrm{F}$.).

Constituents.-Olein 50 to 60 per cent., palmitin and stearin.

Properties.-Demulcent, lenitive ; used in ointments and cerates.

SEVUM.-SuEt.

Sevum ovillum.
Origin.- O'vis A'ries, Linné. Class, Mammalia ; Order, Ruminantia; Family, Bovidæ.

Habitat.-Domesticated.
Production.-The internal fat is melted in a water-bath and strained.

Description.-Solid, smooth, white, neutral ; melting-point above $45^{\circ} \mathrm{C}$. ($113^{\circ} \mathrm{F}$.) ; congealing-point about $39^{\circ} \mathrm{C}$. $\left(102^{\circ} \mathrm{F}\right)$, rising to about $44^{\circ} \mathrm{C} .\left(111^{\circ} \mathrm{F}\right.$.) ; odor slight; taste bland.

Constituents. - Stearin and palmitin (predominating), olein, and hircin.

Allied Fat.-Sevum bovinum, beef tallow, the internal fat of Bos Taurus, Linné. Like the preceding, but meltingpoint near $40^{\circ} \mathrm{C}$. ($104^{\circ} \mathrm{F}$.) ; contains more palmitin, no hircin.

Properties.-Lenitive ; used in cerates.

CETACEUM.-Spermaceti.

Origin.-Physéter macrocéphalus, Linné. Class, Mammalia; Order, Cetacea; Family, Physeteridæ.

Habitat.-Pacific and Indian Oceans.
Production.-The fat contained in cavities in the head and in other parts of the body is allowed to congeal, expressed and remelted in water.

Description. - White, translucent, slightly unctuous masses ; fracture scaly crystalline, of a pearly lustre ; pulverizable in the presence of a little alcohol ; spec. grav. 0.94 to 0.95 ; melting-point near $50^{\circ} \mathrm{C}$. $\left(122^{\circ} \mathrm{F}\right.$.) ; con-gealing-point near $45^{\circ} \mathrm{C}$. ($113^{\circ} \mathrm{F}$.); soluble in ether, chloroform, benzin, and in boiling alcohol.

Adulteration. - Stearic acid is extracted from melted spermaceti by treatment with aqueous solution of sodium carbonate or of ammonia, and precipitated from the cold liquid by excess of acetic acid.

Constituents.-Mainly cetyl palmitic ester or cetin, $\mathrm{C}_{16} \mathrm{H}_{33}$. $\mathrm{C}_{16} \mathrm{H}_{31} \mathrm{O}_{2}$, with small amounts of other esters.

Properties.-Lenitive ; used in ointments and cerates.

> CERA.-Wax, Beeswax.

Origin.-A'pis mellífica, Linné. Class, Insecta; Order, Hymenoptera.

Production.-The honeycomb, after draining the honey, is melted in water and the melted wax decanted. It is bleached by exposing the wax in thin sheets to moisture and sunlight.

Description.-Cera flava, Yellow wax. Yellow or somewhat brownish-yellow, breaking with a granular fracture at and below $10^{\circ} \mathrm{C}$. ($50^{\circ} \mathrm{F}$.), becoming plastic by the heat of the hand ; spec. grav. 0.96 to 0.97 ; melting-point between 62° and $63^{\circ} \mathrm{C}$. (about $145^{\circ} \mathrm{F}$.) ; congealing with a smooth and level surface; odor aromatic, honey-like ; taste mild; soluble in boiling ether and in chloroform ; partly soluble in cold ether, benzol, and benzin, and in hot alcohol.

Cera alba, White wax. Yellowish-white circular cakes, somewhat translucent in thin layers, brittle in the cold, but becoming plastic by the heat of the hand; spec. grav. 0.97 ; melting-point 64° to $65^{\circ} \mathrm{C}$. (147° to $149^{\circ} \mathrm{F}$.) ; odor slightly rancid.

Constituents.-A Aromatic and coloring matters in yellow wax ; hydrocarbons (probably $\mathrm{C}_{27} \mathrm{H}_{56}$ and $\mathrm{C}_{34} \mathrm{H}_{64}$) about 12 to 14 per cent. ; cerin or cerotic acid, $\mathrm{C}_{27} \mathrm{H}_{54} \mathrm{O}_{2}$ (crystallizes from boiling alcohol); myricin or myricyl palmitate, $\mathrm{C}_{30} \mathrm{H}_{61} \cdot \mathrm{C}_{16} \mathrm{H}_{31} \mathrm{O}_{2}$ (the principal constituent; acicular crystals,
slightly soluble in hot alcohol, soluble in hot ether), with small quantities of an alcohol, $\mathrm{C}_{25} \mathrm{H}_{52} \mathrm{O}$, and of ceryl-alcohol, $\mathrm{C}_{27} \mathrm{H}_{56} \mathrm{O}$. The acid number varies between about 18.5 and 21 , and the true saponification number between about 67.5 and 72.5 .

Adulterations.-Tallow renders wax softer and lessens its specific gravity. Paraffin is not destroyed by hot sulphuric acid; 5 grams of the wax are heated in a flask for fifteen minutes with 25 grams of strong sulphuric acid to $160^{\circ} \mathrm{C}$. $\left(320^{\circ} \mathrm{F}\right.$.), and the mixture is diluted with distilled water; a layer of paraffin should not be separated. Resin is dissolved by hot 70 per cent. alcohol, and, after cooling, is precipitated by water. Mineral and starchy substances are insoluble in chloroform.

Properties.-Protective; used in ointments, cerates, and plasters.

DRUGS ARRANGED ACCORDING T0 ORIGIN.

I. OF ANIMAL ORIGIN.
Mammalia.
Rodentia. Castor Fiber, Linné. Castoreum 37
Carnivora. Viverra Zibetha, Schreber, etc. Civet 40
Ruminantia. Bos Taurus, Linné. Blood 40
Pepsin 38
Oxgall 41
Milk 40
Butter 508
Milk sugar 443
Fixed oil. 498
Beef tallow 510
Bone 44
Gelatin 35
Ovis Aries, Linné. Pepsin 38
Suet 510
Lanolin 508
Moschus moschiferus, Linné. Musk 35
Hyracoidea, Hyrax capensis, Cuvier. Hyraceum 39
Pachydermata. Sus scrofa, Linné. Pepsin 38
Lard 509
Fixed oil 499
Cetacea. Physeter macrocephalus, Linné. Spermaceti 510
Ambergris 39
Aves.
Gallinæ. Gallus Bankiva, Temminck. Egg (shell, albumen, yelk) 32
Pisces.
Teleostia. Gadus Morrhua, Linné. Cod-liver oil . . . 501Gadus merluccius, Linné. $\}$ American isinglass34Otolithus regalis, Cuvier.
Sturiones. Acipenser Huso, Linné. Russian isinglass 34
Insecta.Hymenoptera. Apis mellifica, Linné. Beeswax . . . 511
Honey 444
Oynips gallæ tinctoriæ, Olivier. Nutgalls 400
Coleoptera. Cantharis vesicatoria, De Geer. Cantharides 27
Cantharis vittata, Latreille. Potato fly 28
Mylabris cichorii, Fabricius, etc. Chinese blis- tering flies 29
Larinus mellificus, Jeckel, etc. Manna 442
Orthoptera. Blatta orientalis, Linné. Cockroach 31
Hemiptera. Coccus cacti, Linné. Cochineal. 29
Coccus Lacta, Kerr. Lac 463
Crustacea.
Decapoda. Astacus fluviatilis, Fabricius. 'Orabs' stones 43
Cephalopoda.
Decapoda. Sepia officinalis, Linné. Cuttlefish bone 42
Acephala.
Monomya. Ostrea edulis, Linné. Oyster shell 43
Vermes.
Annulata, Apoda. Sanguisuga medicinalis, Savigny, etc. Leech 31
Polypiphera.
Octocoralla. Corallium rubrum, Lamarck, Red coral 42
Hexacoralla. Oculina virginea, Lamarck. White coral 42
Poriphera.Ceratospongia. Spongia officinalis, Linné. Sponge33
II. OF VEGETABLE ORIGIN.

1. SPERMATOPHYTA.a, Dicotyledones, Polypetalce.Ranunculaceæ, Anemoneæ. Anemone pratensis, Linné, etc.Herb265
Anemone Hepatica, Linné. Leaves 252
Ranunculeæ. Ranunculus bulbosus, Linné, ete. Herb 267
CLASSIFICATION ACCORDING TO ORIGIN. 515
Ranunculaceæ, Helleboreæ. Hydrastis canadensis, Linné.
Rhizome and roots 138
Helleborus niger, Linné, etc. Rhizome and roots 141
Coptis trifolia, Salisbury. Herb. 267
Nigella damascena, Linné, etc. Seed 383
Delphinium Staphisagria, Linné. Seed 383
Delphinium Consolida, Linné.
Seed 382
Aconitum Napellus, Linné, etc.
Tuberous root. 152
Leaves 252
Aconitum ferox, Wallich, etc.
Tuberous root 154
Actæa alba, Linné.
Rhizome and roots 142
Cimicifuga racemosa, Elliott. Rhizome and roots 142
Xanthorrhiza apiifolia, L'Heri- tier. Rhizome and roots 148
Magnoliaceæ, Wintereæ. Drimys Winteri, Forster. Bark 208Illicium verum, Hooker filius.
Fruit 347
Volatile oil 486
Illicium religiosum, Siebold.
Fruit 347
Magnolieæ. Magnolia glauca, Linné, etc. Bark 183
Liriodendron Tulipifera, Linné.
Bark 183
Menispermaceæ, Tinosporeæ. Jateorrhiza Calumba, Miers. Root 81
Anamirta Cocculus, Wight et Ar- nott. Fruit 335
Cocculeæ. Abuta amara, Aublet. Root and stem 96
Abuta rufescens, Aublet. Root 96
Menispermum canadense, Linné. Rhizome 147
516 CLASSIFICATION ACCORDING TO ORIGIN.
Menispermaceæ, Pachygoneæ. Chondodendron tomentosum, Ruiz et Pavon. Root 95
Berberidaceæ, Berberea. Berberis vulgaris, Linné, Root 98
Root bark 185
Berberis aquifolium, Pursh, etc. Rhizome and roots 148
Caulophyllum thalictroides, Michaux. Rhizome and roots 189
Podophyllum peltatum, Linné. Rhizome. 129
Nymphæaceæ, Nymphææ. Nuphur advena, Aiton. Rhizome. 129
Nymphæa odorata, Aiton. Rhi- zome 128
Papaveraceæ, Papavereæ. Papaver Rhœas, Linné. Petals 313
Papaver somniferum, Linné.
Fruit 345
Milk-juice (opium) 425
Seed 394
Fixed oil 500
Sanguinaria canadensis, Linné. Rhizome 125
Chelidonium majus, Linné. Herb. 268
Fumarieæ. Dicentra canadensis, De Candolle. Tuber 154
Cruciferæ, Alyssineæ. Cochlearia Armoracia, Linné. Root 76
Brassiceæ. Brassica nigra, Koch. Seed 378
Fixed oil 498
Volatile oil 379, 486
Brassica alba, Hooker filius. Seed 377
Fixed oil 498
Brassica Rapa, Linné, etc. Seed. 879
Lepidineæ. Capsella Bursa-pastoris, Moench.
Herb 268
Cistineæ. Helianthemum canadense, Michaux. Herb 269
Violarieæ, Violeæ. Viola tricolor, Linné. Herb 274
Ionidium Ipecacuanha, Ventenat. Root 93
Canellaceæ. Canella alba, Linné. Bark 207
Cinnamodendron corticosum, Miers. Bark 208
Bixineæ, Pangieæ. Gynocardia odorata, R. Brown. Seed 888
Fixed oil 507
Polygaleæ. Polygala Senega, Linne, etc. Root 54
Polygala rubella, Willdenow. Herb 270
Krameria triandra, Ruiz et Pavon, etc. Root 99
CLASSIFICATION ACCORDING TO ORIGIN. 517
Caryophylleæ, Sileneæ. Gypsophila paniculata, Linné. Root 57
Saponaria officinalis, Linné. Root 57
Hypericineæ, Hypericeæ. Hypericum perforatum, Linné. Herb 269
Guttiferæ, Garcineæ. Garcinia Hanburii, Hooker filius. Gum resin 454
Garcinia Mangostana, Linné. Fruit 340
Ternstrœmiaceæ, Gordonieæ. Camellia Thea, Link. Leaves 242
Dipterocarpeæ. Dryobalanops Camphora, Colebrook. Stearopten 482
Dipterocarpus turbinatus, Gaertner. Oleoresin 473
Vateria and Hopea spec. Resin 461
Malvaceæ, Malveæ. Althæa officinalis, Linné. Root 79
Althæa rosea, Cavanilles. Flowers 313
Malva sylvestris, Linné. Flowers 814
Hibisceæ. Gossypium herbaceum. Linné.
Root bark 202
Seed hairs 410
Fixed oil 508
Sterculiaceæ, Sterculieæ. Cola acuminata, R. Brown. Seed 374
Buettnerieæ. Theobroma Cacao, Linné. Seed 373
Fixed oil 506
Tiliacea, Tiliew. Tilia americana, Linné, etc. Flowers 310
Lineæ, Eulineæ. Linum usitatissimum, Linné. Seed 384
Fixed oil 499
Erythroxyleæ. Erythroxylon Coca, Lamarck. Leaves 229
Zygophylleæ. Guaiacum officinale, Linné. Wood 164
Resin 463
Geraniaceæ, Geranieæ. Geranium maculatum, Linné. Rhizome 126
Rutaceæ, Cusparieæ. Galipea Cusparia, St. Hilaire. Bark 209
Monnieria trifolia. Linné. Leaves 218
Ruteæ. Ruta graveolens, Linné. Herb 255
Volatile oil . 255, 486
Diosmes. Barosma betulina, Bartling, etc. Leaves 249
Empleurum serrulatum, Aiton. Leaves 250
Zanthoxyleæ. Xanthoxylum carolinianum, Lambert,
etc. Bark 199
Fruit 347
Xanthoxylum elegans, Engler. Leaves 218
Pılocarpus pennatifolius, Lémaire.
Leaves 217
PAGE
Rutaceæ, Zanthoxyleæ. Esenbeckia febrifuga, Martius. Bark 209
Aurantieæ. Citrus Limonum, Risso. Fruit 341
Rind 363
Volatile oil 363, 486
Citrus Bergamia, Risso. Volatile oil 486
Citrus vulgaris, Risso. Leaves 221
Flowers 309
Fruit 339
Rind 331
Volatile oils 362,48
Citrus Aurantium, Risso. Leaves 221
Rind 362
Volatile oil 362 , 486
Feronia elephantum, Correa. Gum 445
Aegle Marmelos, De Candolle. Fruit 340
Simaruber. Simaruba officinalis, De Candolle, etc. Bark 139
Picræna excelsa, Lindley. Wood 163
Bark 193
Quassia amara, Linné. Wood 163
Bark 193
Burseraceæ, Bursereæ. Boswellia Carterii, Birdwood.
Gum resin 452
Commiphora Myrrha, Engler.
Gum resin 453
Commiphora Mukul, Hooker, etc.
Gum resin 454
Bursera Icicariba, Baillon. Oleoresin 477
Canarium commune, Linné. Oleoresin 477
Colophonia mauritiana, De Candolle. Oleoresin 477
Amyridew. Amyris elemifera, Royle. Oleoresin 477
Meliaceæ, Melieæ. Melia Azedarach, Linné. Root bark 198
Melia Azadirachta, Linné. Gum 446
Swieteniex. Swietenia Mahogani, Linné. Gum 446
Ilicinew. Hlex opaca, Aiton. Leaves 246
Ilex paraguayensis, Lambert. Leaves 243
Ilex verticillata, Gray. Bark 184
Celastrineæ, Celastreæ. Euonymus atropurpureus, Jacquin. Bark 203
Rhamnaceæ, Rhamneæ. Rhamnus cathartica, Linné, etc. Fruit 329
Rhamnus Frangula, Linné. Bark 194
PAGE
Rhamnaceæ, Rhamneæ. Rhamnus Purshiana, De Candolle. Bark 196
Ceanothus americanus, Linné. Root 99
Gouanieæ. Gouania domingensis, Linné. Stem 162
Ampelideæ. Vitis vinifera, Linné. Fruit 338
Sapindaceæ, Sapindeæ. Paullinia sorbilis, Martius. Dry paste 424
Anacardiaceæ, Anacardieæ. Rhus Toxicodendron, Linné.
Leaves 254
Rhus glabra, Linné. Fruit 330
Rhus semialata, Murray. Galls 401
Pistacia Terebinthus, Linné. Oleoresin 476
Pistacia Lentiscus, Linné, etc. Resin 459
Loxopterygium Lorentzii, Grisebach. Bark 198
Anacardium occidentale, Linné. Fruit 336
Semecarpus Anacardium, Linné. Fruit 336
Coriarieæ. Coriaria myrtifolia, Linné. Leaves 226
Leguminosæ, Papilionaceæ, Podalyrieæ. Baptisia tinctoria,R. Brown. Root . 98
Genisteæ. Cytisus scoparius, Link. Twigs 271
Trifolieæ. Trigonella Fœnum- græcum, Linné. Seed 376
Melilotus officinalis, Willdenow, etc. Herb 270
Galegeæ. Tephrosia Appolinea, De Candolle. Leaves 226
Astragalus gummifer, Labillardière, etc. Tragacanth 447
Glycyrrhiza glabra, Linné. Root 89
Extract 433
Hedysareæ. Alhagi camelorum, Fischer. Manna 442
Arachis hypogæa, Linné. Fixed oil . 493, 494
Vicieæ. Abrus precatorius, Linné.Root90
Seed 377

Leguminosæ, Papilionaceæ, Phaseoleæ. Butea frondosa, Roxburgh. Exudation 436
Mucuna pruriens, De
Candolle, etc. Hairs 411

$$
\begin{aligned}
& \text { Physostigma veneno- } \\
& \text { sum, Balfour, etc. } \\
& \text { Seed . . . } 374
\end{aligned}
$$

Flemingia rhodo- carpa, Baker. Glands 413Dalbergieæ. Pterocarpus Marsu-pium, Roxburgh.Kino . . . 435

