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FOREWORD, This contribution is intended as an introductory survey of the
topological concepts that underlie the DENDRAL system for chemical structure
notation. The main purpose of the system is to provide a language in which a
computer program can frame hypotheses of organic chemistry. For example, a
program to generate all the isomers of a given formula has already been imple-

mented.

This introduction is especially intended for users who wish only
a general outline of DENDRAL rather than its full details of syntax. Some
notation is necessarily used. This resembles the definitive DENDRAL forms,
but the complete manual should be used as a definitive statement of the lan-

guage.



'~ SYSTEMATICS OF ORGANIC MOLECULES, GRAPE TOPOLOGY

e ’ AND HAMILTON CIRCUITS

Joshua Lederberg
Genetics Department
Vo Stanford University School of Medicine
" Palo Alto, California
The structural formula for an‘organic molecule is a pdragon of a topological
graph, that is, the connectivity relations of a set of atoms. True, we
recognize more thaﬁ one type of connection, double, triple, and non-covalent
;bonds, as well as single bonds. HoweVer,.from an electronic standpoint the special
bonds could just as well be dehoted as special atoms. The structural graph .
does not specify the geometry, that is, the bond distances and bond angles of
the molecule, In fact, this is known for only a small proportion of the
enormous number of organic molecules whose structufe is very well known from
a topological standpoint. Most of the syllabus of elementary organic chemistry
thus compfises & survey of the topological possibilities for the distinet ways
in which sets of atoms may be connected, subject to the rules of valence. The
student then also learns rules which prohibit some configurations as unstable
of unrealizable (andAmay later earn his scientifie reputation by justifying
or §verturning one of these rules). The field of organic chemistry has,
however, reached its present stature without many benefits from any general
analysis of molecular topology. .These benefits might arise in applications
~ at two extremes of sophistication: the teaching of chemical principles to
college uﬁdergraduates, and to elect;onic computers. They may also apply to
the vexatious préblems of nomenclature and systematic methods of information
retrieval.

Although the topological character of cheiiptl graphs vas rebognized by
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the first topologists, very little work has been done oﬁ the explicit classifi-
cation of the graphs having the most chemical interest. Some difficult
problems, e.g., the enumeration of polyhedra, remain unsolved. However, the
main obstacle may be the seeming triviality of the problems, many topologists
being ﬁuite unsatisfied with systems restricted to 2- or 3-dimensional space.

This article will reviey same'elementa;y features of graphs that may be
used for a syatematic‘outline of organic chenmistry. Tﬁe same theory has the
broader significance of classifying the possible nets of relationships among
the members of a set of objects. For present purposes, our graphs will be
undirected, that is, any connections are reciprocal and unpolarized. Further-
more, our atoms have a maximum valence of 4. When we come tp cyclic structures
we shall have occasion to study an even more restricted set ér.gfaphs, those
in which every node has a valence of 3. | -

A problem statement might be: enumerate all the distinct structural
isomers ‘of a given elementary composition, say G3HTNOé. This is tantamount to ey
producing all the connected graphs that can be cong%gﬁcted from the aioms of
| the formula, linked to one another in all distinct ways, compatidble with the
valence established for each element (4, 3, and 2 for C, N, O, respectively).

For compactness, H can be left implicit, being later restored at every unused.

valence.

»

Our main approach throughout this article is mapping, a rule of correspon-

dence between a part of the chemic;l structure and a part of some abstract

graph. Thus, each atom may be mapped on to a node: each Eéﬂi to an edge or

link of the graph. For further analysis, however, it will be important to map
from complexes of the structure to elements of a graph. The abstract graphs

lend themselvns‘yo capoqicul;torns; i.e.,ngchéicg anong_gqnivalent representations

[
-,
.
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b“ according to precise fule. Since the root probleﬁ is generally not that of
producing all possible combinations of atoms, but recognizing which forms are
‘unique, this is of utmost importance. Chemistry will re-emerge after a few
levelslpf abstraction. | |

Tﬁége principles have been elaborated in a computer-oriented language
."Dendral-6h" vhich is described more fully elsewhere for the purpose of
possible implementation in programming systems (Lederberg, 1964).

Trees are l-connected’graphs, i.e., can be separated into two parts by
cutting any link, They correspond to the acyclic structures of organic
.chemistry. How may we establish a canonical form for a tree, after first
noting its order (number of nodes). | |

-

The first step might be to find some unique place to begin the description.

A tree must have at least two terminals, and may have many more if highly

branched; these are therefore not very suitable. However, each tree has a
unique center. In fact Jordan (1869) showed that any tree has two kinds of
center, a mass-center.and a radius-center. Each cenfér has a unique'flace in
any tree; the two may or may not coincide. g |

To find the radius-center, the tree is pruned one level at a time, being
cut back one link from every terminal at each level. This will leave, finally
an ultimate node or node-pair (in effect, edge) as the center; the radius of
the graph is the number of levels of pruning needed to reach the center.

To identify the mass~-center of a tree, we must consider the two or more.

~ branches that join to each non-terminal node. The center is the node whose

" branches have the most evenly balanced allocation of the remaining mass (node-

count) of the tree. This is the same as to say that none of the pendant
branches exceed half the total mass. A mass of even number allows the pogsi=

bility of the center being & node pair or edge ﬁhich Jbina equal halves.,



k.

