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The structures of organic molecules are sometimes so bewilder-

ingly complex that chemists have difficulty describing, classifying,

and even naming them. Graphtheory, a special tool borrowed
from topology, has now been used to reduce even quite com-

plicated chemical structures to a chain of numbers so that a

computer can analyze them. This attempt to make organic chem-

istry more systematic could make it much easier for students to
learn basic principles and to solve vexatious problems of classify-

ing chemical compounds so that computers could be more readily

applied to retrieve chemical information. It may be a forerunner
of similar mathematicalsimplifications that will be applied to

chemical genetics and other much more complex fields.

Topology of Molecules

Joshua Lederberg

The enterprise known as science rests on two pediments: the power and

social utility of empirical knowledge, and the esthetic satisfaction that

comes from an elegant restatement of principles. These views have been

contrasted as the Baconian versus Newtonianjustifications of science.

Newton’s name evokes a very apt image, his epochal contributions to the

mathematical formulation of physics. Some esthetes judge how far a
science has advancedin its development by the extent to which it has been

mathematized —— made into a deductive science by a set of axioms and
rules for their manipulation.

The fruitfulness of pursuing such an aim is debatable for such fields as

embryology, genetics, or psychology. Outside the rather special area of
evolutionary theory, few examples of useful prediction are based upon any

comprehensive mathematization of living behavior. On the other hand,

for many special situations, models can be created that are sufficiently

simplified to justify the application of some numerical mathematics or

statistics. In his essay in this volume, Hirsh Cohen has discussed many
examples of this kind of application of mathematics to biology and medi-

cine.

With the rapidly growing speed, size, and availability of digital com-
puters, the esthetic ideal of rationalizing a science acquires a new dimen-
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38 JOSHUA LEDERBERG

sion of practical importance. If we could give biology sufficient formal

structure, it might be possible to mechanize some of the processes of
scientific thinking itself. Many of the most striking advances in modern

biology have come about through the formulation of some spectacularly

simple models of important processes, for example, virus growth, genetic

replication, and protein synthesis. Could not the computer be of great

assistance in the elaboration of novel and valid theories? We can dreamof

machines that would not only execute experiments in physical and

chemical biology but also help design them, subject to the managerial

control and ultimate wisdom of their human programmer.

This vision is so far beyond our present grasp, it makes what will be
reported below seem quite trivial. These remarks may, however, give some

notion of the reasons a geneticist took an interest in the formalization of

organic chemistry. Chemical genetics embodies many statements in

natural language, and its reasoning embodies an enormous range of

expertise covering chemistry, geometry, and most of the natural sciences,

as well as that most difficult realm, common sense. As a further compli-
cation, many quite fundamental discoveries are being reported: almost

daily. I wanted more experience with the mechanization of a simpler

science before tackling chemical genetics. A scan across neighboring

disciplines suggested that elementary organic chemistry might bea chal-

lenge that was more amenable yet had not been exhausted.

For various reasons, including the good fortune oi my association with

Professor Carl Djerassi of Stanford’s Chemistry Department, the analysis

of mass spectral data for the solution of structural problems‘in organic

chemistry was taken as the focal process for which a formalization would

be attempted. Equally fortunately, Professor E. A. Feigenbaum joined the

faculty of Stanford’s Computer Science Department, and theentire effort

of translating the formalisms and developing the heuristics for imple-

mentation on the computer has been donein close collaboration with him.

We maynow turn to a consideration of the application of some elemen-

tary nonnumerical mathematics, that is, graph theory, for the representa-

tion of organic molecules. The use of these representations for a computer

mechanization of the concepts of organic structural analysis will be
summarized briefly.

The mathematical tool for translating chemical structures into a form
that a computer can handle digitally is a concept that topologists
call a graph. This kind of graph haslittle relation to the curves and bar
charts used to display data; rather, it is a formal diagram for analyzing
connections among a numberofentities, in this case the individual atoms

that make up an organic molecule. -
Graphs have two components: nodes (representing atoms) and edges

(chemical bonds between atoms). Each edgeis associated with exactly two
nodes, each node with at least one edge. The lengths ofthe edges are

_ irrelevant. Disconnected graphs are regarded as representing molecules
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that are distinct, even if they are bound by diffuse chemical forces as in

a crystal. .

