Howard (1970), Bates (1973), Sharp et al. (1973), Fletcher et al. (1976), Fletcher and Peto (1977), Bosse et al. (1981), Beck et al. (1982), and Clement and van de Woestijne (1982). Although these investigations did not characterize the course of airflow obstruction across the entire human lifespan, the results provide a conceptual model for considering its development (Figure 15). Ventilatory function, generally measured by the $F E V_{1}$, increases during childhood and reaches a maximum level during early adulthood (Cotes 1979; Knudson et al. 1983). From this peak; the FEV_{1} gradually and progressively declines with age. In people who develop airflow obstruction, a similar gradual loss of function occurs, but at a more rapid rate (Fletcher et al. 1976; Speizer and Tager 1979). Continued excessive loss of FEV ${ }_{1}$ eventually results in symptomatic airflow obstruction when ventilatory function reaches a level at which activities are limited and dyspnea occurs. Evaluation by a physician for symptoms may lead to a clinical diagnosis at this point in the natural history of the disease process. This model may not satisfactorily describe the development of airflow obstruction in all individuals (Burrows 1981), but the accumulating evidence, reviewed below, indicates that a sustained excessive loss of ventilatory function most often leads to the development of clinically important chronic airflow obstruction.

In the conceptual model (Figure 15), there are three different measures of the frequency of airflow obstruction in a particular population: the prevalence of reduced ventilatory function as measured by the FEV_{1}, the $\mathrm{FEV}_{1} / \mathrm{FVC}$ ratio, or other physiological parameters; the prevalence of physician-diagnosed airflow obstruction; and the frequency of excessive functional loss in a population followed over time. The first two measures can be determined from a single cross-sectional survey, whereas the third requires longitudinal observation. At present, scant data are available for the third category. The prevalence of physician-confirmed airflow obstruction is determined not only by the proportion of affected people in the population, but also by the patterns of medical care access and usage and the diagnostic practices of individual physicians. Furthermore, the clinical labels applied by physicians to people with airflow obstruction are variable and may include "chronic bronchitis," "emphysema," "COLD," and other terms. Thus, estimates of disease prevalence based on reported physician diagnoses may differ from those derived from physiological assessment.

Prevalence of Airflow Obstruction

Numerous populations throughout the world have been surveyed to assess the prevalence of airflow obstruction (Stuart-Harris 1968a, 1968b; Higgins 1974). Most often, the investigative techniques have included a respiratory symptoms questionnaire and measurement of pulmonary function, generally with a spirometer or peak flow meter.

FIGURE 15.-Decline of FEV_{1} at normal rate (solid line) and at an accelerated rate (dashed line)
NOTE: A: person who has attained a "normal" maximal FEV, during lung growth and development; B: person whose maximal FEV, has been reduced by childhood respiratory infection. SOURCE: Samet et al. (1983).

The latter technique has the disadvantage of effort dependence. Early recognition of the potential problem of observer bias led to the development of standardized methods (Cochrane et al. 1951; Higgins 1974; Ferris 1978). Thus, most investigators throughout the world have used the British Medical Research Council questionnaire in the original form or with some modifications (Samet 1978). Standardization has been less uniform for lung function measurements, but minor variations in procedures would not introduce important differences in disease prevalence among the various populations examined.
Although many different populations have been surveyed since the 1950 s , surprisingly few published reports provide data concerning the prevalence of airflow obstruction in the general population
(Tables 4 and 5). Comparisons among the available studies are limited by varying methodologies and inconsistent approaches in calculating rates. For example, only crude rates are available in some reports, and reference populations for age standardization also vary. The investigations summarized in Tables 4 and 5 were selected because they offer estimates of the prevalence of airflow obstruction in defined community-based samples. Those reports that describe mean levels of lung function parameters but not their distributions were excluded. Investigations of specific occupational groups were also excluded because prevalence estimates based on such populations may be biased by the overrepresentation of healthy persons (Monson 1980) and workplace exposures may have affected the frequency of disease.
For the United States, the available information spans the time period 1961 to 1979 and covers most geographic regions (Table 4). Regardless of the definition, it is apparent that airflow obstruction is common among adults in the United States. A higher proportion of men than women is affected, and the prevalence increases with age (Ferris and Anderson 1962; USPHS 1973; Lebowitz et al. 1975; Detels et al. 1979; Samet et al. 1982). Few minority populations have been studied. In New Mexico, Hispanic whites had a lower prevalence of physician-diagnosed current chronic bronchitis or emphysema than non-Hispanic whites (Samet et al. 1982). Although blacks have been included in several surveys (Bouhuys et al. 1979), prevalence estimates for this racial group have not been published. The available data (Table 4) do not permit a satisfactory assessment of changes in prevalence rates with time over the years 1961 to 1979.

