DENDRAL
A System For commuter construction, enumeration aid
notation of organic molecules as tree structures and
CYCLIC GRAPHS

Part I. Notational Algorithin for Tree Structures
II. Topology (f Cyclic Graphs
III. Complete Chemical Graphs; Encoding rings in trees
IV. Generator Algorithins
V. Directions for Further Analysis

Submitted by

> Joshua Lederberg
> Professor of Genetics
> School of Medicine
> Stanford University
> Pablo Alto, California

Studies related to this report have been supported by research grants from the National Aeronautics and Space Administration (ivs 81-60), and from the Advanced Research Projects Agency of the Office of the Secretary of Defense (SD-183).

Part III. March is, 1968 !

DRAFT VERSIOn:

Complete Chemical Graphs; Enbedding Rings in Trees.
'.This prelininary version is' released at this time in order to facilitate the programing of DENDPAL for ringed structures, in particular the embedding of rings in trees.

The external notation is subject to further revision. A more compact one can easily be devised that also provides for implicit data and merges some of the lists. For canonical ordering, it may be necessary to expand such a compact formula back to the explicity LISP lists of the generator programs, for example the rdge crunt list, path modificr list, and vertex modifier list could be unified

For the'purposes of this report, we focus on the internal riotation and the combinatorial and automorphism problems that have to be faced by the gencrator program. Formulas will be lists that can be read by a LISP languase processor. Note that comas are redundant. "." is, however, In no case the dot of a LISP dotted pair, and this character should be translated at input-output.

This change of emphasis modifies some of the hierarchical choices, but none of the fundamental ideas developed in DEMDRAL I (acyclic molecules) and DENDRAL II (general survey of regular cyclic trivalent graphs).

INDEX

Section 3.1 is a glossary that should be consulted together with .
Table 3.1 as an authoritative definition of DENDRAL valuation.
Section 3.2 elaborates the completion of ring definitions as mappings
on the nodes and edges of one of the VG's listed in Dendral II.
Section 3.3 specifies how rings are embedded in trees to complete the notation outined in Dendral I.

Section 3.4 deals with some problems of chirality
Sections 3.5, ff, will be completed at a later date. ----
They will cover such topics as
abbreviated notations for human interaction
Petmenent labels and special mappings for frequently
encountered rings
Special treatment of aronaticity
Efficient algorithism for dealing with symetrics
Optional hicrarchies of DEMDRAL clessification
Heuristic questions of plausible structures
Rings with tetravalent (spiro) vertices
CANOMICAL FORMS
In general, the canonical choice among autonorphisms is the lowest valued vector description of the structure, evaluated cell by cell. It is important to follow the standard hierarchy of choice, as given in Table 3.1. For example, the pendant radicals are listed first, in ascending DEiDRAL order, before the lowest locant vector is selected.

This convention is consistent with DEMDRAL I and facilitates interfacing the computer programs for linear and cyclic DEMRAL.

RING. A molecule which is a pure cyclic structure, with no appended twigs.

RINGED COMPOUND. A tree, possibily degenerate, in which a ring is embedded.

R-TREE. A representation in which any ring is represented as a superatom.

SUPERATOM. A node representing a previously defined complex of atoms, treated as an item by the gencrator

VERTEX GROUP, VG, CUBICAL GRAPH, An abstract, cubical (trivalent) graph, summarized in DEATDRAL 2, on whose nodes and edges are mapped the vertex atoms and connecting linear paths of the ring.

COMPOSITION. List of atoms comprising a molecule, e.g. (C3N102Ul) . . or (C3H7N02).

R-COMPOSITION. A composition in which ring atons are removed and allocated to ring identifiers. In effect, the composition of an R-tree.

LOCANT. An ordinal number specifying an atom or a bond in a molecule for the purpose of attaching a radical. or substituting
a hetsroatom

CHIRALITY. Structural information not given by the topological connectivity. This usually concerns the orientation in space of tetrahedral carbon atoms with asymetrically attached radicals.

