Comparative biochemistry of cells: The extent, origin and control of biochemical variability.

- I Known biochemical structures.
 - A Comparative aspects of cellular organization
 - I The nuclear apparatus
 - s. Chemistry of plant and animal nuclei

Morphology, cytochemistry

Chromosomal structure and organization

Metabolic role and activities

Structural associations with cytoplasm

- b. Protozoa and algae
- c. Do bacteria have nuclei?
 - 1. Chromosomal organization genetic evidence
 - 2. "Nuclear" organization -- electron microscopy, cytochem.
 - 3. Relations to protoplast membrane
- 2 Cytoplasmic organization -- animals vs plants vs microbes.
 - a. Mitochondria
 - 1. Mitochondrial evolution -- cytology, distribution.
 - 2. Mitochondrial integration-functional-structure.
 - 3. Mitochondrial roles.

- 4. Do bacteria have mitochondria?
- 5. Protoplast membrane--distribution, structure composition, role relation to mitochondria.
- B Endoplasmic reticulum
 - 1 Structure in animal and plant cells
 - 2 Existence in unicellular organisms?
 - 3 Secretion
 - 4 Relation to cell surface, pinocytosis
- C Ribosomal structure and function
 - l Distribution of free ribosomes.
 - a. Origin
- D Photosynthetic apparatus
 - l Distribution
 - 2 Structure
 - 3 Origin, multiplication, inheritance
- E Other structures
 - 1 Golgi apparatus
- F Cell sap
 - 1 Osmotic properties, pH, composition

- 2 Role, organization ?, origin
- G Cell membranes and walls
 - 1 General structure and role:
 - a. Animal vs plant vs unicellular organisms
 - b. Bacteria vs protozoa, algae vs yeast and fungi
 - 2 Distribution, role and biosynthesis of sislic and muramic acids
 - 3 Selective toxicity of antibiotics with special references to cell walls
 - 4 Mono- and dideoxyhexoses -- distribution and origin
 - 5 Biosynthesis of cell walls and capsules -- structures, control
- H Virus structure
 - 1 Comparative aspects and principles of organization
 - 2 Relations of structure to problems of penetrating host
 - 3 Genetic structure
 - 4 Are viruses derivative or primary organisms? (origin of viruses and mucleoproteins)
- I Cell specialization
 - 1 Chemical aspects of differentiation
- J Aging and cytopathology
 - 1 Selective advantages

- K Selective advantages of existing structures
- II Known biochemical activities
 - A Systems of energy metabolism
 - l Anserobic metabolism
 - a. Electron transfer--anaerobic dehydrogenases

- 1. Pyridine nucleotides
- 2. Polic acid derivatives
- 3. Transhydrogenation
- 4. Glutathione and other reductases
- 5. Mechanisms of H transfer and implications for evolution of organisation
- 6. Enzyme specificity and the organization of active sites
- 7. Isozymes
- b. Flavoproteins
 - 1. DPN or TPN--cytochrome c reductases
 - 2. Cytochrome reducing dehydrogenases--variability
 - 3. Diaphorases and liposte dehydrogenases
 - 4. Metal flavoproteins and
 - 5. Autooxidyable flavoproteins and peroxide production

ů.	Cy	toc	hem	Ĺs	try
----	----	-----	-----	----	-----

c. Peroxidatic decomposition

- 1. Organic mechanisms
- 2. Catolase
- 3. Peroxidase variability
- 4. Cytochrome c peroxidases

2 Cu enzymes and O2 transferases

- a. Ascorbic acid systems
- b. Polyphenol oxidases
 - 1. Aspects of melanin production
- c. Hemocyanina
- d. Og trænsferases

3 Terminal oxidation by Fe enzymes

a. Cytochromes -- cytochromes in anaerobes

- 6. Cytochrome c-cytochrome oxidase
- d. Other automidizable cytochromes
- 4 Biology of oxidation-reduction
 - a. Analysis of pathways
 - 1. Enzymology

- 2. Spectrophotometry
- 3. Inhibitors
- b. Distribution of systems within cells
 - 1. Bacteria vs other cells
 - 2. Distribution on organelles
 - a. Nuclei and soluble fraction
 - b. Hitochondria
 - c. Microsomes
 - d. Protoplast membranes
 - 3. Integration--reaction chains and utilizable energy
 - 4. Derivation of energy-oxidative phosphorylation
- c. Anaerobes
 - 1. Are modern amaerobes primitive organisms?
 - a. Mechanism of Stickland reaction
 - b. Distribution of cytochromes
 - c. Efficiency
 - 2. Anaerobic and aerobic parasites
 - 3. Permentative processes

- d. Oxygen utilization in biosynthesis
- e. Relations in division and differentiation
 - 1. Role of TPNH
 - 2. Role of -SH compounds
 - 3. Sporulation
 - 4. Insect development
 - 5. Nutritional controls
 - 6. Genetic controls
 - 7. Environmental controls
- B. Systems of atmospheric carbon and nitrogen utilization
 - 1 Phototrophy
 - a. Photosynthesis -- carbon cycle
 - 1. Higher plants and algae
 - a. Carbon cycle--within cell
 - b. Photocleavage of water
 - 1. Mechanisms -- energy transfer
 - 2. Related oxidation-reductions
 - 3. Functional organization of chloroplast
 - 2. Bacterial photosynthesis