Pterocarpus santalinus, Linné filius. Wood 164
Piscidia Erythrina, Jacquin. Bark 197
Andira Araroba, Aguiar. Powder 413
Dipteryx odorata, Willdenow. Seed 372
Sophoreæ. Myroxylon Pereiræ, Klotzsch. Balsam 468
Myroxylon Toluifera, Kunth. Balsam 469
Cæsalpinieæ, Eucæsalpinieæ. Hæmatoxylon cam- pechianum, Linné. Wood 165
Extract 437
Cassieæ. Cassia Fistula, Linné, etc. Fruit 343
Cassia acutifolia, Delile.Leaves . . . 225
Cassia elongata, Lémaire. Leaves 226
Cassia marilandica, Linné.
Leaves 228
Ceratonia Siliqua, Linné. Fruit 345
Amherstieæ. Tamarindus indica,
Linné. Fruit-pulp 364
Hymenæa, Trachylo-bium, spec. Resin(copal)462
CLASSIFICATION ACCORDING TO ORIGIN. 521
Leguminosæ, Cæsalpinieæ, Cynometreæ. Copaifera Langs - dorffii, Desfontaines, etc. Oleoresin 472
Volatile oil 487
Dimorphandreæ. Erythrophlœum guineense, Don. Bark 200
Mimoseæ, Adenanthereæ. Prosopis juliflora, De Candolle, etc. Gum 446
Acacieæ. Acacia Catechu, Willdenow.
Extract 434
Gum 446
Acacia Senegal, Will- denow, etc. Gum 445
Inger. Pithecolobium dulce, Bentham. Gum 446
Rosaceæ, Pruner. Prunus Amygdalus, Baillon. Seed 369
Fixed oil 496
Volatile oil 487
Prunus Persica, Linné. Leaves 246
Fixed oil 497
Prunus domestica, Linné. Fruit 337
Prunus serotina, Ehrhart. Bark 185
Prunus Laurocerasus, Linné. Leaves 248
Prunus Armeniaca, Linné. Fixed oil 497
Spiræeæ. Spiræa tomentosa, Linné. Herb 272
Gillenia stipulacea, Nuttall, etc. Rhizome and roots 143
Quillajeæ. Quillaia Saponaria, Molina, Bark 203
Rubeæ. Rubus Idæus, Linné, etc. Fruit 338
Rubus villosus, Aiton, etc. Root bark 190
Fruit 338
Potentilleæ. Geum rivale, Linné. Rhizome and roots 187
Geum urbanum, Linné. Rhizome and roots 137
Fragaria vesca, Linné. Rhizome 134
Potentilla canadensis, Linné. Herb 273
Potentilla Tormentilla, Sibthorp.
Rhizome 127
Poteriea. Brayera anthelmintica, Kunth.
Inflorescence 310
Argrimonia Eupatoria, Linné. Herb 272
Roseæ. Rosa canina, Linné. Fruit 829
Rosa gallica, Linné. Petals 312
Rosaceæ, Roseæ. Rosa centifolia, Linné. Petals PAGE 312
Rosa damascena, Miller. Volatile oil 484
Pomeæ. Pyrus Cydonia, Linné. Seed 368
Saxifragaceæ, Saxifrageæ. Heuchera americana, Linné. Root 81
Hydrangeæ. Hydrangea arborescens, Linné. Root 88
Cunonienæ. Ceratopetalum gummiferum, Smith. Exudation 436
Droseraceæ. Drosera rotundifolia, Linné, etc. Herb 274
Hamamelideæ. Hamamelis virginiana, Linné. Bark 187
Leaves 241
Liquidambar orientalis, Miller. Balsam 471
Liquidambar Styraciflua, Linné. Balsam 470
Combretaceæ, Combreteæ. Terminalia Chebula, Retzius, etc. Fruit 387
Anogeissus latifolia, Wallich. Gum 446
Myrtaceæ, Leptospermeæ. Melaleuca Cajuputi, Roxburgh. Volatile oil. 484
Eucalyptus globulus, Labillardière.
Leaves 219
Volatile oil 487
Eucalyptus mannifera, Mudie, etc.
Manna 442
Eucalyptus amygdalina, Labillar-dière. Exudation(kino) . . . 486
Myrteæ. Myrcia acris, De Candolle. Leaves 220
Volatile oil 220, 487
Eugenia caryophyllata, Thunberg. Flower bud 307
Fruit 334
Volatile oil 487
Eugenia Pimenta, De Candolle. Fruit 334
Volatile oil 487
Eugenia Chekan, Molina. Leaves 220
Lythrarieæ, Lythreæ. Punica Granatum, Linné. Bark 191
Rind 368
Onagrarieæ. Epilobium angustifolium, Linné, Herb 278
Enothera biennis, Linné. Herb 278
Turneraceæ. Turnera diffusa, Willdenow. 248
Cucurbitaceæ, Cucumerineæ. Cucumis Citrullus, Seringe.
Seed 372page
Cucurbitaceæ, Cucumerineæ. Cucumis Melo, Linné. Seed 371
Cucumis sativus, Linné. Seed 372
Citrullus Colocynthis, Schrader. Fruit 342
Ecballium Elaterium,A. Richard. Resinous deposit 458
Cucurbita Pepo, Linné. Seed 371
Bryonia alba, Linné, etc. Root 77
Cacteæ, Echinocacteæ. Cactus grandiflorus, Linné.
Flowering branches 275
Opuntier. Opuntia cochinillifera, Miller. Cochineal 29
Umbelliferæ, Ammineæ. Conium maculatum, Linné. Leaves 256
Fruit 354
Apium graveolens, Linné. Fruit 856
Carum Carui, Linné. Fruit 359
Volatile oil 360, 488
Carum Ajowan, Bentham et Hooker. Fruit 357
Stearopten 482
Carum Petroselinum, Baillon. Root 73
Fruit 356
Pimpinella Anisum, Linné. Fruit 3.55
Volatile oil . 355, 488
Pimpinella Saxifraga, Linné. Root 72
Seselineæ. Fœniculum vulgare, Gartner. Fruit 357
Volatile oil 488
Enanthe Phellandrium, Lamarck. Fruit 358
Levisticum officinale, Koch. Root 71
Archangelica officinalis, Hoffimann. Root 70
Archangelica atropurpurea,Hoffiman. Root 71
Peucedanes. Ferula Narthex, Boissier, etc. Gum resin 449
Ferula galbaniflua, Boissier et Buhse, etc. Gum resin 450
Ferula Sumbul, Hooker filius. Root 73
Ferula tingitana, Linné. Gum resin 452
Umbelliferæ, Peucedaneæ. Dorema Ammoniacum, Don. Gum resin 451
Peucedanum graveolens, Hiern.
Fruit 360
Volatile oil 488
Peucedanum Ostruthium, Koch. Root 74
Opopanax Chironium, Koch. Gum resin 452
Caucalineæ. Coriandrum sativum, Linné.
Fruit 353
Volatile oil 488
Cuminum Cyminum, Linné. Fruit 359
Daucus Carota, Linné. Fruit 361
Laserpitieæ. Laserpitium latifolium, Linné. Root 72
Araliaceæ, Aralieæ. Aralia spinosa, Linné. Bark 200
Aralia racemosa, Linné. Rhizome and roots 144
Aralia nudicaulis, Linné. Rhizome 181
Aralia quinquefolia, Gray. Root 75
Cornaceæ. Cornus florida, Linné, etc. Bark 182
b. Dicotyledones, Gamopetala.
Caprifoliaceæ, Sambuceæ. Sambucus canadensis, Linné, etc.
Flowers 319
Viburnum prunifolium, Linné. Bark 188
Lonicereæ. Triosteum perfoliatum, Linné.
Rhizome and roots 144
Rubiaceæ, Naucleæ. Uncaria Gambir, Roxburgh. Extract 435
Cinchoneæ. Cinchona Calisaya, Weddell,etc. Bark 171
Remijia pedunculata, Triana. Bark 181
Remijia Purdieana, Weddell. Bark 181
Ladenbergia, Exostemma, etc. Bark 179
Ixoreæ. Coffea arabica, Linné, etc. Seed 391
Psychotrieæ. Psychotria emetica, Mutis. Root. 92
Cephaëlis Ipecacuanha, A. Richard. Root 91
Anthospermeæ. Mitchella repens, Linné. Herb 298
Spermacoceæ. Richardsonia scabra, St. Hilaire.
Root 93
CLASSIFICATION ACCORDING TO ORIGIN. 525
Rubiaceæ, Galieæ. Rubia tinctorum, Linné. Root 80
Galium Aparine, Linné, etc. Herb 299
Valerianeæ. Valeriana officinalis, Linné. Rhizome and roots 132
Volatile oil 488
Compositæ, Eupatoriaceæ. Eupatorium perfoliatum, Linné. Herb 275
Asteroideæ. Grindelia robusta, Nuttall. Herb 278
Grindelia squarrosa, Dunal. Herb 279
Haplopappus discoideus, De Candolle. Leaves 244
Solidago odora, Aiton. Herb 277
Erigeron philadelphicus, Linné, etc. Herb 277
Erigeron canadensis, Linné. Herb 277
Volatile oil . 277, 488
Inuloideæ. Gnaphalium polycephalum, Michaux, etc. Herb 282
Inula Helenium, Linné. Root 64
Helenioideæ. Tagetes erecta, Linné, etc. Fluwer heads 319
Helenium autumnale, Linné. Herb 279
Anthemideæ. Anacyclus Pyrethrum, De Candolle. Root 62
Anacyclus officinarum, Hoffimann. Root 63
Achillea Millefolium, Linné. Herb 280
Anthemis nobilis, Linné. Flowers 315
Volatile oil 488
Anthemis arvensis, Linné. Flowers 315
Anthemis Cotula, Linné. Herb 279
Flowers 315
Chrysanthemum Parthenium, Per-
soon. Herb 280
Chrysanthemum cinerariæfolium, Visiani, etc. Flowers 316
Matricaria Chamomilla, Linné. Flowers 314
Tanacetum vulgare, Linné. Herb 281
Artemisia Absinthium, Linné. Herb 281
Artemisia vulgaris, Linné. Herb 282
Artemisia maritima, Linné. Flower buds 308
Compositæ, Senecionideæ. Tussilago Farfara, Linné. Leaves 246
Arnica montana, Linné. Rhizome and roots 183
Flowers 317
Calendulaceæ. Calendula oflicinalis, Linné. Herb 288
Florets 318
Cynaroideæ. Arctium Lappa, Linné. Root. 65
Fruit 352
Onicus benedictus, Linné. Herb 288
Silybum marianum, Gortner. Fruit 352
Carthamus tinctorius, Linné. Florets 319
Cichoriaceæ. Cichorium Intybus, Linné. Root 62
Taraxacum Dens-leonis, Desfon- taines. Root 61
Lactuca virosa, Linné, etc. Exudation 429
Campanulaceæ, Lobelieæ. Lobelia inflata, Linné. Herb 284
Ericaceæ, Arbuteæ. Arctostaphylos Uva-ursi, Sprengel.
Leaves 222
Arctostaphylos glauca, Linné. Leaves 228
Andromedeæ. Gaultheria procumbens, Linné.
Leaves 248
Volatile oil 248, 489
Epigæe repens, Linné. Leaves 224
Rhodoreæ. Kalmia latifolia, Linné. Leaves 225
Ledum latifolium, Aiton, etc. Leaves 221
Pyroleæ, Chimaphila umbellata, Nuttall, etc. Leaves 246
Plumbaginer, Staticeæ. Statice Limonium, Linné, etc. Root 98
Sapotaceæ, Sapoteæ. Lucuma glycyphlæa, Martius et Eichler. Extract 436
Mimusops globosa, Gartner. Milk-juice (chicle) 487
Eusapoteæ. Palaquium oblongifolium, Burck. Milk- juice (gutta percha) 487
Ebenacer. Diospyros virginiana, Linne. Fruit 889
Styracer. Styrax Benzoin, Dryander. Resin 465
Oleaceæ, Fraxineæ. Fraxinus americana, Linné. Burk 192
Fraxinus Ornus, Linné. Exudation (Manna). 441
Oleineæ. Olea europæa, Linné. Fixed oil 497
A pocynaceæ, Plumerieæ. Aspidosperma Quebracho, Schlech- tendal. Bark. 198
CLASSIFICATION ACCORDING TO ORIGIN. 527
Apocynaceæ, Echiteæ. Nerium Oleander, Linné. Leaves
PAGE
Strophanthus Kombé, Olivier, etc. Seed 385
Urceola elastica, Roxburgh, etc.
Caoutchoue 438
A pocynum cannabinum, Linné. Root 67
Apocynum androsæmifolium, Linné. Root 93
Kicksia africana, Bentham, Seed 385
Asclepiadaceæ, Periploceæ. Hemidesmus indicus, R. Brown.Root90
Asclepiadeæ. Solenostemma Argel, Hayne. Leaves 226
Asclepias Cornuti, Decaisne. Rhizome 130
Asclepias incarnata, Linné.Rhizome and roots. 188
Asclepias tuberosa, Linné. Root 66
Cynanchum Vincetoxicum, R. Brown. Root 57
Gonolobeæ. Gonolobus Cundurango, Triana. Bark 194
Loganiaceæ, Gelsemieæ. Gelsemium sempervirens, Aiton. Root 94
Euloganieæ, Spigelia marilandica, Linné. Rhizome and roots 136
Strychnos Nux vomica, Linné.
Seed 379
Bark 210
Strychnos Ignatia, Lindley. Seed 382
Strychnos Castelnæana, Weddell, etc. Extract 432
Gentianeæ, Chironieæ. Erythræa Centaurium, Persoon. Herb 299
Sabbatia angularis, Pursh, etc. Herb 299
Swertieæ, Gentiana lutea, Linné, etc. Root 58
Gentiana puberula, Michaux, etc. Root 59
Swertia Chirata, Wallich, etc, Herb 300
Frasera Walteri, Michaux. Root 60
PAGE
Gentianeæ, Menyantheæ. Menyanthes trifoliata, Linné. Leaves 254
Polemoniaceæ. Phlox carolina, Linné. Rhizome and roots 136
Polemonium reptans, Linné. Rhizome and roots 186
Hydrophyllaceæ, Nameæ. Eriodictyon californicum, Bentham. Leaves 250
Boragineæ. Symphytum officinale, Linné. Root 60
Alkanna tinctoria, Tausch. Root 80
Convolvulaceæ, Convolvuleæ. Ipomœa Purga, Hayne.
Tuberous root 150
Ipomœa orizabensis, Ledanois.
Tuberous root 151
Ipomœa simulans, Hanbury.
Tuberous root. 151
Ipomœa pandurata, Meyer. Root 75
Convolvulus Mechoacanna, Vandelli. Tuberous root 152
Convolvulus Scammonia, Linné. Gum resin 456
Solanaceæ, Solaneæ. Solanum Dulcamara, Linné. Twigs 161
Solanum tuberosum, Linné. Starch 419
Capsicum fastigiatum, Blume, etc. Fruit 341
Atropeæ. Atropa Belladonna, Linné. Root 77
Leaves 232
Hyoscyameæ. Datura Stramonium, Linné, etc.
Leaves 234
Seed 392
Hyoscyamus niger, Linné. Leaves 286
Seed 393
Cestrineæ. Nicotiana Tabacum, Linné. Leaves 283
Salpiglossideæ. Duboisia myoporoides, R. Brown.
Leaves 233
Scrophularineæ, Verbasceæ. Verbascum phlomoides, Linné, etc.
Flowers 320
Cheloneæ. Scrophularia nodosa, Linné. Herb 286
Chelone glabra, Linné. Herb 287
Manuleæ. Lyperia crocea, Ecklon. Corolla 408
Digitaleæ. Digitalis purpurea, Linné. Leaves 287
Veronica virginica, Linné.Rhizome146
CLASSIFICATION ACCORDING TO ORIGIN. 529
Orobanchaceæ. Epiphegus virginiana, Barton. Herb Page 286
Pedalineæ, Sesameæ. Sesamum indicum, Linné. Leaves 229
Seed 370
Fixed oil 504
Labiatre, Ocimoider. Lavandula vera, De Candolle. Flowers 820
Volatile oil 489
Satureiner. Collinsonia canadensis, Linné. Rhizome 140
Mentha piperita, Linné. Herb 287
Volatile oil 289, 489
Stearopten 483
Mentha viridis, Linné. Herb 288
Volatile oil 289, 489
Lycopus virginicus, Linné. Herb 290
Cunila Mariana, Linné. Herb 290
Origanum vulgare, Linné. Herb 291
Volatile oil 291
Origanum Majorana, Linné. Herb 292
Thymus Serpyllum, Linné. Herb 292
Thymus vulgaris, Linné. Leaves 216
Volatile oil 489
Stearopten 216, 482
Hyssopus officinalis, Linné. Herb 290
Hedeoma pulegioides, Persoon. Herb 293
Volatile oil . 294, 489
Melissa officinalis, Linné. Herb 292
Monarder. Salvia officinalis, Linné. Leaves 240
Rosmarinus officinalis, Linné. Leaves 215
Volatile oil . 215, 489
Monarda punctata, Linné. Herb 294
Volatile oil 489
Stearopten 482
Nepeteæ. Nepeta Cataria, Linné. Herb 295
Nepeta Glechoma, Bentham. Herb 296
Stachydeæ. Scutellaria lateriflora, Linné, etc. Herb 297
Marrubium vulgare, Linné. Herb 296
Leonurus Cardiaca, Linné. Herb 297
Plantaginaceæ. Plantago major, Linné, etc. Herb 298
c. Dicotyledones Monochlamydece.
Chenopodiaceæ, Euchenopodieæ. Chenopodium anthelminti-
cum, Linné. Fruit 346
Volatile oil 346, 490
page
Chenopodiaceæ, Euchenopodieæ. Beta vulgaris, Linné. Sugar 440
Phytolaccacer, Euphytolacceæ. Phytolacca decandra, Linné. Root 76
Fruit 329
Polygonacer, Eupolygoneæ. Polygonum Bistorta, Linné. Rhizone 128
Rumicier. Rheum officinale, Baillon, etc. Root 84
Rheum rhaponticum, Linné. Root 83
Rumex crispus, Linné, etc. Root 83
Coccolobeæ. Coccoloba uvifera, Linné.
Extract (kino) 436
Aristolochiaceæ. Asarum canadense, Linné, etc. Rhizome 145
Aristolochia Serpentaria, Linné, ete.
Rhizome and roots 134
Piperaceæ, Pipereæ. Piper elongatum, Vahl. Leaves 239
Piper mollicomum, Baillon, etc. Leaves 218
Piper Cubeba, Linné filius. Fruit 331
Volatile oil 332, 490
Piper nigrum, Linné. Fruit 332, 333
Piper methysticum, Forster. Root 87
Piper Jaborandi, Velloz. Leaves 218
Piper officinarum, De Candolle. Fruit 326
Myristicaceæ. Myristica fragrans, Houttuyn, etc. Arillus 407
Seed 387
Fixed oil . 888, 505
Volatile oil 388, 490
Monimiaces. Peumus Boldus, Molina. Leaves 216
Laurineæ, Perseaceæ. Cinnamomum zeylanicum, Breyne.
Bark 205
Volatile oil 206, 490
Cinnamomum Cassia, Blume. Bark 205
Volatile oil . 206, 490Cinnamomum Camphora, F. Nees.
Stearopten 481
Volatile oil 483
Nectandra Rodiæi, Schomburgk. Bark 182
Litseacer. Sassafras officinale, Nees. Root 162
Root bark 207
Pith 407
Volatile oil 207, 490
Laurus nobilis, Linné. Leaves 218
Fixed oil 505
Laurineæ, Litseaceæ. Coto bark page
Thymelaceæ, Euthymelæeæ. Daphne Mezereum, Linné, etc. Bark 201
Santalacer, Osyrider. Santalum album, Linné, etc. Wood 166
Volatile oil 490
Euphorbiaceæ, Buxeæ. Buxus sempervirens, Linné. Bark 192
Euphorbieæ. Euphorbia corollata, Linné. Root 68
Euphorbia Ipecacuanha, Linné.
Root 68
Euphorbia resinifera, Berg.
Exudation 455
Crotoner. Jatropha Curcas, Linné. Seed 390
Jatropha, Hevea, etc., species. Milk juice (caoutchouc) 438
Oroton Tiglium, Linné. Seed 390
Fixed oil 502
Croton Eluteria, Bennett. Bark 210
Croton Malambo, Karsten, etc.
Bark 211
Aleurites laceifera, Willdenow.
Resin 462
Manilhot utilissima, Poht, etc. Starch 420
Mallotus philippinensis, Mueller Arg. Glands 412
Ricinus communis, Linné. Seed 389
Fixed oil 503
Stillingia sylvatica, Linné. Root 69
Urticacer, Ulmeæ. Ulmus fulva, Michaux, etc. Bark 204
Cannabinez. Humulus Lupulus, Linné. Strobiles 327
Glands 414
Cannabis sativa, Linné. Herb 301
Fruit 353
Fixed oil 500
Morex. Morus rubra, Linné, etc. Fruit 326
Artocarpeæ. Ficus Carica, Linné. Fruit 327
Ficus indica, Linné, etc. Milk-juice (caoutchouc) 438
Resin 462
Juglandeæ. Juglans cinerea, Linné. Bark 197
Juglans regia, Linné, etc. Fixed oil 500
Engelhardtia species. Resin 461
pags
Myricaces. Myrica asplenifolia, Blum. Leaves 251
Myrica cerıfera, Linné. Bark 200
Cupuliferse, Betuleæ. Betula lenta, Linné. Yolatile oil 489
Betula alba, Linné. Tar 479
Quercineæ. Quercus alba, Linné, Bark 188
Quercus tinctoria, Bartram, etc. Bark 189
Quercus infectoria, Olivier, etc. Galls 400
Quercus vallonea, Kotschy. Manna 442
Castanea vesca, Gartner. Leaves 244
Salicacer. Salix alba, Linné, etc. Bark 186
d. Gymnospermea.
Coniferæ, Abietineæ. Agathis Dammara, Rich. Resin 461
Pinus australis, Michaux, etc. Oleoresin 474
Resin 460
Volatile oil . 475, 490
Tar. 478
Empyreumatic vola- tile oil 491
Larix europæa, De Candolle. Oleoresin 474
Manna 442
Picea succinifera, Conwentz. Resin 462
Empyreumatic vola- tile oil 485
Abies balsamea, Marshall, etc. Oleoresin 473
Abies pectinata, De Candolle. Oleoresin 474
Abies canadensis, Michaux. Oleoresin 476
Abies excelsa, De Candolle. Oleoresin 476
Cupressineæ. Callitris quadrivalvis, Ventenat. . Resin 460
Thuja occidentalis, Linné. Branchlets 304
Chamæcyparis sphæroidea, Spach.
Branchlets 304
Juniperus communis, Linné. Fruit 325
Volatile oil . 325 , 491
Juniperus Oxycedrus, Linné. Tar 479
Juniperus virginiana, Linné. Branch- lets. 302
Juniperus Sabina, Linné. Branchlets 308
Volatile oil 303 , 491
Taxer. Torreya californica, Torrey. Seed 388
CLASSIFICATION ACCORDING TO ORIGIN. 533
e. Monocotyledones.
PAGE
Orchider, Neottiea. Vanilla planifolia, Andrews, etc. Fruit. 350
Ophryder. Orchis mascula, Linné, etc. Tuber 156
Cypripedies. Cypripedium pubescens, Willdenow, etc. Rhizome and roots 122
Scitamineæ, Maranteæ. Maranta arundinacea, Linné, Starch 419
Cannes. Canna edulis, Ker, etc. Starch 419
Zingibereæ. Curcuma longa, Linné. Rhizome 112
Curcuma leucorrhiza, Roxburgh, etc. Starch 419
Curcuma Zedoaria,Roscoe. Rhizome 110
Amomam Cardamomum, Linné, etc. Fruit 350
Amomum Melegueta, Roscoe, etc. Seed 397
Elettaria Cardamomum, Maton. Fruit 349
Elettaria major, Smith. Fruit 350
Zingiber officinale, Roscoe. Rhizome 108
Alpinia officinarum, Hance. Rhizome 111
Hremodoraceæ, Conostyleæ. Aletris farinosa, Linné. Rhizome 121
Irideæ, Moreæ. Iris florentina, Linné. Rhizome 114
Iris versicolor, Linné, etc. Rhizome and roots. 121
Sisyrinchieæ. Crocus sativus, Linné. Stigma 408
Dioscoreacer. Dioscorea villosa, Linné. Rhizome 125
Liliaceæ, Smilaceæ. Smilax medica, Schlechtendal, etc. Root 50
Smilax ornata, Hooker. Root. 51
Smilax China, Linné, etc. Rhizome 117
Polygonateæ. Polygonatum biflorum, Elliott, etc. Rhizome 124
Convallarieæ. Convallaria majalis, Linné. Rhizome and roots 124
Aloeiner. Aloe socotrina, Lamarck, etc. Inspissated juice 430
Lomandrea. Xanthorrbœa hastilis, R. Brown, etc. Resin 466
Alliew. Allium sativum, Linné, etc. Bulb 158
Scilleæ. Urginea Scilla, Steinheil. Bulb 157
Colchicer. Colchicum autumnale, Linné. Tuber 155
Seed 896
page
Liliaceæ, Narthecieæ. Chamælirium luteum, Gray. Rhizome 120
Medeoleæ. Trillium erectum, Linné, etc. Rhizome 120
Veratreæ. Veratrum album, Linné. Rhizome and roots 117
Veratrum viride, Aiton. Rhizome and roots 118
Schœnocaulon officinale, A, Gr. Seed 394
Palmæ, Areceæ. Areca Catechu, Linné. Seed 398
Lepidocaryæ. Calamus Draco, Willdenow. Resin 464
Metroxylon Sagu, Rottboell, etc. Starch 419
Cocaineæ. Elæis guineensis, Jacquin. Fixed oil 507
Cocos nucifera, Linné. Fixed oil 507
Aroideæ, Arineæ. Arisæma triphyllum, Torrey. Tuber 156
Arum maculatum, Linné, etc. Rhizome 156
Orontieæ. Symplocarpus fætidus, Salisbury. Rhizome. 119
Acorus Calamus, Linné. Rhizome 118
Сурегасеæ, Caricieæ. Carex arenaria, Linné. Rhizome 117
Graminer, Maydeæ. Zea Mays, Linné. Stigma 410
Starch 419
Fixed oil. 405
Oryzer. Oryza sativa, Linné. Starch 419
Andropogoneæ. Saccharum officinarum, Linné. Sugar 439
Andropogon muricatus, Retzius. Root 54
Andropogon Schœenanthus, Linné. Volatile oil 485
Avener. Avena sativa, Linné. Meal 421
Hordeæ. Triticum vulgare, Villars. Starch 419
Triticum repens, Linné. Rhizome 115
Hordeum distichum, Linné. Fruit, malt 252
Fruit decorticated 420
2. SPOROPHYTA.-A. Vasculares.
Lycopodiaceæ. Lycopodium clavatum, Linné, etc. Sporules 415
Filices, Polypodiaceæ. Aspidium Filix mas, Swartz, etc.
Rhizome. 106
Adiantum pedatum, Linné 265
Cyatheaceæ. Cibotium Baromez, Kunze, etc. Hairs 411
B. Cellulares.
Algæ, Florideæ. Chondrus crispus, Lyngbye. Plant 261PAGE
Gigartina mamillosa, Agardh. Plant 262
Eucheuma spinosum, Agardh, etc. Isinglass 34
Fucoideæ. Fucus vesiculosus, Linné, etc. Plant 262
Laminaria Cloustoni, Edmonston. Stipe 406
Lichenes, Ascomycetes. Cetraria islandica, Acharius. Plant 264
Fungi, Hymenomycetes. Polyporus officinalis, Fries. Plant. 402
Polyporus fomentarius, Fries. Plant 403
Acidiomycetes. Ustilago Maydis, Léveillé. Plant 403
Ascomycetes. Claviceps purpurea, Tulasne. Plant 404
Saccharomycetes. Torula cerevisiæ, Turpin. Plant(yeast) . . . 416

