

Dedt. Genetics, University of Wisconsin,这dison, 6, Wis.

\qquad Narch 21, 1949.

Dear Jacưues,

I think that I can clarify some of my remarks on lactase adaptation. $\operatorname{Lac}_{1}=$ (e.g. Y-87, or better, stocks with less mutabile allels) does adapt
 to a very slight extent on lactose to form galactosidase. The activity is
 of the order of 1% of wild type, either in intact cells or in extracts. degtor"risa su ant whemater
On galactose, this mutant does about as well as on lactose, perhaps reaching a slightly lower level of activity. On butyl galactoside, hovever, lactase is produced at practically the leval of wild type, ws shown by fermebtation of lactose or splitting of o-MPG.
r. . orronr arerer

Recently, a mutant was obtainea which thows a vary disturbing elenent into the situation. I do not know its zenetic restionships, but call it, for the noment, Lac 8 . This mutant does not fernent glucuse, oryactose or mal tose, and factose only very slowly. Jith appopriate selective media, suppressor matations permitting the fermentation either of maltose, or , $\mathrm{c}_{1}{ }^{2}$
lactose or both are obtained, but leaving the matiant still glucuse-negative and galactose-slow. So here we have a mutant which fernents lictose much nore rapidiy (when grown on lactose) than either glucuse or galactose or both. It procuces an adaptive galactosidase (i.e. measured on $0-N P G$) which
 so far seems to have the same general character us wild type. However, a preliminary experiment has been done once which suggests that we may have the same problem here as in the complete utilization of maltose, via anylomaltase, in the patany hal\#Glu- typesh, by the intact cells. Dried cells of wild type retain their capacity to ferient lactose (as they do of glucose and galactose), but in this suppressor-mutant, drying destroys the capacity to fermeht lactose. Again, we have the dilemma: is there a second labile
enzyme which bypasses hexoses altogether in the utilization of these di-

 enzymes we aready recoginize, one which is dependent on the structural integrity of the cell. David Green, now at our Enzyme Institute, inclines, of cuurse to the iatter viewpoint, on the basis of his work on cyclophorase. I havea't had tina yet to think how this can be att cked experimentally.

Iri fact, our work has been somewgat diverted by the finding that K-12 is iysogenic !, unrevealed until some suspeptible and phage-free
 mitants were produced coincidentaily with out irradiations to prepare Lac- rutants. The "lambdu"-negative mutants can then be reinfected by expossure to the phage, and become lyscgenic again. Je have been impelled tol Iuck int this situation both a possible interierence in our crosses (which tams out to be unimportant, unless one pareat heppens to be lyagenic, the cther not) and as a "transforming princinle", or an agent of "zytoplssinic inheritince". I would apprecinte a favor from you if you cas ninage it without inconvanience to yourself, numely to ask your colle, gues at the Institut Pisteur to send ne the famous lysogenic sh E. coli of Lisoonne and Carriere, and if available B. migatherium 899 den Deren de Jong, iong uith upgropriute sensitiv: inaicator strains. I would also appreciate very much available reprints of publications in this field. thy thanks to you and to thea.

If you see Boris Eohrussi and Harriett Paylor, piease give them my best. Is Harriett working on pneunococcus? Esther read a manuscript of Ephrussi's wor: on acriflavine on paxde yeast, and wondered whether the small-celled mutants had been Gran-stained. Thare are some vague reports that this dye may convert Gramt bacteris to Gram-.
506 Regards as well to Prof. Lwoff,

