 \rightarrow an kunlecje of the genetic language. For some two to four billion years some such -anguage has probably provided the basis for a continuous dialogue between cells and their descendants. Fossil records bacteria about 3 billion years a td
 appeared approximately 500 million years ago; and amphibians and mammals about 350 and 180 million years ago, respectively. The presence of bacteria 3 billion years ago may indicate the presence of an operational code at that time almost surely tine code has functioned for more than 500 million years. The remarkable similarity in code ${ }_{\text {word }}$ used in bacterial, amphidian and mammalian replicative processes suggests that most, if not all, forms of life on this planet use almost the same genetic language, and that this language has been used, possibly with few major changes, for at least 500 million years. It is by virtue of this's language that each generation is abie to pass to the next generation a library of information which specifies in detail how to make the many kinds of protein catalyst that the cells will need for their development. And aithougist now seems clear that all, or almost all, forms of Fife on this planet use virtually the same language, recently a number of "dialects" have been found. I shall describe this
later．
The ellicication of the genetic code has been the subject of much intensive work，particularly in the past four or five years，and I would i ike to stress atotheoutset that this work，ane particularly the work with which I have been associ－ aten，anas been，in a very real sense a collaborative project． I mint this will become evident as I proceed．

First nat recall briefly－as mist have been dquefre－ quenty nit symposiym－the basic features of the forick－ Water scheme of protein synthesis：（Fig．1）Here io f show

sehomatieally the doubie－stranded DNA which together with fan enzyme，－RNA－poiymerase，catalyses the synthesis of messenger－ RN゙ゥ，using the DNA as a template．Only one strand of the DNA is copied by RNA－poiymerase；the copying process is se－ quential；and there are signals，whose exact nature is unknown， specify the beginning and the end of the messenger－RNA synthesis．The next diagram（Fig．2），blows schematically the process of protein synthesis．In the DNA shown here，the if－ Gerent cross－hatchings represent various segments of DNA，each corresponding to a specific protein or group of proteins．Ri－ Dosomes are shown，schematically，attached to the messenger－avA

[^0]where reading, or translation, begins; as soon as one ricosome moves down the M_{A}, another becomes attached un=il the messingentiva is virtually covered with ribosomes.
 (atazb which carries specific amino acids and recognize marticular myRNA code words hon the ribosomes. Thus the eodemene; Or codon. is recognized not by the amino-acid $\$$, perse, but by

? Fig. iLlustrates, again diagramptically but in more ciatain, the codon recognition process as exemplified by that most inten-
 The ;ribosome of Eoeoti compriseffitwo subunits: the larger SOS and the smaller: 30§. The moreen- RNA lies on the smaller Fire of the ribosome, and presumably three bases) in the m- RNA molecule (a redon') Ere recognized by (threat bases in fat one of two possible binding sites on the larger ribosome subunit, a particular amino-acid, (aa) One of these binding sites is for the peptidal sfRNA, so the sfRNA which is attached to the growing (protein) polyfpeptide molecule; and the other, for the incoming aminc-acid sfRNA. The three enzymes tome-wors-BNA's
 vation energy, are required for the transfer of the growing polypeptide chain to the next (incoming) amino-acid stRIA complex.

When this is accomplished the sfRNA required for the previous amino-acid is discarded, and a shift in some way occurs so that the next codon (triplet of bases) on the mfRNA can be recognized by a new strNA. In this way the protein synthesis starts at a given place (on the mtRNA), reads groupings of three bases sequentially and with a given polarity.

