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FOREWORD. This contribution is intended as an introductory survey of the

topological concepts that underlie the DENDRAL system for chemical structure

notation. The main purpose of the system is to provide a language in which a

computer program can frame hypotheses of organic chemistry. For example, a

program to generate all the isomers of a given formula has already been imple-

mented.

This introduction is especially intended for users who wish only

a general outline of DENDRAL rather than its full details of syntax. Some

notation is necessarily used. This resembles the definitive DENDRAL forms,

but the complete manual should be used as a definitive statement of the lan-

guage.
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The structural formula for an organic molecule is a paragon of a topological

graph, that is, the connectivity relations of a set of atoms. True, we

recognize more than one type of connection, doubie, triple, and non-covalent

☜bonds, as well as single bonds. However, from an electronic standpoint the special

bonds could just as well be denoted as special atoms. The structural graph .

does not specify the geometry, that is, the bond distances and bond angles of

the molecule. In fact, this is known for only a small proportion of the

enormous number of organic molecules whose structure is very well known from

a topological standpoint. Most of the syllabus of elementary organic chemistry

thus comprises & survey of the topological possibilities for the distinct ways

in which sets of atoms may be connected, subject to the rules of valence. The

student then also learns rules which prohibit some configurations as unstable

or unrealizable (andmay later earn his scientifie reputation by justifying

or overturning one of these rules). The field of organic chemistry has,

however, reached its present stature without many benefits from any general

analysis of molecular topology. These benefits might arise in applications

at two extremes of sophistication: the teaching of chemical principles to

college undergraduates, and to electronic computers. They may also apply to

the vexatious problens of nomenclature and systematic methods of information

retrieval.

Although the topological. character of chemical graphs was recognized by
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the first topologists, very little work has been done on the explicit classifi-

cation of the graphs having the most chemical interest. Some difficult.

problems, e.g., the enumeration of polyhedra, remain unsolved. However, the

main obstacle may be the seeming triviality of the problems, many topologists

being quite unsatisfied with systems restricted to2= or 3-dimensional space.

This article will review some elementary features of graphs that may be

used for a systematic outline of organic chemistry. The same theory has the

broader significance of classifying the possible nets of relationships among

the members of a set of objects. For present purposes, our graphs will be

undirected, that is, any connections are reciprocal and unpolarized. Further-

more, our atoms have a maximum valence of 4. When we come to cyclic structures

we shall have occasion to study an even more restricted set of graphs, those

in which every node has a valence of 3. | 7

A problem statement might be: enumerate all the distinct structural

isomers ☁of a given elementary composition, say C,H,NO,. This is tantamount to oy

producing all the connected graphs that can be constructed from the atoms of

| the formula, linked to one another in all distinct ways, compatible with the

valence established for each element (4, 3, and 2 for C, N, 0, respectively).

For compactness, H can be left implicit, being later restored at every unused.

valence.
☂

Our main approach throughout this article is mapping, a rule of correspon-

dence between a part of the chemical structure and a part of some abstract

graph. Thus, each atom may be mapped on to a node: each pond to an edge or

link of the graph. For further analysis, however, it will be important to map

: from complexes ☁of the structure to elements of a graph. The abstract graphs

lend themselvesto canonicalforms, i.e.,@ choice among equivalent representations
ro

ir)
☁
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- according to precise rule. Since the root problem is generally not that of

producing all possible combinations of atoms, but recognizing which forms are

☜unique, this is of utmost importance. Chemistry will re-emerge after a few

levels of abstraction. | |

These principles have been elaborated in a computer-oriented language

-"Denaral-6h" which is described more fully elsewhere for the purpose of

possible implementation in programming systems (Lederberg, 1964).

Trees are l-connected graphs, i.e., can be separated into two parts by

cutting any link, They correspond to the acyclic structures of organic

☁chemistry. How may we establish a canonical form for a tree, after first

noting its order (number of nodes). | |
_

The first step might be to find some unique place to begin the description.

A tree must have at least two terminals, and may have many more if highly

branched; these are therefore not very suitable. However, each tree has a

unique center. In fact Jordan (1869) showed that any tree has two kinds of

center, @ mass-center.and a radius-center. Each center has a unique place in

any tree; the two may or may not coincide. ( |

To find the radius-center, the tree is pruned one level at a time, being

cut back one link from every terminal at each level. This will leave, finally

an ultimate node or node-pair (in effect, edge) as the center; the radius of

the graph is the number of levels of pruning needed to reach the center.