Either of the centers (Fig. 1) is unique, and s0 could solve our problem
of defining a canonical starting point of a description. The.center of mass |
s more pertinent to finding a list of isomers, which of course enjoy the
same mass, The radius-center is ill-adapted for this, but matches con-
vantional nomenclature, which is based on finding the longest linear path,
i:8., & diameter. The diameter is not necessarily unique.> For example, ures
has three diameters, N = g -N end N-C=0 (twice), but just one radius-
¢enter, the C .atém. The problem of generating isomers is the main justifica-
tion for adopting the mass~-center ‘over the radius-center to work out canonical
formg .

In chemical terms, the ceﬁter divides the graph into two or more radicals.
These radicals can be ordered by obvious compositional principles, giving rise
10 a canonical description of the whole graph in & linear code. Thus arginine
becomes (C~C=N=~C(N)=N C-C(N)-C(O)-O) or, in a parenthesis-free notation
with some abbreviations +2.N.C.:NN 2..NC.:00 . Any lin'ea.r' code
has an implicit number aystem; each atom is numbered according to when it is
denoted in the string.

Some thirty years ago, Henze and Blair (1931) showed how Jordan's principle
sould be used for the enumeration of isomers of saturated hydrocarbons qﬂd
some simple derivatives of them. Here, the nodes are all the same (carbon
atoms) and the enumeration can proceed by recursion from smaller to larger

complexes. For example,\for the isomers of undecane, cllﬂah' one atom is desige

nated as center, leavihg 10 to be allocated among 2, 3 or 4 branches. Only the

following partitions satisfy the rules (leaving dissymmetry out of account):
Lo . ; A
-

‘\\‘
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BRAKCHES
| 1.
2 °<D 5,5
. O
3 o 21373
~“"“[:] | 2:h:h
. 3’331‘
\1:1 1
. ] 1,2,3,b
2,2,2,k
| 2,2,3,3

S
-

To complete the solution, one must have calculated the number of alkyl radicals

-Cs, -Ch, etec. To illustrate with 05:

The radical must have an apical atom, leaving the rest to be partitioned
~in all distinet ways among 1, 2 or 3 pendant branchéi} the radicals of the next

level. Thus we have: P
"°<D

A R
c<—1I] 1,1,2
~O - -

. The count of -Cn radicals is thus derived from the table for -Ci, taking i from
\
L}

lton - 1, and the process may be itcrated as far as needed, i.e., until

partitions into units, cl,', prevai;,‘ No deep mathematical insight is ﬁeeded to
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verify that the first steps of the alkyl series C,, C,, C3, G, . have

1,1,2,4 forms respectively.

No closed algebraic expression has been found for this enumeration.
aovever, the recursive expansion was done by hand (Henze and Blair, 1931) with a
faw trivial er;ors found by a computer check; no organic chemist will be
surprised by the enormous scope of his field. (Table 1).

The total range of acyclic compounds is of course very much larger than
these subsets, 'Ax.edch step, instead of partitioning a mere number of nodes, an
allocation to constituent radicals takes account of the kind as well as number
of unused atoms. However, the sﬁecification of a hiérarchy of ordering, which
may be done almost arbitrarily to suit conputational convenience,.permita the
same prinéiples to be applied to a complete enumeration of structural isomers

of a given composition, for example of alanine, C H,NO (Table 2.)

Cyeclic Structures

Cyclic graphs-are much less tractable, since every‘path will return back
; s .
to the complex, and a center is less easily defined. Sufficient reminder of
the taxonomic difficulties posed by rings is the popularity of the Ring Index
{1964) wherein the "1152L rings knqwn/to chemistry" are laid out, together with a

profusion of synomyous and alternative numbering systems to map them as nodes.

For example, naphthoyl pyridine would ultimately form & tree, Rl - Q\f R2 ’ Rl and 32.3
o]
We now consider the domain of strictly cyclic structures. These are 2-

connected graphs, since at least 2 (sometimes more) links must be cut in order -

to separate the graph.
For further analysis, we distinguish the trivalent vertices of the structure

\
atoms that join 3 paths, or branch points. We can then construct the full set of
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abstract, trivalent graphs. Define a path as g link or an unbranched chain of
links and atoms. The paths between vertices of the structure can then be
mapped onto the edges of an abstract graphvwhich is regularly trivalent or
trihed{gl. To illustrate, observe how pyrene is mapped onto an abstract graph

 of 6 vertices, indeed, the abstract prism.

~CCC-,

~CCC~

-CC- . x4

" Pyrene '
(a) (v) (e) (a)
Some vertices are b-valent, in so-called spiro forms, but these graphs
can be mappedoonto 3-valent graphs by expanding each k-valent node into a pair
of 3=-valent nodes. That is, >'\/ beconmes > -—-'\/ « There is an obvious
'vrelationship between the number of vertices and the number of rings conventionally
_ascribcd to a sfructure. We start with, say, benzene, O vertices, and 1l ring.
Then naphthalene, 2 vertices and 2 rings. Each additional ringlentai1§_2
more vertices. Hence, for r rings and n vertices -
r=al ; n/2 , |
and for these trivalent graphé, n must be an even integer. Recalling that a k=
valent vertex maps into 2 3-valent nodes, we can write |

re=l+n/2+q

 for q k-valent vertices. This calculation agrees with the Ring Index rule which

1

‘counts rings as the number of cuts needed to convert a ring structure into a
tree. |

As each edge joins 2 nodes, a trivalenf graph of order n will have .
30/2 edges.