In an accual living cell, even the smatest bacterial cell,
 all part of the cell metabolism. The synthesis of even a single protein is quite an elaborace process involving, inter alia, the $=\sim \ldots$ fer of a long DNA message to an mfRNA molecule which " V ias 知peally sufficient nucleotides (about 1,500) to code seme 5 aminc-acids for the-protein polyłpeptide chains. Moreover. in an actual cell these 1,500 nucleotides will not be arranged in any simple sequence, raflecting the fact that there is a
 great number of different sequences of 4 anino-acids fof wheb- 2θ different vafieties are made) which constitute different proteins.
 investigations, especially with bacteria and viruses at many featuras of protein synthesis, including f in particularly mon information about the code, has been obtainedy The work I shall des ascribg is, however, characterized by the use of much simpler, in vizro systems, where the essentially chemical feacures of some of the basic staps in the whole process are studied. The success of these methods, θ^{g} and the concurranco oferesults chem
whom those from in vive experiments, whet both are avail will, I hope, demonstrate how a physio-chemical or molecular basis can be found for tho processes governing such fundamentally biological phenomena as cell metabolism and replication.

The basis for our earlier work on the DNA-RNA code was the use of synthetic messages, (in place, that is, of actual mInNA) U which were randomly oriented sequences of the four code letters, URacil) $\quad C(y \phi t o s i n e), A(d e n j n e)$ Guanine), the four bases of myRNA. In this way some characteristic of the code could be determined in particular the base compositions of the codes. words, but not the sequence pf the bases in the 5 in the worcis. Thus the problem, up to two or three years ago was like Chat of an anagram: wa knew the letters comprising the codewords but not the order of the letters within each word.
 when
if one a a synthetic messenger -RNA, in particular polyuridylic acid a synthetic RNA with entirely U bases) to a suitable mixture of ribosomes, s RNA's, enzymes, ATP, GTP and aminoacids, the poly -U selectively bind phenylalanine st RNA, (i.e., the particular sfRNA associated with the incorporation of the amino-acid phenylalanine in protein) to the ribosomes. My caileague, Philip Heder, and I then speculated how small a message (O: the RNA type) would direct the binding of $s+$ RNA to the ribo-
some. Experiment showed that only three bases were needed, that is, very small molecules comprising only the triplet itself would direct the binding of the appropriate amino-acid SFRNA to the ribosomes. This provided a, rather simple route towards the ciatermination of the sequence of letters in, the RNA codewords.

Our main problem was to devise suitable techniques for synthesizing triplets. At the time we started our work with such triplets, methods had been reported for making some 20 or 25 of the $64\left(=4^{3}\right)$ triplets which can be constructed from the four nucleotides $U, E, A \not A^{\text {and }} G$. These had been prepared by enzymatic breakdown of RNA, or by chemical synthesis, in the latter case using some of the very elegant techniques devised by Khorana and his associates.

Two generai techniques were developed in our laboratory, the first by heder, Singer and Brimacombe, and the second by Merton Bemfieid. The first employed polynucleotide phosphory-
 trimers , tetramers, pentamers, etc. The second method em- Fig. ? ployed the enzyme pancreatic RNA-ase, which, although normally a breakdown on degradative enzyme, will also catalyze an exchange reaction between polynucieotides and can be used to make rripiess with weil-defined sequences. Using thèmethods of

Khorana and these two enzymatic techniques, it was possible to synthesize amost all of the 64 trip fets.

In connection with the use of small polynucicozicic or 'oligonucleotide" molecuies such as the trinucleotides, ie is important to point out that any given sequence of nucleotides can exist, when incorporated in actual m RNA in three chemicaliy distinct forms, depending on the location of the sequence in the wale messenger molecule. The chemical forms reDate to the three positions (a) as an internal codon (trinuciaoride) or as one of the other of the terminal groups - so called 3^{i}-temminai cocion and 5^{\prime}-terminal codon. ${ }^{*}$ This is illustrated in Fig. .

Fig.
All of tine evidence to date suggests that the bioiogical characeeristics of codon recognition may in some, perhaps in many, eases be influenced by the particular position of the codon in The mҒRNA (or equivalently in the DNA). Thus each of the 64 triplets zeferied to above may exist in three effectively different sticucturai forms.