Our main approach is mapping: a rule of correspondence between

a part of a chemicalstructure and a part of some abstract graph. Graphs

lend themselves to canonical forms, that is, methodical choices among

equivalent representations according to a precise rule, which eliminates

ambiguity and redundancy. The objective is to represent each molecular

structure by just one graph and, conversely, to have each graph represent

just one structure. Chemistry will re-emerge after a few levels of abstrac-

tion.

The structural formula for an organic molecule is then a paragon of

a topological graph, that is, the connectivity relations of a set of chemical

atomswetake as the nodesof the graph. True, we recognize more than one

type of connection — double, triple, and noncovalent bonds, as well as

single bonds. From an electronic standpoint, however, the special bonds

could just as well be denoted as special atoms. The structural graph does

not specify the bond distances and bond angles of the molecule. In fact,

these are known for only a small proportion of the enormous number of

organic molecules whose structure is very well known from a topological

standpoint.

Most of the syllabus of elementary organic chemistry. thus comprises

a survey of the topological possibilities for the distinct ways in whichsets

of atoms may be connected, subject to the rules of chemical valence. The

student then also learnsrules that prohibit some configurationsas unstable

or unrealizable. (He maylater earn hisscientific reputation by justifying

or overturning oneofthese rules.) But the field of organic chemistry has

reached its present stature without many benefits from any general anal-

ysis of molecular topology. These benefits might arise in applications

at two extremesof sophistication: teaching chemical principles to college

undergraduates and teaching them to electronic computers. They may

also apply to the vexatious problems of nomenclature and systematic

methodsof informationretrieval.

Although the topological character of chemical graphs was recognized

by the first topologists, very little work has been done on the explicit

classification of graphs having the greatest chemical interest. Somedifficult

problems, e.g., the analytical enumeration of polyhedra, remain unsolved.

This article will, then, review some elementary features of graphs that

may be used for a systematic outline of organic chemistry.

All the Ways to Build a Molecule

A problem statement might be: Enumerate all the distinct structural

isomers of a given elementary composition, say C:H;NO>. Thatis to say,

produce all the connected graphs that can be constructed from the atoms

of the formula, linked to one anotherin all distinct ways, compatible with 
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the valence established for each element(4,3, 2, 1 for C, N, O, H, respec-
tively). For compactness, H can be omitted from the representations,
being implied by every unused valence of the other atoms.
The first discrimination is between trees and cyclic graphs, the “ali- .

phatic” versus the “ring” structures of organic chemistry. Trees are graphs
that can be separated into two parts bycutting any one link. How may
we establish a canonical formfor a tree, after first noting its order (num-
ber of nodes)?

The first step might be to find some unique place to begin the descrip-
tion. A tree must have at least two terminals and may have manymoreif
highly branched; these are, therefore, not suitable starting points. How-
ever, each tree has a unique ccnter. In fact, in 1869 Jordan showed that
any tree has two kinds of center, a mass center and a radius center. Each
center has a unique place in any tree; the two may or may not coincide.
To find the radius center, the tree is pruned onelevel at a time, cut

back one link from every terminal at each level. This will leave, finally,
an ultimate node or node pair (in effect, edge) as the center, the radius
not of a length but, rather, of levels of pruning needed to reach the center.
To identify the masscenter of a tree, we must consider the two or more

branches that join to each nonterminal node. The centeris the node whose
branches have the most evenly balanced allocation of the remaining mass
(node count) of the tree. This is the sameas saying that noneof the pend-
ant branches exceeds half of the total mass. If the structure is a union of
equal halves, the centeris the edge that joins them.

Eachofthe centers (Figure 1) is unique and so could solve our problem
of defining a canonical starting point of a description. The center of mass
is more pertinent to finding a list of isomers, which of course have the
same mass. The radius centeris ill-adapted for this but matches conven-
tional nomenclature, which is based on finding the longest linear path,
that is, a diameter.

In chemical terms, the center divides the graph into two or more
radicals, These radicals can be ordered by obvious compositional prin-
ciples, giving rise to a canonical description of the whole graphin

a

lin-
ear code. Thus, methionine becomes (C(N) (C(O) (==O)) (C—C—S—C))
or, in a parenthesis-free notation the example should make obvious,
C---NC-:O0C:C-S-C. This is morelegible to the human reader, if the
implied hydrogens are restored, as

CH:.-NH2 C-:OH O CH2-CH2-S-CH3.

Any linear code has an implicit numbering system: Each atom is num-
bered according to the place where it occurs in the string.