Enumerating the trivalent graphs. A trivalent graph may have several
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representations, and some effort may b: required to relaie them to one another,
and to decide which form is to be fega:ded as a canonical reference for mapping
purposes. Thus, the graphs of Figure 2 are all topologically equivalent or
isomorppic. This is to say, the& all represent the same coanections of node

to (th¥e;) nodes. A meaningful emmeration must unify these isomorphisms. Fure=
thermore, it should relate to a conVeniept code by which toﬂggfer to each

graph, better still, to embody a reconstruction. Finally, it should generate

- an obvious numbering of the nodes and edges. '

Yamilton circuits. A practical key to the golution of this problem, as

to many other network problems, takes advantage of the Hamilton circuits found

in most of the abstract graphs having chemical interest. 'A>Hamilton circuit
(HC) is a round trip through the graph thnt'trawerses each nodehjust once.

It therefore uses n edges, leaving out n/2 edges. Figure 3 is Hamilton's
own example, the dodecahedron, proposed by him as & parlor game, each node
representing a city that the round-the-world traveller would not wish tou_,
revisit. The utility of HC representations will beééme evident. '

Finding all HC's of a graph may be a challenging game, but it is reduced
to a merely tedious algorithm on the ccmputer. Start from an arbitrary node.
Trace a path as through a maze, each node presenting ; binarj choice of -
different edges. If the chosen path reverts to a node already visited, back-l
track one step. A successfulipath has n correct choices. Thus, at most
2N 'gearch steps will exhaust all possible paths; in practice, closer .to 1/n
times this number will be needed to ddentify all the HC's. Even for n up
o 20 this is & modest task. And if the work has been done once, finding any

HG, at perhaps;n-told ;essveffort. wvill enablg‘a:giVen graph to bve related to the
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previously established set.
A typical problem in graph manipulation is to establisp wvhether two

complicated graphs are isomorphic. In the long run, this might require
testing all possible permutations of nodes, with a scope of Factorial (n).
. At n -ng, this number is an utterly uncémputable 2.4 x 1018 steps. On the
other hand, if two graphs are isomorphic, they must have the same HC's, found
with at most 220 = 108 steps};J |

A convenient representation of a HC maps the nodes and edges of the circuit
as vertices and bounding edges of a regular polygon. The remaining n/2 edges
then form chords, each node being one of the two termini of one chord. A
description of the graph then needs only some notatioﬁ for the n/2 chords.
First, we should canonicate the-orientation of the polygon, havﬁng chosen
to initialize the HC arbitrarily among A nodes and 2 directions (tﬁe rotational
and reflectional symmetries of the polygon). Each node is joined by some
chord having a certain span. The span list can be put in cyclic order, whgre
it is invariant under rotation; i.e., immaterial which node is selecte§ as
starting point. The effect of reflection is also easily computed. If the
span list is regarded as a number, its minimum value under rotation/reflection
becomes the.canonical form. For example, an 8-node graph might be represented (Figure 4
) by any one of the span lists 17522663, 31752266, etc., or the reflections
75226631, etc. Of these, oné quickly finds that 17522663-13 the lowest-valued,
hence the canonical form, Similarly, vhen other HC's are found for the same
graph, they can be compared, and thg.lowest-valued.ot them chosen as the - |
reference graph.

The same procedure eatablishga a canonical ordering of the nodes and
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edges. For the iaxter, we take the HC sequence (the polygon) first, then
ench chord in order of first reference.

The span list has n terms. Only n/2 are necessary, since each chord
i seivaaed Lo twice in the span list. For an abbreviated code, simply omit
the seé;nd referenée. 17522663 becomes 1522, Indeed, one less character still
suffices, the last chord being completely determined by the ones previously
built. The chord list (152), or an alphabetic equivalent (BAEB) whose leading
nunmeral merely reminds us of the order of the graph, then encodes the graph in
a canonical form (Figure 4). Furthermore, the graph can be reconstructed from

whe code by retracing the steps Just recited. Caution: Unlike span lists,

the abbreviated chord lists cannot be freely rotated.

Chord lists can be computed by an obvious combinatoriai.procedure, with
the help of a few tricks to save some fruitless effort. Most arbitrary lists
become internally inconsistent after a limited number of initial characters; the
nunber of combinations that must be tested is therefore considerably less ?han
muy appear. Additional restrictions can also be pﬁ%ﬂon prospectively. In
this way, exhaustive lists of trivalent graphs have been computed —— Table 3
{taken from the DENDRAL report) shows their scope. To unify isomorphisms,
the complete list of HC's is computed for each chord list.
Apaxrt from the rotation of the polygon, two or more incongruent HC's may
be present in'a graph. No géneral principle is known, except that graphs with
high symmetry tend to have the fevest incongruent HC's. Tutte (1946) proved
that any edge of a polyhedron must be intOIVed in an even number (not excliuding O)
of HC's, and that if a polyhedron admits one HC, it must admit at least three. |
Classification of trivalent graphs,  Two important,findepgndent criteria

i

\
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" of abstract graphs are (1) planarity, and (2) level of éonnectedness.

