YALE UNIVERSITY
osborn botanical laboratory
NEW HAVEN, CONNECTICUT
KX March 3, 1947.
Dear Dr. Mather:
This should perhaps have been written as a postscript to my letter of the 8 th ult., since certain remarks therein will have to be revised.

The results. of the cross $B-P-X T-I-B_{j}-I a c-V^{r}$ do not support the map order. $B_{1} ; B M: L a c: V: P: T L$ which seemed: to be suggested by the comparisons of the crosses $B M X T L B_{1} V_{i}^{r}$ and $B M X T P V^{r}$. The data are:

Protptrophs: $\begin{array}{lllll}-R & 25 & 0 & 27 & 4\end{array}$
$\begin{array}{lllllllll} & B_{1}-+B_{1}+ & 62 & 2 & 41 & 1\end{array}$ B_{1} - ca $10 \times \mathrm{B}_{1}+{ }^{+}{ }^{-}$
$\mathrm{B}-+\mathrm{B}+\quad 74 \quad 10 \quad 69 \quad 12$.
(from B plates- but B- not yore than about $1 / 2$ as frequent as $\mathrm{B}+$) mum (hue $\mathrm{KA},+$?

There are two respects in which these data do not fit the map order assumed above:

1. -S is much too frequent
2. B- is much too infrequent:

However, these data are not fatal to the hypothesis of linear linkage, since the recombination value for V in the cross $B M X T P$ may depend on the map order $B M-P-V-T$, on the assumption that the recombination between ∇ and T...P depend on two crossovers. The numerical data are not inconsistent with the theory (even in the absence of interference) particularly if T is to some extent to the right of L .

This gives a map:
ca

In this cross then, the recon crossovers required are:
Prototrophs:A.DE (A.D is -S; A.E is $-R ; D=E$)
or A.B.C. DE A.B.C.D is +S; A.B.C.E is $4 R$
$B_{1}{ }^{-}$: DE or B.C.DE B- F.DE or.F.A,C.DO

It would not appear to be too worthwhile to attempt to make too precise estimations of absolute distances from such data as these until we learn more avout the possibilities of intereferences, which could certainily throw one wide of the mark.

Another approach to the problem of linearity has suggested itself, and I am working on it now.

It should be possible to find 'cross-over suppressor' stocks after intense irradiation. These would be presumablg based on the occurrence of inversions. It should be a relatively simple matter to detect inversions covering region A of the map since crosses involving such støcks could yieュd B_{1} - but no protiophs. (using, eg BM X TIB ${ }_{1}$.) If such can be fund, one can also detelmine whatcer, if atuyl, of the regions E, C, D, or E are involved; a group of such stoclis could provide evidence as to the linear plotting of regions of sup ressed. interchange and therevy indicate the linearity of the gene arrangement. rirst, the inversions will have to be datecteafocif.
What news on the new addition of your 'Statistical Analysis?'