The significance of these "secondary" chemical features is indicated by experiments, in vitro, witi the oifgonucleotides,

[^1]and specificaily by studying the influence of various (phosphor (lating) subscitutions on either the 3^{\prime} or 5^{\prime} terminal hydroxyi groups of the sugar in the trinucleotides. Thus Fig.
Fig.
shows the binding of phenylalanine $s \notin \mathrm{RNA}$ to ribosomes as a function of the concentration of the trinucleotide. A simple triplet, UUU, has an activity* shown by (a). If one adds a phosphate to the 5^{\prime} hydroxyl group the sugar the activity is greatly increased, i.e., the binding or template effectiveness of the trinucieotide is greatly enhancedf '(b). A phosphate attached to the 3^{\prime} cerminal lowers the template effectiveness ${ }^{\prime}$ (c). Recently, Fritz Rotman prepared some analogues of UUU with a meinyl group attached to the 5' phome的 a methyl group attached at both terminals, i.e. both 5^{\prime} and 3^{\prime} phosphate. The mechyl group at the 3^{\prime} phosphate terminal greatiy reduced the template effectiveness. A Eriplet with $2^{\prime} ; 3^{\prime}$ cyciic phosphate shows very little template activity.

It seems possible that significant terminal variations of this sore may oceun in different biological circumstances, and that antix. thesenfay possibly regulate the template activiey of the codons. For example, the terminal hydroxyls of the sugars (ribose) may *The binciag of the StRNA to the ribosome is detemined by tecinicues in which a racifoactive tracer is incorporaced in the sf NA, so that the racioactivity associated finaily with the ribosome compiex is a messure of this binding. It is in that the term activicy in ficure denoees the effectiveness of the binding.
be modified in such a manner. Certainly a substitution at the 5'-terminus may be important because this could furnish a signal which specifies the attachment and/oz the detachment of the ribosome from the message, (m-RNA or subscitute). Recently Mitra and Hurwitz, and also §tent, have shown that, in vityo at least, mosenger-RNA contains a triphosphate attached to the terminal bycroxyj; and although it is not clear what physiological function this triphosphate serves, it is highly plausible that it may in some way specify the initiation of reading the message. It coula aiso decemine the first (three letter) word to be reac, phase the reading, and, perhaps affect the susceptibility to enzymes that could attack the termini of the mesengex-RNA. Internal codions may also be modified by these secondary chemical changes; the 2^{\prime} hydroxyl or the base could be modified and such snanges may be relevant to the punctuation of the Th moderim message. tianso cannot be excluded that the codon recognition process is in some instances affected by the particular neighbors of that cocion on the message.

Gix
It should also be pointed out that there could pe a difference between internal initiation and termination (i.e., iniciation or temmation of polypeptide sequence (potein) by a codon internainy locanec in the message) anc weaning anitiaتion and temination (the same process effected by teminal cocons). Consides the situation where the mesengex...... appears
to contain the information for the assembly of more than one protein, (or more than one polypeptide chain of a protein). If one stants to read (from the left in Fig.) the codon for Fig.
the terminal initiation, one then reads in the message until one reaches the word that says ${ }^{\prime \prime}$ Stop ${ }^{\text {nf }}$, , and then there witi be an. unknown mechanism for starting the seccad message at an intervai position. It seems quite plausibie, aithough not known, that these teminal and internal initiation and temination mechanisms could be different - -possibly different codons.

Another feature of codon recognition concerns the degeneracy of the code, or the existence of synonyms, i.e., different codons which code the same amino-acid in the polypeptide sequence. With the appropriate oligonucieoticies, one can examine, in vitro, the effectiveness of different synonym messages in binding the particular amino-acid $\$$ ffRA's to the ribosomes. The results of such are illustrated in Fig. . For example, Fig.
phenylalanine stRNA responded to both the oligonucleotides UUU and UUC, but UUC was slightly more active than UUU. Simlarly lysine-sfaiA responded to both AAA and AAG but here is tha quine-matee Gifference in the templace activity bee the unuquit and
two syram.msh The first of these degeneracies, that between the (smaiae:) pyrimiaine bases C and U when they occurs as third let-
ter of the cocoon, is universal throughout the code. The second citron degeneracy, the (large) purine bases A and G in Zinc \because ace, occurs in all but two or three words (e.f. Fig.) we turn now from these refinements and detailed features of the triple=-binding method to the actual results obtained by this procedure. She triplets have a well-defined sequince of nucleotides \neq there are 64 possible we have synthesized 03 of these and determined the amino-acids which they cocie. The results are summarised in Fig.