To identify the mass-center of a tree, we must consider the two or more

_ branches that join to each non-terminal node. The center is the node whose

'"  Dranches have the most evenly balanced allocation of the remaining mass (node=

count) of the tree. This is the same as to say that noneof the pendant

branches exceed half the total mass. A mass of even number allows the possi=

vility of the center being a node pair oredge which joins equal halves,
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Either of the centers (Fig. 1) is unique, and so could solve our problem

of defining a canonical starting point of a description. The center of mass |

s more pertinent to finding a list of isomers, which of course enjoy the

same mess. The radius-center is ill-adapted for this, but matches con-

vantional nomenclature, which is based: on finding the longest linear path,

i.e., a diameter. The diameter is not necessarily unique. For example, urea

nas three diameters, N - C -N andN-C=0 (twice), but just one radius-

canter, the c atom. The problem of generating isomers is the main justifica~

tion for adopting the mass-center ☁over the radius-center to work out canonical

POEMS

In chemical terms, the center divides the graph into two or more radicals.

These radicals can be ordered by obvious compositional principles, giving rise

to @ canonical description of the whole graph in a linear code. Thus arginine

becomes (C~C-N~C(N)-N C-C(N)-C(0)-0} or, in a parenthesis-free notation

with some abbreviations »2.N.C.:NN 2..NC. 200| . Any linear code

hes an implicit number syaten: each atom is numbered according to when it is

denoted in the string.

Some thirty years ago, Henze and Blair (1931) showed how Jordan's principle

could be used for the enumeration of isomers of saturated hydrocarbons and

some simple derivatives of them. Here, the nodes are all the same (carbon

atoms) and the enumeration can proceed by recursion from smaller to larger

complexes. For example, for the isomers of undecane, C54oy> one atom is desig~

nated as center, leaving 10 to be allocated among 2, 3 or 4 branches. Only the

following partitions satisfy the rules (leaving dissymmetry out of account):

co ° boo
-

Ng
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some Oeee,

To complete the solution, one must have calculated the number of alkyl radicals

☜Co, C,, etc. To illustrate with Cai

The radical must have an apical atom, leaving the rest to be partitioned

dn ali distinct ways among 1, 2 or 3 pendant branchés, the radicals of the next

level. Thus we have: ♥ ok

<

Ja -
c<♥[J]. 1,1,2
NO

. The count of C, radicals is thus derived from the table for ☜C,, taking i from
☁

4

lton-«~ 1, and the process may beitcrated as far as needed, i.e., until

partitions into units, Clo» prevail. | No deep mathematical insight is needed to



6.

verify that the first steps of the alkyl series C,, C,, C3, ¢, . have

1,3,2,4 forms respectively.

No closed algebraic expression has been found for this enumeration.

sawever,the recursive expansion was done by hand (Henze and Blair, 1931) with a

fav trivial errors found by a computer check; no organic chemist will be

surprised by the enormous scope of his field. (Table 1).

The total range of acyclic compounds is of course very much larger than

these subsets. ☁Ateach step, instead of partitioning a mere number of nodes, an

allocation to constituent radicals takes account of the kind as well as number

of unused atoms. However, the specification of a hierarchy of ordering, which

may be done almost arbitrarily to suit computational convenience, permits the

same principles to be applied to a complete enumeration of structural isomers

of a given composition, for example of alanine, C,H/NO.» (fable 2.)

Cyclic Structures

Cyclic graphsare much less tractable, since every path will return back
an

to the complex, and a center is less easily defined. Sufficient reminder of

the taxonomic difficulties posed by rings is the popularity of the Ring Index

1964) wherein the "11524 rings known to chemistry" are laid out, together with a

profusion of synomyous and alternative numbering systems to map them as nodes. _

For example, naphthoyl pyridine would ultimately form a tree, Ry - a Ro » Ry and Roe °

0

We now consider the domain of strictly cyclic structures. These are 2~

connected graphs, since at least 2 (sometimes more) links must be cut in order .

40 separate the graph.