(297.

\qquad

405 x^{2}

-

 2 $-1+2$
 $3 \mathrm{x}+\frac{1}{2}$
phanting315

ALPHABETICAL INDEX.

ABIES balsamea, 473
canadensis, 476
excelsa, 476
Menziesii, 474
pectinata, 474
Abri radix, 90 semen, 377
Abrus precatorius, 90, 377
Absinthium, 281
Abuta amara, 96
rufescens, 96
Acacia Catechu, 434, 446
fistula, 446
Senegal, 445
stenocarpa, 446
Suma, 434
Verek, 445
Acaroid resin, 466
Achillea Millefolium, 280
Acipenser Güldenstadtii, 34
Huso, 84
ruthenus, 34
stellatus, 34
Aconite leaves, 252
root, 152
Aconiti folia, 252
radix, 152
Aconitum Anthora, 154
Cammarum, 153, 253
ferox, 154
Fischeri, 154
heterophyllum, 154
luridum, 154
japonicum, 154
Lycoctonum, 154
Napellus, 152, 252
Stoerkeanum, 153, 253
uncinatum, 154
Acorus Galamus, 118
Ac ra alba, 142
Adeps, 509

Adeps, lanæ, 508
Adiantum Capillus Veneris, 265
pedatum, 265
Agle Marmelos, 340
African ammoniac, 452
ginger, 109
marigold, 319
saffron, 408
Agaricus albus, 402
Agathis australis, 461
Dammara, 461
Agathotes Chirayta, 300
Agrimonia Eupatoria, 272
Agrimony, 272
A jowan, 357
Albumen ovi, 32
Alcea rosea, 313
Aletris farinosa, 121
Aleurites laccifera, 462
Alexandria senna, 225, 227
Algarobia glandulosa, 446
Alhagi camelorum, 442
Alkanet, 80
Alkanna tinctoria, 80
Allium Porrum, 158
sativum, 158
Allspice, 384
Almond, 369
oil, 496
Aloe barbadense, 481
capensis, 431
ferox, 430
Perryi, 431
socotrina, 430
spicata, 481
vulgaris, 430
Alpinia Cardamomum, 349
Galanga, 112
officinarum, 111
Alsophila lurida, 411
Althea officinalis, 79

Althæ rosea, 313
Alum root, 81
Amber, 462
Ambergris, 89
Ambra grisea, 39
American angelica, 71
cannabis, 801
castor, 38
columbo, 60
gentian root, 59
ipecac, 68, 148
isinglass, 34
senna, 228
spikenard, 144
valerian, 122
veratrum, 118
Ammoniacum, 451
Amomum aromaticum, 850
Cardamomum, 349, 350
globosum, 850
Granum paradisi, 397
maximum, 350
Melegueta, 397
Amygdala, 369
Amygdalus amara, 369, 487
communis, 369, 487, 496
dulcis, 369
Amylum, 417
Amyris elemifera, 477
Anacardium occidentale, 336
orientale, 396
Anacyclus officinarum, 68
Pyrethrum, 62
Anamirta Cocculus, 385
paniculata, 335
Anehusa tinctoria, 80
Andira Araroba, 418
Andropogon muricatus, 54
Schcenanthus, 472
Anemone acutiloba, 252
Hepatica, 252
patens, 265
pratensis, 265
Pulsatilla, 265
Anethum graveolens, 360, 488
Angelica, 70
atropurpurea, 71
officinalis, 70
triquinata, 71
Angusturs, 209
Anise, 355
Anisum, 355
Anogeiosus latifolia, 446

Anthemis arvensis, 315
Cotula, 279, 315
nobilis, 315,488
Anthophylli, 384
Aphis chinensis, 401
A pis mellifica, 444, 511
Apium graveolens, 356
Petroselinum, 73,356
Aplopappus discoideus, 244
Apocynum androsemifolium, 98
cannabinum, 67, 94
Aralia nudicaulis, 181
quinquefolia, 75
racemosa, 144
spinosa, 200
Araroba, 418
Arbor vitæ, 304
A rchangelica atropurpurea, 71
officinalis, 70
Arctostaphylos glauca, 223
Uva ursi, 222
Aretium Lappa, 65, 852
Areca Catechu, 398
nut, 398
Argel leaves, 226
Arisæma triphyllum, 156
Aristolochia reticulata, 184
Serpentaria, 184
Armoracia rusticana, 76
Arnica flowers, 317
spec., 818
montana, 138, 317
root, 183
Arnicæ radix, 183
Artanthe adunca, 239
elongata, 299
Mollicoma, 218
Artemisia Absinthium, 281
maritima, 308
vulgaris, 281
Arum Dracunculus, 156
italicum, 156
maculatum, 156
triphyllum, 156
Asafæetida, 449
Asagrea officinalis, 394
Asarabacca, 146
Asarum canadense, 145
europæum, 146
Asclepias Cornuti, 130
incarnata, 188
syriaca, 130
tuberosa, 66

Aspidium athamanticum, 107
Filix mas, 106
marginale, 106
rigidum, 107
Aspidosperma Quebracho, 198
Assam musk, 37
Astacus fluviatilis, 43
Astragalus gummifer, 447
Atropa Belladonna, 77, 232
Attar of rose, 484
Aubletia trifolia, 218
Aurantia immatura, 340
Aurantii cortex, 361
flores, 309
folia, 221
fructus, 839
Avena sativa, 421
Avenæ farina, 421
Avens, 187
Axungia porei, 509
Azedarach, 198

BAEL, 340
D Balata, 437
Balm, 202
Balmony, 287
Balsam of fir, 473
of Mecca, 454
of Peru, 468
of Tolu, 469
Balsamodendron africanum, 454
Ehrenbergianum, 454
Mukul, 454
Myrrha, 453
Balsamum peruvianum, 468
tolutanum, 469
Baptisia tinctoria, 98
Barberry, 98
bark, 185
Barley, 352
starch, 420
sugar, 440
Barosma betulina, 249
crenulata, 249
serratifolia, 249
Barus camphor, 482
Bastard ipecac, 144
Bayberry bark, 200
Baycuru, 99
Bay leaves, 218, 220
Bdellium, 454
Bean of St. Ignatius, 382

Bebeeru, 182
Beech drop, 286
Beef tallow, 510
Beeswax, 511
Bela, 340
Belladonna leaves, 232
root, 77
Belladonnæ folia, 232
radix, 77
Belugo, 34
Bengal Cardamom, 350
kino, 436
quince, 340
turmeric, 113
Benne leaves, 229
seed, 370
seed oil, 504
Benzoinum, 465
Berberis aquifolium, 148
nervosa, 148
repens, 148
vulgaris, 98, 185, 192
Beta vulgaris, 440
Bethroot, 120
Betula alba, 479
lenta, 489
Bikh or bish root, 154
Birch tar, 479
Bird pepper, 341
Birthworth, 120
Bistort, 128
Bistorta, 128
Bitter fennel, 858
orange, 389,361
polygala, 270
Bittersweet, 161
Black alder, 184
haw, 188
hellebore, 141
ipecac, 92
jack, 189
mustard, 378
oak bark, 189
pepper, 332
snakeroot, 142
Blackberries, 338
Blackberry bark, 190
Bladder-wrack, 262
Blatta americana, 31
germanica, 31
gigantea, 31
orientalis, 31
Blessed thistle, 288

Blood, 40
Bloodroot, 125
Blue cohosh, 139
flag, 121
Bog bean, 254
Boldo, 216
Boldoa fragrans, 216
Boldus, 216
Boletus fomentarius, 403
laricis, 402
Bombay mastic, 459
senna, 228
Bone, 44
Boneset, 275
Borneo camphor, 482
Bos Taurus, $38,40,41,448,508,510$
Boston iris, 122
Boswellia Carterii, 452
Botany Bay kino, 436
resin, 466
Bourbon vanilla, 351
Brassica alba, 377, 498
Napus, 379
nigra, $378,486,498$
Rapa, 379
Brayera anthelmintica, 310
Brazilian angustura, 209
rhatany, 100
vanilla, 351
Broom, 271
Bryonia alba, dioica, 77
Bryony, 77
Bucharian musk, 37
Buchu, 249
Buckbean, 254
Buckthorn, 329
Bugle, 290
Burdock, 65
fruit, 852
Burgundy piteh, 476
Burnt sponge, 33
Bursa pastoris, 268
Bursera Icicariba, 477
Butea frondosa, 436
Butter, 41, 508
of cacao, 506
Buttercups, 267
Buttermilk, 41
Butternut, 197
Butyrum, 508
cacao, 506
nucistm, 505
Buxus sempervirens, 192

CABALLINE aloes, 432
Cabardine musk, 37
Сасао, 878
Cactus grandiflorus, 275
Caffea, 891
Calabar bean, 374
Calamus, 118
Draco, 464
Caleuli eancrorum, 43
Calendula arvensis, 283
officinalis, 283, 318
California oak balls, 401
Calisaya bark, 176
Callitris quadrivalvis, 460
Calumba, 81
Cambogia, 454
Camphora officinarum, 481
Camellia Thes, 242
Canada erigeron, 277
pitch, 476
turpentine, 473
Canadian castor, 38
hemp, 67
Canarium commune, 477 mauritianum, 477
Cancer Astacus, 43
Cane sugar, 439
Canella alba, 207
Canna starch, 418, 419
Cannabis americana, 301
indica, 301
sativa, $301,353,500$
Oantharides, 27
Cantharis vesicatoria, 27
vittata, 29
Caoutehoue, 438
Capsella Bursa-pastoris, 268
Capsicum annuum, 342
cerasiforme, 342
fastigiatum, 341
Caramel, 440
Caraway, 859
Cardamom, 349
Cardamomum, 349
Carduus benedictus, 283
Carex arenaria, 117
Carolina pink, 186
Carota, 361
Carrageen, 261
Carrot fruit, 361
Carthagena bark, 179
Carthamus tinctorius, 319
Carum Ajowan, 357,482

Carum Carui, 359, 488
Petroselinum, 73, 356
Carya amara, 500
Caryophylli fructus, 384
Caryophyllus aromaticus, 307, 324
Cascara sagrada, 196
Cascarilla, 210
Cashew nut, 336
Cassava starch, 420
Cassia acutifolia, 225
bacillaris, 344
brasiliana, 345
elongata, 226
Fistula, 343
grandis, 845
holosericea, 228
lignea, 206
marilandica, 228
moschata, 844
obovata, 227
pubescens, 228
(Jastanea dentata, 244
sativa, vesca, 244
Castilloa, 488
Castor Fiber, 37
oil, 503
seed, 889
Castoreum, 37
Cataria, 295
Catechu, 434
pallidum, 435
Cathartocarpus Fistula, 343
Catnep, 295
Caulophyllum thalictroides, 139
Cayenne pepper, 841
Ceanothus americanus, 99
Celandine, 268
Celery fruit, 356
Centaury, 299
Cephaëlis acuminata, 92
Ipeeacuanha, 91
Cera, 511
alba, 511
flava, 511
Cerasus Laurocerasus, 248
serotina, 185
Ceratonia Siliqua, 345
Ceratopetalum apetalum, 436
gummiferum, 436
(lereus grandiflorus, 275
Cervispina cathartica, 329
Cetaceum, 510
Cetraria islandica, 264

Cevadilla, 394
Ceylon cardamom, 350
cinnamon, 205
Chamæcyparis sphæroidea, 304
Chamælirium luteum, 120
Chamomile, 815
Ohaulmoogra odorata, 388, 507
Chaulmugra oil, 507
seed, 388
Chavica officinarum, 326
Roxburghii, 326
Chekan, Cheken, 220
Chelidonium majus, 268
Chelone glabra, 287
Chenopodium ambrosioides, var.
anthelminticum, 346, 490
Cherry laurel, 248
Chestnut leaves, 244
Chewstick, 162
Chian turpentine, 476
Ohicle, 487
Chicory, 62
Chimaphila maculata, 247
umbellata, 246
Chins root, 117
Ohinese aconite, 154
blistering flies, 29
cinnamon, 205
ginger, 110
isinglass, 34
musk, 37
nutgalls, 401
rhubarb, 85
turmeric, 118
Chirata, 800
Chiretta, 300
Chittem bark, 196
Chondodendron tomentosum, 95
Chondrin, 35
Chondrus crispus, 261 mamillosus, 261
Chrysanthemum carneum, 316
cinerariafolium, 316
Parthenium, 280
roseum, 816
Chrysophyllum glyciphlœum, 486
Cibotium Baromez, 411
Djambianum, 411
glaucum, Schiedei, 411
Cichorium Intybus, 62
Cimicifuga racemosa, 142
Cinchona, 171
Calisaya, 176

Cinchona, lancifolia, 178, 179
officinalis, 178
Pitayensis, 179
pubescens, 179
scrobiculata, 178
spec., 175, 179
succirubra, 178
Cinnamodendron corticosum, 208
Cinnamomum Camphora, 481
Cassia, 205, 490
zeylanicum, 205, 490
Cinnamon, 205
cassia, 205
Cinquefoil, 273
Citrullus Colocynthis, 342
vulgaris, 872
Citrus Aurantium, 221, 809, 361, 486
Bergamia, 486
Limonum, 341, 363, 486
vulgaris, 221, 309, 339, 361, 486
Civet, 40
Civetta, 40
Claviceps purpurea, 404
Cleavers, 299
Cloves, 307
Cnicus benedictus, 283
Coca, 229
Coccionella, 29
Coccoloba uvifera, 436
Coceulus indicus, 385
Coccus cacti, 29
Lacca, 463
Cochinchina turmeric, 118
Cochineal, 29
Cochlearia Armoracia, 76
Cockroach, 81
Cocoanut oil, 507
Cocos nucifera, 507
Cod-liver oil, 501
Coffea arabica, 391
liberica, 391
Coffee, 391
Cola acuminata, 874
Colehici radix, 155
semen, 396
Colchicum autumnale, 155, 396
root, 155
seed, 396
Cole seed, 379
Colicroot, 121, 125
Colla piscium, 94