CENERATOR. A program to generate a complete buffirredundant list of isoners of a given composition.

ORTHOIESH. A particular ring system presented as if all heteroatoms are replaced by C atons. It is specified by a VG plus an F.CL in canonical order.

EDGE COUNT LIST, ECL A mapping of path length; on to the edges . - of a VG.

RING DEFINITION

A ring will customarily be defined (as a superatom) at the head of a formula. That is to say, the generator will allocate progressively larger numbers of atoms to one or more rings, then build all possible R-trees compatible with that R-composition. This canonical sequence can, of course, be rearranged for heuristic :purposes.

Each predefined ring will be given an arbitrary temporary label, $\mathbf{x 2}$, etc. Some rings may be permanently defined, since they occur so frequently. The most prevalent example is the aromatic, benzene ring which is defined under the name to as

$$
\begin{aligned}
& \mathrm{Z} 6^{*}=((0) 6 *()()) ; \text { Nita aton } \\
& 2 N^{*}=\left((2 \Lambda)\left(0^{*}, 4^{*}, 4^{*}\right)()()\right)
\end{aligned}
$$

As illustrated by this example, a ring definition will have the form

$V H$
PH
$x \mathrm{n}=(($ vertex group) (edge count list) (vertex modifiers) (path modifiers)),
where x in is the temporary label, or $2 m$ for a permanent one.

ORTHOSES

The Orthonesh consists of the VERTEX GROUP, VG, and the EDCE, COUNT LIST, FCL. Together these elements define a planar mesh whose shape has become conventionalized by chemical usage - it corresponds to a carbocyclic ring system on which changes from C to other atoms can be mapped by exception. Examples which anticipate later notation follow:

$4 B 2$ sawe $\operatorname{N2}(1,3) \quad(2,4)$

$415 A$ same

Note lisw ithe

$4 B B(0,0,2,3,3,0)(2)$ ECL fixiostie

4BB same $N(1)$

In 3.21 , the $V G$ is (0), i.e., the single ring, sans vertices, on which is mapped a single path.
(

Chemical evidence shows that in such a case, each bond is equivalent and has a character intermediate between "." and ":". We indicate this by the notation * which might be denoted in a radical as *C*C*C*C $\div \mathrm{C} \div \mathrm{C} \%$ or implicitly as 6%.

More complex rings have $2(r-1)$ vertices, where r is the number of included ring units (inscribed faces) as conventionally counted by chemists. Dendral II elaborates all possible vertex groups. The majority of organic ringed molecule; fall in the category $V G=(0)$, and $\boldsymbol{r} \leq 4, \mathrm{v} \leq 6$ covers as large a scope as the unpecialized generator is likely to be able to handle. These are reproduced here for convenience as Figure 3.21 and 3.22 .

The v vertices implied by the VG must now be specified, and then the $3 v / 2$ edges whose lengths are given by the ECL.
3.2-3 VERTEX MODIFIERS, VM.

The EDGE COUNT LIST, ECL, has a higher priority than the vertex modifiers, VM, list, an implicd list of the vertex atoms which specifies (a) their composition and (b) their chirality. Since the most usual situation is all carbons we locatc cxceptions to that standard.

The VII list and its value is the 3-ple (vector).

1) the non-carbon atoms in DEADRAL order, expressed as a composition, e.g., N2, or NLL.
2) A vertex locant list for these atoms,
3) An explicit list of the chirality of successive vertex atoms - (".", "+", "-", "A") referring to "unspecified", "dextro", "Zevo", "racemic"; see section 3.4 for details.
At any place, the onission of a list or the value NIL, implies "unspecificd".

- Tables of symmetries to elicit canonical forms will be provided or can be deduced from the VG (see Figure 3.1). For the moment the simplest algorithm will be to try all the automorphisms exhaustively, and save only the canonical representations.

PATH LIST.