A p;gggg_graph is one that can be represented on the plane without edges
crossing over one another. The graph need not be drawn as an HC-polygon, which
farely_}acks crossing chords: Pigure 3 is certainly planar. Kuratowski has -
shown that a;xy trivalent non-planar graph must contain 6CC (Figure 5b). ‘
Fortunately, this condition is easily recoénized in the building of span lists.
As the surface of a polyhedron can be mapped onto the plane, planarity is a
' necessary condiyion for an abstract polyhedron.

In practice, nonplanar graphs are so far unknown in organic chemistry
(varring coordination complexes); however, they might in principle be realized,

e.g., by the hypothetical'Figure 5d. ' S

Connectedness is the least number of cuts that will anywhere separate the

graph. The 3-connected planar graphs are the abstract
convex polyhedra., Intuitively; it is obvious that a region bounded only by

2 edges would be unable to enclose a volume. Steinitz (see Lyusternik, 1963)
showed that every 3-connected planar trivalent graph could be realized as a
polyhaedron. These graphs have, naturally, attracted some interest as a

meeting point of topology and classic Greek geometry. Nevertheless, a complete
enumeration is still unknown. In 1901, Brickner published figures of the
trivalent polyhedra for n s 16; in an abstract and unpublished manuscript (1928)
he also showed 1250 for n = 18. This work, done by hand over several decades, I

was repeated on the computer by Grace (1965) ¥ho found some errors in Brillickner's



listings, and found 1249, However, even this census admits some possibility
Y being incomplete, though this is remote. Grace generated the polyhedra

by induction as all possible slicings of thé faces of smaller polyhedra. This
produces_gany isomorphisms which must be unified; for this, Grace used a
criterion, “eqﬁisurroundedness", vhich is already known to be too weak, albeit
for much larger graphs. Therefore, it cannot be rigorously shown that the list
of l2h9.has not excluded additional forms, equisurrounded, but not isomorphiec
with the stated set. ' The analysis of HC's could afford an independent avenue
of corroboration at relatively low cost.

The polyhedra play an important role in the classification of cyclic-graphs
but have no remarkable chemical significance except that they ?epresent the
most tighily caged polyecyclie structuressg//Note that many-unfamiiiar iso-
morphisms are generated by portraying a polyhedron as a planar mesh, i.e., as
projected within an arbitrarily chosen fuce, called the base. The projection
can be visualized as the view of the polyhedron from a point Just outside the
place of the face chosen as base (Figure 2). N i

HC-free graphs. These are promgtly encountered in the 2-connected series,

starting with ng (8(AC:8,1:A) Figure 6). An analysis of the conditions for no-HC
illuminates some of the combinatorial processes involved in building graphs. -
Since all the graphs for n - 6 have HC's, an HC-free graph is generated by a
particular mode of union of HC's of lbwer order. The simplest mode is

bilineal, one edge is cut on each of two smaller graphs and reunited. If

eilther of the'edges involved is barred from any HC of its graph, the bilineal
‘union will be HC-free. This follows, since the union 1ntroduch nodes which

must be traversedﬁby‘a'path known to be forbidden.

12,
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In general, an HC-free graph can be canonicated by dissecting it into the
- largest cirbuits it contains. The dissertions are first completed across the
bilineal (2-connecting) unions. If any resulting subgraphs are still lC-free, we
must consider HC-free polyhedra as & mathematical, if not a pragmatic chemical .
possibility. |
HC-free polyhedra. Tait believed that all convex trihedral polyhedra
;contained HC's and his conjecture was indeed unchallenged for over 60 years.
However, Tutte (19U6) refuted the conjecture with an example ingeniously proven
to be HC-free, though with 46 vertices it would defy exhaustive search.3
Chemical graphs of this order (24 rings) are out of range of systematic prediction,
but the argument gives further insight ;n@o the combinatoriec of abstract graphs.
We deal here with the process of trilineal union. This can be done in
all possible ways by extracting one node from any source-polyhedron,'leaving
3 cut edges. This 3-cut graph can then replace one node of another graph.
However, to influence the possibility of forming an HC, the edées mﬁst be
subject to some restrictions distinguishing the 3-cut complex from a single ‘
node. The node poses no restrictions. That is, its 3 edges are available in
any pairwise coﬁbination, thus any one of 3 ways. If the corresponding gdges
of the source graph have the same property, i.e., none of the 3 edges is either
compulsory or forbidden, then the 3-cu£ gra@h will not influence the occurrenée'.
of an HC. By induction, the lower order polyhedra that already contain some
3~-connected regions can be passed over in looking for specigl graphs. A
systematic‘survey of the few h-connectgd, - i.e., b-connected except for the

isolated nodes vhich are, of course, 3-connected, - graphs (Table U4) shows

~the polyhedron (16CGDIGDF), the smallest with a special edge, namely that the
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ones marked are obligatory in any HC of the polyhedron (Figure 7). Tutte
then replaced 3 nodes of a tetr#hedron with a 3-cut graph from (16CGDIGDF)
leading to the contradiction that all three edges from one node must be
included in any HC; hence there can be no HC in this graph of 46 = 4 + 3(1L)
nodes. The éut'graph can also be planted at two mutually-exclusive edges of
the pentagonal prism to give an HC-free polyhedron of 38 = 10 + 2(14) edges:<>/
This is clearly the smallest HC-free poiyhedron with two 3-connected regions.