Collinsonia canadensis, 140
Colocynth, 342
Colocynthis, 842
Colombo, 81
Colophonia mauritiana, 465
Colophonium, 460
Coltsfoot, 246
Colza seed, 879
Comfrey, 60
Commiphora africana, 454
Muku1, 454
Myrrha, 453
Opobalsamum, 454
Common frankincense, 475
Comptonia asplenifolia, 251
Concher, 48
Condurango, 194
Conii folia, 256
fructus, 354
Conium fruit, 354
leaves, 256
maculatum, 256, 354
Convallaria majalis, 124
Convolvulus Mechoacanna, 152
Scammonia, 456
Copaiba, 472
Copaifera Langsdorffi, 472, 487
officinalis, 472
Copaiva, 472
Copal, 461
Copalchi bark, 211
Coptis trifolia, 267
Coral, 42
Corallium rubrum, 42
Coriander, 358
Coriandrum sativum, 353, 488
Coriaria myrtifolia, 226
Corinthian raisins, 339
Corn starch, 419
Cornsilk, 410
Cornsmut, 403
Cornus circinata, 182
florida, 182
sericea, 183
Cortex radicis berberidis, 185
Corydalis canadensis, 154
formosa, 155
Coto bark, 202
Cotton, 410
Cottonroot bark, 202
Cottonseed oil, 503
Cotuła, 279
Couchgrass, 115

Coumarouna odorata, 372
Cowage, 411
Crabs' eye, 48
stones, 48
Cranesbill, 126
Cratæva Marmelos, 840
Cream, 41
Cremor lactis, 41
Crocus sativus, 408
Croton Eluteria, 210
Malambo, 211
oil, 502
Pseudochina, 211
seed, 390
Tiglium, 890,502
Crowfoot, 267
Crown bark, 178
Cubeb, 331
Gubeba canina, 982
crassipes, 832
Lowong, 332
officinalis, 381, 490
Walliehii, 882
Cucumber seed, 872
Cucumis Citrullus, 872
Colocynthis, 842
Melo, 371
sativus, 372
Cucurbita Citrullus, 372 Pepo, 871
Culver's physic, 146
Cumin fruit, 359
Cuminum Cyminum, 359
Cunila Mariana, 290
Ouprea bark, 181
Cupressus thyoides, 304
Curacao aloes, 431
Curara, 482
Curare, 482
Cureas purgans, 390
Curcuma longa, 112
species, 419
starch, 418
Zedoaria, 110
Currants, 389
Cusco bark, 179
Cutch, 484
Cuttlefish bone, 42
Cydonia vulgaris, 368
Cydonium, 368
Cynanchum Vincetoxicum, 57
Cynips galle tinetoriæ, 400
Cynosbata, 329

Oypripedium parviflorum, 122 pubescens, 122
Oytisus scoparius, 271
D
EMONOROPS Draco, 464
Dagget, 479
Damiana, 248
Dammara australis, 461
orientalis, 461
Dandelion, 61
Daphne Gnidium, 201
Laureola, 201
Mezereum, 201
Datura Stramonium, 284, 392
Tatula, 235
Daucus Carota, 361
Deadly nightshade, 232
Delphinium Consolida, 382
Staphisagria, 888
Dextrose, 441
Dicentra canadensis, 154 eximia, 155
Dichopsis Gutta, 487
Digitalis purpurea, 237
Dill, 360
Dioscorea villosa, 125
Diospyros virginiana, 389
Dipterocarpus alatus, 478 turbinatus, 473
Dipteryx odorata, 372 oppositifolia, 872
Dittany, 290
Dog's bane, 93
Dogwood, 182
Dolichos pruriens, 411
Dorema Ammoniacum, 451
Draconis resina, 464
Dracontium foetidum, 119
Dragon's blood, 464
Dragon root, 156
Drimys Winteri, 202, 208
Drosera intermedia, 274 rotundifolia, 274
Dryobalanops Camphora, 482
Duboisia myoporoides, 283
Dulcamara, 161
COBALLIUM Elaterium, 458
Egg, 32
Egg-shell, 32, 43
Elæis guineensis, 507
Elastica, 438
Elaterium, 458

Elder, 819
Elecampane, 64
Elemi, 477
Elettaria Cardamomum, 349
major, 350
Empleurum serrulatum, 250
Engelhardtia, 461
Epicauta vittata, 29
Epigaa repens, 224
Epilobium angustifolium, 273
Epiphegus virginiana, 286
Ergot, ergota, 404
Erigeron annuus, 277
canadensis, 277,488
philadelphicus, 277
strigosus, 277
Eriodietyon ealifornieum, 250
Erythrea Centaurium, 299
Erythrophloum guineense, 200
Erythroxylon Coca, 229
Esen beckia febrifuga, 209
Eucalyptus amygdalina, 436, 487
dumosa, 442
globulus, 219, 487
mannifera, 442
viminalis, 442
Eucheuma spinosum, 34
Eugenia caryophyllata, 307, 384, 487

Chekan, 220
Pimenta, 834, 487
Euonymus atropurpureus, 208
Eupatorium perfoliatum, 275
Etuphorbia corollata, 68
Ipecacuanha, 68
resinifera, 455
Euphorbium, 455
European centaury, 299
dragon root, 156
elder, 320
elm bark, 204
rhubarb, 86
turpentine, 475
Euryangium Sumbul, 78
Euspongia equina, 33
mollissima, 88
Zimocea, 38
Evening primrose, 273
Exogonium Purga, 150
Extractum glyeyrrhize, 433
hematoxyli, 487
sanguinis, 40
fALSE angustura, 210
cubebs, 332
damians, 244
jalaps, 151
nutmegs, 388
pareira brava, 96
sarsaparilla, 181
Solomon's seal, 124
Winter's bark, 208
Fel bovinum, 41
tauri, 41
Fennel, 357
Fenugreek, 376
Fermentum, 416
Ferronia elephantum, 446
Ferula Asafcetida, 449
fetida, 449
galbaniflua, 450
Narthex, 449
rubricaulis, 451
Sumbul, 78
tingitana, 452
Feverfow, 280
Fever root, 144
Ficus, 438
Carica, 827
indica, 462
Fig, 327
Figwort, 286
Filix mas, 106
Fishberries, 335
Five-leaved water-hemlock, 358
Flaxseed, 384
oil, 499
Fleabane, 277
Flemingia rhodocarpa, 418
Flesh-colored asclepias, 138
Florentine orris, 114
Fceniculum capillaceum, 357
vulgare, 857,488
Fœnum græeum, 376
Foxglove, 287
Fragaria vesca, 134
Frangula, 194
Frankincense, 452
Frasera Walteri, 60
Fraxinus alba, 192
americana, 192
Ornus, 441
French berries, 330
lactucarium, 430
marigold, 319
saffron, 408

Frostwort, 269
Fucus nodosus, 268
vesiculosus, 262
Fungus chirurgorum, 408
laricis, 402
Fusiform jalap, 151
ADDS Merluccius, 84
G Morrhua, 501
Galanga, 111
Galangal, 111
Galbanum, 450
Galipea Cusparia, 209
officinalis, 209
Galium A parine, 299
triflorum, 299
Galla, 400
Gallus Bankiva, 32
Gambir, 485
Gamboge, 454
Garcinia Hanburii, 454
Mangostana, 340
Morella, 454
Garden thyme, 216
Garlic, 158
Gaultheria procumbens, 248, 489
Gelatin, 35
Gelatina, 85
Gelsemium sempervirens, 94
Gentian, 58
Gentiana Andrewsii, 59
lutea, 58
pannonica, 58
puberula, 59
punctata, 58
purpurea, 58
Saponaria, 59
Geranium maculatum, 126
German chamomile, 314
fennel, 358
leech, 31
pellitory, 68
Geum rivale, 187
urbanum, 187
Gillenia stipulacea, 143
trifoliata, 143
Ginger, 108
Ginseng, 75
Glechoma hederacea, 296
Glucose, 431
Glue, 35
Glycyrrhiza glabra, 89, 433
glandulifera, 90

Gnaphalium margaritaceum, 282
polycephalum, 282
Goa powder, 418
Golden rod, 278
seal, 188
Gold thread, 267
Gonolobus Condurango, 194
Gossypii radicis cortex, 202
Gossypium herbaceum, 202, 410, 508
Gournia domingensis, 162
Gracilaria lichenoides, 34
Grain of paradise, 397
Granati fructus cortex, 363
radicis cortex, 191
Granilla, 30
Granum paradisi, 897
Grape sugar, 441
Grasstree resin, 466
Gravel plant, 224
Gray ipecac, 92
Green ginger, 110
hellebore, 141
Greenheart bark, 182
Grindelia robusta, 278
squarrosa, 279
Ground-ivy, 296
Guaiaci lignum, 164
resina, 463
Guaiacum officinale, 164, 463
wood, 164
Guarana, 424
Guayaquil rhatany, 100
Guibourtia, 462
Gum arabic, 445
Gunja, 301
Gurjun balsam, 473
Gutta percha, 437
Gutti, 454
Gynocardia odorata, 388, 507
Gypsophila Arrostii, 57
paniculata, 57

HEMATOXYLON campechianum, 165
Hagenia abyssinica, 810
Hake, 84
Hamamelis virginiana, 187, 241
Haplopappus discoideus, 244
Hardhack, 272
Heart's ease, 274
Hedeoma pulegioides, 298, 489
Helenium autumnale, 279

Helianthemum canadense, 269
corymbosum, 269
Helleborus niger, 141
viridis, 141
Helonias dioica, 120
officinalis, 394
Homidesmus indicus, 00
Hemlock fruit, 854
leaves, 256
pitch, 476
Hempseed, 858
oil, 500
Henbane, 286
Hepatica, 252
Heuchera americana, 81
Hevea, 488
Hips, 329
Hirudo, 81
Holly, 246
Hollyhoek, 318
Honduras sarsaparilla, 52
Honey, 444
Hopea, 461
Hops, 827
Hordei fructus, 352
Hordeum distichum, 352, 420
Horehound, 296
Horse aloes, 421
Horsemint, 294
Horseradish, 76
Huamalies bark, 179
Huanuco bark, 179
Humulus Lupulus, 327, 414
Hungarian leech, 31
Hydrangea arborescens, 88
Hydrastis canadensis, 188
Hymenæa, 462
Hyoscyami folia, 236 semen, 393
Hyoscyamus leaves, 236
niger, 236, 398
seed, 393
Hypericum perforatum, 269
Hyraceum, 39
Hyrax capensis, 39
Hyssop, 290
Hyssopus officinalis, 290
TOELAND moss, 264
Ichthyocolla, 34
Icica Icicariba, 477
Ignatia, 382
Ignatiana philippinica, 382

Ilex opaca, 246
paraguayensis, 248
verticillata, 184
Illicium religiosum, 347
verum, 347, 486
Imperatoria Ostruthium, 74
Indian aconite, 154
hemp, 301
licorice, 90
sarsaparilla, 90
tobacco, 284
turnip, 156
India rubber, 438
senna, 226
Insect flowers, 816
Inula Helenium, 64
Ionidium Ipecacuanha, 98
Ipecacuanha, 91
spurge, 68
Ipomœa orizabensis, 151, 456
pandurata, 75
Purga, 150
simulans, 151
Iris florentina, 114
germanica, 114
pallida, 114
verns, 122
versicolor, 121
virginica, 122
Irish moss, 261
Isinglass, 84
Isonandra Gutta, 437

J
ABORANDI, 217
Jaen bark, 179
Jalap, 150
stalks, 151
Jalapa, 150
Jamaica dogwood, 197
ginger, 109
sarsaparilla, 51
Japanese aconite, 154
isinglass, 34
nutgalls, 401
Jateorrhiza Calumba, 81
Jatropha, 438
Curcas, 390
duleis, 420
Manihot, 420
Jequiriti, 377
Juglans cinerea, 197, 500
regia, 500
Juniper, 325

Juniper tar, 466
Juniperus communis, 325, 491
Oxycedrus, 479
Sabina, 308, 491
virginiana, 302
KALMAA latifolia, 224
Kamala, 412
Kauri resin, 461
Kava-kava, 87
Kicksia africana, 385
Kino, 435
Klipdas, 39
Kombé seed, 385
Koosso, 310
Kordofan gum, 446
Krameria argentea, 100
lanceolata, 100
secundiflora, 100
tomentosa, 99
triandra, 99
L
ABRADOR tea, 221
Lac, 40, 463
ebutyratum, 41 vaccinum, 40
Lacea, 462
Lactin, Lactose, 443
Lactuca canadensis, 430
sativa, 429
Scariola,429
virosa, 429
Lactucarium, 429
Laminaria Olaustoni, 406
digitata, 406
Landolphia, 438
Lanolinum, 508
Lapides canerorum, 43
Lapilli cancrorum, 48
Lappa officinalis, 65, 352
Lappre fructus, 853
Lard, 509
oil, 499
Large flowering spurge, 68
Larinus mellificus, 442
Larix europsea, 442, 474
Larkspur seed, 382
Laserpitium latifolium, 72
Laurel, 218
Laurel oil, 505
Laurocerasus, 248
Laurus Camphora, 481 nobilis, 218, 505

Lavandula vera, 320, 489
Lavender, 320
Ledum latifolium, 221
palustre, 221
Leeeh, 31
Lemon, 341
peel, 363
Leonurus Cardiaca, 297
Leontice thalietroides, 139
Leontodon Taraxacum, 61
Leptandra virginica, 146
Lerp, 442
Levant soapwort, 57
wormseed, 808
Levisticum officinale, 71
Licorice, 483
root, 89
Life-everlasting, 282
Ligusticum Levisticum, 71
Lily of the valley, 124
Lima bark, 179
Limon, 341
Limonis cortex, 363
Linden flowers, 310
Linseed oil, 499
Linum usitatissimum, 384, 499
Lipanin, 498, 502
Liquidambar orientalis, 471
Styraciflua, 470
Liquorice, 433
root, 88
Liriodendron Tulipifera, 188
Lisbon sarsaparilla, 53
Liverwort, 252
Lobelia inflata, 284
Log wood, 165
Long pepper, 366
Lovage, 71
Loxa bark, 178
Loxopterygium Lorentzii, 198
Lucuma glyciphlæa, 486
Lupulin, 414
Lupulinum, 414
Lycopodium clavatum, 415
Lycopus europreus, 290
virginicus, 290
Lyperia crocea, 408
Lytta vesieatoria, 27
MACASSAR sandalwood, 166
Mace, 407
Macis, 407
Macropiper methysticum, 87

Madder, 80
Madras cardamom, 350
turmeric, 118
Magnolia acuminata, 183
glauca, 183
tripetala, 183
Maiden hair, 265
Maize oil, 505
Majorana, 292
Malabar kino, 486
cardamom, 350
sandalwood, 166
Malambo bark, 211
Male fern, 106
jalap, 151
nutmeg, 388
Mallotus philippinensis, 412
Mallow, 814
Maltum, 852
Malva sylvestris, 314
Mangosteen, 840
Manihot Aipi, 420
utilissima, 420
Manna, 441
Manroot, 75
Manzanita, 228
Maracaibo copaiba, 472
Maranham copaiba, 472
Maranta arundinacea, 419 starch, 418
Marigold, 283, 318
Marrubium vulgare, 296
Marshmallow, 79
Marsh rosemary, 98
tea, 221
Maruta Cotula, 279, 315
Marythistle, 852
Masterwort, 74
Mastic, 459
Mastiche, 459
Maté, 243
Matico, 289
Matricaria Chamomilla, 814
Parthenium, 280
Maw seed, 394
May apple, 129
weed, 279
Maydis stigmata, 410
Mecca senna, 228
Mechoacanna roet, 152
Meconium, 425
Mel, 444
Melaleuca Cajuputi, 484

Melaleuca Leucadendron, 484
minor, 484
Melegueta, 397
Melia Azadirachta, 446
Azedarach, 198
Melilotus albus, 270
altissimus, 270
officinalis, 270
Melissa officinalis, 292
Melo, 370
Melon seed, 370
Menispermum canadense, 147
Mentha canadensis, 483
piperita, 287, 488, 489
viridis, 288, 489
Menthol, 488
Menyanthes trifoliata, 254
Methysticum, 87
Metroxylon Rumphii, 419
Sagus, 419
Mezereon, 201
Mezereum, 201
Mezquite gum, 446
Milfoil, 280
Milk, 40
sugar, 41, 448
weed, 180
Mimusops globosa, 487
Mitchella repens, 298
Molasses, 448
Momordica Elaterium, 458
Monarda punetata, 294, 482, 489
Monesia, 436
Monnieria trifolis, 218
Morus alba, nigra, rubra, 326
Moschus moschiferus, 35
Mother-clove, 834
Motherwort, 297
Mountain balm, 250
laurel, 224
Mucuna cy findrosperma, 375
pruriens, 411
urens, 412
Mugwort, 282
Mulberry, 326
Mullein, 820
Musk, 85
Mustard oil, 498
Mylabris bifasciata, 29
cichorii, 29
phalerata, 29
Myreia aeris, 220, 487
Myrica asplenifolia, 251

Myrica cerifera, 200
Myristica aromatica, 387
fatus, 388
fragrans, 387, 407, 490, 505
moschata, 387
officinalis, 387
Myrobalan, 387
Myrobalanus, 337
Myrospermum Pereire, 468
Toluifera, 469
Myroxylon Pereirm, 468
Toluifera, 469
Myrrha, 453

N
ARTHEX Asafcetida, 449
Nauclea Gambir, 485
Neat's-foot oil, 498
Nectandra Rodiæi, 182
Nepeta Cataria, 295
Glechoma, 296
Nerium Oleander, 221
New Jersey tea, 99
Nicotiana Tabacum, 283
Nigella damascena, 383
sativa, 383
Night-blooming cereus, 275
Northern prickly ash, 199
Nuphar advena, 129
Nutgall, 400
Nutmeg, 887
butter, 505
Nut oil, 500
Nux vomica, 379
Nymphæa odorata, 128

0^{A}
ATMEAL, 421
Oculi cancrorum, 48
Oculina virginea, 42
Enanthe Phellandrium, 358
Enothera biennis, 278
(Esypum, 508
Oil of amber, 485
of bays, 505
of Cade, 479
of cajeput, 484
of camphor 483
of ginger grass, 485
of nutmeg, expressed, 505
of rose, 484
of theobroma, 507
Olea europea, 497
Oleander, 221
Oleum Adipis, 499

Oleum Amygdalæ amaræ, 487
expressum, 496
A.nethi, 488

Anisi, 488
stellati, 486
Anthemidis, 488
Aurantii amari, 486
dulcis, 486
florum, 486
Bergamii, 486
Bubulum, 498
Cacao, 507
Cadinum, 479
Cajuputi, 484
Camphoræ, 483
Cannabis, 500
Carui, 488
Caryophylli, 487
Chenopodii, 490
Oinnamomi, 206, 490
cassiæ, 206, 490
Cocois, 507
Copaibæ, 487
Coriandri, 488
Cubebre, 490
Erigerontis, 488
Eucalypti, 487
Fœniculi, 488
Gaultherie, 248, 489
Gossypii, 503
Gynocardiæ, 507
Hedeomæ, 489
Jecoris aselli, 501
Juglandis, 500
Juniperi, 491
Lauri, 505
Lavandula, 489
Limonis, 486
Lini, 499
Maydis, 505
Menthæ piperite, 489
viridis, 489
Monardæ, 489
Morrhuæ, 501
Myrciæ, 487
Myristice, 490 expressum, 505
Nucistze, 505
Olive, 497
Palmæ, 507
Papaveris, 500
Picis liquidæ, 491
Pimentie, 487

Oleum Ricini, 503
Ros: 484
Rosmarini, 489
Rusci, 479
Rutw, 255., 486
Sabinæ, 491
Santall, 490
Sassafras, 207, 490
Sesami, 504
Sinapis, 379, 486
expressum, 498
Succiní, 485
Terebinthine, 490
Theobromæ, 507
Thymi, 489
Tiglii, 502
Valerianæ, 488
Olibanum, 452
Olive oil, 497
Ophelia angustifolia, 299
Chirata, 299
Opium, 425
Opopanax Chironium, 452
Opuntia cochinillifera, 29
Orange berries, 340
flowers, 309
leaves, 221
peel, 361
Orehis latifolia, 156
maculata, mascula, 156
Morio, 156
Oregon grape, 148
Origanum Majorana, 292
vulgare, 291
Ornus europæa, 441
Orris, 114
Oryza sativa, 419
Os, 44
Os Sepiæ, 42
Osseter, 84
Ostrea edulis, 48
virginiana, 48
Otolithus regalis, 34
Ovis Aries, 38, 54,8, 510
Ovum, 32
Ox Gall, 41
Oyster shell, 48
DAKU-KIDANG, 411
Palaquium oblongifolium, 437
Pale catechu, 485
rose, 312
Palm oil, 507