[The ring definition is now completed by mapping linear paths onto the edges of the VG. In taking account of the symmetrics, the sense of the path must be considered. Several representations are possible; In previous specifications, we displayed a vector of all paths in edgenumber sequence: thus (.) (.C.C.N.) (.C.C.C.C.) for

123
 4567

Each edge of a path list was mapped with a linear, two-ended radical, presented in previously defined notation]

The ring atoms are all enum eraBle; first the vertices, V1, V2, etc., then the path atoms in the order of their presentation in the formula.

We now find it more convenient and conformable to chemical notation to map rings by exception. The path list will then consist of 3 parts:
3.24 ECL (already in orthonesh)

1) A vector that assigns a count to each edge in sequence. Each node is implicitly numbered by its sequence in the formula
2) A composition indicating atons replacing the inplied c's.

This includes double bonds as U 's. (abbreviations are available for aromaticity)
3.244
3) A locant vector for these replacing atoms and bonds

Example $3.2 \overrightarrow{41}$ then becomes:

2451
4

0
arthomesh is $2 A(0,3,4)$.
2.152

Caution: in internal notation all bonds are numbered as nodefairs. When the pair is ($n, n+1$) only the lower node need be numbered in external. notation.

Note: in man-machine-interaction displays, parentheses can be replaced by formatted labels and indentations to facilitate editing and commands. We can visualize a display

Vertex numbers can be replaced by arbitrary integers, egg. numbered after all the path atoms. In this example, $v 1 \leqslant 9, v 2 \& 10$.
. By giving the edge count list a higher priority than the VI, We facilitate the storing of common orthoneshes under a familiar ring label. This can then be edited there for specific compounds. Thus, 3.2453 can be input as

OECALIN

The chemists name for this is 2

$$
\begin{aligned}
& \Delta(1), 8 \text {-aza-decalin, } \\
& \text { us a somewhat different numbering system, (It should not } \\
& \text { o construct algorithms for interconverting many DENDRAL }
\end{aligned}
$$ names with conventional chemical notation.

Dedal's
(Dqeabin $N(1)$)

Example of a complete definition with canonical numbering:

$\because((4 \mathrm{~A})(0,0,0,2,4,4)(11,1)(5 \operatorname{UU},(10, v 3,5,7)))$ VG ECL VM PiN

Embedding the ring in a tree.

The ring as now defined may be regarded as a superatom. However, it will, in general, have its own symmetries. Different locations have to be indicated for attaching further radicals. For example, the three amino-phenols are all special cases of

Z. . Nt to OH 1
(or ZeNo)

We will, then first list all of the attached radicals in DEMDRAL order without reference to position of attachment. Then we will wite a vector of locants describing the successive positions of attachment. For example,

and a radical examyole

. $2(1,4,3)$, OH CH2H2

There are, of course, many automorphisms for the locant vector. In this example the locant vector is ($2,4,3$):

Canonical
. $2(1,4,3)$. OC .N

Automorphisms

$$
\begin{aligned}
& . z(1,3,4) \ldots \mathrm{C} \cdot \mathrm{No} \\
& . z(4,1,2) \ldots \mathrm{OC} \cdot \mathrm{~N} \\
& .2(3,6,5) \ldots \mathrm{OC} \cdot \mathrm{~N}
\end{aligned}
$$

etc.

The canonical form
2) lists the radicals in DENDRAL order, the afferent link being implied as

2) among the automorphic permutations of the locate selects the least vector.

Resolving the ambiguities of the locant vectors is again a messy prospect and the simpliest general solution is to test all the symacty operations scriatim and compare the locant vectors. More efficient rules will soon emerge for the frequent cases. llowever, as one suggestion, the pendant radicals might be replaced, during computation, by ordinal numbers in order to simplify coaparisons.

When a $-\mathrm{Cll}_{2}$ - appears in a ring, two substitutions are possible at the sane path atom. For the moment they are not distinguished. Chirality at vertices and path nodes is discussed later, 3.4.

For many purposes we emphasize the topological and can overlook the 3-dimensional spatial aspects of molecular structure. In real molecules, the lengths and, rotations of bonds are understood to a widely varying precision, and may be greatly influenced by the history, energy-state, and fmediate context of the molecule. In this sense, the topological connectivity is only a formal representation of a genus of states which can sometimes be inferred from it.