For further analysis, we distinguish the trivalent vertices of the structure

☁
atoms thet join 3 paths, or branch points. We can then construct the full set of
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abstract, trivalent graphs. Define a path as qlink or an unbranched chain of

links and atoms. The paths between vertices of the structure can then be

mapped onto the edges of an abstract graph which is regularly trivalent or

trihedral. To illustrate, observe how pyrene is mapped onto an abstract graph

of 6 vertices, indeed, the abstract prism.
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' Pyrene

(a) (b) (ce) (a)
Some vertices are hevalent, in so-called spiro forms, but these graphs

can be mappedoonto 3-valent graphs by expanding each k-valent node into a pair

7
of 3-valent nodes. That is, a becomes ☁ ♥\ There is an obvious

"relationship between the number of vertices and the number of rings conventionally

ascribed to a structure. We start with, say, benzene, O vertices, and-1 ring.

Then naphthalene, 2 vertices and 2 rings. Each additional ring entails 2

more vertices. Hence, for r rings andn vertices .

rail * n/2 , |

and for these trivalent graphs, n must be an even integer. Recalling that a he

valent vertex maps into 2 3-valent nodes, we can write |

rsl+tn/2+q

for q 4evalent vertices. This calculation agrees with the Ring Index rule which
i

☁counts rings as the number of cuts needed to convert a ring structure into a

tree.

As each edge joins 2 nodes, a trivalent graph of order n will have -

3n/2 edges.

Enumerating the trivalent graphs. A trivalent graph may have several
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representations, and some effort may b> required to relate them to one another,

and to decide which form is to be regacded as a canonical reference for mapping

purposes. Thus, the graphs of Figure 2 are all topologically equivalent or

isomorphic. This is to say, they all represent the same connections of node

to (three) nodes. A meaningful enumeration must unify these isomorphisms. Fure

thermore, it should relate to a convenient code by which torefer to each

graph, better still, to embody a reconstruction. Finally, it should generate

- an obvious numbering of the nodes and edges. .

Hamilton circuits. A practical key to the solution of this problem, as

to many other network problems, taxes advantage of the Hamilton circuits found

in most of the abstract graphs having chemical interest. ☁AHamilton circuit

(HC) is a round trip through the g-aph that traverses each node just once.

It therefore uses n edges, leaving out n/2 edges. Figure 3 is Hamilton's

own example, the dodecahedron, proposed by him as 4 parlor game, each node

representing a city that the round-the-world traveller would not wish to.

revisit. The utility of HC representations will become evident. )

Finding all HC's of a graph may be a challenging game, but it is reduced

to a merely tedious algorithm on the computer. Start from an arbitrary node.

Trace a path as through a maze, each node presenting a binary choice of aaa

different edges. If the chosen path reverts to a node already visited, pack=

track one step. A successfulpath has n correct choices. Thus, at most

27scarch steps will exhaust all possible paths; in practice, closer .to 1/n

times this number will be needed to identify all the HC's. Even for n up

to 20 this is a modest task. And if the work has been doneonce, finding any

HG, at perhaps n-fold less effort, will enable @given graph to be related to the -
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previously established set.

A typical problem in graph manipulation is to establish whether two

complicated graphs are isomorphic. In the long run, this might require

testing all possible permutations of nodes, with a scope of Factorial (n).

_ Aton =20, this number is an utterly uncomputable 2.4 x 1018 steps. On the

other hand, if two graphs are isomorphic, they must have the same HC's, found

vith at most 279 = 10° steps. |

oA convenient representation of a HC maps the nodes and edges of the circuit

as Vertices and vounding edges of a regular polygon. The remaining n/2 edges

then form chords, each node being one of the two termini of one chord. A

description of the graph then needs only some notation for the n/2 chords.

First, we should canonicate the orientation of the polygon, having chosen

to initialize the HC arbitrarily among n nodesand 2 directions (the rotational

and reflectional symmetries of the polygon). Each node is joined by some

chord having a certain span. The span list can be put in cyclic order, where

it is invariant under rotation; i.e., immaterial which node is selected as

starting point. The effect of reflection is also easily computed. If the

span list is regarded as a number, its minimum value under rotation/reflection

becomes the canonical form. For example, an 8-node graph might be represented (Figure 4

: by any one of the span lists 17522663, 31752266, etc., or the reflections

75226631, etc. Of these, one quickly finds that 17522663 is the lowest-valued,

☜hence the canonical form. Similarly, when other HC's are found for the same

graph, they can be compared,and the .lowest-valuedof them chosen as the ~ |

reference graph.

