Mathematical Reviews 400.1967

COMBINATORIAL ANALYSIS

cycles; if there are no cycles or if all cycles have pseudolength 0, then the index is taken to be 0. Typical results: (1) If in the graph G each connected component has a cycle whose pseudolength is not 0, then the set of all stable equivalences on G forms a lattice. (2) If G and H are connected graphs each of whose vertices is the endpoint of some directed edge, then the number of connected components of the graph $G \times H$ is the greatest common divisor of the index of G and the index of H. The second result was obtained earlier for strongly connected oriented graphs by McAndrew [Proc. Amer. Math. Soc. 14 (1963), 600-606; MR 27 #1932]. G. N. Raney (Storrs, Conn.)

Halin, Rudolf

Graphen ohne unendliche Wege.

Math. Nachr. 31 (1966), 111-123.

The author characterizes the graphs having no infinite paths. He finds that for a graph to be of this kind it must be decomposable into finite graphs whose intersections satisfy certain specified conditions. Moreover, these conditions exhibit the finite graphs as the vertices of a tree, and this tree must itself have no infinite path.

W. T. Tutte (Waterloo, Ont.)

Harary, Frank; Nash-Williams, C. St. J. A.

On eulerian and hamiltonian graphs and line graphs. Canad. Math. Bull. 8 (1965), 701-709.

The line graph L(G) is the incidence graph of the edges of G. Additional graphs $L_n(G)$ $(n \ge 2)$ are defined, and some relationships between Eulerian and Hamiltonian properties of G, L(G), and the graphs $L_n(G)$ are found. (The reader may find it helpful to note that $L_n(G) = L(M_n(G))$, where $M_n(G)$ is the graph obtained from G by replacing each edge of G by a path consisting of n edges; thus L_n is not the nth iterate of L.)

D. W. Walkup (Seattle, Wash.)

Havel, Ivan

On the completeness-number of a finite graph. (Czech and Russian summaries)

Časopis Pěst. Mat. 90 (1965), 191–193.

The author calls two distinct edges of a graph G quasineighbours if they both belong to some complete subgraph of G. He defines a graph G' in which the vertices correspond to the edges of G, and two vertices of G' are joined if and only if the corresponding edges of G are not quasi-neighbours. He shows that the minimum number of complete subgraphs of G whose union is G is equal to the chromatic number of G'. W. T. Tutte (Waterloo, Ont.)

Hoffman, A. J.; McAndrew, M. H.

The polynomial of a directed graph.

Proc. Amer. Math. Soc. 16 (1965), 303-309.

Let G be a directed graph and A the adjacency matrix of G. It is proved that there exists a polynomial P(x) such that P(A) = J (when J is the matrix consisting entirely of 1's) if and only if G is strongly connected and strongly regular. (G is strongly regular if for each vertex i the number of edges with initial vertex i equals the number of edges with terminal vertex i; G is strongly connected if for any vertices i, j ($i \neq j$), there is a directed path from i

to j.) The unique polynomial of least degree satisfying P(A) = J (called the polynomial belonging to G) is characterized in terms of the minimum polynomial of A.

Does the polynomial belonging to G determine G up to isomorphism? This problem is studied for a particular class of directed graphs. Let t be a positive integer and let G_t be the graph whose vertices are all ordered pairs (i, j)of residues mod t and whose edges go from (i, j) to (i, j+1)and (i+1, j) for all i, j. Let $P_t(x)$ be the polynomial belonging to G_t . The following theorem is proved: If t is a prime or t = 4 and if H is a graph with t^2 vertices such that $P_t(x)$ belongs to H, then $H \cong G_t$.

J. K. Goldhaber (College Park, Md.)

65

66

67

68

On traversing graphs.

Amer. Math. Monthly 73 (1966), 497-499. A covering of a graph G is a cyclic edge sequence S such that consecutive edges in S are different and each edge in G appears exactly twice in S, once in each direction. The main result is that a graph in which all valences satisfy $\rho \leq 3$, and the number of valences with $\rho = 3$ is divisible by 4, can have no covering. O. Ore (New Haven, Conn.)

Walther, H.

Troy, D. J.

Ein kubischer, planarer, zyklisch fünffach zusammenhängender Graph, der keinen Hamiltonkreis besitzt.

Wiss. Z. Techn. Hochsch. Ilmenau 11 (1965), 163-166. A graph is called cyclically n-connected if at least n edges must be deleted in order to separate it into two disjoint parts each of which contains a polygon. It is known that there exist cyclically 3-connected and cyclically 4-connected planar trivalent graphs which are non-Hamiltonian. The author constructs a cyclically 5-connected non-Hamiltonian planar trivalent graph.

W. T. Tutte (Waterloo, Ont.)

 $\mathbf{71}$

Harary, Frank; Palmer, Ed The number of graphs rooted at an oriented line. *ICC Bull.* 4 (1965), 91–98.

Let G be a graph with p points and let H be an induced (possibly oriented) subgraph of G with n points (i.e., a (possibly oriented) subgraph which contains all lines of G joining a pair of points in H). None of the lines in the graph G-H is oriented. Let h_{pq} be the number (up to isomorphism) of such graphs G with p points and q unoriented lines. The generating function for these graphs is defined as $H_p(x) = \sum_q h_{pq} x^q$, where q goes from 0 to $(p_2-n)+n(p-n)$. The main result of the paper is a formula for computing $H_p(x)$.

Specifically, $\hat{H}_p(x) = Z(\Gamma(H) \circ S_{p-n}, 1+x)$, where $\Gamma(H)$ is the automorphism group of the oriented graph H, S_{p-n} is the symmetric group of degree p-n, and $Z(\cdot)$ is the cycle index of (\cdot) . Leonard Weiss (Providence, R.I.)

Harary, Frank; Palmer, Ed

Enumeration of mixed graphs. Proc. Amer. Math. Soc. 17 (1966), 682–687.

A mixed graph is defined as a graph whose edges may be oriented or nonoriented. The problem is to derive an expression for the number m_{pqr} of mixed graphs on p

72

69

70