Dr. MIchael Heidelberger Columbia University New York

Dear Ir. Heidelberger,

\section*{| Mins | K 5 |
| :--- | :--- |}

I am extremely happy to get your letter. Naturally enough, no one else has been sufficiently interested to come forward with any intelligent objections. So far the reaction has been "anything can be got into an equation", which may be true but is a particularly irritating form of criticism. I will do my best with the points you raise
p. 457. The general theory requires no asaumption concerning a. jeginning on p. 461, however, multivalence is introduced, to see in what way specific aggregation will affect the postulated equilibria. The conclusion is reached that no great dist rbance $\nmid / /$ results so long as selective precinitation is ignored. Therefore, equation [4] is approximately valid, within the framework of the general theory, independently of a.

Your objection to my choice of initial reactions is disturbing, because this is indeed the fundamental and fatal point. I shall try, therefore, to clarify my argunent, which is not always perfectly clear in my own mind. The renee of precipitation, as in your experiments with albumin, covers A_{0} / G_{0} ratios from about 2 to 10 , i. e. antibody is in moleculer excess throughout. Tor explicitness, consider the mixture of 3 mols A to 1 mol G. Ignoring zrd order combination, only 1 reaction is possible momentarily: $G+A=G A$. But there are now the following possibilities:

$G+A=G A$	(a)
$G A+A=G A_{2}$	(b)
$G A+G=G_{2} A$	(c)
$G A+G A=G_{2} A_{2}$	(d) etc.

While all these are possible, they are by no means equally probable. Thus the concentration of A is $3 x$ that of G at the outset, and the latter rapidly disappears as $X \mid=$ the reaction prodeeds. The concentration of G would be virtually nil by the time $x=2$, at which time the concentration of A is still $=G_{0}$. Accordingly, the reactions of type (b) are overwhelmingly more frequent than those of type (c). As for reaction (d), let us imagine that all G has combined to yield GA. Ue have then 2 mols of A to one of GA. Hence reaction (b) is roughly twice as probable as reaction (d), and the disproportion would be greater in the actual disordered system. In general, agoregations are slower than the initial reactions.

However, aggregations (d) do occur simultaneously with the initial reactions, of course, and the separation is purely conceptual. The advantage is simplicity: conpare [4] and [7]. Equation 4 deals wolly with the hypothetical initial reactions. It can be applied to actual precipitation only as an apnroximation. It is necessary to evaluate the degree of apnroximation.

Beginning on p .461 , a general reaction is set up leading to eq. [7]. Hore no separation into initial reactions has been made and no possible reaction excluded. It is true that multivalence has been assmed, but some assumption is necessary for explicitness. The result is perfectly general and valid (except that selective precipitation is ignored), but is not very useful. The remainder of the discussion aims to show by a series of aporoximations that [7]is very similar to the simpae equation for the imaginary initial equilibrium [4], in other words, the real equilibrium is not very different from the initial equilibriun.

The equilibrium is not strictly speaking influenced nore by G surfaces than y those of A. However, the initial equilibrium is between uncombined antibody, and the residual antigenic surfaces, i.e. antibody is univalent by definition in the initial reactions. It is true that the intpoduction of these reactions is somewhat artificial, but as I mention above, the result is not contingent on this assumption. The initial reactions are not wholly hypothetical, however, for experimental conditions cen be so
chosen thet these alone occur.
p. 460. This objection arises from mistake in defining an equivalence point different
from your equivalence zone. I should have used a new term. Definitions are on pages 457 and 500 respectively. According to my definition, thequivalence point is at $\mathrm{x}=1$
when $g=a$, and usually wo:ld be slightly greater tinan one. The absolute limits are 0 and 1.3 (p. 474). However, as I define it, the equivalence point is of lithe experimental interest.
p. 461. I agree that your reagglutination experiments should be interpreted in the light of your theory, but a ossible objection could be made that the effect is due to removal of antibody, or of something else (Jones and Orcutt?). Iseem to remember that Hooker made this objection. Duncan's experiments seem quite unequivadal to me, though this may be my prejudice.