The same procedure establishes a canonical ordering of the nodes and
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edges. For the latter, we take the HC sequence (the polygon) first, then

each chord in order of first reference.

The spon list has n terms. Only n/2 are necessary, since each chord

ai scscxaed to twice in the span list. For an abbreviated code, simply omit

the second reference. 17522663 becomes 1522. Indeed, one less character still

suffices, the last chord being completely determined by the ones previously

built. he chord list (152), or an alphabetic equivalent (8AEB) whose leading

numeral merely reminds us of the orderof the graph, then encodes the graph in

a canonical form (Figure 4). Furthermore, the graph can be reconstructed from

«he code by retracing the steps just recited. Caution: Unlike span lists,

the abbreviated chord lists cannot be freely rotated.

Chord lists can be computed by an obvious combinatorialprocedure, with

the help of a few tricks to save some fruitless effort. Most arbitrary lists

become internally inconsistent after a limited number of initial characters; the

number of combinations that must be tested is therefore considerably less than

muy eppear. Additional restrictions can also be puton prospectively. In

this way, exhaustive lists of trivalent graphs have been computed -~ Table 3

{taken from the DENDRAL report) shows their scope. To unify isomorphisms,

the complete list of HC's is computed for each chord list.

Apart from the rotation of the polygon, two or more incongruent HC's may

be present in a Graph. No general principle is known, except that graphs with

high symmetry tend to have the fewest incongruent HC's. Tutte (1946) proved

that any edge of a polyhedron must be involved in an even number (not excluding 0)

of HC's, and that if a polyhedron admitsone HC, it mustadmit at least three. |

Classification of trivalent graphs. Two important, independent criteria

i.
\
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of abstract graphs are (1) planarity, and (2) level of connectedness.

A planar graph is one that can be represented on the plane without edges

crossing over one another. The graph need not be drawn as an HC-polygon, which

rarely lacks crossing chords: Figure 3. is certainly planar» Kuratowski has ~

shown that any trivalent non-planar graph must contain 6CC (Figure 5b). .

Fortunately, this condition is easily recognized in the building of span lists.

As the surface of a polyhedron can be mapped onto the plane, planarity is a

necessary condition for an abstract polyhedron.

In practice, nonplanar graphs are so far unknown in organic chemistry

(barring coordination complexes); however, they might in principle be realized,

@.g., by the hypothetical Figure 5d. ☁ ae

Connectedness is the least number of cuts that will anywhere separate: the

graph. The 3-connected planar graphs are the abstract

convex polyhedra. Intuitively, it is obvious that a region bounded only by

2 edges would be unable to enclose a volume. Steinitz (see Lyusternik, 1963)

showed that every 3-connected planar trivalent Graph could be realized as a

polyhadron. These graphs have, naturally, attracted some interest as a

meeting point of topology and classic Greek geometry. Nevertheless, a complete

enumeration is still unknown. In 1901, Brickner published figures of the

trivalent polyhedra for n < 16; in an abstract and unpublished manuscript (1928)

he also showed 1250 for n 218. This work, done by hand over several decades, .

was xepeated on the computer by Grace (1965) who found some errors in Brilckner's
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listings, and found 12h9, However, even this census admits some possibility

of being incomplete, though this is remote. Grace generated the polyhedra

by induction as all possible slicings of the faces of smaller polyhedra. This

producesmany isomorphisms which must be unified; for this, Grace used a

criterion, ☜equisurroundedness", whichis already known to be too weak, albeit

for much larger graphs. Therefore, it cannot be rigorously shown that the list

or 129 has not excluded additional forms, equisurrounded, but not isomorphic

with the stated set. The analysis of HC's could afford an independent avenue

of corroboration at relatively low cost.

