RECOMBINATION IN BACTERIA .

L. L. Cavalli-Sforza e Jos qua Lederberg

(Istituto Sieroterapico Milanese ed Istituto di Microbiologia dell'Università, Milano, Italia),
(Department of Genetics, University of Wisconsin, U.S. A.)
Recombination has been ascertained in a group of E. coli strains, one of which, strain K-12, has been studied more extensively than any other. In this strain, recombination is governed by a system of mating types which shows an exceptional mode of hereditary transmission. Original $\mathrm{K}-\mathrm{I} 2$ is self-compatible ($\mathrm{F}+$); some mutants derived from it proved to be self-incompatible ($\mathrm{F}-$). Crosses $\mathrm{F}+\times \mathrm{F}$ are fertile, and all the progeny is $\mathrm{F}+$. An $\mathrm{F}-$ strain can be converted to $\mathrm{F}+$ by incubation in certain conditions with an $\mathrm{F}-$ strain, no other genetic exchange taking place with the transfer of $\mathrm{F}+$. The nature of the agent transducing self-compatibility is unknown. The kinetics of transduction seems to indicate that contact between cells is essential. An originally F - strain which has become $\mathrm{F}+$ by transduction is stable and can transduce $\mathrm{F}+$ in its turn.

Two other types of behaviour for compatibility have been found. A strain (Her) which behaves as an $\mathrm{F}+$ for compatibility, shows much higher fertility (ie., frequency of recombination) than comparable $\mathrm{F}+$ strains; but cannot transduce $\mathrm{F}+$. The progeny of an $\mathrm{Hfr} \times \mathrm{F} \rightarrow$ cross is mostly $\mathrm{F}-$, but a few recombinants are Hfr , in close linkage with a Gal marker. Another strain (Fr) behaves as an $\mathrm{F}-$, but cannot be transduced to $\mathrm{F}+$. Progeny from $\mathrm{F}+\times \times \mathrm{Fr}$ shows a segregation of $\mathrm{F}+$ and $\mathrm{F}-$. Fr strains do not compete with other $\mathrm{F} \rightarrow$ strains for $F+$ when a limited supply of this agent is available.

The mating-type system shows a profound influence on the recombination pattern, as shown by the segregation of unselected markers. The contribution from the $\mathbf{F}+$ (or Hfr) parent undergoes an almost constant elimination, which is highest for one particular point or region of the chromosome (s). This results in considerable differences of reciprocal crosses.