A smaller HC-free polyhedron may yet be found by analogous studies of
h-lineaiéfhnd 5-lineal unions, and if so, is just within the bounds of
reasonable computational effort.

If Grace's 1list of polyhedra is correct, every one through n.a has an HC.
This conclusion is corroborgted by a detailed consideration of the. properties
of the graphs D¢ of table 3. By the inductive argumént, forms with any
triangular face -~ indeed, any 3-connected region -- could be passed over,
greatly reducing the computational effort. Of course, from the smallest hc-
free polyhedron, larger ones can be generated by réplacing a node with a triangle
or larger 3-connected region. .

The Hc-free'polyhedra can be classified by the same principles used for
bilineal unions, as complexes of the largest circuité united over the least

_ levels of connectedness.
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While distant from chemical graphs of any reasonable size, these studies
do furnish a clearer indication of the sufficiency of HC representations, and

. of the sources of exceptions.

Recapitulation: the scope of anticipation and recognition. There is no
:porcefﬁfble iimit except the computation of HC's and of alternative dissections to |
| restrict the encoding of abstract graphs either as HC's or és canonicated
unions of HC's. These aséignments also facilitate the recognition of isomore
phisms between given graphs.

The anticipatibn of all possibilities poses a greater burden. However,
all the graphs up to ny, (7 rings) have been tabulated together with their
isomorphisms and symmetries. The series expands so rapidly yhax further

extension would tax the output-printer, and before long the computer itself.,

Mapping and symmetry. Having explored the trihedral graphs, we now return

to mapping chemical atoms on their nodes and bonds or liﬁear chains on their
edges. Many graﬁhs have substantial symmetry, and the corresponding by redundant -
operations must be considered to decide on & canonié;l representatioﬂ; Here
again, the HC's are helpful. If an HC is present, it can also be projected on
_the same graph after any symmetry operation.“§ ’ Therefore, the whole set of

symmelry operations is included Wwithin the list of the HC's, giving remarkable

o economy of computational effort to the search for the symmetries, as well as

a straightforward expression of the operators. To describe a molecular
structure, it can be mapped on an arbitrary choice of form, and the result then
subjected to the symmetry operators.-: The canonical representation satisfies

some rule, say the highest order listin3, of the wapped elements. Thus, for
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the morphine nucleus, we would have to choose among the 4 sysmetries of its

" underlying graph: (Figure 8).

Since this choice is readily computable, the human ueer may be relieved of
the burden to make these tedious calculations.

’Besides the linear paths of the cyclic structure, the mapping may also
include specifications for fused edges (L-hedral centers), heteroe;om replacements
of vertices, and specifications of sterecasymmetry of vertices. The details
are.inevitably fussy and are given elsewhere. After the mapping, eech atom is
numbered in the order of its reference.

Merging cycles and trees. Each cyclic structure#is now fully defiﬁed, with
rules for a canonical code and numbering of every atom., The structure can then
be handled as a node in a tree, the rmmbering system allowing precise reference
for the point(s) of connection. | ' -

Applications

~ This development was needed for a continuing effort to program the
automatic computation of structural hypotheses to be(matched against various
ﬁvsets of analytical data, especially mass spectra. The growing sophistication of |
- instrumental methods has already begun to outdo the chemists capacity to interpret

the tesults.‘ Sinee ©ass spectrometers are now comncrcillly

i
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 availab1e that can generate 10,000 spectra per second, ﬁhe need for computational
assistance to make full use of such devices is self-evident. (Biemann & McMurray
1965; Lederberg 196Lb) Such devices are also being considered for the automated
foxplorg&ion of fhe planets, which juts even heavier demands on the local
| intelligence available to the systen.
These applications relate primarily to the possibility of anticipating
Lhypothetical structures. The languege ﬁlso provides a format for expressing
i synthetic insights, i.e., the.eiementary reactions by which functional groups
‘can be altered or exchanged. We might then expect the ultimate development of
l'computer programs which have been taught a few thousand unit processes, and
~their limitations, and cpuld be challenged to anticipate a synthetic route
from given precursors or to a given end product. Such progr;mémﬁight at
' least assist the chemist by reminding of & few among myriad possibilities of
é combining the unit processes learned from the same chemist, or better, from
E a diverse school. For the moment we leave out of consideration the empirical
testing in its own laboratory of & few thousand roﬁgéa chosen on the;éomputer's
own initiative.

. The nomenclatural applicaxiodé of any system of canonical forms are also
self-evident. We are very nearly at the point where linear notation may again
“be dispensable, since the computer should be able to interpret structural graphs
as such. However, a mathematically complete system of class}fica&ion of
structures is still important, regardless of»the‘notation in which the
structures are expressed. |

The simple graph-theoretical- ideas of DENDRAL could be implemented with a

. number of possible notations. The one adopted for DENDRAL = 64 aims to emulate
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traditional notation for all linear chains, only the most obvious abbreviations,
like "3." for "cC.C.C.", and a."repeat" symbol, arbitrarily "/", being laid on.
The user must of course understand the principles and notation for the abstract
cyelic graﬁhs. However, it would be quite reasonable to produce an abridged
versio;w;f the Ring Index which would list the carbocyclic equivalents of
expected forms, and allow the most unskilled assistant to transcribe structural
‘data in a form readily matéhed to DENDRAL.