Panax quinquefolia, 75
Panna-panna, 107
Pansy, 274
Papaver Rhcas, 813
somniferum, $345,394,425,500$
Papoose root, 189
Para copaiba, 472
rhatany, 100
sarsaparilla, 58
Paracoto bark, 202
Paraguay tea, 248
Pareira brava, 95
Parsley, 73
fruit, 356
Parthenium, 280
Passule majores, 839
minores, 339
Paullinia sorbilis, 424
Payta rhatany, 100
Peach leaves, 246
Pearl barley, 420
sago, 419
Pellitory, 82
Penghawar-Djambi, 411
Pennyroyal, 293
Pepo, 371
Peppermint, 287
Pepsinum, 38
Periplaneta orientalis, 81
Persian berries, 380
Persica vulgaris, 246, 497
Persimmon, 389
Peruvian bark, 171
rhatany, 100
Petroselinum sativum, 73,356
Peucedanum Ammoniacum, 451
galbanifluum, 459
graveolens, 360,488
Ostruthium, 74
Peumus Boldus, 216
Phasianus Gallus, 32
Phellandrium aquaticum, 358
Phlox carolina, 136
Physeter macrocephalus, 89, 510
Physostigma cylindrospermum, 375
venenosum, 374
Phytolacca decandra, 76, 329
Phytolaceæ bacca, 329
radix, 76
Picea succinifera, 462
Picrena excelsa, 168, 198
Pilocarpus pennatifolius, 217

Pimenta, 334
Pimento, 334
Pimpernel, 72
Pimpinella Anisum, 855, 488
magna, 72
Saxifraga, 72
Plnitis succinifer, 462
Pinkroot, 136
Pinus Abies, 476
australis, 460, 474
canadensis, 476
Laricio, 475
palustris, 460, 474
Pinaster, 475
sylvestris, 475

Pipe isinglass, 34
Piper album, 333
caninum, 832
citrifolium, 218
crassipes, 832
Cubeba, 381
elongatum, 239
longum, 326
methysticum, 87
mollicomum, 218
nigrum, 332, 838
nodulosum, 218
officinarum, 326
reticulatum, 218
Pipmenthol, 488
Pipsissewa, 246
Piscidia Erythrina, 197
Pistacia cabuliea, 459
Khinjuk, 459
Lentiscus, 459
Terebinthus, 476
Pitaya bark, 179
Pithecolobium dulce, 446
Pix burgundica, 476
canadensis, 476
liquida, 478
Plantago lanceolata, 298
major 298
Plantain, 298
Pleurisy root, 66
Podophyllum Emodi, 180
peltatum, 129
Poison oak, 254
Pokeberry, 329
Pokeroot, 76
Polemonium reptans, 136
Polygala alba, 56

Polygala Boykinii, 56
rubella, 270
Senega, 54
Polygonatum biflorum, 124
giganteum, 124
Polygonum Bistorta, 128
Polyporus fomentarius, 408
officinalis, 402
Pomegranate bark, 191
rind, 363
Pond lily, 129
Poppy, 345
seed, 394
oil, 500
Potato fly, 29
starch, 418
Potentilla canadensis, 278
Tormentilla, 127
Prayer beads, 877
Prickly ash, 199
fruit, 347
Prince's pine, 246
Prinos verticillatus, 184
Prosopis glandulosa, juliftora, spicigera, 446
Prune, 387
Prunum, 887
Prunus Amygdalus, 369, 487, 496
armeniaca, 497
domestica, 337
Laurocerasus, 248
Persica, 246, 497
serotina, 185
virginiana, 185
Psychotria emetica, 92
Pterocarpus erinaceus, 436
Marsupium, 435
santalinus, 164
Ptychotis Ajowan, 357, 482
Pulpa tamarindorum, 364
Pulsatilla pratensis, 265
Pulu, 411
Pumpkin seed, 371
Punica Granatum, 191, 363
Purging cassia, 343
nut, 390
Purse isinglass, 34
Pyrethri flores, 816
Pyrethrum, 62
carneum, 316
cinerariæfolium, 316
germanicum, 68
Parthenium, 280

Pyrethrum roseum, 816
Pyrus Cydonia, 368
Q
JASSIA amara, 163, 193
bark, 193
excelsa, 168, 198
Quassim cortex, 198
Queen's delight, 69
Quebracho blanco, 198
colorado, 198
Quercus alba, 188
coccinea, 189
falcata, 189
infectoria, 400
lobata, 40 !
lusitanica, 400
Quercus nigra, 189
tinctoria, 189
vallonea, 442
virens, 401
Quickens, 115
Quillaia Saponaria, 208
Quince seed, 868
Quinine flower, 299
Quitchgrass, 115
1)ADIX abri, 90
bardane 65.
berberidis, 98
caryophyllate, 187
enulx, 64
gentianæ albæ, 72
rubra, 58
graminis, 115
rubra, 117
inulæ, 64
Ivarancusæ, 54
lapathi, 88
lаррш, 65
lıquiritiæ, 89
pyrethri germanici, 68
romani, 62
sarsaparillw germanice, 117
Raisins, 838
Ranunculus acris, 267
bulbosus, 267
терепs, 267
Rape seed, 379
Raspberry, 338
Red acaroid resin, 466
cedar, 302
cinchona, 178
iресас, 92

Red poppy, 818
River snakeroot, 135
root, 99
rose, 312
saunders, 164
sedge, 117
Remijia pedunculata, 181
Purdieana, 181
Resina, 460
elastica, 488
pini, 475
Rhamnus californiea, 196
cathartica, 329
Frangula, 194
infectoria, 930
Purshiana, 196
saxatilis, 330
Rhapontic root, 88
Rhaponticum, 88
Rhatany, 99
Rheum officinale, 84
Rhaponticum, 83
spec., 86
Rheeas, 313
Rhubarb, 84
Rhus glabra, 330
semialata, 401
Toxicodendron, 254
Rice starch, 417
Richardsonia scabra, 93
Ricinis communis, 389, 509
Rio Janeiro copaiba, 472
Negro sarsaparilla, 53
Rock candy, 429
Roman fernel, 358
pellitory, 62
Rosa canina, 329
centifolia, 312
damascena, 312, 484
gallica, 812
Rosemary, 215
Roshé oil, 485
Rosin, 460
Rosmarinus officinalis, 215, 489
Rottlera tinctoria, 412
Rubia tinctorum, 80
Rubus canadensis, 190
Idæus, 388
occidentalis, 338
strigosuś, 338
trivialis, 190
villosus, 190, 838
Rue, 255

Rumex crispus, 88
Russian castor, 38
isinglass, 34
licorice root, 90
musk, 37
rhubarb, 84
Ruta graveolens, 255, 486
CABADILLA, 394
Sabbatia angularis, 299
Elliottii, 299
paniculata, 299
Sabina, 303
Sacchari fæx, 448
Saccharomyces cerevisiæ, 416
Saccharose, 489
Saccharum amylaceum, 441
crystallisatum, 440
hordeatum, 440
lactis, 448
officinarum, 489
uveum, 441
Safllower, 319, 409
Saffron, 408
Sagapenum, 451
Sage, 240
Sago, 419
Sagus Rumphii, 419
Saigon cinnamon, 206
Saint John's bread, 345
wort, 269
Salep, 156
, alix alba, 186
Salvia officinalis, 240
Sambucus canadensis, 819
nigra, 320
Sandal wood, 166
Sundaraca, 460
Sanguinaria canadensis, 125
Sanguis, 40
draconis, 464
Sanguisuga medicinalis, 31
officinalis, 81
Santalum album, 166, 490 rubrum, 164
Yasi, 106
Santonica, 808
Saponaria levantica, 57
officinalis, 57
Sapota Mulleri, 487
Sarothamnus scoparius, 271
Sarsaparilla, 50
Sassafras bark, 207

Sassafras lignum (radix), 162
medulla, 407
officinale 162, 207, 407, 490
pith, 407
wood (root), 162
Sassy bark, 200
Savakin gum, 446
Savanilla rhatany, 100
Savine, 303
Scabious, 277
Scammonium, 456
Scammony, 456
Schcenocauion officinale, 394
Scilla maritima, 157
Scoparius, 271
Scopola carniolica, 79
Scorodosma fetidum, 449
Scrophularia nodosa, 286
Scutellaria lateriflora, 297
spec., 297
Secale cereale, 404
cornutum, 404
Seed lac, 468
Semecarpus Anacardium, 336
Semen amomi, 334
Senaar gum, 446
Senega, 54
Senegal gum, 446
Seneka, 54
Senna alexandrina, 225
baladi, 227
indica, 226
ovalifolia, 228
Sepia officinalis, 42
Serpentaria, 184
Serpyllum, 292
Serronia Jaborandi, 218
Serum lactis, 41
Sesamum indicum, 229, 370, 504
Sevum bovinum, 510
ovillum, 510
Sewruga, 34
Sheeps' wool sponge, 38
Shellat, 468
Shepherd's purse, 268
Shikimi fruit, 348
Siberian castor, 38
musk, 37
Siliqua dulcis, 345
Silkweed, 130
Silybum marianum, 852
Simaruba excelsa, 163 medicinalis, 193

Simaruba officinalis, 193
Sinapis alba, 377 nigra, 878
Siphonia, 488
Skim milk, 41
Skullcap, 297
Skunk cabbage, 119
Slippery elm, 204
Smilacina racemosa, 124
Smilax China, 117
glauca, 117
medica, 50
officinalis, 50
papyracea, 50
pseudochina, 117
Sneezewort, 279
Soapbark, 203
Soapwort, 57
Solanum Dulcamara, 161
tuberosum, 419
Solenostemma Argel, 226
Solidago odora, 278
Solomon's seal, 124
Southern prickly ash, 199
Spanish flies, 27
licorice root, 89
oak, 189
saffron, 408
Spearmint, 288
Spermaceti, 510
Spigelia marilandica, 136
Spirea tomentosa, 272
Sponge, 38
Spongia officinalis, 38 usta, 33
Spotted pipsissewa, 247
Spurge, 68
Squaw root, 139
vine, 298
Squill, 157
Squirrel corn, 154
Staphisagria, 383
Staranise, 347
Stareh, 417
sugar, 441
Starwort, 120, 121
Statice brasiliensis, 99
earoliniana, 98
Limonium, 98
Stavesacre, 383
Sterculia acuminata, 874
Sterlet, 34
Stick lac, 468

Stillingia sylvatica, 69
Stizolobium pruriens, 412
Stoneroot, 140
Storax, 471
Stramonii folia, 234
semen, 392
Stramonium leaves, 234 seed, 392
Strassburg turpentine, 474
Striated ipecacuanha, 92
Strophanthus dichotomus, 385
hispidus, 385
Kombé, 385
Strychnos Castelnæana, 432
Ignatii, 382
Nux vomica, 210, 379
toxifera, 432
Styrax, 471
Benzoin, 465
Suakin gum, 446
Succinum, 462
Succory, 62
Succus liquirite, 483
thebaicus, 425
Sucrose, 439
Suet, 510
Sugar, 439
Sumach, 330
Sumatra benzoin, 465
camphor, 482
Sumbul, 78
Sundew, 274
Surgeon's agaric, 403
Surinam quassia, 168, 193
Sus scrofa, 38, 509
Swamp dog wood, 183
milkweed, 188
Sweedish leech, 81
Sweet clover, 270
fern, 251
flag, 113
gum, 470
marjoram, 292
orange, 361
Swertia angustifolia, 300
Chirata, 800
Swietenia Mabogani, 446
Symphytum officinale, 60
Symplocarpus fotidus, 119
Syrupus fuscus, 443
T
ABACUM, 233
Tagetes erecta, 319

Tagetes patula, 319
Tamarind, 364
Tamarindus indiea, 364 officinalis, 364
Tampico jalap, 151
Tanacetum vulgare, 281
Tansy, 281
Tapioca, 420
Tar, 478
Taraxacum Dens-leonis, 61 officinale, 61
Tea, 242
Tephrosia Appolinea, 226
Terebinthina, 474 argentoratensis, 474
canadensis, 473
Chia, 476
cocta, 476
communis, 474
veneta, 474
vulgaris, 474
Terminalia bellerica, 387
Chebula, 887 citrina, 837
Terra japonica, 435
Testa ostrem, 48 ovi, 32,48
Texas snakeroot, 135
Thea chinensis, 242
Thebaicum, 425
Theobroma Cucao, 878, 506
Theriaca, 448
Thibet musk, 87
Thornapple seed, 392
Thorough wort, 275
Thriduce, 490
Thuja occidentalis, 804
Thus americanum, 475
Thymol, 482
Thymus Serpyllum, 292
vulgaris, 216, 482, 489
Tiglium officinale, 390,502
Tilia americana, 810
heterophylla, 810
platyphylla, 810
ulmifolia, 310
Tinnevelly senna, 228
Tobacco, 288
Toluifera Balsamum, 469
Pereira, 468
Tonco, 372
Tonka bean, 372
Tonquin musk, 87

Tormentil, 127
Tormentilla erecta, 127
Torreya californica, 388
Torula cerevisiæ, 416
Toxicodendron, 254
Trachylobium, 462
Tragacantha, 447
Trailing arbutus, 224
Treacle, 443
Trehala, 442
Trigonella Fonum grecum, 376
Trillium erectum, 120
Triosteum perfoliatum, 144
Tripoli senna, 227
Triticum repens, 115
vulgare, 419
Tulip-tree bark, 183
Tuno gum, 487
Turkey corn, 154
opium, 476
sponge, 38
Turkish licorice root, 89
Turmeric, 112
Turnera diffusa, 243
Turnip seed, 879
Turpentine, 474
Tussilago Farfara, 246

ULMUS eampestris, 204
effusa, 205
fulva, 204
Uncaria Gambir, 435
Undulated ipecacuanha, 98
U rceola, 438
Urginea Scilla, 157
Ustilago Maydis, 403
Uva passa, 838
ursi, 222
V
AHEA, 438
Valerian, 132
V uleriana officinulis, 132,488
Vunilla guianensis, 351
planifolia, 350
Pompona, 351
Vanillon, 351
Vateria, 461
Venezuelan vanilla, 351
Venice turpentine, 474
Veratrum album, 117
Lobelianum, 118
Sabadilla, 394
viride, 118

Verbascum phlomoïdes, 320
thapsiforme, 320
Thapsus, 320
Veronica virginica, 146
Vetiveria, 54
Vetivert, 54
Viburnum prunifolium, 188
Viola tricolor, 274
Virginia snakeroot, 135
Vitellus ovi, 32
Vitis vinifera, 398
Viverra Civetta, 40
Zibetha, 40
WАНО0, 203 Wars, 413
Water avens, 137
Water-dropwort, 358
Water-lily, 128
W atermelon-seed, 372
Wax, 511
Weakfish, 34
W beat starch, 417
Whey, 41
White agaric, 402
ash, 192
cedar, 304
gentian, 72
ipecacuanha, 98
mustard, 377
oak bark, 188
of egg, 32
pepper, 338
senega, 56
turpentine, 475
veratrum, 117
wax, 511
Wild chamomile, 279
cherry bark, 185
clove leaves, 220
ginger, 145
indigo, 98
jalap, 75
marjoram, 291
nutmeg, 388
senna, 227
thyme, 292
yam, 125

Willow, 186
herb, 273
Winged Java cardamom, 350
Wintera, 208
Winterberry, 184
Winter's bark 208
Wintergreen, 248
Witch hazel, 187, 241
Wood oil, 478
Woolfat, 508
Wormseed, 346
Wormwood, 281
Wurrus, 418
X ANTHORRHIZA apiifolia,
Xanthorrhœa austrulis, 466
hastilis, 466
Xanthorrhœæ resina, 466
Xanthoxyli fructus, 347
Xanthoxylum americanum, 199, 347
carolinianum, 199, 347
Clava Herculis, 199, 347
elegans, 218
fraxineum, 199, 347
YARROW, 280
1 Yeast, 416
Yelk, yolk, 32
Yellow cinchona, 176
dock, 83
jasmine, 94
parilla, 147
root, 148
wax, 511
zedoary, 111
T/ANTHOXYLUM. See Xanthoxylum.
Zea Mays, 403, 410, 419, 505
Zedoaria, 110
Zedoary, 110
Zibethum, 40
Zimocea sponge, 33
Zingiber Oassumunar, 111
officinale, 108

Cutalogut of toonks

PUBLISHED BY

LEA BROTHERS AND COMPANY.

Abstract

The books in the annexed list will be sent by mail, post-paid, to any Post Office in the United States, on receipt of the printed prices. No risks of the mail, however, are assumed, either on mey or books. Gentlemen will, therefore, in most cases, find it more convenient to deal with the nearest bookseller.

LEA BROTHERS \& CO., Nos. 706, 708 and 710 Sansom Street, Philadelphia.

periodicals. 1893. THE MEDICAL NEWS, A WEEKLY JOURNAL OF MEDICAL SCIENCE, Edited by GEORGE M. GOULD, M.D. Published every Saturday, containing 24-28 large double-columned quarto piges of reading matter in each number.
 FOUR DOLLARS (\$4) per annum, in advance.
 THE AMERICAN JOURNAL OF THE MEDICAL SCIENCES.

Edited by EDWARD P. DAVIS, A.M., M.D.

Published every Month.

112-28 large octavo pages, fully illustrated in each number. Price
REDUCED TO FOUR DOLLARS PER ANNUM.

COMBINATIONS AT REDUCED RATES.

The Aberican Journal of the Medical Sci- Together
The Medical News, $\$ 4.00$: $\quad . \quad$. $\} \$ 7.50$
Tien Medical News Visiting List for 1893 (see below and on page 16), 81.25

Together
With either or both above periodicals, 75 cents.
The Year-Book of Treatmgnt for 1892 (see page 16), $\$ 1.50$
With either or both above periodicals, 75 cents.

THE MEDICAL NEWS VISITING LIST.

This List, which is by far the most handsome and convenient now attainable, has been thoroughly revised for 1893. A full description will be found on page 16. It is issued in four styles. Price, ench, \$1 25. For Special Combination Rates with periodicals and the Year-Book of Treatment see above. Thumb letter Index for quick use $\mathbf{2 5}$ cents extra.
bBott (A. C.). Principles of bacteriology : a Practical Manual for Students and Physicians. In one 12 mo . volume of 259 pages, with 32 illustrations. Cloth, $\$ 2$. Just ready. LLEN (HARRISON). A SYSTEM OF HUMAN ANATOMY. WITH AN INTRODUCTORY SECTION ON HISTOLOGY, by E. O. Shakespeare, M.D. Comprising 813 double columned quarto pages, with 380 engravings on stone on 109 plates, and 241 woodcuts in the text. In six sections, each in a portfolio. Price per section, $\$ 350$. Also, bound in one volume, eloth, 823 ; half Russia, \$25. Sold by subscription onlv.
A
MERICAN SYSTEM OF DENTISTRY. In treatises by various authors. Edited by Wilbur F. Liteh, M.D., D.D.S. In three very handsome super-royal octavo volumes, containing 3180 pages, with 2863 illustrations and 9 full-page plates. Now ready. Per volume, oloth, $\$ 6$; leather, $\$ 7$; half Moroceo, \$8. For sale by subscription only. Apply to the publishers. treatises by the most eminent American specialists. Gynecology edited by Matthew D. Mann, A M., M. D., and Obstetries edited by Barton C. Hirst, M. D. In four large octavo volumes comprising 3612 pages, with 1092 engravings, and 8 colored plates. Per volume, cloth, $\$ 5$; leather, $\$ 6$; half Russia, 87 . For sale by subscription only. Prospectus free on application to publishers.
A SHHURST (JOHN, Jr.) THE PRINCIPLES AND PRACTICE OF SURGERY. FOR THE USE OF STUDENTS AND PRACTITIONERS. Fifth and revised edition. In one large and handsome octavo volume of 1144 pages, with 642 woodeuts Cloth, $\$ 6$; leather, $\$ 7$.
SHWELL (SAMUEL). A PRACTICAL TREATISE ON THE DIS. EASES OF WOMEN. Third edition. 520 pages. Cloth, $\$ 350$.
SYSTEM OF PRACTICAL MEDICINE BY AMERICAN AUTHORS. Edited by William Pepper, M.D., LL.D. In five large octavo volumes, containing 5573 pages and 198 illustrations. Price per volume, cloth, $\$ 500$; leather, $\$ 600$; half Russia, $\$ 700$. Sold by subscription only. Address the publishers.