	ь.	Photoassimilation
	c.	Chlorophylls
	d.	Carotenoids
	6.	Biosynthesis of pigmentscontrol, significance for evolution
2	Nit	rogen fixation
	a.	Nitrogen cycleevolutionary consideration
	ь.	Organisme fixing N
		1. Microbial 9 > properties of fixation
		2. Symbiotic)
	c.	Enzymatic mechanisms: anaerobic and aerobic photosynthetic
	d.	Hydrogenase
	e.	Nitrification

- f. Demitrification
- C. Systems of carbohydrate metabolism
 - 1 Energetics
 - a. Chemical currency
 - 1. ATP and other triphosphates
 - 2. Phosphagens

- 3. Acetyl-thismine pyrophosphate
- 4. Thioesters
- 5. Carboxyanhydrides, amides
- 2 Embden-Meyerhof-Parnas scheme--variability
 - a. Anzymes
 - b. Reoxidation of DPM--insects, tumors
 - c. Other hexoses, aminohexoses, uronic acids
- 3 Omidative phosphogluconate pathway
- 4 Haxose phosphate cycle
- 5 Pentose and tetrose metabolism
- 6 UDP mechanisms. Origin of ascorbates
- 7 Nonphosphorylative routes and others
- 3 Analysis of routes used--variability
- 9 Control of alternative paths -- pathology

D. Pyruvate degradation

- 1 Diversity in conversion of pyruvate to C2 fragments
- 2 Origin and degradation of lactate--glyoxalase, etc.
- 3 Carboxylase
 - a. Thismine mechanisms

- b. Acetaldehyde and ethanol metabolism.
- 4 Acetoin production and metabolism--mechanisms
- 5 Oxidation of pyruvate
 - a. Bacteria vs emimal cells -- routes to acetyl-CoA and acetate
 - b. Biosynthesis and functions of CoA and intermediates
 - c. Phosphoroclastic reactions

E. Utilization of acetate

- 1 Fatty acid biosynthesis and metabolism
 - a. Bacteria vs animals--activation mechanisms
 - b. Origin of cyclopropane, mono- and multi-unsaturated acids
 - c. Degradation
- 2 Carotenoid and other terpenoid biosynthesis
- 3 Sterol biosynthesis and degradation
 - a. Distribution and 02 requirement
 - b. Comparative structures
 - c. Origin of oxygenated derivatives
 - d. Hormonal role

4 Lipid biosynthesi	dpid biosynthesi	4, 10
---------------------	------------------	-------

- a. Variability of structures -- distribution
- b. Biooynthesis
- c. Degradation
- d. Integration with other substances, e.g. protein
- 5 Detoxification, acetyl amino acids in metabolism

F. Citric acid cycle

- 1 Variability in enzymes, reactions, organization
- 2 Variability in function-energy vs fragments (amino acids) -- estimation
- 3 Clyoxylate cycle
- 4 Four carbon acid metabolism and CO2 fixation
 - a. Variability in mechanism
 - b. Distribution and control
 - c. Proprionate cycle
 - d. Other possibilities -- Thumberg condensation
- 5 Other products -- glutaconate, maleic, citramalic, etc.
- G Amino acid metabolism
 - 1 Structures
 - 2 Reactions

- 3 Distribution
- 4 Metabolic origin
- 5 Degradation and interconversions
- Wature and control of enzymes of the pathways
- 7 Interrelations with other areas of metabolism--nicotinamide, etc.
- H Tetrapyroole biosynthesis
 - 1 Catalytic functions of iron--a.structural relation to porphyrins
 - b. Absorption, transfer, and insertion of Fe
 - 2 Cellular distribution and concentration of tetrapyroles
 - c. Environmental effects
 - b. Developmental effects
 - c. Constic control
 - 3 Distribution and structure of tetrapyvoles, chlorophyll, porphyrins and linear tetrapyvoles.
 - 4 Relations of structure to enzymatic activities
 - 5 Early intermediates to Mg protoporphyrin IX
 - 6 Mg protophorphyrin ---- chlorophylls
 - 7 Mg protophorphyrin ---- hene
 - 8 Evolutionary considerations

- I Water balance and nitrogen excretion
 - 1. Amino sold degradation
 - 2. Mig detoxification
 - 3. Purine and pyrimidine degradation and excretion
- J Purine and pyrimidine biosynthesis
- K Nucleic acid metabolism
 - Polyribonucleotide biosynthesis--variability, structure, specificity, primers
 - 2 Polyribonucleotide degradation -- variability
 - 3 Scavenger mechanisms
 - 4 DNA blosynthesis and degradation
 - 5 Roles of nucleic acid in genetic continuity and expression
 - a. Duplication mechanisms
 - b. Control of protein synthesis
- L Protein metabolism
 - 1 Machanisms of biosynthesis
 - a. Amino acid activation and transfer
 - b. Templates, coding mechanisms

		c. Cyclic peptides, cell walls
		d. Control of
		2 Mechanisms of degradation
	K	Polysaccharide metabolism
		1 Machanisms of biosynthesis
		a. Monosaccharide activation
		b. Primers and specificity
		c. Sulfates, phosphates
		1. Activation
		d. Integration with other substances, e.g. proteins
		e. Control of
		2 Mechanisms of degradation
	N	Survival value of existing metabolic systems
III	En	vironmental effects on biochemical structure and metabolic systems
	A	Structure) as function of temperature, pH, ionic strength, osmotic) pressure, atmospheric composition, pressure, humidity,) light (radiation)
	B	Hetabolism)
IV	Po	saible chamical systems of biological structure and function
	A	Known mechanisms which would permit survival of an organism on
		1 Mars

- 2 Venus
- 3 The Moon
- B As yet undetected mechanisms