Some examples of structur#l codesrthe isomers of alanine, Table 2 are
appended as a challenge to puzzle-minded readers. Hopefully the tediousAmanual
of detailed specifications (Lederberg 196%a) is not required reading for
pragmatic understanding of the system.

There are of course many alternative approaches to.notaiidn‘reviewed by
a National Academy of Sciences Comnittee (196L4) and appearing froﬁ time to time
in the Journal of Chemical Documentation. As far as I know none of them has
been addressed to the exhaustive prediction of cananical forms aﬂd most of_

them are too complicated to be easily adaptable to ‘this end.

Syntax and induction. One of the motives for this study was to uncover

the kinds of problems that would be'encountered in computer-emulation of the
process of scientific induction from experimental data. A necessary step is a
means of generating a set of relevant hypotheses. I have been impressed with
both the difficulty and the ﬁtility of est;blishing'a precise syntactical
f;amework for the range of hypotheses-even in.a field as weli.structured as
organic chemistry. .

Some years ago, Woodger (1937) attempted to axiomatize developmental and

genetic biology. His efforts were perhaps too remote from the experimental



g data now availabvle. However, he may have poiﬁted the wé.y to a more feasible
‘enterprise, to establish a precile syniax for hypothetical statements in
.biology. This is a more modest aim, since it does not purport to deduce wh:l.ch
statem:ents are correct. However, there is every good reason why computers
should compcte Very successfully in the oxercins of nodcl-bnilding that

~ preoccupy many biologhts today, and with advantago to the rigor with which

| they are put together. “




FOUTNLIEDS
SYSTEMATICS OF ORGANIC MOLECULES, GRAPH TOPOLOGY AND HAMILTON CIRCUITS

Footnote p. 9.

1Wh11e this paper vas being revised, snother algorithm requiring only sbout

10 n2 lté;a was discovered and programmed for routine use. It depends on

(1) groving a subgraph, adding one node at & time, (2) defining the list of
possible circuits at each level by recursion from the 1ist of previous level, and
(3) looking shead some steps to choose nodes which close facets of the graph

80 a8 to minimize the size of the list that must be maintained.

Footnote to p. 12.

2The speculative "polyhedrques” have been discussed by Schults, H.P.: Topological

Organic Chemistry. Pomxednne- and Prismanes., J. Org. Chem. 30, 1361 (1965).

Footnote to p. 13.

3rnis is no longer true. With a new algorithn;, Tutte's graph was exhausted in
29 seconds of 7090 time. The same algorithm is also very apt for finding the

largest circuits and for forbidden edges.

Footnote to p. 1k,

l"1"h.‘u; had already been found by other workers as disclosed in private communications:

D. Barnett, University of Washington and J. Bosak, Bratislava.

Footnote to p. 1lb.

Sputte (1960) quotes an example. with 22h nodes! If any HC-free polyhedron has
fever than 38 nodes it probably has one 3J-connected region. My own investigations

Jeave no encouragement for such an example at less than nyge



FOOTROTES CONTINUED 2

Footnote to p. 15.

61 note fﬁe following conjecture, that the symmetries of any abstract convex

trihedral polyhedron can be realized in a geometrical polyhedrbn in 3-space
with reflection, i.e. can be assigned to a point group. However, this
conjecture is not a premise of the method indicated for finding the symmetries.
The conjecture is plainly inapplicable to 2-connected or to non=planar graphs,
I would be grateful for any refutatiqnb or a formal proof, new or otherwise.

I
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Fig. 1.~ Centers of trees: r (radius-center), and m (mass-center). Two |
| exsmples, A., methionine, and B., leucines The diagrams were plotted by a

L computer program from punch cards coded for each structure as indicated.
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Fig. 2.

four isomorphic planar meshes, i.e. four kinds of faces, as labelled.

. BENZOPERYLENE

. -WITH MAPPING OF
BENZOPERYLENE

" meoe. " DEFS : ABEF I

. OR . . OR
e © ACOGHY

(a) Benzoperylene and its mapping on a polyhedron (b) which has
(c) 1s

the equivalent Hamilton circuit. Do not confuse the lettered labels of the

nodes with abbreviated code for this graph whith is 10BCC. The reader may

enjoy satisfying himself that these graphs are indeed isomorphic (equi-connected).:



Fig. 3. Hamilton's Hamilton circuit. The abstract dodecahedrom, represented

as a planar map of 20 nodes.
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17522663 31752266 63175226 €6317502
z @ @ ‘ v
26631752 22663175 52266317 7500457]

1l or A
{8AEB)
5 or E
- 2orB
7522€531 e
Fig. 4 Symmetries and encoding of a cyelic trivalent graph with 8 nodes.