Somethirty years ago, Henze and Blair showed how Jordan’s principle
could be used for the enumeration of isomers of saturated hydrocarbons
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and somesimplederivatives of them. Here, the nodesareall carbon atoms,

and the enumeration can- proceed by working outward from smaller to

larger complexes. For example, for the isomers of undecane, CyHa,

 

L /™ /™
@ CH ¢

| NH, °

~ NH, @ cH, —- CHa

S—CH;

Urea Methionine

Ficure 1. Chemicaltrees andtheir centers.

In urea, the carbon atom is both the radius

center and the mass center.
In methionine, carbon atom 1 ts the mass

center, according to the numerical partition
7... 134. Carbon atom 2 is the radial

center, on a diameter of 7, that is, the center

of a largest string

(C—S—C—C—C—C=90).

For both analyses, we ignore hydrogen
atoms.

one atom is designated as center, leaving 10 to be allocated among 2,3,

or 4 branches. Only the following partitions shown in Figure 1 satisfy

the rules (leaving dissymmetry ‘out of account):

Branches Partitions No. of partitions

2  ¢<O 5 '
L) 5

u
i

W
w

N
N

2lif2

NG 3) 214}3

C1 5151414

No closed algebraic expression has been found for this enumeration.

However, the recursive expansion was done manually by Henze and

Blair with a few trivial errors later found by a computer check. No

organic chemist will be surprised by the enormous scope ofhis field of

study. There are, for instance, 366,319 isomeric icosanes, CooHo, and

5,622,109 icosanols, CooHaOH (Table 1).
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Table 7. Counting the different arrangements of compounds of carbon

and hydrogen containing no double or triple bonds and no rings. These

have the general formula C,Hen4o.
 

 
Numberof Carbon Atoms Numberof Possible Isomers

11 159
1 1 12 355 °

2 1 13 802
3 1 14 1858

4 2 15 4347
5 3 16 10359
6 5 17 24894
7 9 18 60523

8 18 19 148284
9 35 20 366319
10 75
 

The total range of acyclic compounds containing atoms other than

that of the hydrocarbonsC or H is, of course, very much larger than these

subsets. To generate them, an allocation of nodes to constituent radicals

takes account of the kind as well as number of remaining atoms. A com-

plete enumeration of structural isomers of a given composition, for ex-
ample of alanine, C;H;NO,, can thus be made. Wefind 216 such isomers

if we apply only these simple topological principles, compared with just

5 isomers of CsHu.

Graphs of Ring Compounds
Cyclic graphs are less tractable than trees. A linear representation is

difficult because every path mayreturnto a specific node already defined.

The symmetries of cyclic graphs complicate the problem of defining a
unique center on morphological criteria. These taxonomicdifficulties are
‘reflected by the existence and popularity of the American Chemical

Society’s Ring Index, which displays the “11524 rings known to chem-

istry” together with a profusion of synonyms and arbitrary numbering

systems. Many morerings are discovered every day.

Molecules may also contain both acyclic and cyclic parts. However, if

a strictly cyclic part is once defined, it can be regarded as a single node in

a tree.

Wenowconsiderthestrictly cyclic graphs, whereinat least two (some-
times more) links must be cut to separate the graph. First we produce a

set of strictly trivalent cyclic graphs. Then these are related to the chem-

ical graphs by ignoring the bivalent nodesof the latter. That is, the triva-

lent vertices are preserved to describe an abstract, basic graph and each

linear path between vertices maps onto an edge of the basic graph. The

degenerate case of zero vertices, the circle, must be included in the set
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since the simple ring is the most important cyclic structure of organic

chemistry. A double ring’ can be generated in only one way, mapping

onto a two-vertex trivalent graph: the molecule naphthalene maps onto

the hosohedron. Figure 2 gives some of the more familiar cyclic hydro-

carbonsto illustrate these correspondences.

Some organic molecules have one or more quadrivalent vertices.

This contingency can be met head-on by enumerating the full set of

correspondingtri- quadrivalent graphs. Itis expedient to convert these,

when needed, to trivalent graphs by any of a numberof tricks. For

example, map a quadrivalent node onto a pair of connected trivalent

nodes.

Wenowproceed to enumeratethetrivalent graphs, each with anasso-

ciated canonical representation and an implied numbering of nodes and

edges for mapping the molecule.