ATTFIELD (JOHN). CHEMISTRY; GENERAL, MEDICAL AND PHARMACEUTICAL. Twelfth edition, specially revised by the Author for America. In one handsome 12 mo . volume of 782 pages, with 88 illustrations. Cloth, \$2 75; leather, \$3 25. ALL (CHARLES B.) DISEASES OF THE RECTUM AND ANUS. In one 12 mo . vol. of 417 pages, with 54 illus, and 4 colored plates. Cloth, $\$ 225$. See Series of Clinical Manuals, p. 13.

BARLOW (GEORGE H.) A MANUAL OF THE PRACTICE OF MEDICINE. In one 8vo. volume of 603 pages. Cloth, $\$ 250$.
BARNES (ROBERT). A PRACTICAL TREATISE ON THE DISEASES OF WOMEN. Third American from 3d English edition. In one 8 vo . vol. of about 800 pages, with about 200 illus. Preparing.
BARNES (ROBERT and FANCOURT). A SYSTEM OF OBSTETRIC MEDICINE AND SURGBRY, THEORETICAL AND CLINICAL. The section on Embryology by Prof. Milnes Marshall In one large octavo volume of 872 pages, with 231 illustrations. Cloth, $\$ 5$; leather, $\$ 6$. ARTHOLOW (ROBERTS). MEDICAL ELECTRICITY. A PRAC. TiCAL TREATISE ON THE APPLICATIONS OF ELECTRICITY to medicine and surgery. Third edition. In one 8ro. vol. of 308 pages, with 110 illustrations. Cloth, $\$ 250$. ASHAM (W. R.) RENAL DISEASES; A Clinical guide to THEIR DIAGNOSIS AND TREATMENT. In one 12 m , volume of 304 pages, with illustrations. Cloth, \$200. ELL (F. JEFFREY). COMPARATIVE ANATOMY AND PHY. SIOLOGY. In one 12 mo , volume of 561 pages, with 229 woodeuts Cloth, \$2. See Strudents' Series of Manvals, p. 14.
BELLAMY (EDWARD). A MANUAL OF SURGICAL ANATOMY. In one 12 mo . vol. of 300 p tges, with 50 illustrations. Cloth, $\$ 225$. ZRRY (GEORGEA.) DISEASES OF THE EYE; A PRAOTICAL TREATISE FOR STUDENTS OF OPHTHALMOLOGY. New (2d) edition. Very handsome octavo vol., about 700 pages, with about 150 original illustrations in the text, of which 62 are exquisitely colored. In press.
BILLINGS (TOHN S.) THE NATIONAL MEDICAL DICTIONARY. Including in one alphabet English, French, German, Italian, and Latin Technieal Terms used in Medicine and the Collateral Sciences. In two very handsome imperial octavo volumes, containing 1574 pages and two colored plates. Per volume, cloth, $\$ 6$; leather, $\$ 7$; half Moroceo, $\$ 850$. For sale by subscription only. Specimen pages on application to publishers.
BLOXAM (C. L) OHEMISTRY, INORGANIC AND ORGANIC. With Experiments. New American from the fifth London edition. In one handsome octavo volume of 727 pages, with 292 illustra. tions. Cloth, \$2; leather, \$3.
BRISTOWE (J. S.) A TREATISE ON THE SCIENCE AND PRAC. TICE OF MEDICINE Seventh edition. Large octavo volume, 1325 pages, 114 illustrations. Cioth, $\$ 6.50$; leather, $\$ 750$.
$\mathrm{B}^{\text {ROADBENT }(W, H) . ~ T H E ~ P U L S E . ~ I n ~ o n e ~} 12 \mathrm{mo}$. volume of 317 pages, with 59 engravings. Oloth, $\$ 175$. See Series of Clinical Manжаls, p. 13.
BROWNE (LENNOX). A PRACTICAL GUIDE TO DISEASES OF THE THROAT AND NOSE, including Associated Affections of the Bar. New (4th) and enlarged edition. In one imperial octavo volume of about 750 pages, with 235 engraving and 120 illustrations in color. Preparing.

KOCH'S REMEDY IN RELATION ESPEOIALLY TO THROAT CONSUMPTION. In one octavo volume of 121 pages, with 45 illustrations, 4 of which are colored, and 17 charts, Oloth, $\$ 150$. PCE (J. MITCHELL). MATERIA MEDICA AND THERAPEUTICS. New (fifth) edition. In one 12 mo . volume of about 600 pages. Cloth, \$150. See Students' Series of Manuals, p. 14.
BRUNTON (T. LAUDER). A MANUAL OF PHARMACOLOGY, THERAPEUTICS AND MATERIA MEDICA; including the Pharmacy, the Physiological Action and the Therapeutical Uses of Drugs. Third and revised edition, in one octavo volume of 1303 pages, with 230 illustrations. Cloth, $\$ 550$; leather, $\$ 650$. YANT (THOMAS). THE PRACTICE OF SURGERY. Foarth American from the fourth English edition. In oneimperial oetavo volume of 1040 pages, with 727 illustrations. Cloth, $\$ 650$; leather, $\$ 750$.
BUMSTEAD (F. J.) and TAYLOR (R. W.) THE PATHOLOGY AND TREATMBNT OF VENEREAL DISEASES. New edition. See Taylor on Venereal Diseases.
BURNETT (CHARLES H.) THR EAR: ITS ANATOMY, PHYSIOLOGY AND DISEASES. A Practical Treatise for the Use of Students and Practitioners. Second edition. In one 8vo. vol of 580 pp., with 107 illus. Cloth, $\$ 4$; leatber, $\$ 5$.

UTLIN, (HENRY T.) DISEASES OF THE TONGUE. In one poeket-size 12 mo , vol. of 456 pp ., with 8 col . plates and 3 woodeuts. Limp eloth, $\$ 3$ 50. See Series of Clinical Manuals, p. 13.
CARPENTER (WM. B) PRIZE ESSAY ON THE USE OF ALCO. HOLIC LIQUORS IN HEALTH AND DISEASE. New Edition, with a Preface by D. F. Condie, M.D. One 12 mo , volume of 178 pages. Cloth, 60 cents.

- PRINCIPLES OF HUMAN PHYSIOLOGY, A new American, from the eighth English edition. In one large 8vo. volume.
CARTER (R. BRUDENELL) AND FROST (W. ADAMS) OPHTHALMIC SURGERY. In one pocket-size 12 mo . volume of 559 pages, with 91 engraving ${ }^{3}$ and one plate. Cloth, $\$ 225$. See Series of Clinical Mantuals, p. 13.
CHAMBERS (T. K.) A MANUAL OF DIET IN HEALTII AND DISEASE. In one handsome 8 vo . vol. of 302 pages. Cloth, $\$ 275$.
CHAPMAN (HENRY C). A TREATISE ON HUMAN PHYSIOLOGY. In one octavo volume of 925 pages, with 605 illustrations. Cloth, $\$ 550$; leather, $\$ 650$.
CHARLES (T. CRANSTOUN). THE ELEMENTS OF PHYSIO. LOGICAL AND PATHOLOGICAL CHEMISTRY. In one handsome octavo volume of 451 pages, with 38 woodeuts and one colored plate. Cloth, 350.
HURCHILL (FLEETWOOD). BSSAYS ON THE PUERPERAL FEVER. In one octavo volume of 464 pages. Cloth, $\$ 250$.
CLARKE (W. B.) AND LOCKWOOD (C. B.) THE DISSECTOR'S MANUAL. In one 12mo, volume of 396 pages, with 49 illustrations. Cloth, $\$ 150$. See Students' Series of Manuals, p. 14.
C LASSEN'S QUANTITATIVE ANALYSIS. Translated by Edgar F. Smith, Ph.D. In one 12 mo , vol. of 324 pp ., with 36 illus. Cloth, $\$ 200$.
CLELAND (JOHN). A DIRECTORY FOR THE DISSECTION OF THE HUMAN BODY. In one 12 mo . vol of 178 pp . Oloth, $\$ 125$.
CLOUSTON (THOMAS S.) CLINICAL LECTURES ON MENTAL DISEASES. With an Abstract of Laws of U. S. on Custody of the Insane, by C. F. Folsom, M.D. In one handsome oetavo vol. of 541 pages, illustrated with woodeuts and 8 lithographic plates. Cloth, $\$ 400$. Dr. Folsom's Abstract is also furnished separately in one octavo volume of 108 pages. Cloth, $\$ 150$.
CLOWES (FRANK). AN ELEMENTARY TREATISE ON PRACTICAL CHEMISTRY AND QUALITATIVE INORGANIC ANALY. SIS. New American from the fourth English edition. In one handsome 12 mo . volume of 387 pages, with 55 illustrations. Cloth, $\$ 250$. ATS (JOSEPH). A TREATISE ON PATHOLOGY. In one vol. of 829 pp ., with 839 engravings. Cloth, $\$ 550$; leather, $\$ 650$.
COHEN (J. SOLIS). DISEASES OF THR THROAT AND NASAL PASSAGES. Third edition, thoroughly revised. In one handsome octavo volume. Preparing.
COHEN (S. SOLIS). A HANDBOOK OF APPLIED THERAPEUTICS. one large 12 mo . volume, with illustrations. Preparing
COLEMAN (ALFRED). A MANUAL OF DENTAL SURGERY AND PATHOLOGY. With Notes and Additions to adapt it to American Practice. By Thos, C. Stellwagen, M.A., M. D., D.D.S. In one handsome 8 vo . vol. of 412 pp , with 331 illus. Cloth, $\$ 325$.

NDIE (D. FRANCIS), A PRACTICAL TREATISE ON THE DIS. EASES OF OHILDREN. Sixth edition, revised and enlarged. In one large 8vo. vol. of 719 pages. Cloth, \$5 25 ; leather, 8625. RNIL (V.) SYPHILIS : ITS MORBID ANATOMY, DIAGNOSIS AND TREATMENT. Translated, with notes and additions, by J. Henry C. Simes, M. D, and J. William White, M.D. In one Svo. volume of 461 pages, with 84 illustrations. Cloth, $\$ 375$.
CULVER (E. M.) AND HAYDEN (J. R.) MANUAL OF VENEREAL DISEASES. In one 12 mo . vol. of 289 pages, with 33 illustrations. Cioth, $\$ 175$.
DALTON (JOHN C.) A TREATISE ON HUMAN PHYSIOLOGY. Seventh edition thoroughly rerised, and greatly improved. In one very handsome 8 vo. vol. of 722 pages, with 252 illustrations. Cloth, \$5; leather, $\$ 6$.

DOCTRINES OF THE CIRCULATION OF THE BLOOD. In one handsome 12 mo . vol. of 293 pp . Cloth, $\$ 2$.
DANA (JAMES D.) THE STRUCTURE AND CLASSIFICATION OF ZOOPHYTES. With illust. on wood. In oneimp. 4to. vol. Cl., \$4.
DAVENPORT (F. H.) DISEASE 3 OF WOMEN. A Manual of NonSurgieal Gynæcology. For the use of Students and General Practitioners. New (second) edition. In one handsome 12 mo . volume of 314 pages with 107 illustrations. Cluth, $\$ 175$. Just ready.

$D^{\text {a }}$AVIS ($\mathrm{F} . \mathrm{H}$.) LECTURES ON CLINICAL MEDICINE. Second edition In one 12 mo . volume of 287 pages. Cloth, $\$ 175$.
E LA BECHE'S GEOLOGICAL OBSERVER. In one large 8vo. vol. of 700 pages, with 300 illustrations. Cloth, $\$ 4$.
D IEHL (C. LEWIS). THE SCIENOE AND ART OF PHARMACY, In one octavo volume of about 500 pages, fully illustrated. Preparing. RAPER (JOHN C.) MEDICAL PHYSICS. A Text-book for Students and Practitioners of Medicine. In one handsome octavo volume of 734 pages, with 376 illustrations. Cloth, \$4.

DRUITT (ROBERT). THE PRINCIPLES AND PRACTICE OF MODERN SURGERY. A new American from the 12th London edition, edited by Stanley Boyd, F.R C.S. In one large octave volume of 965 pages, with 373 illustrations. Cloth, $\$ 4$; leather, $\$ 5$.

DUNCAN (J, MATTHEW8). CLINICAL LECTURES ON THE DISEASES OR WOMEN. Delivered in St. Bartholomew's Hospital. In one oetavo volume of 175 pages. Cloth, $\$ 150$.

DUNGLISON (ROBLEY). MEDICAL LEXICON ; A Dictionary of Medical Science. Containing a concise explanation of the various subjects and terms of Anatomy, Physiology, Pathology, Hygiene, Therapeutics, Pharmacology, Pharmacy, Surgery, Obstetrics. Medical Jurisprudence and Dentistry; notices of Ćlimate and of Mineral Waters; Eormulafor0fficinal, Empiricaland Dietetic Preparations; with the accentuationand Etymology of the Terms, and the French and other Synonymes. Edited by R. J. Dungli.on, M.D In one very large royal 8vo. vol. of 1139 pages. Cloth, $\$ 650$; leather, \$750; half Russia, \$8.
FDES (ROBERT T) TEXT-BOOK OF THERAPEUTICS AND MA. TERIA MEDICA. In one $8 v o$. volume of 544 pages. Cloth, $\$ 350$; leather, $\$ 450$.

EDIS (ARTHUR W.) DISEASES OF WOMEN. A Manual for Students and Practitioners. In one handsome 8 vo , vol. of 576 pp ., with 148 illustrations. Oloth, $\$ 3$; leather, $\$ 4$.
$\mathrm{F}^{\text {LLIS (GEORGE VINER). DEMONSTRATIONS IN ANATOMY. }}$ Being a Guide to the Knowledge of the Human Body by Dissection. From the eighth and revised English edition. In one octavo vol. of 716 pages, with 249 illustrations. Oloth, $\$ 425$; leather, $\$ 525$.
FMMET (THOMAS ADDIS). THE PRINOLPLES AND PRACTICE OF GYN ECOLOGY, for the use of Students and Practitioners. Third edition, enlarged and revised. In one large 8vo. volume of 880 rages, with 150 original illustrations. Cloth, $\$ 5$; leather, $\$ 6$. A new American, from the eighth enlarged and revised London edition. In two large octaro volumes containing 2816 pager, with 984 illus. Cloth, $\$ 9$; leather, $\$ 11$.
FARQUHARSON (ROBERT). A GUIDE TO THERAPEUTICS. Fourth American from Fourth English edition, revised by Frank Woodbury, M.D. In one 12 mo . volume of 581 pages. Cloth, $\$ 230$.
FINLAYs0N (JAMES). CLINICAL DIAGNOSIS. A Handbook for Students and Practitioners of Medicine. Second edition. In one 12 mo . volume of 682 pages, with 158 illustrations. Cloth, $\$ 250$.
FLINT (AUSTIN). A TREATISE ON THE PRINCIPLES AND PRACTICE OF MEDICINE. Sixth edition, thoroughly revised and largely rewritten by the Author, assisted by William H. Welch, M.D., and Austin Flint, Jr., M.D. In one large 8vo. volume of 1160 pages, with illustrations. Cloth, $\$ 550$; leather, $\$ 650$.

- A MANUAL OF AUSCULTATION AND PERCUSSION ; of the Physieal Diagnosis of Diseases of the Lungs and Heart, and of Thoracic Aneurism. Fifth edition, revised by James C. Wilson, M.D. In one handsome 12 mo . volume of 274 pages, with 12 illus. trations. Cloth, \$1 75.
- A PRACTICALTREATISE ON THE DIAGNOSIS AND TREATMENT OF DISEASES OF THE HEART. Second edition, enlarged In one octavo volume of 550 pages. Cloth, $\$ 400$.
- A PRACTICAL TREATISE ON THE PHYSICAL EXPLORA. TION OF THE CHEST, AND THE DIAGNOSIS OF DISEASES AFFECTING THE RESPIRATORY ORGANS. Second and revised edition. In one octavo volume of 591 pages. Cloth, $\$ 450$.
- MEDICAL ESSAYS. In one 12 mo . vol., pp. 210. Cloth, $\$ 138$. - ON PHTHISIS: ITS MORBID ANATOMY, ETIOLOGY, Etc. A series of Clinical Lectures. In one 8 vo. volume of 442 pages. Cloth, $\$ 350$.
FOLSOM (C. F.) An Abstract of Statutes of U. S. on Custody of the Insane. In one 8vo. vol. of 108 pp . Cloth, $\$ 150$. Also bound with Clouston vn Iusanity.
FOSTER (MICHAEL). A TEXT-BOOK OF PHYSIOLOGY. Fourth and revised American from the fifth English edition. In one large octave volume of 1054 pages, with 282 illustrations. Cloth, $\$ 450$; leather, $\$ 550$.

FOTHERGILL (J. MILNER). THE PRACTITIONER'S HANDBOOK

 OF TREATMENT. Third edition. In one handsome octavo volume of 664 pages. Cloth, $\$ 375$; leather, $\$ 45$.FJWNES (GEORGE), A MANUAL OF ELEMENTARY CHEMISTRY (INORGANIC AND ORGANIC). New edition. Embodying Watts' Physical and Inorganic Chemistry. In one royal 12 mo . vol. of 1061 pages, with 168 illus., and one colored plate. Cloth, $\$ 275$; leather, \$3 25.
FOX (TILBURY) and T. COLCOTT, EPITOME OF SKIN DISEASES, with Formulw. For Students and Practitioners. Third Am. edition, revised by T. C. Fox. In one sinall 12 mo . volume of 238 pages. Cloth, $\$ 125$.
FRANKLAND (E) and JAPP (F. R.) INORGANIC OHEMTSTRY. In one handsome octavo vol. of 677 pages, with 51 engravings and 2 plates. Cloth, $\$ 375$; leather, $\$ 475$.
FULLER (HENRY). ON DISEASES OF THE LUNGS AND AIR PASSAGES. Their Pathology, Physieal Diagnosis, Symptoms and Treatment. From 2d Eng.ed In 1 8vo. vol., pp. 475. Cloth, $\$ 350$. ANT (EREDERICK JAMES). THE STUDENT'S SURGERY. A Multum in Parvo. In one square octavo volume of 845 pages, with 159 engravings. Cloth, \$375.
GibBES (HENEAGE). PRACTICAL PATHOLOGY. In one very handsome octavo volume of 314 pages, with 60 illustrations, mostly photographic. Oloth, \$2 75.
$G^{I B N E Y}$ (V. P.) ORTHOPADIC SURGERY. For the use of Practitioners and Students. In one 8vo. vol. profusely illus. Prepg. ULD (A. PEARCE). SURGICAL DIAGNOSIS. In one 12 mo . vol. of 589 pages. Cloth, \$2. See Students' Series of Manuals, p. 14.
$G^{R A Y}$ (HENRY). ANATOMY, DESORIPTIVE AND SURGICAL. Edited by T. Pickering Pick, F.R.C.S. A new American, from the eleventh Bnglith edition, thoroughly revised, with additions, by W. W. Keen, M.D. To which is added Holden's "Landmarks, Medical and Surgical." In one imperinl octavo volume of 1098 pages, with 685 large and elaborate engravings on wood. Cloth, $\$ 6$; leather, $\$ 7$; very handsome half Russia, raised bands, $\$ 750$. The same edition is also issued with veins, arteries, and nerves distingaished in colors. Price, eloth, $\$ 725$; leather, $\$ 825$; half Rassia, $\$ 875$.
RAY (GANDON CARTEB). A PRACTICAL TREATISB ON THB DISBASES OF THE NERVOUS SYSTEM. In one handsome octavo volume of about 650 pages, richly illustrated. Shorily.
GREEN (T. HENRY). AN INTRODUCTION TO PATHOLOGY AND MORBID ANATOMY. Sixth American, from the seventh London edition. In one handsome octavo volume of 540 pages, with 167 illustrations. Cloth, \$2 75.
GREENE (WILLIAMH.) A MANUAL OF MEDICALCHEMISTRY. For the Use of Students. Based upon Bowman's Medical Chemistry. In one 12 mo . vol. of 310 pages, with 74 illus. Cloth, $\$ 175$. RIFFITH (ROBERT E.) A UNIVERSAL FORMULARY, CONTAINING THE METHODSOF PREPARING AND ADMINISTERING OFFICINAL AND OTHER MEDICINES. Thirdandenlarged edition. Edited by John M. Maisch, Phar.D. In one large 8vo. vol. of 775 pages, double columns. Oloth, $\$ 450$; leather, $\$ 550$.

