STANFORD UNIVERSITY SCHOOL OF MEDIEINE STANFORD MEDICAL CENTER
 300 PASTEUR DRIVE, PALO ALTO, CALIFORNIA

department of genetics
Prof̂. J. Lederberg, Director
Dr. Donald W. Grace
Procter \& Garable Co.
Ivorydale Technical Center
Cincinnati 17, Ohio
Dear Dr. Grace:
I am very sorry to have learned about your work on polyhedra only after you left. Surprisingly enough, it has a distinct bearing on chemistry, as I can perhaps best explain by referring immediately to the enclosures.

Especialiy as regards the note on Hamilton circuits, the extension to larger graphs is of greater academic than practical concern. However, having once gotten started in this direction, I find it rather irritating not to have a deeper insight than I do into the enumeration of these graphs generally. I am looking forward to Professor ?olya's return as a probable help. (He chose the wrong year to go away or I xto work on such problems.)

I wanted to ask you whether you might be interested to continue your analysis on some of these problems. For examole, the exploration of the Hamilton circuits in the range nl4- n_{18} (i.e. n vertices) might recheck the isomorphisms. Thus, one might use the face-dissection program to generate only non-trigonal forms, viz., by avoiding adjacent edges, ank-usins-onzy-nom-もrigenaz-parents (I have to strike that out since a trigonal parent can generate a non-trigonal oifspring:: needless to say, since one starts with the teirahedron). Trigonal forms are probably most efficiently generated as combinations of the ways that the vertices of the lower order graphs can be marked for expansion into triangles. This can also be turned into a test for isomorphism (via the Familton circuit of the reduced figure, marked). As you will see, all the polyhedra in your main list (up to n_{18}) do have Hamilton circuits provided the equisurroundness criterion holds throuch n_{16}.
inother proposal might be check Tait's conjecture through n_{20} by using your program through one more step, but saving only non-trigonal forms. This would entail using the non-trigonal $n_{18} 8^{\prime}$ s and avoiaing adjacent edges there; and also the mono-trigonal $n_{1} 8^{\prime}$ s in just the fashion to enlarge the triangle. To go to n_{22} may ve difficult but not impossible, as one would have to build all the monotrigonal n_{20} 's as well as the foregoing. But this can be done merely by marking ore vertex all possible ways on the nontrigonal n_{18} 's.

This is rather tiresome to have to deal with by letter. George Forsythe thought it micht be reasonable to ask you whether you had any interest in returning briefly to stanfora at some convenient time that we might discuss these problems and perhaps conizder: some further runs.

Yonwhile, I wonder if you can spare another copy of your thesis, which is in short supply here; also the reproduction of the listings is not all it could bo. If you shouli happen to have card-deck or tape storage of your output tables, it micht be especially helpful.
lt. J.p. Kennedy. JR., Laboratories for molecular medicine, dedicated to r