Once Around the Network

A practical key to the solution of this problem, as to many other net-

work problems, takes advantage of the Hamilton circuits found in most

of the abstract cyclic graphs having chemicalinterest. A Hamilton circuit

isa round trip through the graph that traverses each node just once. It

therefore uses n edges, leaving out n/2 edges of a trivalent graph. Figure

3 is Hamilton’s own example, the dodecahedron, proposed by him as a

parlor game, each node representing a city that the round-the-world

traveler would wish to visit once but not more often.

A convenientrepresentation of an HC mapsthe nodes and edgesof the

circuit as vertices and bounding edges of a regular polygon. The remain-

ing n/2 edges then form chords, each node being one of the two termini

of one chord. A description of the graph then needs only some notation

for the n/2 chords. First, we should canonicate the orientation of the

polygon, having chosen toinitialize the HCarbitrarily among n nodes

and 2 directions (the rotational and reflectional symmetries of the poly-

gon). Each node is joined by some chord having a certain span. The

span list can be put in cyclic order, whereitis immaterial which nodeis

selected as starting point. Theeffect ofreflection is also easily computed.

If the spanlist is regarded as a number,its minimum value underrotation

or reflection becomes the canonical form. For example, an 8-node graph

might be represented (Figure 4) by any one of the span lists 17522663,

31752266, and so on, or the reflections 75226631, and so on. Of these, one

quickly finds that 17522663 is the lowest-valued, hence the canonicalform.

The same procedureestablishes a canonical ordering of the nodes and

edges. For the latter, we take the HO sequence (the polygon) first, then

each chord in orderof first reference.

The span list has x terms. Only r/2 are necessary since each chordis

referred to twice in the spanlist. For an abbreviated code, simply omit the
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Ficure 2. The cyclic trivalent graphs with 8 or fewer nodes. Up to 6 nodes, these all have
Hamilton circutts but may also be represented in other ways. In a few examples, the circuits
are drawn with emphasis on planar map representations. Complete tables of chord lists like
those shown under the circuit (polygonal) representations have been published for up to 12
nodes, virtually exhausting graphs of chemical interest.

The chemical examples are, wherever possible, hexacyclie hydrocarbons. Each vertex stands
fae an rachan atam
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Nonpolygonal graph with known chemical exomples

MAPPING ON Ee CHEMICAL
CODE UNDERLYING GRAPH EXAMPLE
 

(8A:1,8:ACA) Oa GS Oc

— OR— 1,8 not connected
ext’

(EL AE)EAA) 2 8 ? 2

A Hamiltonian pcth where (|by 6 7

9 Circuit is lacking \ 7

5 4

The final example has no Hamilton circuit. It can be computed either as a predicted union
of two circuits (A with ACA, edge 1 with edge 8), incanonical form, or as a Hamiltonian
path (*(AE)EAA), the asterisk signifying that the polygon cannot be closed, and (AE) that
two chords, A and E, both issue from the same, initial, node.

As explained in the text, each chord of the polygonal representation is coded by one character
for tts span the first time it is encountered in a serial circuit of nodes.
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Figure 3. Hamilton's own Hamilton cir-
cuit. The abstract dodecahedron, repre-

sented as a planar map of 20 nodes.©
second reference to any chord. Thus 17522663 becomes 1522 to encode the

graph in a canonical form (Figure 4). Since we need more than 10 num-
bers, we use the alphabet, character by character. Thus 1522 becomes

oN
  On

.
os Ss 

 

17522663 31752266 63175226 66317522

26631752 22663175 82266317 75226631

{orway

AEBB

5o0rE

75226631 2 2orB

Ficure 4. Symmetries and encoding of a cyclic trivalent graph with 8 nodes. There are 16
symmetry operations (8 rotational X 2 reflection). Shown are 8 rotations, and a reflection that
could be combined with each of these. With eachfigure ts also a span list; the canonical choice
of the 16 (not all distinct) is the lowest-valued span list, 17522663, calculated with the upper
rightmost node as the initial. This can then be reduced to the code AEBB.

AEBB. Furthermore, we can reconstruct the-graph from the code by

retracing the steps just recited. Caution: Unlike span lists, the abbre-

viated chord lists cannot be freely rotated.

