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A structural formula in organic chemistry is a statement of the topological con-

nectivity of the atoms of a compound. However, the topological theory of organic

chemical structure has not been formally developed. Partly in consequence, the

taxonomy,i.e., nomenclature, notation, and homology, of the field lags behindits

substance which impedes communication, whether this be information retrieval or
professional education. Witness the mystification often provoked by the proper

nameof a new drug. The need for a more complete formal system became acutely

evident in an effort to write computer programsfor the logical analysis of mass spec-

tra. 2 It was found that the mappingof organic structures on standardized forms

contributed to the simplification of the problem andthis will be illustrated here.

Tree Structures.—Acyclic molecules are easy to standardize, but topological
principles are hardly used in current practice. Over thirty years ago, Henze and
Blair? pointed out, in their enumeration of alkanes, that a unique centroid can be
found in any chemical tree. This is either a link that evenly divides the skeleton

of the tree, or a single atom each branch from which carries less than half of the

skeletal atoms. The unique centroid is then the starting point for a canonical

mappingof the tree, following simple rules of precedence of the constituent radicals

according to their composition and topological structure. A compact, unique, and

unambiguous notational system? has been established from these canons and need

detain us no further here.

Cyclic Structures.—Rings are much moredifficult to process on a node-by-node

basis. Ambiguities due to symmetry are usual, and many paths can be evaluated
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Fic. 1.—Fundamental trivalent polyhedra, including degenerate forms, with up to 10
vertices. Examples are drawn from polycyclic compounds where possible; these do show
an unusual degree of symmetry.

only by recursively searching through the entire graph. This approach was there-

fore abandonedin favor of a fundamentalclassification of the graphs. To achieve

this, a numberof simplifying steps are introduced. The first of theseis to isolate the
paths within the ring. Theclassification then dependson the set of branch points.
Organic rings rarely have more than three branches at any point; an instance of
four branches can be accommodated by exception. A second simplification then

asks only fora classification of regular trivalent graphs. How, then, can the set of

trivalent graphs be systematically arranged, and how can webe assured of having
deduced the entire set, without isomorphic redundancies? The graphsof Figure 2
constitute such a set, of order 8, except for the gauche forms discussed later. Similar
sets of orders 10 and 12 have also been generated on the computer.

Polygonal graphsare relatively easy to compute, but they fail to show many of

the symmetries of the figures. This is dramatized by the two isomorphic polygonal
representations of the bipentagon. Furthermore, not all the graphs have Hamilton
circuits (i.e., can be represented as chorded polygons). Some,like 8 M, require ad-
ditional vertices, and these are not so readily generated by a polygonalgorithm.

A third basis was therefore introduced, the trivalent graphs being identified with

polyhedra, including some degenerate forms and derivations from them. As shown
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Fig. 2.—Trivalent graphs of order 8. 8A-C are fundamental forms already seenin Fig.
1. Polygonal representations are computer-generated plots; corresponding polyhedral
presentations were drawn by hand. Adjacent to each of the unions is a code for its com-
position.

in Figure 1, the formulation of polyhedra emphasizes the orderly developmentof the

set of graphs and the symmetries of each structure, and thusfacilitates the recogni-
tion of isomorphisms.

Polyhedral Forms.—Yor topological analysis of a ring the linear paths and the
vertices connecting themare first identified. The vertices are simply the branch

points, i.e., the atoms with three or morelinks to the rest of the ensemble. For these

purposes a doubleor triple bond isa single link. The paths are then the intervals be-

tween the vertices. A path may be a simple link or a linear string of tandemly
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linked atoms. For example, marking é 4
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tion of the incidence matrix of the Xs 9
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graphs. ' .

Figure 1 lists convex trivalent poly-

hedra with up to 10 vertices,on which Fy. 3.—Mapping a complex ring; morphinan.

structures with up to six rings can be
mapped. It also includes some laminar forms, e.g., the circle, bicyclane, and tri-
cyclane, which might be regarded as degenerate polyhedra with 1, 2, or 3 faces,

respectively. The series has also been algorithmically expanded further in a com-

puter program.

Any trivalent graph is assumed to represent either a polyhedron’or a gauche graph

of the same order, or the union of two or more graphs of lower order. A union is
obtained across a pair of cut edges of two graphs. The derived formsareclassified
according to the largest polyhedron or symmetrical union, e.g., bitetrahedron, con-

tained in the graph.