However, one aspect of stereo-chemistry generates distinctions among chemically stable species of very great importance, especially for biologically interesting compounds. This is chirality, which rests upon the alternating symmery groups of the valence bonds of the C atom.

The symmetries of the valences of carbon. The topological tetrahedron has the symetry 54 , that is all $4!=24$ pemutations of its vertices (table 3.41). The carbon atom behaves, hovever, as a steric tetrahedron, so that two enanticmorphic, mirror images, must be distinguished for (C...abcd). These corresponding to odd and even alternating groups (table 3.410).

We can now regard the chirality of asymetric carbons as a special case of the locant lists which specify substitutions on superatons. The Dand L- isomers of, say, glyceraldehyde would be described (with implicit H's given leading locants, Erentra ring locants)

[^0]

 CHO

$$
\begin{gathered}
C(1, n, n, 3) \cdots \\
n^{\prime}=.
\end{gathered}
$$

In view of the bisection of S_{4} into the two Λ_{4} 's, even and odd respectively, each locant list has 12 automorphisms (table 3.401). We can abbreviate $C(1,2,3,4)$ as $C(0)$ or "even", and $C(1,2,4,3)$ as $C(1)$ or "odd" respectively. We do not use the terms $D^{-, L}$, or $R-, S-$, as these are based on a different set of rules for ordering the radicals (cf. Eliel, 1962; Prelog, 1966). However, the absolute configuration is fully dined in the present system, which lists the radicals in DENDRAL-hierarchical order. It is nosy to program a translation between these systems, but DENDRAL is preferred for radical-gencration. The rules, which are specially adapted for asymmetric carbon, are: |

1) Radicals in DERDPAL sequence; however,
2) The afferent link, if any, takes position 4
3) Implied hydrogens are assigned implicit, leading locants
4) D-elyceraldehyde is taken as the prototype of the even group.

TETRA: AA
$O D D$

It is elementary that $C(0) \div C(1)$ only when the C is asymmetric, ie.; the four substituent are all different. The generator program needs know only this. However, translation to D / L and R / S notation, and conservation of chirality may be important in analytical manipulartions and in programing stereospecific reactions.

3.4% Path atom attachments

Each H-atom of the path atoms of the pure ring is a candidate for replacement by a radical. If the path atom is a saturated $\mathrm{C},\left(-\mathrm{CH}_{2}-\right)$, the two H's are not necessarily equivalent in chirality $i . e .$, when the image of the rest of the ring differs, as seen from the C atom, via the afferent and efferfint bonds. The image is obtained by cutting the bond, the attachment to the C is replaced by an H; the other cut edge then leads to a radical which can be evaluated by DENDRAL rules. Thus in

THuEXSH at (3), the image is (C.O.C.C.C.) afferently and C.C.C.o.c. efferently. Hence, any difference in the further substituent at (3) will make that atom asymmetric.

Customary notation falls to unify the several aspects of chirality: asymmetric C atoms in acyclic molecules, ring vertices and ring path (1)
atoms. DENDRAL furnishes a systematic evaluation of radicals and (2) a convention for absolute configurations by the allocation of the set
of radicals to the even or odd group, respectively.
At a trivalent ring vertex, the weights at the C are ordered by the canonical numbering of the VG edges defined by the orthomesh and further substituent (Paragraph 3.22-3.24) in the ring.

The chirality of the vertices of a ring is designated by a chirality status vector displayed in the Vi list. This will be a string of 0 and 1 bits. Other characters may be used to designate "unspecified" and racemic conditions (statistical mixtures). "C(0)." can be economically replaced by "C+", "C(1)." by "C-".

For a path atom, a the afferent and efferent paths in the ring count as heaviest bond; Further substituents are then weighed as in Paragraph 3.41 .