The polyhedra play an important role in the classification of cyclic graphs

but have no remarkable chemical significance except that they represent the

most tightly caged polycyclic structures)☂Note that manyunfamiliar iso-

morphisms are generated by portraying a polyhedron as a planar mesh, i.e., as

projected within an arbitrarily chosen face, called the base. The projection

can be visualized as the view of the polyhedron from a point just outside the

place of the face chosen as base (Figure 2). / -

HC-free graphs. These are promptly encountered in the 2-connected series,

starting with ng (8(AC:8,1:A) Figure 6). An analysis of the conditions for no-HC

illuminates some of the combinatorial processes involved in building graphs. --

Since all the graphs for n = 6 have HC's, an HC-free graph is generated by &

particular mode of union of HC's of lower order. The simplest mode is

bilineal, one edge is cut on each of two smaller graphs and reunited. If

either of the edges involved is barred from any HC of its graph, the bilineal

union will be HC-free. This follows, since the union introduced nodes which

must be traversed byapath known to be forbidden.
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In general, an HC-free graph can be canonicated by dissecting it into the

- largest cirbuits it contains. The dissertions are first completed across the |

bilineal (2-connecting) unions. If any resulting subgraphs are still HC-free, we

must consider HC-free polyhedra as a mathematical, if not a pragmatic chemical .

possibility. |

HC-free polyhedra. Tait believed that all convex trihedral polyhedra

- contained HC's and his conjecture was indéed unchallenged for over 60 years.

However, Tutte (1946) refuted the conjecture with an example ingeniously proven

to be HC-free, though with 46 vertices it would defy exhaustive search.

Chemical graphs of this order (24 rings) are out of range of systematic prediction,

but the argument gives further insight into the combinatoric of abstract graphs.

We deal here with the process of trilineal union. This can be done in

all possible ways by extracting one node from any source polyhedron, leaving

3 cut edges. This 3-cut graph can then replace one node of another graph.

However, to influence the possibility of forming an HC, the edges must be

subject to some restrictions distinguishing the 3-cutcomplex from a single ,

node. The node poses no restrictions. That is, its 3 edges are available in

any pairwise combination, thus any one of 3 ways. If the corresponding edges

of the source graph have the same property, i.e., none of the 3 edges is either_

compulsory or forbidden, then the Zcut graph will not influence the occurrence |

of an EC. By induction, the lower order polyhedra that already contain some

3-connected regions can be passed over in looking for special graphs. A

systematic survey of the few 4~connected, ~ i.e., b-connected except for the

isolated nodes which are, of course, 3-connected, - graphs (Table 4) shows

the polyhedron (16CGDIGDF), the smallest with a special edge, namely that the
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ones marked are obligatory in any HC of the polyhedron (Figure 7). Tutte

then replaced 3 nodes of a tetrahedron with a 3-cut graph from (16CGDIGDF)

leading to the contradiction that all three edges from one node must be

included in any HC; hence there can be no HC in this graph of 46 = 4 + 3(14)

nodes. The cut graph can also be planted at two mutually-exelusive edges of

the pentagonal prism to give an HC-free polyhedron of 38 = 10 + 2(14) edges NY

This is clearly the smallest HC-free polyhedron with two 3-connected regions.

A smaller HC~free polyhedron may yet be found by analogous studies of

b-lineal'e☂ana d-lineal unions, and if so, is just within the bounds of

reasonable computational effort.

If Grace's list of polyhedra is correct, every one through ng has an HC.

This conclusion is corroborated by a detailed consideration of the. properties

of the graphs 216 of table 3. By the inductive argument , forms with any

triangular face -- indeed, any 3-connected region ~- could be. passed over,

Greatly reducing the computational effort. Of course, from the smallest HC

free polyhedron, larger ones can be generated by replacing a node with a triangle

or larger 3~connected region.

The HC-free polyhedra can be classified by the same principles used for

bilineal unions, as complexes of the iargest cireuits united over the least

_ levels of connectedness. ♥
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While distant from chemical graphs of any reasonable size, these studies

- do furnish a clearer indication of the sufficiency of HC representations, and

_ of the sources of exceptions.

Recapitulation: the scope of anticipation and recognition. There is no

"perceptible Limit except the computation of HC's and of alternative dissections to |

| restrict the encoding of abstract graphs either as HC's or - ecanonicated

unions of HC's. These assignments also facilitate the recognition of isomor=

phisms between given graphs.

The anticipation of all possibilities poses a greater burden. However,

all the graphs up to Ny» (7 rings) have been tabulated together with their

isomorphisms and symmetries. The series expands so rapidly that further

extension would tax the output-printer, and before long the computer itself.