The National Health and Nutrition Examination Surveys (NHANES 1) included spirometry in their evaluation of a representative sample of the U.S. population. The numerical values for these measures are reported by age, sex, and smoking status for the white population in the tables in the appendix to this chapter. The changes in mean values of these measures between age groups are also presented for white male and female smokers and nonsmokers in Figures 16 through 23. Differences between smokers and nonsmokers are evident for each of these spirometric measures. These differences are portrayed for successive age groups at one point in time, and therefore cannot be used to describe the changes with age or smoking status that one would expect in an individual or population followed sequentially. These data represent only those people in the study population who were willing and physically able to maximally exert themselves on the various spirometry tests. Others wece disgualified by the examining physician because of existing medical conditions. The sampling nonresponse was higher among segments of the population expected to perform less well on the test including mio with existing airflow limitation. Therefore,

TABLE 4.-Prevalence of indices of airflow obstruction in selected U.S. adult populations

$\propto \quad$ TABLE 4.-Continued

Author, year of study, location, reference	Number and type of population	Index	

TABLE 4.-Continued

Author, year of study, location, reference	Number and type of population	Index

${ }^{\text {a }}$ Ageadjusted rate.
*Age and sex-adjusted rate.
$\stackrel{\infty}{\infty}$ TABLE 5.-Prevalence of indices of airflow obstruction in selected adult non-U.S. populations

Author, year of study, location, reference	Number and type of population	Index	Prevalence (per 100)	
Anderson et al., 1963, Chilliwack, British Columbia (1965)	558 men and women, community sample	Obstructive lung disease, including wheezing, dyspnea, or $\mathrm{FEV}_{1} / \mathrm{FVC}$ ratio less than 60\% $\mathrm{FEV}_{1} / \mathrm{FVC}$ ratio less than 60\%	Men Women Men Women	$\begin{array}{r} 12.6^{\prime} \\ 8.7^{\prime} \\ \\ 7.3^{\prime} \\ 3.5^{\prime} \end{array}$
Mimica, 1969, Croatia, Yugoslavia (1975)	4,214 men and women, samples of six communities	$\mathrm{FEV}_{1} / \mathrm{FVC}$ ratio less than 60\%	Men Women	$\begin{aligned} & 8.3^{\prime} \\ & 1.9^{\prime} \end{aligned}$
Sawicki, 1968, Krakow, Poland (1977)	4,355 men and women, community sample	$\mathrm{FEV}_{1} / \mathrm{FVC}$ ratio less than 60\%	Men Women	$\begin{aligned} & 7.0^{\prime} \\ & 5.0^{\prime} \end{aligned}$
Huhti et al., 1968-1970, Hankasalmi, Finland (1978)	1,162 men, community sample	$\mathrm{FEV}_{1} / \mathrm{FVC}$ ratio less than 60\%	Men	$7.6{ }^{1}$
Brown and Gajdusek, year not stated. Western Caroline Islands (1978)	240 men and women, community sample	Chronic obstructive airway disease: clinical and spirometric criteria	Men and women	7.91
Anderson, year not stated, Lufa, Papua New Guinea (1979)	770 men and women, 25 years or older, community sample	FEV ${ }_{1}$ /FVC ratio less than 60\%	Men Women	$\begin{aligned} & 9.0^{1} \\ & 3.6^{1} \end{aligned}$

${ }^{1}$ Crude rate.
the estimated means are probably overestimates of the true population values. Nevertheless, the figures clearly portray the magnitude of the effect that smoking exerts on expiratory flow rates in a national population sample.

Airflow obstruction is also prevalent outside the United States (Table 5). The disease can be identified in both technologically advanced and less developed populations. As in the United States, in other countries the prevalence of airflow obstruction is higher among men than among women.