ROSS (SAMUFLD.) A SYSTEM OF SURGERY, PATHOLOGICAL, DIAGNOSTIC, THERAPEUTIC AND OPERATIVE, Sixth edition, thoroughly revised In two imperial octavo volumes containing 2382 pages, with 1623 illustrations. Strongly bound in leather, raised bands, \$15.

A PRACTICAL TREATISE ON THE DISEASES, INJU. ries and Malformations of the Urinary Bladder, the Prostate Gland and the Urethra. Third edition, thoroughly revised and much condensed, by Samuel W. Gross, M. D. In one octavovolume of 574 pages, with 170 illus. Cloth. $\$ 450$.

- A PRACTICAL TREATISE ON FOREIGN BODIES IN THE AIR PASSAGES. Inone 8vo. vol. of 468 pages. Cloth, $\$ 275$. TSS (SAMUFL W.) A PRACTICAL TRFATISE ON IMPO. TENCE, STERILITY. AND ALLIED DISORDERS OF THE MALE SEXUAL ORGANS. Fourth edition. Edited by F. R. Sturgis, M.D. In one bandsome octavo volume of 165 pages, with 18 illustrations. Cloth. \$1.50. ABERSHON (S. O.) ON THE DISEASES OF THE ABDOMEN, AND OTHER PART\& OF THE ALIMENTARY CANAL. Second American, from the third English edition. In one handsome 8vo. volume of 554 pages, with illus. Cloth, $\$ 350$. AMILTON (ALLAN McLANE) NERVOUS DISEASES, THEIR DESCRIPTION AND TREATMENT. Second and revised edition. In one octavo volume of 598 pages, with 72 illustrations. Cloth, $\$ 4$. amilton (frank h.) a practical treatise on frac. TURES AND DISLOCATIONS. New Eigbth edition, revised and edited by Stepben Smith, A.M., M.D. In one handsome 8vo. vol. of 832 pages, with 507 illustrations. Cloth, \$5 50 ; leather, $\$ 650$.
ABDAWAY (W A) MANUAL OF SKIN DISEASES. In one 12 mo , vol. of 440 pages. Cloth, $\$ 3$
H^{A} AFE (HOBART AMORY) A TEXT.BOOK OF PRACTICAL THERAPEUTICS, with Special Reference to the Application of Remedial Measures to Discase and their Employment upon a Rational Basis. With articles on various subjects by well-known specialists. New (2d) and revised edition. In one handsome octavo volume of 650 pages. Cloth, $\$ 375$; leather, $\$ 4.75$. ARE'\& (HOBAR, AMORY) Eoitor. A SYSTEM OF PRACTICAL THERAPEUTICS. By Amerienn and Foreign Authors. In a Eeries of contributions by 78 eminent Physicians. Three large octavo volumes comprising 3544 pages, with 434 illustrations. Complete work just ready. Price per volume: Cloth, $\$ 5$; leather, $\$ 6$; half Russia, $\$ 700$. For sale by subseription only. Address the Publishers. ARTSHORNE (HENRY). ESSENTIALS OF THE PRINCIPLES AND PRACTICE OF MEDICINE. Fifth edition. In one 12 mo . volume, 669 pages, with 144 illustrations. Cloth, $\$ 275$; half bound, $\$ 3$
A HANDBOOK OF ANATOMY AND PHYSIOLOGY. In one 12mo. volume of 310 pages, with 220 illustations. Cloth, $\$ 175$. - A CONSPECTUS OF THE MEDICAL SCIENCES. Comprising Manuals of Anatomy, Pbysiology, Chemistry, Materia Medica, Practice of Medicine, Surgery and Obstetrics. Second edition. In one royal 12 mo . volume of 1028 pages, with 477 illustrations. Cloth, \$425; leather, \$5 00.
MAN (G. ERNES'), FIRST LINES IN MIDWIFERY. In one 12 mo . vol. of 198 pages, with 80 illustrations. Cloth, \$1 25. Just ready. See Strdewts' Srries of Mausals, p. 14.
ERMANN (L) EXPEKIMENTAL. PHAkBALOLOGY. A Handbook of the Methods for Determining the Physiological Aetions of Drugs. Translated by Rol ert Mende \&mith M. D. In one 12 mo , vol. of 199 pages, with 32 illustrations. Cloth, 8150. ILL (BERKELEY). SYPHILIS AND LOCAL CONTAGIOUS DIS. ORDERS. In one 8vo, volumenf 479 pages. Cloth. $\$ 325$. ILLIER (THOMAS). A HANDBOOK OF SKIN DISEASES. 2d ed. In one royal 12 mo , vol, of 353 pp ., with two plates. Cloth, $\$ 225$. RST (BARTON C.) AND PIERSOL (GEORGE A) HUMAN MONSTROSITIES. Magnificent folio, containing about 150 pages of text and illustrated with engravings and 39 large photographic plates from nature. In four parts, price each, \$5. Parts I. and IL., juxt ready. Part III., In a fioo days Limited edition, for sale by sub seription ouly. OBLYN (RICHARD D.) A DICTIONARY OF THE TERMS USED IN MEDICINE AND THE COLLATERAL SCIENCES. In one 12 mo . vol. of 520 double-columned pp. Cloth, $\$ 150$; leather, $\$ 2$. ODGE (HUGH L.) ON DISEASES PECULIAR TO WOMEN, IN. CLUDING DISPLACEMENTS OF THE UTERUS. Second and revised edition. In one 8 vo , volume of 519 pages. Cloth, $\$ 450$. FFMANN (FREDERICK) AND POWER (FREDERICK B.) A MANUAL OF CHEMICAL ANALYSIS, as Applied to the Bxamination of Medicinal Chemicals and their Preparations. Third edition, entirely rewritten and much enlarged. In one handsome octavo Volume of 621 pages, with 179 illustrations. Cloth. \$4 25. LDEN (LUTHEK). LANDMARKS, MEDICAL AND SURGICAL. From the third English edition. With additions, by W. W. Keen, M.D. In oneroyal 12 mo . vol. of 148 pp . Cloth, $\$ 1$. OLLAND (SIR HENRY), MEDICALNOTES AND REFLECTIONS. From 3d English ed. In one 8ro. vol. of 493 pp. Cloth, $\$ 350$. and Practice. A new American from the fifth English edition. Edited by T. Pickering Pick F.K US In one handsome octavo volume of 1008 pages, with 428 ongrarings. Cloth, $\$ 6$; leather, $\$ 7$.
-ASYSTEM OF SURGERY. With notesand additions by various A merican authors. Edited by John H. Packard, M.D. In three very handsome 8 vo. vols. containing 3137 double columned pages, with 979 woodeats and 13 lithographic plates Per volume, cloth, $\$ 6$; leather, $\$ 7$; half Russia, $\$ 750$. For sale by subscription only. ORNER (WILLIAM E.) SPECIAL ANATOMY AND HISTOLOGY. Eighth edition, revised and mediffed. In twolarge 8vo. vols, of 1007 pages, containing 320 woodeuts. Cloth, $\$ 6$. UDSON (A.) LECTURES ON THE STUDY OF FEVER. In one octavo volume of 308 pages. Cloth, $\$ 250$. UTCHINSON (JONATHAN). SYPHILIS. In one pocket size 12 mo . volume of 542 pagis, with $\$$ chromo-lithographic plates. Cloth, $\$ 2$ 25. See Series of Clinical Manuals, p. 13
HYDE (JAMES NEVINS). APHACTICAL TREATISE ON DISEASES OF THE SKIN. Second edition. In one handsome octavo volume of 676 pages, with 85 engravings and 2 eolored plates. Oloth, $\$ 450$ leather, $\$ 550$. OF (GEORGE T). THE READY-REFERENCE HANDBOOK OF DISEASES OF THE SKIN. In one 12 mo . vol, of 450 pp ., with 50 illustrations. \$2.75. Just ready. AMIEZ ON (W. ALLAN). DISEASES OF THE SKIN. Third edition. In one octavo volume of B56 pages, with wood-cut and 9 double-page chromo-lithographic plates. Cloth, \$6. Just ready.
ONES (C. HANDFIELD). CLINICAL OBSERVATIONS ON FUNC. TIONAL NERVOUS DISORDERS. Second Ameriean edition. In one octave volume of 340 pages. Cloth, $\$ 325$. A HANDBOOK OP OPITHALMIC SCIENCE AND PRACTICE. In one 8vo. volume of 442 pages, with 124 wood-cuts, 27 chromo-lithographic plates, test types of Jaeger and Snellen and Holmgren's Color blindness test. English edition. Cloth, \$5 50; leather, \$6 50 . NG (A.F. A.) A MANUAL OF OBSTETRICS. New (5th) ed. In one 12 mo . vol. of 450 pp ., with 150 illus. Cloth, $\$ 2.50$. Just ready.

K
LEIN (B.) ELEMENTS OF HISTOLOGY. Fourth edition. In one pocket-size 12 mo . volume of 376 pages, with 194 engravings. Cloth, \$175. See Students' Series of Manuals, p. 14.
LANDIS (HENRY G) THE MANAGEMENT OF LABOR. In one handsome 12 mo . volume of 329 pages, with 28 illus. Cloth, $\$ 175$.
LA ROCHE (R.) YELLOW FEVER. In two 8vo. vols. of 1468 pages. Cloth, $\$ 7$.

- PNEUMONIA. In one 8vo. vol. of 490 pages. Cloth, $\$ 3$.

LAURENCE (J. Z.) AND MOON (ROBERT C.) A HANDY-BOOK OF OPHTHALMIC SURGERY. Second edition, revised by Mr. Laurence. In one 8vo. vol pp. 227, with 66 illus. Cloth, $\$ 275$.
LAWSON (GEORGE), INJURIES OF THE EYE,ORBIT AND EYELIDS. From the last English edition. In one handsome octavo volume of 404 pages, with 92 illustrations. Oloth, $\$ 350$.
LEA (HENRY C.). CHAPTERS FROM THE RELIGIOUS HIS. TORY OF SPAIN ; OENSORSHIP OF THE PRESS; MYSTICS AND ILLUMINATI; THE ENDEMONIADAS; ELSANTONINO DE LA GUARDIA; BRIANDA DE BARDAXI. In one 12 mo . volume of 522 pages. Cloth, $\$ 2.50$.

- SUPERSTITION AND FORCE; ESSAYS ON THE WAGER OF LAW, THE WAGER OF BATTLE, THE ORDEAL AND TORTURE. New (4th) edition, thoroughly revised. In one handsome royal 12 mo . volume of abobt 550 pages. In press.
- STUDIES IN CHURCH HISTORY. The Rise of the Temporal Power-Benefit of Clergy-Excommunication. New edition. In one handsome 12 mo . vol. of 605 pp . Cloth, $\$ 250$.
- AN HISTORICAL SKETCH OF SACERDOTAL CELIBACY IN THE CHRISTIAN CHURCH. Second edition. In onehandsome octave volume of 685 prges. Cloth, $\$ 450$.

LEdGER. THE MEDICAL NEWS PHYSICIAN'S LEDGER. Contains 300 pages ledger paper ruled in approved style. Strongly bound with patent flexible biek. Price, $\$ 4$. EE (HENRY) ON SYPHILIS. In one 8 vo volume of 246 pages. Cloth, \$2 25.
LEHMANN (C.G.) A MANUAL OF OHEMICAL PHYSIOLOGY. In one 8vo. vol. of 327 pages, with 41 woodcuts. Cloth, $\$ 225$.
TEISHMAN (WILLIAM). A SYSTEM OP MIDWIFERY. Ineluding the Diseases of Pregnancy and the Puerperal State. Fourth edition. In one octavo volume of about 800 pages, with about 225 illustrations.
TUCAS (CLEMENT). DISEASES OF THE URETHRA. Preparing. See Series of Ctinical Manuals, p. 13.
UUDLOW (J. L.) A MANUAL OF EXAMINATIONS UPON ANAT. OMY, PHYSIOLOGY, SURGERY, PRAOTICE OF MEDICINE, OBSTETRICS, MATERIA MEDICA, OHEMISTRY, PHARMACY AND THERAPEUTICS. To whieh is added a Medical Formulary. Third edition. In one royal 12 mo . volume of 816 pages, with 370 woodeuts. Cloth, $\$ 325$; leather, $\$ 375$. JFF'S MANUAL OF CHEMISTRY, for the Use of Students of Medicine. In one 12 mo . volume of 522 pages, with 36 illustrations. Cloth, 82 . Just ready. See Students' Series of Manuals, p. 14. YMAN (HENKY M.). THE PRACTICE OF MEDIC NE, In one very handsome octavo volume of 925 pages, with 170 illustrations. Cloth, $\$ 475$; leather, $\$ 575$. Just reudy.
TYONS (ROBERT D.) A TREATISE ON FEVER. In one oetavo volume of 362 pages. Cloth, $\$ 225$.

M AISCH (JOHN M) A MANUAL OF ORGANIC MATERIA MED. ICA. New (5th) edition. In one very handsome 12 mo . volume of 544 pages, with 270 engravings. Cloth, $\$ 3$. Just ready. ARSH (HOWARD). DISEASES OF THE JOINTS. In one 12 mo . volume of 468 pages, with 64 illustrations and a colored plate. Cloth, \$2. See Series of Cliwical Manwals, p. 13.

MAY (C. H.) MANUAL OF THE DISFASES OF WOMEN. For the use of Students and Practitioners. Second edition, revised by L. S. Rau, M.D. In one 12 mo . volume of 360 pages, with 31 illustrations. Cloth, \$1 75. EIGS (CHAS. D.) ON THE NATURE, SIGNS AND TREATMENT OF CHILDBED FEVER. In one 8 vo. vol. of 346 pages. Cloth, $\$ 2$.

MILLER (JAMES). PRINCIPLES OF SURGERY. Fourth American, from the third Edinburgh edition. In one large octavo voluma of 688 pages, with 240 illustrations. Cloth, $\$ 375$. ILLER (JAMES). THE PRACTICE OF SURGERY. Fourth American, from the last Edinburgh edition. In one large octavo volume of 682 pages, with 364 illustrations. Cloth, $\$ 375$. ORRIS (HENRY). SURGICAL DISEASES OF THE KIDNEY. 12 mo., 554 pages, 40 woodeuts, and b colored plates. Cloth, $\$ 225$. See Series of Clinical Mantals, p. 13.

M^{4}ÜLLLER (J.) PRINOIPLES OF PHYSICS AND METEOROLOGY. In one large 8 vo. vol. of 623 pages, with 538 euts. Cloth, $\$ 450$.
MUSSER (JOHN H.). MEDICAL DIAGNOSIS. In one volume of about 600 pages. Preparing.

N
ational dispensatory. See Stille \& Maisch, p. 14.
N ATIONAL MEDICAL DNCTIONARY. See Billings, p. 3. ETTLESHIP (E.) DISEASES OF THE EYE. Fourth American, from fifth Bnzh edition. In one royal 12 mo . volume of 500 pages, with 164 illustrations, test types and formula and color blindness test. Cloth, \$2.
NORRIS (NM, F), AND OLIVER (CHAS. A.). TEXT-BOOK OF OPHTHALMOLOGY. In one 8 vo. volume of about 500 pages, with illustrations. In press.

0WEN (EDM UND). SURGICAL DISEASES OF CHILDREN. 12 mo ., 525 pages, 85 woodeuts, and 4 colored plates. Cloth, 82 . See Series of Clinical Manuals, p. 13.
PARRISH (EDWARD). A TREATISE ON PHARMACY. With many Formule and Prescriptions. Fifth edition, enlarged and thoroughly revised by Thomas S . Wiegand, Ph.G. In one octavo volume of 1093 pages, with 257 illustrations. Cloth, $\$ 5$; leather, $\$ 6$.
PARRY (JOHN 8.) EXTRA-UTERINE PREGNANCY, ITS CLINIOAL HISTORY, DIAGNOSIS, PROGNOSIS AND TREAT. MENT. In one octavo volume of 272 pages. Cloth, $\$ 250$.
PARVIN (THEOPHILUS). THE SCIENCE AND ART OF OBSTET. RICS. Second edition. In one handsome 8 vo , volume of 70 t pages, with 239 engravings and a colored plate. Cloth, $\$ 425$; leather, \$5 25.
PAVY (F,W.) A TRFATISE ON THE PUNCTION OF DIGESTION, ITS DISORDERS AND THEIR TREATMENT. From the second London edition. In one octavo volume of 238 pages. Cloth, $\$ 2$.
PAYNE (JOSEPH FRANK). A MANUAL OF GENERAL PATHOLogy. Designed as an Introduction to the Practice of Medicine. Handsome octavo volume of 524 pages with 153 engravings and 1 colored plate. Cloth, $\$ 350$.

P
PEPPER (A. J.) FORENSIC MEDICINE. In press. See Students' Series of Manuals, p. 14.

SURGICAL PATHOLOGY. In one 12 mo . volume of 511 pages, with 81 illus. Cloth, \$2. See Stwdents' Series of Manrals, p. 14. PICK (T. PICKERING). FRACTURES AND DISLOCATIONS. In one 12 mo . volume of 530 pages, with 93 illustrations, Cloth, $\$ 2$. Sce Series of Clinical Manнals, p. 13.
PIRRIE (WILLIAM). THE PRINCIPLES AND PRACTICE OF SURGERY. In one handsome octavo, volume of 780 pages, with 316 illustrations. Cloth, \$375.
PLAYFAIR (W. S.) A TREATISE ON THE SCIENCE AND PRACTICE OF MIDWIFERY. Fifth American from the seventh English edition. Edited, with additions, by R. P. Harris, M.D. In one octavo volume of 664 pages, with 207 woodeuts and five plates. Cloth, \$4; leather, \$5.

- THE SY ₹TEMATIC TREATMENT OF NERVE PROSTRATION AND HYSTERIA. In one 13 mo . vol. of 97 pages. Cloth, $\$ 1$.
POWER (HENRY). HUMAN PHYSIOLOGY. Second edition. In one 12 mo . volume of 396 pages, with 47 illustrations. Oloth, $\$ 150$. See Students' Series of Manuals, page 14.
PYF-9MITH (PHILIP H.). DISEASES OF THE SKIN. In one octavo volume of 450 pages, with illustrations. Preparing.
PURDY (0HAs. W.) BRIGHT'S DISEASE AND ALLIED AFFEC. TIONS OF THE KIDNEY. Oetavo, 288 pp., with 18 handsome illustrations. Cloth, $\$ 2$.
R^{\wedge} ALFE (CHARLBS H.) CLINICAL CHEMISTRY. In one 12 mo . volume of 314 pages, with 16 illustrations. Cloth, $\$ 150$. See Students' Series of Mantuls, page 14.

R^{A}AMsBOTHAM (FRANCIS H.) THE PRINCIPLES AND PRAC. TICE OF OBSTETRIC MEDICINE AND SURGERY. In one imperial octavo volume of 640 pages, with 64 plates, besides numerous woodeuts in the text. Strongly bound in leather, $\$ 7$.

REMSEN (IRA). THE PRINCIPLES OF THEORETICAL CHEMIS. TRY. New (fourth) edition, thoroughly revised, and much enlarged. In one 12 mo , volume of 325 pages. Cloth, \$2. Just ready. YNOLDS (J. RUSSELL). A SYSTEM OF MEDICINB. Edited, with Notes and Additions, by Hemby Hartshorng, M D. In three large 8 vo. vols., containing 3056 closely printed double-columned pages, with 317 illustrations. Per volume, eloth, $\$ 5$; leather, $\$ 6$; very handsome half Russia, \$650. For sale by subseription only.