Mapping and symmetry. Having explored the trihedral graphs, we now return

to mapping chemical atoms on their nodes and bonds or linear chains on their

edges. Many graphs have substantial symmetry, and the corresponding by redundant °-

operations must be considered to decide on a canonical representation. Here

again, the HC's are helpful. If an HC is present, it can also be projected on

_ the same graph after any symmetry operation: ☂ Therefore, the whole set of

symmetry operations is included within the list of the HC's, giving remarkable

ot economy of computational effort to the search for the symmetries, as well as

a straightforward expression of the operators. To describe a molecular

structure, it can be mapped on an arbitrary choice of form, and the result then

subjected to the symmetry operators.:- The canonical representation satisfies

some rule, say the highest order listing,.of the mapped elements. Thus, for
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the morphine nucleus, we would haveto choose among the 4symmetries of its

" underlying grapht (Figure 8).

Since this choice is readily computable, the human user may be relieved of

the burden to make these tedious calculations.

Besides the linear paths of the cyclic structure, the mapping may also

include specifications for fused edges (l-hedral centers), heteroatom replacements

of vertices, and specifications of sterecasymmetry of vertices. The details

are inevitably fussy and are given elsewhere. After the mapping, each atom is

numbered in the order of its reference.

Merging cycles and trees. Each cyclic structureis now fully definea, with

☁rules for a canonical code and sumbersng of every atom. The structure can then

be handled as a node in a tree, the rumbering system allowing precise reference

for the point(s) of connection. .

Applications

This development was needed for a continuing effort to program the

☁automatic computation of structural hypotheses to be matched against various

| sets of analytical data, especially mass spectra. The growing sophistication of |

: instrumental methods has already begun to outdo the chemists capacity to interpret

the fesults. a masss spectrometers are.now_ commercially ::
i
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available that can generate 10,000 spectra per second, the need for computational

assistance to make full use of such devices is self~evident. (Biemann & McMurray

1965; Lederberg 1964>) Such devices are also being considered for the automated

☁exploration of the planets, which puts even heavier demands on the local

| intelligenceavailable to the systen.

These applications relate primarily to the possibility of anticipating

_ hypothetical structures. The language also provides a format for expressing

synthetic insights, i.e., the elementary reactions by which functional groups

☜ean be altered or exchanged. We might then expect the ultimate development of

* computer programs which have been taught a few thousand unit processes, and

their limitations, and could be challenged to anticipate a synthetic route

from given precursors or to a given end product. Such programsmight at

☂ least assist the chemist by reminding of a few among myriad possibilities of

| combining the unit processes learned from the same chemist, or better, from

| a diverse school. For the moment we leave out of consideration the empirical

testing in its own laboratory of a few thousand routes chosen on thecomputer's

own initiative.

_The nomenclatural applications of any system of canonical forms are also

self-evident. We are very nearly at the point where linear notation may again

☁be dispensable, since the computer should be able to interpret structural graphs

as such. However, a mathematically complete systemof classification of

structures is still important, regardless of thenotation in which the

structures are expressed. |

The simple graph-theoretical: ideas of DENDRAL could be implemented with a

| number of possible notations. The one adopted for DENDRAL « 64 aims to emulate
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traditional notation for all linear chains, only the most obvious abbreviations,

like "3." for "C.C.C.", and a "repeat" symbol, arbitrarily "/", being laid on.

The user must of course understand the principles and notation for the abstract

eyclic graphs. However, it would be quite reasonable to produce an abridged

versionof the Ring Index which would list the carbocyclic equivalents of

expected forms, and allow the most unskilled assistant to transcribe structural

☁data in a form readily matched to DENDRAL.

Some examples of structural codesthe isomers of alanine, Table 2 are

appended as a challenge to puzzle-ninded readers. Hopefully the tedious manual

of detailed specifications (Lederberg 196%a) is not required reading for

pragmatic understanding of the system. |

There are of course many alternative approaches to notation reviewed by

a National Academy of Sciences Comnittee (1964) and appearing from time to time

in the Journal of Chemical Documentation. As far as I know none of them has

been addressed to the exhaustive prediction of cananical forms and most of

them are too complicated to be easily adaptable to this end. |

Syntax and induction. One of the motives for this study was to uncover

the kinds of problems that would be encountered in computer-emulation of the

process of scientific induction from experimental data. A necessary step is a

means of generating a set of relevant hypotheses. I have been impressed with

both the difficulty and the utility of establishing a precise syntactical

framework for the range of hypotheses ☁even ina field as wellstructured as

organic chemistry. )