Spiro-Atoms.—A quadrivalent vertex is mapped as a collapsed edge of a trivalent

graph: >:~-<=>-<. The parent graph is almost always subject to twoor three

choices. That partition is chosen which leads to the least complex map, i.e., the

nearest to a polyhedron with the least appendages. Figure 8 illustrates a mapping

of morphinan.

Gauche Graphs.—The Ring [ndex* with its 11,524 examples of rings known to or-

ganic chemistry contains no example of a finite gauche graph, i.e., one whose

representation on the plane has obligatory crossed paths. (Optional crossed-path

formulas are sometimes preferred to show the homologyof figures to one another.)
A theorem of Kuratowski has shown that a gauche graph must contain either Figure

4a or 4b;° Figure 4a may be discounted as an unlikely pentaspiro complex. Is the

nonexistence of Figure 46 a coincidence? Its representation, Figure 4c, as an in-

ternally chorded tetrahedron may throw somelight on this. A gauche structure
would require access of a chemical path to the interior of a urotropinelike molecule,

Figure 4d. However, with the interposition of longer paths, it should be possible

to fill this topologicochemical hiatus.
Limitations of Tepological Description.—Mapping is intended to convey only the

connectivity relationship of a set of
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atoms, which is only the first-order ofwot
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latter is not difficult: the main pro- Fic. 4.—Gauche graphs: (a) and (b), Kura-

. : va towski’s fundamental forms of nonplanar graphs;gramming problems involve account- (c), a three-dimensional representation of -(b);
ing for all the symmetries. Molecular and (d) isa hypothetical example.
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conformations represent another domain, whose computation belongs mainly to
numerical analysis rather than topology. Thus, from the standpoint of the
present paper, interlocked rings have the same connectivity as separate rings.
The catena structures cannot, however, be properly drawn without crossed paths.
Manyreal conformations may also have to be shown with superimposed paths in
any actual projection on the plane.

Applications of Topological Mapping.—The primary purpose of this analysis was
to provide a framework for computable logic in organic chemistry, especially the
analysis of mass spectra. The theoretical ideas of this presentation are very primi-
tive and its main virtue may be to provoke a more sophisticated mathematical for-
mulation.

Once a standard form is chosen for mapping, canons can be elaborated for the
ordering of paths leading in turn to a systematic, compact, computable notation for
organic structures.?- The main burden of the standardization is a dissection of the
symmetries of the diagram, then a rule of choice among the permutations of the
labels. Thus, in the example of Figure 3, the diagram 8B has fourfold symmetry.
The symmetry permutations of the principal polygon can be expressed, with the
corresponding path lists, as:

Path [12345678 (28) (37) (46) (15) (26) (39) (48) (15) (24) (38)
12 —_ NCCC —_ CCC
23 CCC Fused _— O
34 oO — Fused CCC
45 ccc — CCCN —_
56 — ccc — NCCC
67 — oO CCC Fused
78 Fused ccc O —
81 CCCN — CCC _—
15 Cc Cc Cc Cc
28 — aa —_ _
37 _— —_— —_ —46 —_ — —_— —_—

The top heavy path list of (28) (87) (46) makes this the canonical choice. A linear
code for the mapping of morphinanis then (8H NCCC,$, —,—,CCC,0,CCC,—,C, —,
—,—), or morecompa ctly, (8H N3,$,,,3,0,3,,1), the map being thus reduced to a
twelve-dimensional vector. A computer program would unambiguously recognize
any of the permuted path lists as equivalent forms, and can performthe tedious ex-
ercise just concluded.
More important than the notation, this framework enables a computer program

to generate hypotheses of organic molecular structure in an algorithmic, exhaustive,
and, aboveall, redundancy-free sequence, important if the computer is to amplify
human logical capacity in this field.
Summary.—An algorithmic approach to the topological mapping of organic

molecules is presented. Three structures are initiated at a unique centroid of the
skeletal atoms. Cyclic structures are moredifficult. However, the set of regular
graphs of degree 3 can be generated on a basic set of polyhedra. Any organic ring
molecule can be mapped on one of these graphs. Exceptional quadrivalent
vertices (spiro fusions) are expandedto a pair of trivalent vertices. Gauche graphs,
with obligatory crossed paths, have not yet been realized in organic chemistry,
probably owing to the difficulty of accessing a chemical path as an interior chord of
a closed molecule.
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