R^{1}ICHARDSON (BENJAMIN W.) PREVENTIVE MEDICINE. In one octavo vol., of 729 pp . Clo., $\$ 4$; leather, $\$ 5$.
ROBERTS (JOHN B). THE PRINCIPLES AND PRACTICE OF MODERN SURGERY. In one oe avo volume of 780 pages, with 501 illustrations. Cloth, $\$ 450$; leather, $\$ 550$.
R OBERTS (JOHN B.) THE COMPEND OF ANATOMY. For use in the Dissecting Room and in preparing for Examinations. In one 16 mo . volume of 196 pages. Limp eloth, 75 cents.
ROBERTS (SIR WILLIAM). A PRACTICAL TREATISE ON URINARY AND RENAL DISEASES, INCLUDING URINARY DEPOSITS. Fourth American, from the fourth London edition. In one very handsome 8 vo . volume of 609 pages, with 81 illustrations. Cloth $\$ 350$.

COLLECTED CONTRIBUTIONS ON DIET AND DIGESTION.
In one 12 mo . volume of 270 pages. Cloth, $\$ 150$. one 12 mo . volume of 537 pages, with 219 illuatrations. Cioth, $\$ 200$. See Students' Series of Mantals, p. 14.
ROSS (JAMES) A HANDBOOK OF THE DISEASES OF THE NEKVOUS SYSTEM. In one handsome oetavo volume of 726 pages, with 184 illustrations. Cloth, $\$ 450$; leather, $\$ 550$.
SAVAGE (GEORGE H.) INSANITY AND ALLIED NEUROSES, PRACTICAL AND CLINICAL. In one 12 mo . volume of 551 pages, with 18 typical illustrations. Cloth, $\$ 200$. See Series of Clenical Manuals, p 13.
SCHAFER (EDWARD A.) THE ESSENTIALS OF HISTOLOGY, DESCRIPTIVE AND PRACTICAL. For the use of Students. New and enlarged edition. In one handsome octavo volume of 311 pages, with 325 illustrations. Cloth, $\$ 300$. Just ready.
SCHMITZ AND ZUMPT'S CLASSICAL SERIES. In royal 18 mo . ADVANCED LATIN EXERCISES. Cloth, B0 cents; half bound, 70 cents.
SALLUST. Cloth, 60 cents; half bound, 70 cents.
NEPOS. Cloth, 60 cents; half bound, 70 ets.
VIRGIL. Gloth, 85 cents ; half bound, $\$ 1$.
CURTIUS. Cloth, 80 cents; half bound, 90 cents.
SCHREIBER (JOSEPH). A MANUAL OR TREATMENT BY MAS. SAGE AND METHODICAL MUSCLE EXERCISE. Translated by Walter Mendelson, M.D., of New York. In one handsome octavo volume of 274 pages, with 117 fine engravings.
SEILER (CARL) A HANDBOOK OF DIAGNOSIS AND TREATMENT OF DISEASES OF THE THROAT AND NASAL CAVITIES. New (4th) edition. In one very handsome 12 mo . volume of about 400 pages, with about 100 illustrations, and 2 beautifully colored plates. Preparing.
SENN (NICHOLA8). SURGICAL BACTERIOLOGY. New (second) edition. In one handsome octavo volume of 268 pages, with 13 plates, 10 of which are colored, and 9 engravings. Cloth, $\$ 200$. IES OF CLINICAL MANUALS. A series of authoritative monographs on Important elinical subjects, in 12 mo . volumes of a bout 550 pages, well illustrated. The following volumes are now ready : Broadbent on the Pulse ($\$ 175$) ; Yeo on Food in Health and Disease $(\$ 2)$; Ball on the Rectum and Anus ($\$ 225$) ; Carter and Frost's Ophthalmic Surgery (\$2 25); Hutchinson on Syphilis (\$2 25); Marsh on Diseases of the Joints ($\$ 2$); Morris on Surgical Diseases of the Kidney ($\$ 225$) ; Owen on Surgical Diseases of Children ($\$ 2$) ; Pick on Fractures and Dislocations (\$2); Butlin on the Tongue ($\$ 350$); Savage on Insanity and Allied Neuroses (\$2); and Treves on Intestinal Obstruction, (\$2). The following is in press: Lucas on Diseases of the Urethra.
For separate notices, see under various authors' names.
SIMON (W.) MANUAL OF CHEMISTRX. A Guide to Lectures and Laboratory work for Beginners in Chemistry. A Text-book specially adapted for Students of Pharmacy and Medicine. New (3d) edition. In one 8 vo . volume of 477 pages, with 44 woodcuts and 7 plates showing colors of 56 tests. Cloth, $\$ 325$.
SLADE (D.D.) DIPHTHERIA; ITS NATURE AND TREATMENT. Second edition. In one royal 12 mo vol. pp. 158. Cloth, $\$ 125$.
SMITH (EDWARD), CONSUMPTION ; ITS EARLY AND REMEDIABLE STAGES. In one 8vo, vol. of 253 pp . Cloth, $\$ 225$.
SMITH (J. LEWIS). A TREATISE ON THE DISEASES OF IN. FANCY AND CHILDHOOD. Seventh edition, revised and enlarged In one large 8 vo. volume of 881 pages, with 51 illustrations. Cloth, $\$ 450$; leather, $\$ 550$.
SMITH (STEPHEN). OPERATIVE SURGERY. Second and thoroughly revised edition. In one very handsome 8 vo, volume, of 892 pages, with 1005 illustrations. Cloth, \$4; leather, \$5. TION, SYMPTOMS, LESIONS, PREVENTION AND TREAT. MENT. In one handsome 12 mo . volume of 163 pages, with a chart showing routes of previous epidemics. Cloth, $\$ 125$.
STILLE (ALFRED). THERAPEUTICS AND MATERIA MEDICA. Fourth revised edition. In two handsome octavo volumes of 1936 pages. Cloth, $\$ 10$; leather, $\$ 12$,
STILLE (ALFRED) AND MAISCH (JOHN M.) THE NATIONAL DISPENSATORY: Containing the Natural History, Chemistry, Pharmacy. Actions and Uses of Medicines. Including those recognized in the latest Pharmacopelias of the United States, Great Britain and Germany, with numerous references to the French Codex. New (fourth) edition, revised and enlarged with an Appendix. In one magnificent imperial octavo volume of 1794 pages, with 311 necurate engravings on wood. Cloth, $\$ 725$; leather, raised bands, $\$ 8$; very handsome balf Rassia, raised bands and open back, \$9. Also, furnished with Ready Reference Thumb letter Index for $\$ 1$ in addition to price in any of the above styles of binding.
STIMSON (LEWIS A.) A TREATISE ON FRACTURES AND DISLOCATIONS. In two handsome octavo volumes. Vol. I., Fractures, 582 pages, 360 beautiful illustrations. Vol. II., Dislocations, 540 pp., 163 Hilustrations. Complete work, eloth, $\$ 550$; leather, $\$ 750$. Either volume separately, eloth, $\$ 3$; leather, $\$ 4$.

A MANUAL OF OPERATIVE SURGERY. New edition. In one royal 12 mo . volume of 503 pages, with 342 illustrations. Cloth, $\$ 250$.
GTUDEN IS' QUIZ SERIES. Manuals in question and answer for Students and Practitioner. Thirteen 12 mo volumes, carefully illus. trated, bandsomely bound in limp cloth, and issued at a low price. 1. Anatomy (double number); 2. Physiology; 3. Chemistry and Physics; 4. Pathology, Histology and Bacteriology; 5. Materia Medien and Therapeutics; 6. Practice of Medicine ; 7. Surgery (double number) ; 8. Genito Urinary and Venereal Diseases ; 9. Diseases of the Skin; 10. Diseases of the Eye, Ear, Throat and Nose ; 11. Obstetrics; 12. Diseases of Women; 13. Diseases of Children. Vols. 1, 3, 4, 5, 6, 8, 9, 11, and 12 shortly. Remaining vols will be ready in early fall. Full specimen circular on application to publishers
STUDENTS' SERIES OF MANUALS. A series of fifteen Manuals by eminent teachers or examiners. The volumes are pocket-size 12 mos of from 300-540 pages, profusely illustrated, and bound in red limp eloth. The following volumes may now be announced: Luff's Manual of Chemistry, $\$ 200$; Bruce's Materia Medica and Therapeutics, new (5th) edition, $\$ 150$; Treves' Manual of Surgery (monographs by 33 leading surgeons), 3 vols., per set 8600 ; Bell's Comparative Paysiology and Anatomy, \$2 00; Robertson's Physiologieal Physics, $\$ 200$; Gould's Surgical Diagnosis, $\$ 200$; Klein's Elements of Histology (4th edition), \$175; Pepper's Surgical Pathology, $\$ 200$; Treves' Surgical Applied Antomy, $\$ 200$; Power's Human Physiology, second edition, $\$ 150$; Ralfe's Clinical Chemistry, $\$ 150$; and Clarke and Lockwood's Dissector's Manual, \$1 50. The following is in press : Pepper's Forensic Medicine.
For separate notices, see under various authors' names.
STURGES (OCTAVIUS), AN INTRODUCTION TO THE STUDY OF CLINICAL MEDICINE. In one 12 mo , vol. Cloth, $\$ 125$. SUPTON (JOHN BLAND). SURGICAL DISEASES OF THE OVA. REES AND FALLOPIAN TUBES. Ineluding Abdominat Pregnancy. In one 12 mo . volume of 513 pages, with 119 engravings and 5 colored plates. Cloth, $\$ 3$. Just ready.
TAIT (LAWSON), DISEASES OF WOMEN AND ABDOMINAL SURGERY. In two handsome octavo volumes. Vol. 1. contains 546 pages and 3 plates. Cloth, $\$ 300$. Vol. II., preparing. second revised English edition. Edited by Tilbury Fox, M. D. In one bandsome 12 mo , volume of 362 pp , with illus. Cloth, $\$ 150$.

- ON THE SIGNS AND DISEASES OF PREGNANCY. From the second English edition. In one 8 vo . volvme of 490 pages, with four colored plates and numerous woodents. Cloth, $\$ 425$. AYLOR (ALFRED S.) MEDICAL JURISPRUDENCE. Ninth American from tweifth Einglish edition, specially revized by Clark Bell, Bsq, of the N. Y. Bar. In one large octavo volume, of about 900 pages, with illustrations. Shart/y.
-ON POISONS IN RELATION TO MEDICINE AND MEDICAL JURISPRUDENCE. Third Ameriean from the third London edition. In one octave volume of 788 pages, with 104 illustrations. Cloth, $\$ 550$; leather, $\$ 650$.
TAYLOR (ROBERT W.), A CLINICAL ATLAS OF VENEREAL AND SKIN DISEASES. Ineluding Diagnosis, Prognosis, and Treatment In eight large folio parts, measuring 14×18 inches, and comprising 213 beautiful figures on 58 full-p ge chromo-lithographie plates, 85 fine engravings, and 425 pages of text. Complete work, now ready. Price per part, sewed in heavy embossed paper, $\$ 250$. Bound in one volume, half Russia, $\$ 27$; balf Turkey Moroceo, \$28. For sale by subscription only Address the Pub. lisbers. Specimen plates by mail on receipt of ten cents THE PATHOLOGY AND TREATMENT OF VENEREAL DIS. EASES. Being the sixth edition of Bumstead and Taylor. In one very handsome 8ro. volume of about 900 pages, with about 150 en gravings as well as chromo-lithographic plates. Preparing.
THOMAS (T, GAILLARD) AND MUNDÉ (PAUL F.) A PRACTICAL TREATISE ON THE DISEASES OF WOMEN. New (sixth) edition, thoroughly revised by Paul F. Mundé, M.D. In one large and bandsome octavo volume of 824 pager, with 347 illustrations. Cloth, $\$ 5$; leather, $\$ 6$.
T OMPSON (SIR HENRY). OLINICAL LECTURES ON DISEA SES OF THE URINARY ORGANS. Second and revised edition. In one octavo volume of 203 pages, with illustrations. Oloth, $\$ 225$.
THOMPSON (SIR HENRY), THE PATHOLOGY AND TREATMENT OF STRIOTURE OF THE URETHRA AND URINARY FISTULA. From the third English edition. In one octavo volnme of 359 pages, with illustrations. Cloth, \$3 50.
TODD (ROBERT BENTLEY). CLINICAL LECTURES ON CERTAIN ACUTE DISEASES. In one 8 vo . vol. of 320 pp , eloth, $\$ 250$.
TREVES (FKEDERICK). OPERATIVE SURGERY. In two octavo -volumes containing 1550 pages, with 422 illustrations. Cloth, 89 ; leather, $\$ 11$. Jost ready.
- A MANUAL OF SURGERY. In Treatises by 33 leading sur-
- geons. Three 12 mo . volumes, containing 1866 pages, with 213 engravings. Price per set, $\$ 6$. See Students' Series of Manuals, p. 14.

THE STUDENT'S HANDBOOK OF SURGICAL OPERATIONS. In one 12 mo , volume of 508 pages, with 94 illustrations. Cloth, $\$ 2$ 50. Just ready.
SURGICAL APPLIKD ANATOMY, In one 12 mo . volume of 540 pages, with 61 illastrations. Cloth $\$ 200$. See Students ${ }^{1}$ Series of Mannals, page 14.

INTESTINAL OBSTRUCTION. In one 12 mo . volume of 522 pages, with 60 illustrations. Cloth, $\$ 200$. See Deries of Clinical Mammals, p. 13. KE (DANIEL HACK). THE INFLUENCE OF THE MIND UPON THE BODY. Second edition. In one handsome 8vo. vol. of 467 pages, with 2 colored plates. Cloth, $\$ 3$. AUGHAN (VICTOK C.), and NOVY (FRED'K G.) PTOMAINBS AND LEUCOMAINES, AND BACTERIAL PROTEIDS, OR THE CHEMICAL FACTOHS IN THE CAUSATION OF DISEASE. New (second) edition. In one handsome 12 mo . volume of 389 pages. Cloth, $\$ 225$.

SITING LIST. THE MEDICAL NEWS VISITING LIST for 1893.
Four styles: Weekly (dated for 30 patients) ; Monthly (undated, for 120 patients per month) ; Perpetual (undated for 30 patients each week) ; and Perpetual (undated for 60 patients each week). Th $\rightarrow 60$ patient book consists of 256 pages of assorted blanks. The first three styles contain 32 pages of important data, thorougbly revised, and 176 pages of assorted blanks. Each in one vol., price, $\$ 1.25$. With thumb-letter index for quick use, 25 cents extra. Speeial rates to advance-paying subscribers to The Medical News or The American Journal, or both. See p. 1. ALSHE (W. H.) PRACTICAL TREATISE ON THE DISEASES OF THE HEART AND GREAT VESSELS. 3d American from the $3 d$ revised London edition. In one 8 vo , vol. of 420 pages. Cloth, $\$ 3$. ATSON (THOMAS), LECTURES ON THE PRINCIPLES AND PRACTICE OP PHYSIC. A new American from the fifth and enlarged English edition, with additions by H. Hartshorne, M.D. In two large 8vo. vols. of 1840 pp ., with 190 cuts. Clo., $\$ 9 ;$ lea., $\$ 11$. ELLS (J. SOELBERG), A TREATISE ON THE DISEASES OF THE EYE. In one large and handsome octavo volume. EST (CHARLES). LEOTURES ON THE DISEASES PECULIAR TO WOMEN. Third American from the third English edition. In one ustave volume of 543 pages.' Cloth, $\$ 375$; leather, $\$ 475$. ON SOME DISORDERS OF THE NERVOUS SYSTEM IN CHILDHOOD. In one small 12 mo . vol. of 127 pages. Cloth, $\$ 1$. HARTON (HENRY R), MINOR SURGERY AND BANDAGING. In one very handome 12 mo . volume of 498 pages, with 403 illustrations, many of which are photographic. Cloth, \$3. HITLA (WILLIAM). DICTIONARY OF TKEATMENT, OR THERAPEUTIC INDEX. Including Medical and Surgieal Therapeuties. In one square octavo volume of 917 pages. Cloth, $\$ 4$.
WILLLAMS (CHARLES J. B and C.T.) PULMONARY CONSUMP. TION: ITS NATURE, VARIETIES AND TREATMENT. In one octavo volume of 303 pages. Cloth, \$2 50. ILSON (ERASMUS). A SYSTEM OF HUMAN ANATOMY, A new and revised American from the last Binglish edition. Illustrated with 397 engravings on wood. In one handsome octavo volume of 616 pages. Cloth, $\$ 4$; leather, $\$ 5$.

- THE STUDENT'S BOOK OF CUTANEOUS MEDICINE. In one handsome royal 12 mo . vol. Cloth, $\$ 350$. INCKEL ON PATHOLOGY AND TREATMENT OF CHILDBED. With additions by the Author. Translated by James R. Chadwiek, A.M., M.D. In one handsome 8 vo . vol. of 484 pages. Oloth, $\$ 4$. OHLER'S OUTLINES OF ORGANIC OHEMISTRY. Translated from the 8 th German edition, by Ira Remsen, M.D. In one 12 mo . volume of 550 pages. Cloth, $\$ 300$. OODHEAD (G, SIMS), PRACTICAL PATHOLOGY. A Manual for Students and Praetitioners. In one beantiful octavo vol. of 497 pages, with 136 exquisitely colored illus.
YEAR-BOOK OF TREATMENT FOR 1892. A Oritical Review for Practitioners of Medicine and Surgery. In contributions by 20 well-known medical writers. 12 mo ., of 494 pages. Cloth, $\$ 150$. Ready shortly. In combination with The Medical News and The American Journal of the Medical Sciences, 75 cents. See page 1. EAR-B00K OF TREATMENT FOR 1891, similar to above. Cloth, \$1 50. EAR-B00K OF TREATMENT FOR 1886, 1887 AND 1890. Similar to above. 12mo., $320-841$ pages. Limp eloth, $\$ 125$. 0 (I. BURNEY) ON FUOD IN HEALTH AND DISEASE. In one 12 mo . volume of 590 pages. Cloth, \$2.. See Series of Clinical Manuals, p. 13.
YOUNG (JAMES K.). ORTHOPABDIC SURGERY. In one 12 mo . volume of 400 pages, with illustrations. Preparing.

$$
\begin{aligned}
& y=103 \\
& 6, d e y^{2} \\
& 6,
\end{aligned}
$$

LIBRAKY OF MEDICINE

LIBRAKY OF MEDICINE

ヨNIDIGヨW to kyvagll TVNOIVNLIBRARY OF MEDICINE

NATIONAL LIBRARY OF MEDICINE

NATIONAL LIBRADY OF MEDICINE

马NIDIのヨW કO Aมvag！TVNOLYN

NATIONAG LIBRARY OF MEDIGINE
ヨNiつIdaw 30 kavasil TVNOIVN

NATIONAL LIBRARY OF MEDICINE
NATIONAL LIBRARY OF MEDICINE

ヨNIDIGヨW to גzWygit TVNOUVN

NATIONAL LIBRARY OF MEDICINE

ヨNIDIG3W to kyvali TVNOILN

？

 ZNIDIGZW IO גyW\＆日IT TVNOIVN
$\begin{array}{ll}2 & 3 \\ 8 & 8\end{array}$

3NIDIG3W to ג8VYgiT TVNOIFN
3 N

IEY OF MEDICINE

Henth Service ac
and Weifore，Fublic
d． V 3 B 17 TVNOHLVN

ARY Of MEDICINE

MEDICINE

NATIONAL LIBRARY OF MEDICINE

引NIDIO3W 10 kצYagic TVNOIVN

NATIONAL LIBRARY OF MEDICINE

उNIDIGJW IO AצVYGIT TVNOIVN

3
$\frac{3}{3}$
$\frac{1}{5}$
$\frac{1}{4}$
$\frac{1}{4}$

NATIONAL LIBRARY OF MEDICINE

马NIDIGZW iO AyVygIT TVNOHVN

NATIONAL LIBRARY OF MEDICINE

ZNIDIO3W 10 ג

Heolih Setrice
NATIQNAT LIBRARY OF MEDICINE

PW＇oprayrige

[^0]: Origin.-Apócynum androsæmifólium, Linné. Natural order, A pocynaceæ, Echitideæ.

 Habitat.-North America, chiefly northward.
 Description.-Long, cylindrical, branched, about 8 millimeters ($\frac{1}{3}$ inch) or less thick; bark pale brownish, wrinkled, transversely fissured, thickish; internally white, containing a circle of stone-cell groups, and rather small laticiferous ducts; unpleasantly bitter, easily separable from the tough, white, porous, and tasteless wood, which has narrow medullary rays. The rhizome has a central pith.

[^1]: Asclepias incarnata.

 Hydrastis.
 Caulophyllum.