Some years ago, Woodger (1937) attempted to axiomatize developmental and

genetic biology. His efforts were perhaps too remote from the experimental



gata now available. However, he may have pointed the way to a more feasible

☁enterprise, to establish a precise syntax for hypothetical statements in

piology. This is a more modest ain, since it does not purport to deduce whieh

: statenents are correct. However, there is every good reason why computers

should compete very successfully in the exercises of model-building that

_ preoccupy many biologists today, and with advantage to Le rigor with which

| _ they are put together. :

 



FUOTANUTEO

SYSTEMATICS OF ORGANIC MOLECULES, GRAPH TOPOLOGY AND HAMILTON CIRCUITS

Footnote p. 9.

liunile this paper was being revised, another algorithm requiring only about

10 n® steps was discovered and programmed for routine use. It depends on

(1) growing a subgraph, adding one node at a time, (2) defining the list of

possible circuits at each level by recursion from the list of previous level, and

(3) looking ahead some steps to choose nodes which close facets of the graph

s0 as to minimize the size of the list that must de maintained.

Footnote to p. 12.

eme speculative "polyhedrqnes☝ have been discussed by Schults, H.P.: Topological

Organic Chemistry. Polyhedranes and Prismanes. J. Org. Chem. 30, 1361 (1965).

Footnote to p. 13.

3rhis is no longer true. With a new algorithm☂, Tutte's graph was exhausted in

29 seconds of 7090 time. The same algorithm is also very. apt for finding the

largest circuits and for forbidden edges.

Footnote to p. 1h.

Monts had already been found by other workers as disclosed in private communications:

D. Barnett, University of Washington and J. Bosak, Bratislava.

Footnote to p. Lh.

>putte (1960) quotes an example. with 22h nodes! If any HC-freepolyhedron has

fewer than 38 nodes it probably has one 3-connected region. My own investigations

leave no encouragement for such an example at less than N36°



FOOTNOTES CONTINUED 2

Footnote to p. 15.

6, note the following conjecture, that the symmetries of any abstract convex

trihedral polyhedron can be realized in a geometrical polyhedron in 3-space

with reflection, i.e. can be assigned to a point group. However, this

conjecture is not a premise of the method indicated for finding the symmetries.

The conjecture is plainly inapplicable to 2-connected or to non=-planar graphs,

I would be grateful for any refutation, or a formal proof, new or otherwise.

: ☁
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7 Fig. 1. ° Centers of trees: r (radius-center), and m (mass-center). Two

| examples, A., methionine, and B., leucine; The diagrams were plotted by a

| computer program from punch cards coded for each structure as indicated.
\
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BENZOPERYLENE .
| .WITH MAPPING OF
BENZOPEAYLENE

, . a . e .

☁| ZN
,♥♥♥☜

. ☁ ☁ . * . ,

asc ~tC~<☜S*☁i☁é aE. tC*Ct«é ABEFW
OA Coy OR... OR

AW rr| oo ACOGHJ

(<)

Fig. 2. (a) Benzoperylene and its mapping on a polyhedron (b) which has

four isomorphic planar meshes, i.e. four kinds of faces, as labelled. (c) is

the equivalent Hamilton circuit. Do not confuse the lettered labels of the

nodes with abbreviated code for this graph whibh is 10BCC. The reader may

enjoy satisfying himself that these graphs are indeed isomorphic (equi-connected). :



 

Fig. 3. Hamilton's Hamilton circuit. The abstract dodecahedron, represented

as a planar map of 20 nodes.
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Fig. 4 Symmetries and encoding of a cyclic trivalent graph with 8 nodes.

There are 16 syometry operation (8 rotational X 2 reflection). Shown are

8 rotations, and a reflection that could be combined with each of these. With

each figure is also a span list; the canonical choice of the 16 (not all distince)

is the lowest valued span list, 17522663, calculated with the upper rightmost node

as the initial. Thia can then be reduced to the code AEBB, or even more econo-

mically AEB, as outlined in the text.
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(a) 0) te) (a)

Figs5. .Non planar graphs. (a) and (b) are Kuratowski's fundamental forns,

_4-valent and 3-valent respectively. At least one of these must be included in .

any nonplanar graph. (c) is a projection of (b) as a tetrahedron with an additional.

internal chord,☂ and (d) ie a hypothetical molecular structure that maps on to (c).