Fig.
The asterisks indicate base compositions $0 \bar{E}$ codons which were determined by directing protein synthesis in Emboli extracts with synthetic randomly-ordered polynucleotides. it is clear that there is a very closely eoraspondenee with the results of earlier work. It is interesting to notice the types of synonyms which occur (some of which have already been mentioned).
 ample of $A=G$ degeneracy in the third place. Eikewion Aspartic ito core no,

$$
a v i k
$$

acid and,GAU, GAC, place. Another type of degeneracy is illustrated by threonine which is coded $B y A C$ and any of the four U, C, A, G in third Place. Medic, Ge, on the other hand, is one of the rare eases (tryptopity may be another:) in which thew wo mana place ce-
genezucy AUG but AUA codes for Isoleucine.
This degeneracy of the code can have many consequences. One of the more obvious is the possibility of a great deal of "silent" mutation, that is lon one of the codewords, or grows of synonymous coce-words, may be convert tod the third position to another base without resulting in an amino 8 acic replacement. Another obvious conclusion is that amino. acicis which are very similar chemically, such as the dicarboxylic acids (aspartic acid and glutamic acid, have closely related cocons. This may reflect the evolution of the code, but whether or not this is so, one consequence would certainly be that when an error in repiication does occur, usually the first two bases are read correctly and the third one incorrectly. And very ofcen the result of an error in reading will be the substitution in a protein of a chemically related amino -acid. Thus the general picture of the code is that it is quite conservative-- in the sense that it usually minimizes error or the consequences of erfor. The various patterns of synonym codons are summarized in Fig. . (N-formyimethionine $\subseteq \subseteq R N A$ shown here is the initiator). Fig.
In addition to the codons for the specific amino acids, there -as as has den mentioned earlier, some codewords appear to serve special functions ("punctuation" etc.). For example, the recent= work of Brenner, Garen and Kinder, and of others,
indicaces that UAA and UAG may indicate the end of a message although the precise mechanism for punctuation is unknown. UUG, CUG, AUG and in some cases GUC may specify the initiation of a message. Oun recent studies, and aiso those of Clark and Marker in England, have indicated that these codons - at ieast when in terminal positions - are recognized by formylmethionine and this may serve as an inieiator of protein synthesis. Some possible special function codons are listed in Fig. .

Fig.
Sanger first observed in ecolit that one of the two sfRA
 Coies associated with methionine eould aceept a fomyl group; that is the amino group of methionine, after the methionine 'was linked to the stRNA eould be lomylated. The work of Capecchi and colieagurs, and of Zinder, suggested that this may specify initiation of message translation. And as I mentioned already, UUG, AUG, CUG and to some extent GUG are recognized by formylmetren also that UAA and UAG may serve as terminators. It also appears Iikely that the words AG $\gamma_{\text {with ending } n d ~}^{\text {in }}$ U, C, A or G may also serve as special function words; but these functions have not sofar been found. The present situation in this field is a most interesting one, in that the necessary toois for decipherting the special function words aze raft, and ic siouid soon be possible to understand more about the mechanism of these special words and the rolethey play in protein syntiosis.

Inould ize turn now to a variation of the tripletDinding methoc, which throws further figher the coding mechanism. D. Hatfield has recently prepared some radioactive tripiets, (in the earlier experiments it was the sfriva which contained the racicaccive tracer), and has studied the binding of these tripiets to the ribosomes in the presence of the aminoacid sfrina. Fig. shows both the binding of the triplet and of the $s+R N A$ (here phenylalanine $s \leftrightarrows R N A$) to the ribosome.