There are 16 symmetry operation (B rotational X 2 reflection). Shown are

8 rotations, and a reflection that could be combined with each of these. With
each figure is also a span 1list; the canonical choice of the 16 (not all distinct)
18 the lowest valued span list, 17522663, calculated with the upper rightmost node

as the initial. This can then be reduced to the code AEBB, or even more econo-

mically AEB, as outlined in the text.

7 and 1y

saoTT0y uoizde)



(@) NTY - (e) (d)

Fig, 5.

.Non planar graphs. (a) and (b) are Kuratowski's fundamental forms,

_4-valent and 3-valeat respectively. At least one of these must be included in -

@ny nonplanar graph. (c) is a projection of (b) as a tetrahedron with an additional.

1ut¢rn;1'qh¢rd.‘nnd (d) is & hypothetical molecular structure that maps on to (¢).



Figure 6
Caption follows

- O
=

)
\
&
oY

6AA 6AB 6AC 6BC
8AAA 8AAB 8AAC BABC
BABD 8ACD 8ADD 8AEB

.
S
s
)

BAEC 8BBB 8BCC 880D

y

8CEC 8(6AC:8,1:2)

L
N

Fig. 6 The cyclic, trivalent planar graphs with 8 or fewer nodes., Where
possible, these are represented as Hamilton circuits, the nodes of the graph
being projected as vertices of a polygon which constitutes the circuit, the
remaining edges shown as chords, Each of these figures can also be drawn as a
planar map. The codes are abbreviated forms from which the graph can be recon-
structed. Note that 8BCC and BBDD are isomorphic despite the incongruence of the
Hamilton circuits. The abatract polyliedra of this list include two degenerate
forms (-, circle; 2, hosohedron) and 4B, tetrahedron; 6BC, prism; 8 CEC, cube;
8BCC = 8BDD, pentagonal wedge. One of these graphs, 8(6C:8,1:2) has no Hamilton
circuit, and is classified as a union which splices the 8'th edge of graph 6AC
with the 1'st edge of graph 2. Complete lists of the graphs through 12 nodes

are presented in Lederberg (1965).



(a) - (O,

(c) | . ;3 (d)

Fig. 7. A graph with special edges and two HC-free polyhedta; (a) has 16
nodes. The marked edges are included in‘any HC of- the graph. Hence the 3-cut
(b), with 15 nodes, obligates the marked edge as part of an HC of any graph in
which (b) is inserted. This leads to a gontradiccion, i.e., no Hamilton circuit

in (¢) Tutte's graph, with 46 nodes and (d) with 38 nodes.
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CANONICAL
MAP

HAMILTON CIRCUIT REPRESENTATIONS |

erig. 8; Morphine nucleus: symmetry. and choice for coding. fhe dashed edge
7---8 stands for the spiro- (quadriyalent) center in the morphine ring; however,
4 permutations are possible under the symmetry operations. In the canonical fo;m,
aftef account\is taken of the mapping of the chemical graph onto the abstract graph,
this edge ie iaBélled 2===3, The canonical map would be coded as
(8BDD-N.3,$, 5 53,03,,C) each coﬁna marking the next edge of the map. This code

~-~

 is sufficient input for the computer program to recomnstruct the molecular structure
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ENUMERATION OF THE ALKANES
STEREISOMERISM DISREGARDED

26 93839412

| - [

2 1 27 ' 240215803’

3 1 28 617105614

4 2 29 1590507121 »

5 "3 30 , 4111846763

6 A 5: 31 10660307791

7 9 - 32 27711253769 %

8 18 33 72214088660

9 : 35 34 188626236139
10 - % 75 35 493782952902
11 ) 3 . 159 36 1295297588128
12 ’ ’ 355 37 3404490780161,
13 o : 802 38 8964747474595
14 . . 1858 39 23647478933969
15 o . . 4347 40 62481801147341*
<16 ' ‘ 10359 41 165351455535782
17 ' 24894 42 438242894769226'
18 T 60523 “3 1163169707886427
19 ' 148284'% 44 3091461011836856
20 ‘ 366319 45 8227162372221203
21 _ | 910726 46 21921834086683260
22 2278658 ' 47 58481806621986230° - g
23 : 5731580 48 . 156192366474587200
24 14490245 49 ’ 417612400765371900
25 36797588 50 1117743651746931000

iable 1., Enumeration of isomeric’alkanes (disregarding stereoisomerism), from
methane to pentacontane. The valuee marked * disagree in some digita with the
values calculated manually by Henze and Blair (19}1) and Perry (1932). While

this is an amusing exercise for the computer, the discrepancies, needless to say,
will have no pragmatic chemical significance. In any case, a proportion of th;

structures will be unrealizable owing to steric hindrance.
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eCeeCC OuN=O oeNeCaC Co040 e0eCaC CemNO +CemCO 0OeCeN
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eCeC=C 0,04N eNeCnC (4400 sCeeCO CaNsO oCenCO NyoCO
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+CeCeN OeCm0 +CmoCN 0.CeO e CoeC=0 N,O.C zC4¢CC NoOaWO

