ENCLOSURE: CULTURES OF ESCHERICHIA COLI (a harmless bacterium) for scientific investigation To: Dr. L. L. Cavalli Istituto Sieroterapico Milanese Via Darwin 20 Milano, Italia Dear Luca:

March 28, 1953

I enclose a number of cultures as mentioned in previous correspondence. I apologize for taking so long, but I made a number of attempts to reisolate H-313, which have failed. It would be easier to repeat the cross, and I will do this at an early opportunity. I assume, however, that you are more interested in the variety of segregant types than in this diploid itself. I an therefore sending you a culture which represents the unpurified mixture of segregants from the H-313 stock culture. I was note able to recover the original diploid itself, which is remognized as prototrophic, Mal+ on EMS maltose; but Mal \underline{v} on EMB maltose agar. Attempts to reisolate H313 from this mess now probably will lead only to new crossings. In addition, as noted, there mixe is a group of isolations previously made from this culture. Their designation as Hfr is tentative, but my records show them to be very active F+ phenotypically, but noninfective. You should have no **difficite** in securing prototrophic Hfr recombinants also from the mess.

To avoid confusion, I repeat the correct pedigree:

W-1895 (your Hfr) X W-1177 gave H-310, a Law v S^r noticed in a cross on EMB Lactose + sm. H-310 appears to be segregating only for Lac, and is pure for the other markers of W-1177 (whether homo- or hemi-zygous I do not yet know). All its segregants so far tested have been F-, but H-310 itself behaves as an Hfr. It is relatively stable, and can be purified easily by picking hazy-mottled colonies on EMB lactose. These rarely throw off typical Lac+ and Lac-.

H-310 x W-1895 on EMS Lac. $\frac{1}{2}$ or Mal. 1/12 was Mal v = H313. H313 is pure Lac+ (not surprising as it comes from Lac +/- x Lac+), but segregating for M, TL, S, Mal, Mtl, $\frac{1}{1}$ (Note, inter alia, that it has a full genotypic contribution from each parent]. Only five segregants have been tested, each behaving like Hfr as mentioned above:

	Vl	Mal.Xyl.Mtl	S	TLB_1	М		
W-2057	r		S		+	These are not a random sample	
W-2058	r	-	r	-	+	of segregants as I was looking for special types.	
W-2059	s.=.W1895, not included						
W-2060	r	+	s	-	+		
₩-2061	r	+	S	-			

The remaining cultures are the partially analysed issue of passages through 2 tubes each of motility agar (formula in Zinder and Lederberg '52).

й —	From	
2206	58-161	This shows very high rate of recombination (not quite
		as high as W1895, although one does find Lac+S ^r recomb. x
		4-1177) but is still infective F+. It may possibly have
		a special F+ agent; this needs to be checked, as does its
		purity (possibility of its being a mixture of Hfr and F+,
		but doubtful).
2207, 22	08 "	seem to be typical F
2209	.ï -1<u>6</u>78	(Proline-, glycine(or serine)-). This one is curious. It
		is very infertile, but does give some prototrophs X W-1177F+.
		After being grown with W-1177F+, it becomes moderately fertile
		with UL177 loss with WIRDY mut and

with W-1177, less with W-1817. This could be explained if

independently of becoming F-, this stock also picked up some modifier that reduced its overall productivity. The original W-1678 is extremely fertile (not quite Hfr) x Will77, much less so x Wil77F+.

Jim Watson sent me his Watson-Hayes opus. I have not wanted to polemicize with him, but cannot accept the underlying theory. F+ x F- crosses have given diploids which are deficient for a Mal-S segment from the F- parent, as well as a few which are mal-S crossovers. This seems to necessitate a post-zygotic elimination, and certainly one which is not absolutely dependent oh F-polarity.

As to the number of linkage groups, an M.A. student (Phyalis Fried-- now working for Ryan) completed an **extensit** extension of Rothfels' work lest June in which S, M, P (proline-), and TL were variously used as elected and unselected markers. We could not confirm the M-Lac linkage, which is based entirely on the segregation ratio of Lac into prototrophs, so the markers seem to fall into the following groups:

 $S-M--B_1$ and $P-Lac--V_1--TL$ [Mal-Xy1-Mt1]

The detailed ordering is not entirely worked out. To explain these data, and the unselected Hfr x W-1177, one has to postulate a dimension polarized segregatipn, controlled by F, and directed at two points: one near S, the other near TL.

To counter the possible argument that the diploids mentioned on the 6th line of this page somehow resulted from a cross of inverted polarity, following Ftransduction, 1 am trying to obtain F- Het stocks (by the semisolid passage technique) so that we can secure diploids from the non-infective Hfr x F-Het cross. But I have almost given up trying to explain this reasoning to Hayes, etc. I would almost rather leave him to make some definitive enough assertion that it will be possible to test it.

Concerning the cultures included, I have of course no objection to your discussing or demonstrating them with anyone, but feel that the same considerations apply to their distribution as to Hfr.

I have word thirdhand that you have recovered a B-M- 58-161. Is this so? I propose we raname our current B+M- culture now W-6 and regard it as a (genetically unahalyzed) reversion from the proper 58-161 type.

*preceding pages of that symp.

I have not forgotten our ms. Thank you for your reprint and microfilms which arrived about the 24th. By the way, I think Umbreit*is all wrong (and not entirely forthright) about the metabolism of Sr mutants: at least as concerns their non-aerobic growth responses. They have had such a culture, but this behavior had nothing to do with Sr: subsequent isolates seem perfectly normal, and they claim to have lost the original Sr. I was once interested (at Stanier's suggestion) to test indirectly selected Sr to determine whether streptomycin had any direct effect on the aerobic metabolism (a la Ephrussi), but could not confirm the premiss. Oginsky sent her strain, with same negative results. But I would not want to bother with this in print.

P.S.: I have a Pyrex filter on order. When it comes shall I send it direct, which would be much safer, or have \$ my own glassblower make the U-tube, which will be more hazardous to ship?

Sincereky, Joshua Lederberg