As to why specific and non-specific forces necessarily op ose, the sentence on p. 461 does not seem to make much sanse, and does not I think refer to this. The footnote on page 491, however, makes this statement. The argument is tiis. The effect of selective precipitation (which I think must be taken into account if a is multivalent) is to cause more antibody to be left over then [4] predicts in the region above $g / 2=\Omega$, while the effect of non-specific precipitation, which ultimately means a reaction of A with A, is to reduce the dissociation of A from the precipitate.
p. 469. Should read "For the case $x>(g-1) \ldots$...
p. 474. Again the definition of equivalence point.
n. 475. "aximal precipitation of A should occur, as you h ve found, with largest amount of G comp atible with memaxixikaximex reasonably complete precinitation of initial compounds. However, since (my) equivalence point is in the inhibition zone, the region of comp lete precipitation necessarily lies above tris, i. e. with residual A in excess. See also p. 500. I am afraid I haven't done the best with terminology.
p. 479. The T-A system certainly hes something peculiar, see p. 504, footnote. Do you have any explanation for the peculiarities of horse antiprotein systems? I am not entirely satisfied with Pappenheimer's dissymetry, tho it does explain a lot.
p. 480-2. I agree that there is no difference other than effects of concentration as between constant-G and constant-A titrations. rowever, the optimal ratios have considerable significance in connection with the restricted theory. Personally, I question whether my treatment of the kinetics of precioitation will ever be of any use, but so far as the theory goes I believe it hangs together. Please notice that no difference in composition of precipitates for the two titrations is predicted, except for the small volume-effect. Sut the optima necessarily lie at different pdints. These ratios orovide the on'y independent estinate of g , and the lock of data on this noint is a hendicap in testing the theory.

Papur TI. So far as any practical use is concerned, I an sure your linear equation is irreplaceable. 'y equation is not linear, and I felt that it was nore instructive to plot it as a deviation fron the straicht lines of my fig. 2.

As for the varues of k, g, and a, these are evaluated in a strictly unarbitrary way, as will perasps be made clearer in my 4 th paper, winch you he v robably seen in ws. kxixamex As for k itself, sometling must vary from serum to serum. It seems to me a dissociation constat is a re plavible variable than a valence, but this is a matter
of taste. I hove made quite a point of the constancy O ? g, but I must admit the data available are not very encouraging. This of course hangs on optimal ratios. (table 4) 2
p. 499. I am sorry about the misquote. I recall at the time I couldn't seem to find exact y what I thought I hod read in your papers. I shond have got in touch with you.
p. 502. The nature of the "valence" is very much up in the air, as you will doubtless agree. I hove recently got in trouble with one of the referees (Boyd?) over this. I don't see how the p icture can be simplified very much in the light of results like those of Landsteiner add Venderscheer, J. \therefore. 1940, 71, 445.
7. 503. "here is indeed evidence for heterogeneity of A, and I h eve not meant to deny it. Wy argument is, that with the exception on certain horse era, there is not much indication that the diversity is sufficient to be a strong factor in determining the behavior of the system. Apart from this, I have suggested the variable is k, rather than g. In any case, I do not see any evidence that there are valences directed toward different determ neat stmactures ("immological dissimilarity" p. 502), on the contrary Landsteiner cited above.
B.aper III. I have tried not to ignore unfavorable results.
pu. 516-517. I have tried to substitute a single variable, k, for your two variables g and a. k would of course affect the entire rage of reaction, for that make matter so do g and a (equation [4]).
p. 518. I agree that recovery of undifferentiated A by dissociation evidences uniformity. However, the removal mix by absorption of a small fraction of A with unusually small k, and therefore possessing crosoreactivity, wi ht, not be detectable in the homologous reaction, but would of course in the heterologous.

If the change in flocculation rate is due to removal of a fraction with small k , it ought to occur on sorption with either homol. or heterol. G, but perhaps more sharply in the letter case.
p. 522. I missed the point about dialysis. Is it possible the the precipitate once formed in the presence of salt is sufficiently saturated by virtue of its structure so that the subsequent addition of a would be extremely slow? This result also seems to contradict your explanation for the effect of salt.

[^0]Sincerely

[^0]: posIt af lect the compoatiot of the preetitate at optimal ratios determined with and without saltupertively? Are the compositions at optimal ratios determined with high and low salt respectively, different?

 I notice you have not questioned the assumption of reversibility of the initial reactions, also fundamental. Some experiments with phage hove disappointingly failed to demonstrate reversibility. I have been struggling for a couple of years with a theory developed along the lines of yours, assuming irreversibility. Of two results, one is non-integragle. In general, I would guess that the eventual conclusion will be that the reactions ca: ot be treated as entirely irreversible. Probably you have ax am reached t. is conclusion long ago. If I thought you hod the time, I would like you to look at the thing as far as I have got. Possibly you could make something of it; I doubt if I can.

 I have covered a lot of paper. I hope that doesn't mean it is still confused. I am satisfied that what I cant say is not understood. So I would like to try again on the worst prints, if you will p oint them out.