Having a systematic, linear code, we are now in a position to compute

all possible Hamilton circuits. Any span list is a string of numbers;
therefore, the complete set of circuits can be sieved by a computer pro-

gram from theseries of integers. A great deal offruitless computation can

be saved by incorporating some of the canonsof preferred representations

into the generating algorithm. For example, no later digit can be smaller
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than theleading digit; elsc a simple rotation of the span list, whichis an

obvious isomorphism, wauld give a smaller, preferred code number.

In this manner, exhaustive lists of Hamilton circuits for n < 12 have

been computed. Theyareillustrated here up to n = 8 (Figure 2). Some

planar, trivalent graphs lack a Hamiltoncircuit. The simplest has 8 nodes

(Figure 2, last item) and, as it happens, it does underlie the mapping of

a known compound. Obviously, these graphs will not be anticipated by

a computer program that generates Hamiltoncircuits. However,it is not

difficult to describe these figures as unions of circuits or else, for every

practical case, as Hamilton paths. Furthermore, at each level of graph-

building, it is possible to anticipate combinations of cut edges that will

yield circuit-free graphs upon union with other partial graphs. A complete

set of trivalent graphs is, therefore, computable.

The special case of the smallest, circuit-free trivalent polyhedron has

been a challenge to mathematicians for some time. A polyhedronis here

defined asa 3-connectedtrivalent planar graph, that is, one that cannot be

separated withless than three cuts. Tait had conjectured that a Hamilton

circuit always existed, but this was refuted by Tutte with a 46-node

counterexample. Subsequently a 38-node case was built which lacks a

Hamilton circuit (Figure 5). So far as is known, this is the smallest;

IR

{a} {b)

(e} (d)

Ficure 5. A graph with special edges and two HC-free polyhedra. (a) has 16 nodes. The

marked edges are included in any HCof the graph. Hence the 3-cut (), with 15 nodes, obli-
gates the marked edge as part of an HC of any graph in which (6) is inserted. This leads to a
contradiction, that ts, no Hamilton circuit in (c) Tutte’s graph, with 46 nodes and (d) with
38 nodes.

however, there is no proof of it. Ali the trivalent polyhedra with up

to 18 and 20 nodes have been scrutinized or anticipated, and all have

Hamilton circuits.

Noincisive theory yet deals with these curiosities of empirical mathe-

matics, in the same sense that we have no systematic generator for pro- 
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ducing the nth prime number. However, if the elegance of the theory of
polyhedra is marred by such empiricism, it is no impediment to putting
the chemistry of real molecules on the computer.

Nonplanargraphsare theoretically important possibilities. The corre-

sponding molecules (Figure 6) should be difficult but not impossible to

synthesize. So far, none has been reported.

~~

MPs
CH,

(al (b) (c} (d)

Ficure 6, Nonplanar graphs. (a) and (6) are Kuratowshi’s fundamental forms, 4-valent
and 3-valent, respectively. At least one of these must be included in any nonplanar graph. (c)
ts a projection of (b) as a tetrahedron with an additional internal chord, and (d) ts a hypo-

thetical molecular siructure that maps on to (c).

N
|

CH, CH~ CH

 

Mapping and Symmetry

Having explored the trivalent graphs, we now return to mapping

- chemical atoms on their nodes and bondsor linear chains ontheir edges.
_Manygraphshave substantial symmetry, and the correspondingly redun-

“dant operations must be considered to decide on a canonical representa-

tion. Here, again, the HC’s are helpful. If an HC is present, it can also be

projected on the same graph after any symmetry operation. Therefore,

the whole set of symmetry operations is included within the list of the

HC’s, giving both remarkable economy of computational effort to the

search for the symmetries and a straightforward expression of the oper-

ators. To describe a molecular structure, we can mapit on an arbitrary

choice of form and then subject the result to the symmetry operators. The

canonical representation satisfies some rule, say the highest-order listing,

of the mapped elements. Thus, for the morphine nucleus, we would have

to choose among the 4 symmetries of its underlying graph (Figure 7), and
we can then encode the morphinan molecule as

(8BDDB 4*0031301000 NC3,C3,0,C3,C).

The first two words define the basic map, ‘‘*’ standing for a fused

edge, and the digits for the lengths of the paths betweenvertices. The last

clause maps the atomic strings on to the nonempty edges.

