Mtathematical Remeurs, gam. 1967

cycles; if there are no cycles or if all cycles have pseudolength 0 , then the index is taken to be 0 . Typical results:
(1) If in the graph G each connected component has a cycle whose pseudolength is not 0 , then the set of all stable equivalences on G forms a lattice. (2) If G and H are connected graphs each of whose vertices is the endpoint of some clirected edge, then the number of connected oomponents of the graph $G \times H$ is the greatest common divisor of the index of G and the incex of H. The second result was obtained earlier for strongly connected oriented graphs by McAndrew [Proc. Amer. Math. Soc. 14 (1963), 600-606; MRR 27 \#1932]. G. N. Raney (Storrs, Conn.)

Halin, Rudolf
Graphen ohne unendliche Wege.
Math. Nachr. 31 (1966), 111-123.
The author characterizes the graphs having no infinite paths. He finds that for a graph to be of this kind it must be decomposable into finite graphs whose intersections satisfy certain specified conditions. Moreover, these conditions exhibit the finite graphs as the vertices of a tree, and this tree must itself have no infinite path.
W. T. Tutte (Waterloo, Ont.)

Harary, Frank; Nash-Williams, C. St. J. A.
66
On eulerian and hamiltonian graphs and iine graphs. Canad. Math. Bull. 8 (1965), 701-709.
The line graph $L(G)$ is the incidence graph of the edges of G. Additional graphs $L_{n}(G)(n \geqq 2)$ are defined, and some relationships between Eulerian and Hamiltonian properties of $G, L(G)$, and the graphs $L_{n}(G)$ are found. \{The reader may find it helpful to note that $L_{n}(G)=L\left(M_{n}(G)\right)$, where $M_{n}(G)$ is the graph obtained from G by replacing each edge of G by a path consisting of n edges; thus L_{n} is not the nth iterate of L.
D. W. Walkup (Seattle, Wash.)

Havel, Ivan
67
Cn the completeness-number of a finite graph. (Czech and Russian summaries)
Casopis Pěst. Mat. 90 (1965), 191-193.
The author calls two distinct edges of a graph G quasineighbours if they both belong to some complete subgraph of G. He defines a graph G^{\prime} in which the vertices correspond to the edges of G, and two vertices of G^{\prime} are joined if and only if the corresponding edges of G are not quasi-neighbours. He shows that the minimum number of complete subgraphs of G whose union is G is equal to the chromatic number of G^{\prime}.
W. T. Tutte (Waterloo, Ont.)

Hoffman, A. J.; McAndrew, M. H. 68
The polynomial of a directed graph.
Proc. Amer. Math. Soc. 16 (1965), 303-309.
Let G be a directed graph and A the adjacency matrix of G. It is proved that there exists a polynomial $P(x)$ such that $P(A)=J$ (when J is the matrix consisting entirely of l 's) if and only if G is strongly connected and strongly regular. $\langle G$ is strongly regular if for each vertex i the number of edges with initial vertex i equals the number of edges with terminal vertex $i ; G$ is strongly connected if for any vertices $i, j(i \neq j)$, there is a directed path from i
to j.) The unique polynomial of least degree satisfying $P(A)=J$ (called the polynomial belonging to G) is characterized in terms of the minimum polynomial of A.

Does the polynomial belonging to G determine G up to isomorphism? This problem is studied for a particular class of directed graphs. Let t be a positive integer and let G_{t} be the graph whose vertioes are all ordered pairs (i, j) of residues $\bmod t$ and whose edges go from (i, j) to $(i, j+1)$ and $(i+1, j)$ for all i, j. Let $P_{t}(x)$ be the polynomial belonging to G_{t}. The following theorem is proved: If t is a prime or $t=4$ and if H is a graph with t^{2} vertices such that $P_{t}(x)$ belongs to H, then $H \cong G_{t}$.
J. K. Goldhaber (College Park, Md.)

Troy, D. J.
On traversing graphs.
Amer. Math. Monthly 73 (1966), 497-499.
A covering of a graph G is a cyclic edge sequence S such that consecutive edges in S are different and each edge in G appears exactly twice in S, once in each direction. The main result is that a graph in which all valences satisfy $\rho \leqq 3$, and the number of valences with $\rho=3$ is divisible by 4 , can have no covering. O. Ore (New Haven, Conn.)

Waither, M.
Ein kubischer, planarer, zyklisch fünffach zusammenhängender Graph, der keinen Hamiltonkreis besitzt.
Wiss. Z. Techn. Hochsch. Ilmenau 11 (1965), 163-166.
A graph is called cyclically n-connected if at least n edges must be deleted in order to separate it into two disjoint parts each of which contains a polygon. It is known that there exist cyclically 3 -connected and cyclically 4 -connected planar trivalent graphs which are non-Hamiltonian. The author constructs a cyclically 5 -connected nonHamiltonian planar trivalent graph.
W.T.Tutte (Waterloo, Ont.)

Harary, Frank; Palmer, Ed
The number of graphs rooted at an oriented line.
ICC Bull. 4 (1965), 91-98.
Let G be a graph with p points and let H be an induced (possibly oriented) subgraph of G with n points (i.e., a (possibly oriented) subgraph which contains all lines of G joining a pair of points in H). None of the lines in the graph $G-H$ is oriented. Let $h_{p q}$ be the number (up to isomorphism) of such graphs G with p points and q unoriented lines. The generating function for these graphs is defined as $H_{p}(x)=\sum_{q} h_{p q} q^{q}$, where q goes from 0 to $\left(p_{2}-n\right)+n(p-n)$. The main result of the paper is a formula for computing $H_{p}(x)$.

Specifically, $H_{p}(x)=Z\left(\Gamma(H) \circ S_{p-n}, 1+x\right)$, where $\Gamma(H)$ is the automorphism group of the oriented graph H, S_{p-n} is the symmetric group of degree $p-n$, and $Z(\cdot)$ is the cycle index of (•). Leonard Weiss (Providence, R.I.)

Harary, Frank; Palmer, Ed
Proc. Amer. Math. Soc. 77 (1966), 682-687.
A mixed graph is defined as a graph whose edges may be oriented or nonoriented. The problem is to derive an expression for the number $m_{p q r}$ of mixed graphs on p