Fig.
As can seen, in the presence of the appropriate triplet Polynucleotide phenylalanine s \ddagger RNA binds to the ribosome; in the absence of the sfRNA very little triplet bincis to the ribosome. Because of this, in the presence of the sfRNA both the triplet poiynucieotide and the phenylalanine strNA bind to the ribosome at approximately the same rate. Thus the complex on tive ribosome may weli be a one-to-one association of triplet and $s-\pi N A$.

This technique provide's a very simple and quite sensitive method for detecting codon recognition by stRNA which is not acylated ${ }^{*}$ with amino-acids. Thus some special function words may not be recongized by activating enzymes, stRNA's, which are

not acylated, and this method would provide a relatively simple route towards detecting such recognition.

We have also made investigations (in collaboration with B. P. Docter and waicer Reed) with puriEiej sthN foctions, i.e. media containing essentially only a singie type of stRNA, derived from Eecoli fractions. We find that Tyrosine-stRNA recognizes both UAC anc UAU, which again exemplifies the $C=U$ degeneracy in the third place. (There are two types of myosinestRNA, $\dot{\text { anffering }}$ in
; both types recognize UAC anc UAU.) Similarly

Vaine $\hat{Z}_{\text {- RNA }}$ recognizes both GUA and GUG ($G=A$ degeneracy) but the GUG to a much lesser extent than GUA. The Écoli fraction leucine-1-s-RNA and leucine-2-s-RNA both zecognize the leucine codons (UUA, UUG, CUU, CUC, CUA, CUG). Recently, however, J. A. Carbon has reported that in mammalian iiver one species of Ieucine-s-RNA preferentially recognizes $A A G$, and the other preferentially recogrizes AAA. There are also types of leucine-strNA which recognize CUG, and others which recognize UUG.

The major variant of methionine-2 SRNA which, as mentioned previously, will accept a formyl group recognizes UUG and CUG, out a less prominent methionine-stRNA recognizes AUG preferenEially. Eikewise there is a Mryptophan sfan which recognizes UGG, $C G G$ and to a smaller extent AGG. The pattacn here is ciear: a close relationship beiween U, C and A in the first piace of
the cocing Griplet. R. Holley, working with purified fracticas of yeast stRNA, found alanine-stRNA recognized GOy,GCC and GCA -- again the group U, C, or A but now in the tinird place of the coding tiples. It sholiz also be pointed out prominent laucine-staid binds to ribosomes very weakly in response to the nucleotiむe triplaes; it is possible that this type of weak recognition involves oniy two of the three nucleotide basis in the taplet.

This work with pure Eractions, such as alanine-s-RNA prepared from yeast, can afford some further insighe into the mechanism of codon recognition. This is especially so in this case since Molley and his collaborators have recently reported the sequence of bases in the alanine-stRNA. 唒 Fig. İs shown the variation of binding of alaninetstRNA to ribosomes wide concentration of the sRNA.

Fig.

The co če s-RNA is bound to ribosome.' This fraction of s-RNA, which Holley suppiied to us, was estimated to be gfeater than 95% pure; and yat this s-RNA reeognized quite well at least three of the alanine
 sifghtiy, tc GOG. (On the other hand, with unfractionated Eucoli
 Was the best alaniae-stavi codon, and the response to GUJ, GCC
and $C C A$ was relatively weak.) Since the yeast extracted sf RNA Exaction was of high purity, the results strongly suggest that a single molecule of bunA can recognize alematively at least three of the four alanine synonyms.

The whole sequence of the nucleotides in this alanine $s+$ RNA are shown in Fig.

Fig.