Besides the linear paths of the cyclic structure, the mapping may also

include specifications for fused edges (quadrivalent centers), hetero-
atom replacements of vertices, and specifications of stereoasymmetry of

vertices. The details are inevitably fussy, but the computer handles all

the fuss once the program is worked out. After the mapping, each atom is

numbered in the order ofits reference.
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3-0-4 -ccc--€CC-
Ne Zo a

2 5

4= =x 3P= MAY.
9

-CCON-/7 &-- 7% 3

{8BDDB}
Canonical
map

 

Ficurs 7. Mapping a complex ring: morphinan.

Applications
This development was needed for a continuing effort to program the

automatic computation of structural hypotheses to be matched against

various sets of analytical data, especially mass spectra. The growing

sophistication of instrumental methods has already begun to outdo the

chemist’s capacity to interpret the results. Since mass spectrometers now

commercially available can generate 10,000 spectra per second, the need

for computationalassistance to makefull use of this speed is self-evident.

Such devices are also being considered for the automated exploration of

the planets, which puts even heavier demands on the local intelligence

available to the system.

These applications relate primarily to the possibility of anticipating

hypothetical structures. The language also provides a format for express-

ing synthetic insights, that is, the elementary reactions by which func-

tional groups can be altered or exchanged. We might then expect the

ultimate development of computer programs that have been taught a

few thousand unit processes (and their limitations) and could be chal-

lenged to anticipate a synthetic route from given precursors to a given

end product. Such programs might at least assist the chemist by remind-

ing him of a few among myriad possibilities of combining the unit proc-

esses learned from the same chemistor, better, from a diverse school. For

the moment, we do not consider the empirical testing in the computer’s

own laboratory of a few thousand routes chosen on its own initiative.

The nomenclaturalutility of a system of canonicalformsis self-evident.

We are very nearly at the point where linear notation may again be

dispensable for human use since the computer should be able to interpret

structural graphs as such. However, a mathematically complete system

of classification of structuresis still important, regardless of the notation

in which the structures are expressed.

Thereare, of course, many alternative approachesto notation, reviewed

by a National Academy of Sciences Committee (1964) and appearing
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from time to time in the Journal of Chemical Documentation. As far as I

know, none of them has been addressed to the exhaustive prediction of

canonical forms, and most of them are too complicated to be easily
adaptable to this end.

Computer Implementation
The notation of the computer language called DENDRALis the

foundation of some current efforts at mechanized induction in organic

chemistry. A program to generate all isomers of tree structures has been

fully implemented in the LISP programming language andis routinely
run on a time-shared PDP-6 computer at Stanford University. Most of

this program was developed on the Q-32 computer of the System Develop-

ment Corporation at Santa Monica, California, using remote teletype

consoles located at various homes andoffices at Stanford, 400 miles away.

The kernel of the program is a ‘“‘topologist” embodying the principles

of the first part of this paper. It is, however, restrained by some common-

sense chemistry to eliminate many inappropriate constructions. For

example, the chemist knows that enolic structures like -CH=CH-OH

are unstable, rapidly reverting to a tautomeric equivalent (aldehydes),

-CH2-CH=0, and this information is embodied in the higher-level
program. Also included is a model of the process of molecular fragmen-

tation in the mass specirometer, leading to a deduction of the mass

spectrum expected from a hypothetical structure. The program uses the

input data to guide its induction of candidate hypotheses, then tests

these hypotheses deductively against the data, in an emulation of the
traditional scientific method.

Muchto our surprise, the program already works with real data, some-

times giving correct solutions. Not so surprising, the program greatly

outdoes humanchemists in problemslike generating all the isomers of a
given composition. Most of us founder on the isomorphisms.

Students encountering organic chemistry for the first time are often
frustrated because they are challenged with graph-theoretic concepts,
implicitly, without being told that this is their problem. For example,

a studentis expected to usehis intuition to discover that there are only two

isomers of C»HsO (in our notation, CH2--CH3 OH, ethanol, and

O--CH3 CH3, dimethyl ether), but this intuition is achievable only

with extensive practice. And even an experienced chemist will be hard-put

to describe, irredundantly, all the isomers of slightly more complicated

molecules, say CsH),O. Many problems in elementary chemistry are

solved by excluding all but oneofa list of possible isomers, implying that

the whole list is deducible. The concept of the center of a tree and the

algorithms for systematic generation of isomers should be of substantial

value in teaching this subject, quite apart from the implementation of

the algorithms on the computer. The same consideration should also
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apply to the ways in which rings can be built and to positional isomerism

of substituted rings.
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