Figure 6
Caption follows
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8CEC 8(6AC:8,1:2)

Fig.6 The cyclic, trivalent planar graphs with 8 or fewer nodes. Where

possible, these are represented as Hamilton circuits, the nodes of the graph

being projected as vertices of a polygon which constitutes the circuit, the

remaining edges shown as chords. Each of these figures can also be drawn as a

planar map. The codes are abbreviated forms from which the graph can be recon-

structed. Note that 8BCC and 8BDD are tsomorphic deepite tha incongruence of the

Hamilton circuits. The abatract polytiedra of thie list include two degenerate

forma (-, circle; 2, hosohedron) and 4B, tetrahedron; 68C, prism; 8 CEC, cube;

8BCC = 8BDD, pentagonal wedge. One of these graphe, 8(6C:8,1:2) has no Hamilton

circuit, and is classified as a union which splices the 8'th edge of graph 6AC

with the l'st edge of graph 2. Complete lists of the graphs through 12 nodes

are presented in Lederberg (1965).



 

(4) : Cb)

 

 

Ce) | : 7 (4)

Fig. 7. A graph with special edges and two HC-free polytiedra. (a) has 16

nodes. The marked edges are included in any HC of- the graph. Hencethe 3-cut

(b), with 15 nodes, obligates the marked edge as part of an HC of any graph in

which (b) is inserted. This leads to a contradiction, i.@., no Hamilton circuit

in (c) Tutte'☂s graph, with 46 nodes and (d) with 38 nodes.
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CANONICAL

MAP

HAMILTON CIRCUIT REPRESENTATIONS |

☜Fig. 8. Morphine nucleus: symmetry. and choice for coding. The dashed edge

7---8 stands for the spiro~ (quadrivalent) center in the morphine ring; however,

4 permutations are possible under the symmetry operations. In the canonical form,

after account is taken of the mapping of the chemical graph onto the abstract graph,

this edge is labelled 2♥-=3, The canonical map would be coded as

(8BDD-N.3,$, » 23503,,C) each comma marking the next edge of the map. This code
~

ds sufficient input for the computer program to reconstruct the molecular structure
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l2
13
14
15

°16
17

18
19
20
21
22
23
24
25

table 1. Enumeration of isomeric alkanes (disregarding stereoisomerism), from

methane to pentacontane. The values marked * disagree in some digits with the

values calculated manually by Henze and Slair (1931) and Perry (1932). While

this is an amusing exercise for the computer, the discrepancies, needless to say,

will have no pragmatic chemical significance. In any case, a proportion of the

O
o
O
N
n
N
P
W
P
W
N

ENUMERATION OF THE ALKANES
STERETSOMERISM DISREGARDED

Weeee amemeanee |

355
802☂
1858
4347°
10359
24894

60523°
148284'%
366319
910726

2278658
5731580

14490245
36797588

93839412:
240215803
617105614

1590507121:
4111846763.

10660307791:
27711253769
72214088660
188626236139
493782952902
1295297588128
3404490780161.
8964747474595

23647478933969

*

eeeTenaTaal
165351455535782.
438242894769226'

1163169707886427
30914610118368656'
8227162372221203

21921834086683260
58481806621986230:

156192366474587200
417612400765371900
1117743651746931000
 

structures will be unrealizable owing to steric hindrance.
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Caeel CoO NeO CooeO CHC NeO

CoeesC CO NaO Cooeet OO NaC

Cooeel NO CHO CoooeN OO CHC

CeooesC OO CAN

Table 2, The isomers of alanine (.C..CN C.=00 ) systematically ordered in DENDRAL-64
: Notation. Each "." or "=" stands for a single or double bond respectively which
' must be satisfied by a trailing atom or radical. This will be the first previously

unreferenced item in the list to the right of the bond. A leading bond constitutes

a central link, which must then be followed by two radicals. A space is used

to separate the primary radicals for convenience in reading but has no coding

significance. Some 25 of these topological possibilities are recognized chemical

forms; an equal number are their tautomers. Most of the remainder are either p®roxides

' or Schiff bases or similar unstable forms. A few, like hydracrylaldoxime, (.C.C.0 C=N.0)

might be realizable but were not found in a cursory search of the literature.
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