The alanine amino-acid in inked to the terminal adenosine, and this is shown in the diagram in only of the suggested possible conformations. There are several single-stranded regions of the $s-$ RNA of possible interest. There is the sequencer $G, T, \psi U$, \approx ($\psi \mathrm{U}$ is an isomer of U) birch sequs been found in virecually every sieNA that has been examined. Another interesting sequence is the $C, G, G,{ }^{f}$ surrounded by two dihydrouridylic acids. A tinird is the IGC region ($I=$ inosine) right in the middle of Ene s rNA molecule. These latter two regions of interest are shown in more detail in Fig.
Fig.
the
If triplets CGG and IGC were really the s£RNA anti 三 codons, that is the nucleotide groups which recognized the nu-cleotide-tzipice co. E Er alanine, recognition would be by parallei ${ }^{*}$ pairing between C and U; and the G wound then have to recognize

orre. ad
U, C and A. IE, however, base pairing according to the Watson-Crick hyürogen-bonding, or antifparallel scheme, C would pain with G, G wich C and the inosine I in this position would base-pair with one of U, C or A, but not G. This latter is tine pattern observed for the alanine code; and Crick has recently proposee a detailed mechanism which would permit hydrogen. bonding between I and U or C or A.

This mechanism, by which I recognizes U, C or A in the antifcodon - codon pairing, termed the "wobjee"by Crick, involves a movement, at the end position of the triplet, of either the sfrna or the mengerna on the ribosome. All the experimental resilts are, I believe, in accord with this type of recognition mechanism. The table shows the base-sequences in the

Table

S£RNA antifgocion and the corresponding base-sequences in the mes RNA codon; Thus Inosine in an end position in SIRNA abiernctur: can recognize by alternate base pairing U, C or $A ;$ a G in the end position of sfRNA could’similarly recognize afternately C or U, and A couice recognize U, C or G, A and U could recognize by alternate pairing A or G. We would also predict on this model that a ributhymidylic acid S frna would pair also A and G, (perhaps the inctaction with A would be stronger than for a uríyitic acic in sfRN); that a ψU in $s q$ RNA might recognize aiteratel A, G or y - a pattern that has been noticed rather
orten with sfrua.
Another possibility is $\not \subset$ dihydrouridylic acid would not., base pair (with the expected complementary $A_{\text {) , , so that the }}$ inaenaction with the messenger would be a wedk inceraction; bu= it is also quite possible that a U or C in a terminal position would noe greatly inhibit the interaction. A metal group on a 2'-hydroxyl deoxyribose (sugar) might also result in a weaker inceraction, and furthemore, by permiceing a greater freedom of motion on the ribosome, such a modification might result in greater ambiguity, i.e., lower specificity of the soding.

These resuies with infrequently occurring (or "trace') bases, and parcicuiarly those with Inosine, ratierestrongly suggest that sfRNA may be modified enzymatically, after it is released from the DNA template (where it is assembled in the cell). Since the level of "trace" bases is quite high in an actual cell, it seems likely chat there exists a whole spectrum of intermediates, $s \uparrow R N A ' s$ in various stages of successive modification. The consecuences of this are easy to visualize. For example, if an açenine(A) in sifna is de-aminalid and so converted into an inosine (I), the A which would nomally recognize the Oridylic acid base in the message/ would ncw be repiaced by something (the I) which can recognize U, C or A. Simila: interconversions would result from the defmination of a C : the conver-
sion of e to \bar{i}. It is possible, althougn perhaps rather prematuze so speciate, that this type of interconversion plays an mimortane Elological role.

There has eexanly a great deal of work frecenty suggests that is possible in actual cells,
wy mocinication of specificity of codon recognitiond and this is eertainiy somehing wheh coutctave vpofound biological consequences. An example of this is the effect of the antibiotic scieptomycin. It by Davis, Gilbert ane Gorintythat streptomycin will bind on to the $30-$ s part of the ribosome (the small subfunit), and all the available evidence suggests this binding of streptomycin to the ribosome may in some way distore the copography of the codon recognition site so that greater ambiguity in cocion recognition results. This may je one mechanism greater degree of error in procein synthesishy, although, of course, this may not the only teason-to aecount for the action of streptomycin on bacterial cells.