Determinants of Airflow Obstruction

Introduction

Current understanding of the natural history of airflow obstruction suggests that risk factors operative during both childhood and adulthood may influence the development of disease. In the conceptual model proposed in Figure 15, childhood factors night increase the risk of airflow obstruction by lowering the maximum FEV_{1} attained during lung growth and development, by predisposing to increased FEV_{1} decline during adulthood, or by both mechanisms (Speizer and Tager 1979). During adulthood, in the model of Figure 15 , risk factors for airflow obstruction must increase the rate at which lung function deteriorates.

Many endogenous and exogenous determinants of the development of airflow obstruction have been postulated (Tables 6 and 7). However, in spite of over 30 years of intensive investigation, the available data are definitive only for cigarette smoking and for $\alpha_{1^{-}}$ antitrypsin deficiency (Speizer and Tager 1979; USDHHS 1980).

Cigarette Smoking and Chronic Airflou Obstruction

In nearly every population studied worldwide, cigarette smoking is the predominant determinant for the prevalence of airflow obstruction (Tables 8, 9, and 10). The uncommon exceptions primarily involve populations in whom severe chest infections or wood smoke exposure may have an etiological role (Woolcock et al. 1973; Anderson 1979a). The relationship between cigarette smoking and airflow obstruction has been variably described in the published reports. In some, the prevalence of airflow obstruction has been considered; in others, mean values of lung function parameters have been compared across categories of smokins use. In several more recent analyses, multiple regression or other multivariate techniques have been used for more careful characterization of doseresponse relationships. Because the epidemiologic criteria for airflow obstruction are genorally based on the $F P V_{1}$, this section focuses on studies that have included measuramens of this parameter. The selected studies involve commmety mamies Tubles 8 and 9 and

FIGURE 16.-Mean FEV ${ }_{1}$ for white persons by smoking status, sex, and age, United States, 1971-1975
NOTE: Values adjusted by the direct method to reflect the age distribution of the U.S. population at the midpoint of the survey.

SOURCE: National Center for Health Statistics. Unpublished data from the first National Health Nutrition and Examination Survey (NHANES 1).

FIGURE 17.-Mean flow at 25 percent of FVC for white persons by smoking status, sex, and age, United States, 1971-1975
NOTE: Values adjusted by the direct method to reflect the age distribution of the US population at the midpoint of the survey.
SOURCE: National Center for Health Statistics. Unpublished data from the first National Health Nutrition and Examination Survey (NHANES 1).

FIGURE 18.-Mean flow at 50 percent of FVC for white persons by smoking status, sex, and age, United States, 1971-1975
NOTE: Values adjusted by the direct method to reflect the age distribution of the US population at the midpoint of the survey

SOURCE Natmal Center for Health Statistics linpubhshed data from the first National fealth Nutrition and Examination Survey NHANES 1.

FIGURE 19.-Mean flow at 75 percent of FVC for white persons by smoking status, sex, and age, United States, 1971-1975
NOTE: Values adjusted by the direct method to reflect the age distribution of the U.S. population at the midpoint of the survey.

SOURCE: National Center for Health Statistics. Unpublished data from the first National Health Nutrition and Examination Survey (NHANES 11 .

FIGURE 20.-Mean FEV $_{1}$ /FVC ratio for white persons by smoking status, sex, and age, United States, 1971-1975
NOTE: Values adjusted by the direct method to reflect the age distribution of the U.S. population at the midpoint of the survey.
SOURCE: National Center for Health Statistics. Unpublished data from the first National Health Nutrition and Examination Survey (NHANES 1).

FIGURE 21.-Mean MMEF for white persons by smoking status, sex, and age, United States, 1971-1975
NOTE: Values adjusted by the direct method to reflect the age distribution of the U.S. population at the midpoint of the survey.

SOURCE: National Center for Health Statistics. Unpublished data from the first National Health Nutrition and
Examination Survey (NHANES 1).

FIGURE 22.-Mean MEFR for white persons by smoking status, sex, and age, United States, 1971-1975
NOTE: Values adjusted by the direct method to reflect the age distribution of the U.S. population at the midpoint of the survey.
SOURCE: National Center for Health Statistics. Unpublished data from the first National Health Nutrition and Examination Survey (NHANES 1).

