YALE UNIVERSITY
OSBORN BOTANICAL LABORATORY
NEW HAVEN, CONNECTICUT
July 4, 1947.
Dear Mather:
In mulling over the statement of the problem which I had previously stated in too abbreviated and confusing fashion, I think I have achieved a partial solution; at least I hope it may serve to convey the nature of mg difficulties. I hope you will have time to go over this and detect any fallacies that may have crept in.

Assume the parental configurations: $A B C d$ and abcD. Given the relative frequencies of the only detectable recombination classes (A..D or prototrophs) to estimate the absolute map distance $A . . D$, assuming linearity and no interference. The regions are as follows:
A B ${ }^{C}{ }^{C} \quad$ and for the sake of convenience, let us call
the three "single-interchange" classes,
$A b c D ; A B C D$, and $A B C D, j$, and the "triple-interchange ${ }^{\text {Th }}$ class $A B C D, k$.
The grand-total accumulation of data in the case where $A B C D$ are BM, Lac, V,TL respectively, is as follows:

... 814	27.3\%	27.8 \%
2...1389	46.3	47.8
3... 729	24.3	24.9
k... 63	2.1	2935.00.00
2998	100.0\%	

The k's are separated in the third column to give the reaztive distances.

In your analysis of the problem, you suggested that the absolute distances might be given by the expressions:
$" 1 "=p_{1} q_{2} q_{3} ; "_{2 "}=p_{2} q_{1} q_{3}$ and $" 3{ }^{\# \#}=p_{3} q_{1} q_{2}$ and $k=p_{1} p_{2} p_{3}$.
mene where p_{1}, etc., was the chance of a crossover in region one, i.e., the distance from A to B. It has just occurred to me that the analysis which I had just completed is congruous with yours if a more accurate meaning is given to these symbols, namely that $p_{\text {p }}$ is the probability that there is an interchange in region 1 , i.e.., that there is an odd number of crossovers in this region. Thecmap distance which can, of course exceed l.0Q while a true probability cannot, should be defined as:

$$
\int \begin{aligned}
& B \\
& p
\end{aligned} \quad \text { For infinitesimal segments, of course, } p
$$

According to this definition, the absolute distance A.。D is the mean number of crossovers per chromatid pair.

As a first approximation, consider the case of two-strand crossin, otrer, with the distances 1,2 , and 3 equal to each other, and estimate what the total distance must be to allow the class k of given size (2.1\%). There is assumed to be no interference. If the distance then is x, the proportions of n-crossoyer types will be given by the Poisson distribution: $e^{-x}\left(1,, x, x^{2} / 8!,, \rightarrow x^{n} / n!\right)$. However, since cren numbered crossover, type s widy not boyrecovered, only the odd

troph will be obtained．For purposes of orientation，it may be pointed out that the limiting probability of $a k$ is $1 / 4$ ：If the tital（odd） number of crossovers is large，the chance that there will be an odd number in region 1 is $=$ to the chance of an even number， $1 . e,=1 / 2$ ．
Similarly for the chances of region 2．Thits determines region 3 as odd， so the overall probability is $0.5 \times 0.5=0.25$ ．This is to be expected， since it means that with a lrge number of crossovers，each class has an equal expectation．

The chances of 1 crossover in eact refgion，for $x=3$ can be estimated from the binomial distribution，and turns out to be $2 / 9=.22$ ．The 11mit of .25 is very nearly reached for $n=5$ ，but thecalculations are too space－ consuming to be worthwhile writing down．

The value of x corresponding to $k \neq .021$ can now be determined．
Each single－orossover will yield only j．Triple－crossovers will yield
.22 k and .78 j ，while odd n －ple crossovers will yield even more closely .25 k and .75 j ．The weight to be given to each crossover－class is given by the Poisson series．To simplify the calculations maxe somewhat the Jield for $n=3$ can be approximated as alse ．25．The odd terms of the Posssoh distribution are，of course，sjinh x ．The first term is $(n=1) e^{-x}(x)$ ．The proportion of single－crossovers to total odd crossovers is then $x / \sinh x$ ．This will be the same as $j-3 k / j+k,=1-4 k / j+k$ ． In the present case，$k / j+k=2.1 \%$ or $.021 ; x / \sinh x=.916$ ．
from your estimate．x is of course a ver 73 morgans．This turns out not to be very different． rrom your estimate，x is of course as $k=.03, x=90$ morgans，so that the estimate can be regarded only compared to measure．With m 将yx x only $\cdot 7$ ，the class $n=5$ can be disregarded basis of a comparison of the $N=1$ and $n=$ yield can be calculated on the modify the calculation to in lude the $n=1$ classes only．we can also ting the possible slight modification that the triples among theglec－ have introduced． one each in the resative distances： $27.8,47.3$ and 24.9 is： 6 （ $478 x$ ． 473 $x .249)=.196$ ．The proportion of $\Rightarrow n=3$ to $n=1$ is simply $x^{2} / 6$ ．Thus we have

$$
\frac{.196 \overline{x^{2} / 6}}{I+x^{2} / 6}=k / j+k=.021
$$

So much for the hypothetical two strand case．
If crossing over occurs at a four－strand stage＇，the calculations are much more involved．Let n be the number of crossovers per tetrad．If $n=1$ the situation is much as in two－strand，since only the prototroph will． be recovered．If $n=2$ ，however， 3 tetrads out of 4 （the digressive and the progressive）will yield $\frac{j}{}$ prototrophs．If $n=3$ ， 4 tetrads out of 16 will contain k prototrophs， 2 will contain no prototriphs，while lis will contain j＇s．（one overlap，with $1 \mathrm{j} ; 1 \mathrm{k}$ ）．For $\mathrm{n}=4$ ，the situation where ther even more complicated，the $n=3$ case mentioned is for those the following will have tover in each region．（．196 of total）．In general，
a）for any n the w马ume chance that there will be crossovers in each re－ gion．also，the proportion of the disproportionate types which yield prototrophs（all j）．
b）the proportions of j and k where there are crossovers in each region．