CIS-TRANS ISOMERISM

DERDRAL notation overrides the distinctions of CIS- and transconfigurations of adjacent vertices in rings, which appears in customary cog.
notation. In molecules of sufficient symmetry, decalin we will find an ambiguity: CIS will correspond to the chirality status vector (10) as well as (01); trans to (11) or (00), as we shall sec:

chirality at V1: V1(1,2,3,4) HE1 E2 E3 in canonical order. The. V2 will be V2 $(1,2,4,3) \ldots$ H E1 E2 E3. We thus have V1(0), V2(1) or the status vector (01).

The symetry, however, also permits the nolecule to be inverted, i.e., to

which gives the vector (10). The former is however canonical. By a corresponding argument, trans-decalln is

(00) or (11), the former canonical.

Note that the automorphisms of vertex chirality are resolved, and the path numbering fixed, before locants are established for path modifiers and appended radicals.

CIS/TRANS Isomerism at double bonds.
(Revision of 1 • 72)
The same approach of producing an absolute valence assignments can be used to describe geometrical isomerism at $C=C$.

The double bond is taken to occupy two andjacent positions of the first C atom encountered, postulated as heanion chirality status $C(0)$. The second is then matched to the first. It will be $\mathrm{C}(0)$ or $\mathrm{C}(1)$ in an absolute, canonical description, and only one of these if the conditions for geonetric isomerisn are met. e.g.

6.17
cis-2-butene

odd
or : $\mathrm{C}, \mathrm{CH} \mathrm{C}(1) . \mathrm{CH}_{3}$ as an unambiguous deacnigtiviz.

AXIAL AMD EQUATORIAL
Hexagonal rings often adopt a chain-like configuration in which one of the H 's at a path $-\mathrm{CH}_{2}$ - may be found to lie either close to the plane of the ring (equatorial), the other above or below it (axial). These labels are part of a steric rather than topological description, but can sometimes be referred from the absolute configuration.
3.2% Revision of edge-numbering canons for twin edges.
(Revision of 2.34)
According to 2.34, the edges of a vertex group are numbered by circuiting the polygon (Hamilton circuit), than the chords as first encountered. Hence the numbering and polarity of these examples.

$$
\text { 2A-1,2 } \quad 6 A B E-1 \text { and }-7 \text {, etc., }
$$

Edges $i T$ and -3 , and \square are twin edges, ie., correspond to a span of 1.
The elaboration of symmetries is simplified if twin edges are not treated as chords, but are brought together in the sequence. Hence wc now r Arawn "

$6 \triangle B E$

The revision of edge order may influence the edge count list, canonical orientation of the orthomesh, and node-numbering in certain situations. For example

now becomes

in place of

CANONS OF DENDRAL ORDER (nodificd from DENDRAL [1])
Hierarchy of Vector Valuation in Decreasing Order of Significance

- The DENDRAL-VALUE of a radical is a vector comprising:

R-COUNT
Rings
Other atoms (except II)
COMPOSITION OF RADICAL
Rings
Composition . CNOPSU*
Orthomesh
Vertex Group VG
Edge Count List ECL
Vertex Modifiers \quad VM ; chirality status
Path modifiers PM
Other atoms by atomic number

$$
C, N, 0, P_{1} S
$$

U (unsaturation is counted as a lovest-valucd atom)
APICAL NODE
Degree: Number of efferent radicals
Cotaposition of node:ring (by value),
Afferent link: ($:,:, .$, , N, O, P, S
APPENDANT RADICALS - attached to apical node
vector of radicals in order of ascending* value
locant list (ring) or chirality (atom) on apical node

The sequence might be reversed -substituents to lover-numbered atons, and orders atoms by valence as well as atonic number.
$F \operatorname{Fg} 3_{1}$, To itherfate penemritatingoups

The alternating groups Λ_{4} (even) and (odd)

Together, these constitute the symmetric group, $\mathrm{S}_{4^{-}}$
Example: $1234 \approx 2143$