FIGURE 23.-Mean forced vital capacity for white persons

by smoking status, sex, and age, United

States, 1971-1975

NOTE: Values adjusted by the direct method to reflect the age distribution of the U.S. population at the midpoint of the survey.
SOURCE National Center for Health Statistics. Unpublished data from the first National Health Nutrition and Examination Survey (NHANES 1).
'SABLE 6.-Postutated risk factors for airflow obstruction during childhood

occupational groups (Table 10) with exposures that have little or no effect on lung function. The selected studies are all cross sectional in design and thus describe the relationship between cigarette smoking and lung function level at only a single point in time.
Investigations in the United States, spanning the time period 1958 to 1977, convincingly demonstrate that cigarette smoking is a strong determinant of $\mathrm{FEV}_{\mathrm{I}}$ level and the prevalence of airflow obstruction (Table 8). In every population for which prevalence data are available, airflow obstruction is more common among smokers than among nonsmokers (Mueller et al. 1971; Knudson et al. 1976; Detels et al. 1979; Rokaw et al. 1980). In fact, in a multivariate analysis of determinants of airflow obstruction in East Boston, lifetime cigarette consumption was the only statistically significant predictor (Tager et al. 1978). Data from populations outside the United States (Table 9) and from a variety of occupational groups (Table 10) confirm the importance of cigarette smoking. Effects of cigarette smoking on FEV_{1} level have been readily demonstrated in employed populations

TABLE 8.-Association between cigarette smoking and FEV ${ }_{1}$ level in selected U.S. adult populations

P TABIE 8.-Continued

TABLE 8.-Continued

$\mathscr{\&}$ TABLE 9.-Association between cigarette smoking and lung function in selected non-U.S. populations

Author, year of study, location, reference	Number and type of population	Findings		
Higgins, 1956, Vale of Glamorgan, Wales (1957)	581 men and women, 25 to 74 years of age	Ir men, reduced peak flow rates and indirect maximum voluntary ventilation in smokers compared with nonsmokers; no effect of smoking in women		
Higgins et al., 1957 Stavely, England (1959)	776 men, aged 25 to 34 and 55 to 64	Nonsmokers Exsmokers Current smokers Light Heavy	aximal breath capacity 25 to 34 yrs 145 143 140 133	iters) 55 to 64 yrs 101 89 87 80
Higgins et al., 1968, Rhondda Fach, Wales (196I)	537 men, aged 35 to 64 , and 173 women, aged 55 to 64	Mean ind Nonsmokers Ex-smokers Current smokers Light Heavy	al breathing capacity Miners 93.1 93.6 89.0 88.3 of smoking in women	ers), men

TABLE 9.-Continued

\hat{x} TABLE 9.-Continued

[^0]TABLE 10.-Association between cigarette smoking and lung function level in selected occupational groups

Author, year of study, location, reference	Number and type of population	Findings				
Balchum et al., 1961, Los Angeles, U.S. (1962)	1,456 men employed in various industries	Prevalence (per 100) of FEV $/$ /FVC ratio less than 70 percent Nonsmokers 7.6 Smokers 18.8				
Coates et al., 1962. Detroit, U.S. (1965)	1,584 male and female postal employees, aged 40 or older	Reduced FEV ${ }_{1}$ and $\mathrm{FEV}_{1} / \mathrm{FVC}$ ratio in smokers of 25 or more cigarettes daily compared with nonsmokers				
Densen et al., 1961-1963, New York City, U.S. (1969)	12,500 males employed as postal or transit workers	Age- and height-adjusted FEV_{1} (liters)$\text { Postal workers } \quad \text { Transit workers }$				
		Nonsmokers Cigarette smokers	White 3.29	Nonwhite 3.05	White 3.39	Nonwhite 3.08
		<25 g per day	3.14	2.95	3.15	3.00
		$\geq 25 \mathrm{~g}$ per day	3.06	2.93	3.02	2.95
Bandé et al., 1960-1975, Belgium (1980)	7,123 male military personnel, a few over age 45	By multiple regression, in crosectional analysis, significant effect of smoking on FEV_{1} level after age 35				
Comstock et al., 1962-1963 and 1967, U.S. and Japan (1973)	Three crossectional studies of men working for telephone company;	Mean FEV, level as percent predicted				
	U.S.-1,302 and	Cigarettes per day		Study 2		
	1,194 subjects, aged	None	106	103		99
	40 to $65,6 \%$ in	1-14	104	101		100
	study; Japan- 592	15-24	98	92		98
	subjects, aged 40 to 60	≥ 25	95	93		99

[^0]: ' Peak expirstory flow rate