The problem seems so complex, that I have begun by making some simplifying approximations. Firstly, we will count the total number of recombinants, rather than zygotes, in making our estimations, to avoid the difficulty of enumerating zygotes containing two kinds of protrophs (digressive multiple exchanges). On this basis then, both single- and double- crossover types ($n=1,2$) will be counted as giving all prototrophs, while the type where $n=3$, and there is one crossover in each region will be considered as yielding $3 \mathrm{j}: 7 \mathrm{k}$. I have not completed theqenalysis, but it seems very likely on this basis that for any value of n, there will be this ration for that 3 , set of crossover classes in which there is one or more crossovers in each region. The difference between this and the two strand system is that the even-numbered types must be counted also.

Theoretically, it should not be difficult to find an expression for $p=f(n)$ where p is the chance that if n marbles are thrown at random into three equal (or more precisely, somewhat unequal) boxes, that none of these boxes shall be empty. I have not been able to find it however, and have had to repay upon the binomial expansion, summing $2 l l$ the appropriate cases, to obtain values of p from $n=3$ to $n=8$. p must be known, since $k / j+k=\sum p / 4 \cdot x^{n} / n$!

$$
\frac{K / J+K-\sum_{i=3}^{2} p / 4 \cdot x / L}{e^{x}-1}=021
$$

The effect of increasing x, then, is to augment the proportions of higher values of n, which int tarn increases the proportions of the types in which there is at least one exchange in each region.

Using this formula, and the calculated values of p, the following trials were made as enumerated in the table:

Thus, $n=1.6$ gives $r=.021$ in agreement with the expected $j / j+k=2.1 \%$. 1.6 crossovers per tetrad is, of course equivalent to 80 morgans between A..D, which is surprisingly close to the $2-$ strand estimate. Is this more than an accident??

In the course of all these clfaculations, I became rather tired of drawing four chromatids and spotting innumerable combinations of crossovers on them to determine the proportions of various types. Therefore I set myself to formulating an operational treatment of multiple crossovers; I should be interested to hear whether it would
of any use to anyone, and whether anything similar has already been published.

The method is:

A crossover is written as a_{13} for the exchange indicated, in region a involving strands 1 and 3. a_{13} is an operator, the operands of which are the 4 strands- s_{1}, s_{2}, s_{3}, and $s_{4}=s$
For the purpose of developing the arithmatic of these operators, there are two parts to the operation: $a_{13} \cdot s$ which have to be considered:
a) on s_{1} it substitutes a for A. 'ihis may be written $\left(\begin{array}{l}\text { a }\end{array}\right.$ or more simply; (a). on $s 3$ it substiもutes \mathbb{I} for a. This has the same notation:
b) it converts s_{1} from 'rank' 1 to rank 3 .
c) it acts, of course, in similar fashmion on s_{3}.
e) an operator has no effect, e.g. (1)z, on operands of different rank.
e) the operators are written from left to right, in the sequence of
the croseovers; the order of action is from right to left.
f) $a_{0} a=(1)$
g) the combinations of operators are:

$$
\begin{array}{ll}
a=(a) & a b=(b)(*(a)(a b)) \\
b=(a b) & a c=(b c) \\
c=(a b c) & b c=(\&) a b c=(a, b c)=(a c)
\end{array}
$$

To combine operators, w.g. $a_{13} \cdot b_{23} \cdot c_{14}$ s, write the operands in separate columns:

s_{3}	s_{4}
(1)	c_{1}
b_{2}	(\pm)
$(1\}$	a_{3}

and perform the operation indicated by the righthandmost term. $\left(\mathrm{c}_{14}\right)$. The change in rank is very readily symbolized by using the subscript.

Then perform the operation indicated by the penultimate symbol, keeping in minil the shift in ranks of the previous operator. And so forth. The tetrad then consists of: $c_{4} s_{1} ; a_{1} b_{3} s_{2} ; b_{2} s_{3} ; a_{3} c_{1} s_{4}$ or
 is the correct answer. The generalization of this method to any number work on dovers or regions is, of course, obvious. I am going, now, to fory thes, work on derived rules for the production of the various orossover types,
based on the relationships between subscripts. E!g., a triple excahnge based on the relationships between subscripts. E.g., a triple excahnge
 tive frequencies of various types shpuld not be too difficult to caloylate, uven in mose tanphx infatances. The metlod io muh easintoue thene tomplam hope I have made this letter somewhat clearer (if at the expense of brevity.) Please accept my \&ratitude fow-your continued interest.