Ring-symetrics in DENDRAL.
The input problem is to "produce all isomers of Clonla contajning at least one benzene ring." lhe verbose output displays the pregran's listing of the permutation oroup and other characteristics of the ring, before lising the isomers, Chirality is disregarded for this example (e.g. at ifl2).
(ISOMERS (OUOTE CIOH1A))
(MARCH-8-1963 VERSION)
C 4 : PHEN $* 114$
(RING *PHEN* COMPOSITION ((U . 4.) (C . 6.)) VALENCE (1. 1. 1. 1. 1. 1.) SYMMETRIES ((2. 3. 4. 5. 6. 1.) (3. 4. 5. 6. 1. 2.) (4. 5. 6. 1. 2 - 3.) (5. 6. 1. 2. 3. 4.) (6. 1. 2. 3. 4. 5.) (6. 5. 4. 3. 2. 1.) (5. \& 3. 2. 1. 6.) (4. 3. 2. 1. 6. 5.) (3. 2. 1. 6. 5. 4.) (2. 1. 6. 5. 4 - 3.) (1. 6. 5. 4. 3. 2.)) UNIOUE-NODES (1.)) MOLECULES NO DOUBLE BOND EOUIVS

DONE

The canonical numbering details then become:

ECL $=$
$(0,3,0,2,0,4,0,2,0)$

VM: No heteroatom substitutions; the chirality vector is given by:

$$
\begin{aligned}
& \text { vl....H } 182 \text { (1) } \quad \text { v4.. }=456 \\
& \text { v2....H } 123 \text { (0) v5....H } 567 \text { (0) } \\
& \text { v5....H } 567 \text { (0) (100300) } \\
& \text { v3....H } 349 \text { (0) } \\
& \text { v6....H } 789 \text { (0) }
\end{aligned}
$$

(3) at $v 4$ refers to the abrogation of chirality at a double-bonded vertex.

PLM: No heteroatoms, but a double bond a! $(v 4,5)$.

The complete ring is then ($x 1=$ nor- Δ^{5}-androstene)
(xl ($6 \mathrm{ACA}(0,3,0,2,0,4,0,2,0))(100300)(\mathrm{U}(\mathrm{v}, 5)))$

In the whole molecule, the canonical center is at \uparrow and we have:

$\times 1(1)$
rde = -

giving the completed formula: .C3H6.CH..CH3 CH3
$\mathrm{CH}+$. $\mathrm{CH} 3 \mathrm{xl}(1+, \mathrm{v} 2, \mathrm{v} 5,7-) \ldots \mathrm{CH} 3 \mathrm{CH} 3 \mathrm{OH}$
$<(v 1)<(2)<\alpha g_{j}, r \circ R . \quad H<O H<(6)<(R) \quad$.
$H<C H 3<(X 1) e^{2}<\left\langle\right.$ \& $\mu_{1} \cdot \operatorname{ran}$

$1=$

$$
F L L=0400 * 0 \leqslant 210 * 0
$$

$V M=13 * * 3$
$P M=(12 \operatorname{u2}(1,8,4,9))$

$$
N_{\ldots} . .21+5 \operatorname{coc5} \subset: 0 \times 1(1), 乙 163
$$

Corrections (see 3.246
3.221 The vector for LCL of
becomes

$$
(0,4,1,0,4,1)
$$

$$
(5,0,0,4,3)
$$

3.240 renumber to 3.3

The paragraph immediately preceding tins should be numbered 3.2456

or, as an cenroratic.

$$
\left((4 A A) \quad\left(0^{*}, 4^{*}, 0,0,4,2\right)(N, 4)\left(s^{\prime}(10)\right)\right)
$$

Fig 3.1 4 NA stound be

corresponding change in permutation table.

收に

$0,10,1,+4$
$0,4,1,0,4,1$

4151

$$
\begin{aligned}
& 0,0,0,3,-4!1! \\
& 0,4,0,0,4,2
\end{aligned}
$$

(1)
$6 A C A$

[^0]: $C(1,2,3,4) \ldots$
 H OH C112.0\% $\subset H: 0$

 D-glyceraldelig!