sCeleN Ce=00 eC2oCN 0404C eCeCn0 QOsCeN 2CeCoeN Ce0Qe0

eCeNeC 04.C=0 oC=eCN Cee00 ¢CeC=0 0OuNeC =CeCeN Cee Q0O

«CaNel Coe00 eCeCe0O CuN=O ¢eCeC=0 CeoNO =CeNeC CeQeO

eNoeCeC 0eC=0 eCeCeO C=NeO eCeC=0 NooCO =CeNeC Co 00

.N.c.c C.'OO .COCOO N.CIO OCQCQO C.N.O aN.C.C Co0.0

eCoeeCN 0Q4C=0 OC.COO N3C00- 2 C2C o0 CeOeN =N eCeC Co 00

eCeelN Co=00 «CeCWs0 OLCmN eC=Cs0 NoCoaO 2CeeCN Cs040

eNeeCC 0eC=0 eCeCa0 OeN=(C eC=Ca0 NaOWC =CeeCN Ces00

oeNeoeCC Ces00 eCeCeO Ca=NO eC=Ce0 0eCaN =CeCe0 CeNeO

eCeC=N (o000 eCele0 C=oNO eC=Ce0 O4NoC 2CeCe0 CoOWN

eCeC=N 0eCaO OCIOQC CeN=0 eC=2Ca0 CO.NO =C-C.0 MNeCeO

eClelmN 040.C eCeDeC C=N.O eC2Ce0 NoeCO 2CeCe0 Na&OoC

eCel=N Coeos00 eCe0el NoC=0 20eCuC CaNoO 2CaCo0 CooNO

«C=2CeN Ce040 eCe0aC N=Co4O 20sCeC CeOeN =Ce0eC ColMeO

+C=2CaN OsCeO sCe0eC OoC=aN e0eC=C NaCeO =Ce0eC CoaOeN

oCuCeN 0404C 8Ce0eC OeN=C s0eC=C NWsOsC 2Ca0eC NoCoO

oCuCoelN Cee00 sCe0eC ComNO e0esCuC OoCeN 5Ce0eC NoOoC

oCoeNuC Ce0e0 0Ce0eC C=eNO e0eC=C OeNeC 2Co0sC CeeNO

eColNnl 0eCeO 00eCeC CeN=0 +0eC=C CoeeNO 2C4eCO0 CuNLO

eCoN=l 0,0.C ¢0eCeC C=aN,O e0sC=2C N,.CO =CeeCO CuOeN

eCeN=l Cae00 ¢e0eCeC No.CmO eCex(0D CoNeO 2CeeC0O NeCeO

eCeNeC Co0.0 e0eCeC NaC,0 ¢Coa=CO C4OuN 5CoeC0O NeQOaC

oCuNeC 0eCeO ¢0eCeC O4C=N eCo=CO NoCeO 2CeeCQ CoeNO

«CaNeC CeQeC

CeeeC CuN 0,0 Ceeel CoO OeN CeoeO CuC OeN Ce2e0 CeN CoO
CeeeC N=C 04,0 CoeoC OeC NoO Caex20 CoeC N&O Ce=e0 CeN 0eC
CemeC CeN 000 CaeeC 0.C OeN Cexe0 CoC NsO Ce=e0 NeC CoO
CemeC NoC Qo0 CeselN C=sC 0.0 Ce=eQ CoC OeN Cema0 NeC 0.C
CmeeC CelN 040 Coe®meN CeC 0,0 C=4e0 Cel N.O Cz2,.0 CaN C.0O
Cusel NeC 040 CoeeN Col 0.0 Cree0 CeC DN Cxee0 CeN 0.C
CoeasC CoD N=20 CeaeN C0O C=0 . CeseO CeN C=0 C=zs00 NoeC CoO
C eeC 0OeC N=O CeeeN C=20 04C Cese0 NoC C=0 C2400 NoeC 0oC
CeesC CwO NoO CoomN Co0 CuO CeseO C=N CW0 NeeeC C=C 0,0
Coeeel C=0 QeN CemeN Co0 0OoC CeeseO C=N 0,C Neoel Ce0O C=20
CeenC CoO NoO CmesN Co0 Co0 Coee0 N=C Co0 NseeC C=0 0.C
CeemC QOeC N0 CmeeN Ce0 0.C Ceee0 Nal 0.C - NeoseO CoC C=0
Comoel CoeO N&O CxeeN OoC 0aC Cesm0 CoN Cu0 NesoeO CmC Co4O
CemeC CoO OLN Cese0 CoC N=O Cee=20 NeC CoO NeeoO CsC 0eC
CmeeC Co0 NGO Ceea0 C=C NoO

CoeoeseC C O N=QD CeseeC O O N=C

CeosesC N O C=0 CeooseN O O C=(C

CesesC O O C=N

Table 2, The isomers of alanine (.C..CN C.=00 ) systematically ordered in DENDRAL-64

: notation. Each "." or "=" stands for a single or double bond respectively which

* must be satisfied by a trailing atom or radical. This will be the first previously
unreferenced item in the list to the right of the bond. A leading bond constitutes

a central link, which must then be followed by two radicals. A space is used

to separate the primary radicals for convenience in reading but has no coding
significance. Some 25 of these topological possibilities are recognized chemical

; forms; an equal number are their tautomers. Most of the remainder are either p&roxides

' or Schiff bases or similar unstable forms., A few, like hydracrylaldoxime, (.C.C.0 C=N.0O)
might be realizable but were not found in a cursory search of the literature.
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