There are other exampies In addition to streptomycin, of the modification of the specificity of codon recognition. A rea noent, comparative study/ha manderby R. Marshail and T. Kaske madk of the spacificity of cozon recogrition with s£RNA from amphibian, Xenopus Zaevus, 'A'iver, from guinea pig liver and from E. coii. Eacoii anginine-sfrna does not recognize AGG and recognizes

LGE anc スn（に，Fig．）
Fig.

The concrast setween alanineisfRNA＇s from yeast，mentioned ain－ lier，and Efcoit is also shown in this diagram．

In both amphibian İver and guinea－pig liver GCG is a very active codon，whereas in the amphibian liver seg has no activity for alanine－strut This contrasts with the activity for Ercoli alanine－staNA．Zn all species tested，AAA is recognized by Xy－ sine－sfana，wheneas AAG has only slighe activicy in Escoli although i＝is a very active codon in higher organisms．Sinnes $s \mp R N A$ recogniたion of UCG and of AGU and AGC is also variable， as indicated．Threonene recognition of ACG is likewise variable． We have，however，found no differences in the codon recogniton of sfRNA＇s corresponding to aspartic acid，cytene，glutamic acid， histadine phenylamine，proline，thybzine and valine．

Fimishtmention，a somewhat different type of sfRNA moüīi－ cation．in vivo，whieh we have studied in colfaboration with N ． Sueoka，Futio doservec that whection of bacterial Ercoli cells wich the virus，T2－phage，that within oneminute aftex infection an enzyme（protein）is synthesized by the bacceria which modi－ Fies a pre－exiscing leucine－s£RNA component．（This siRNA is necessary for the biochemical machinery of the host bacterium but not ty the vinus．）me modification was such that it was techaicainy passibie to purify the modified sfrva and cest it
for codon recogi., cion. We found that it recognized only polyand
UG but it does not recognize any triplet. We have tested all the UG-tripiets. One also find that together with the nodifrication of the s-RNA, there ${ }^{\omega \rightarrow 2}$ a cessation of protein synthsis by the bacterial host. We do not understand the mechanism O. Chis "curning-offi, but we think it likely thatenenyme procured by T-2 infection so modifies the leucine-sfRNA component as $=0$ interfere with the host protein synthesis, and it does this without preventing the protein synthesis by the phage. This is a very subtle way of subverting the metabolism of a cell so that viral proteins can be synthesized in a large amount. This is a problem we are now investigating f has I tut I have how, by the examples Int ave briefly skenco how some features of the complex machinery for protein synthesis in cells can be studied by means of relatively much simpler systems, in vitro. Thus it has been established that the same sequences of three nucleotide bases doe the same amino-\% acids throughout the whole range of organisms, from bacteria to mammalian livers. And this universal code has been explored by molecular biochemistry in vitro.
however, we have seen that there are secondary features, such as che ceideive responses to different synonym codons, and the subvia modifications of the s \ddagger RNA's which can be of great importance in actual, complex living organisms. Features such as
A.y play imporcant biological roles; by selectively controlling ane rate of procein synthesis they may be an important factor An the general process of ceil differentiacion. These are certainly problems for the future.

Finally, I would drawntention to fact that even, in Vi=20, at its simplest, the whole detailed process of coling in piotein synthesis - involving DNA-mfRNA-sfRNA-ribosomes, activaEion enzymes, ATP, ecc. is far from fully understood. Even the basic underlyins questions - why, for example, does a triplet code of tinis sort exist, why should not phenylalanine instead of aianine correspond to GCU and GCC? Is there a basic chemial mason fo: this, or is it to some degree a matter of (nistoracal). Chance? Ny personal belief is that there is an underlying meaning for this and that it will be found.

[^0]: ※こうst of collaborators at Bethesda．

[^1]: *The heital RAA (or DNA) has a definite sense or direction with a cefinite "beginning" and a ciefirize "anding". 3' and 5" refer co features of the chemical structure at these respective cemminais.

