
Dept. Genetsos
Jniversity col.case
Luncon
Dear Halowns:
I am returalmg nereoith your meruserijt tosetner witil \& typeiritben cogy of it. Tass prs mede by a student ince $1 \mathrm{a}_{2} 00$ logize that it is not reliciole. The tlgebre wis over uls neca and ae misread some of your formilis. I heve candint some ol these bu: arobiod, not ald.

Your uanhscrijet ins bean reta by lurif, liorsites, end severed ithers and I geve t talls about it nere last weed talan wi. 8 atiencea by taose who took the ghage course this yearsind by a fer qutstders, mosthy people to mhom elgebri is more stringe tann Cainese.

I u andsc enclusitis is reprint of a lifite note on this problew waick I yublished in the J. of tie Tem. Aced. of sco. which has not yet found, to my lmowledge, in symyethetic reader.
 es footnotes to the type writion copy maion is mariked corresyondingly.

1. Fhen se eetametea tae mitition rite from tise wean number of mutents we touk as the treoretiond mean not tae true wian of an infinitu saries ot tasts but the llasdy ween to ve exjected in a limitea number oi tests. Trie aiscrejsnales betme n the two metnocis of estimition of the mutiation ritie cin not be explained in the fra, you suciest.

$$
\text { 2. } \begin{aligned}
1 \text { obtein } p_{0} & =e^{-2 g}\left(1+2 s(1-2 s) N^{-1}+\ldots\right) \\
p_{1} & =8 e^{-2 g}\left(1+2 s(2-2 s) N^{-1}+\ldots\right)
\end{aligned}
$$

3. I de think think this recurrence formula does noi cuecs Fitan the precedins line. I obtain instead

$$
2^{-n-1} u_{n+1}-1=(1-m / 2)\left(2^{-n} n_{n}-1\right) .
$$

This leeds to a value of

$$
u_{n}=61+02^{N}+\ldots
$$

Tats rutue cigrers 1 rom the que etren in onr ysyer (cocruth 6)
 orior is taerelore probebly mine but 4 cont see nowo pre dite ferences can not be due to tho allzerent veys in witch mutstion rete 1 s defined in your eha in our peper. As fer es 1 osa se the tro delinitions are equiralent. 30 tratye mi as tife ween number of mutations during ons division sjele, where is the numper of beoterte, at the beginning of the cycte.

Your variance also agrees witn ours, formula to.
It geoms to me thet your method and ours for tue celculition of the mpants are essentially the same. You cpmpare tie woments for n and for $n+1$ generations and then get the fener 1 expresision by recurrenco Sormutee, thile re superimpose the potsison aistributions of eacn oi the a senerations. unr mettiod nes trie, adventige thet me can make trie cut olf to ellmanate the jucsyots.
5. Tals thote exgument was very enligntening to we. 1 rad assumed, without mucs thinking, thet the lack of synchronism in the divisions of the bacterie would entirely destroy the blas ox the distrdbution in fayor of porers of two. Drom your argament it seems thet the blas mey disagpear only partially, since only the leck of syachrontem in the terminal sections of the pedigrees matters. I an not clear in my mind as whet tre distribution mould be if one retains perfect aynchronisa of tho becterinl divistons but alloms muttitions to occur durins eny siage of the dirision oycle. Dren if the mutitions did cocur ut the divisions $1 t$ migat yet be true tast tre phenotypic episer rance of reststance mygit ocour at any stage durins the division oycle. I taink this question of whether the distribution is or 18 not biased in lavor of porers of two is worts anlle Soldoning up theoretically and experimentrithy.
6. I do not understand the orisin of tue factor in front of the exponentith in tilis eguation. Also I aw doujtful minetrer tise result can be corract. Your argument, as I understand it, runs as follors: chen the totad number of riable bacteria has reached the value I the numer of divisions matich led to this number wse

$$
2(1-h) N /(2-h)(1-2 h)
$$

which 18 olightiy greater tnan the correaponding number in the case of no deathse Consequentiy there was more chence for mutation than in the atendard case. Gonseguenthy po is smedier tinh

In the standard caseo 5yt 1 do not see dov you hare, vicer accoint of the teot thet a frection of tie mutants aignt neye died out In suitively it seems to tue thet tie deatne shouli not mate any diffraence as lung as the deths occur wa th equil ontance for noro mals and for mutantso

I sw sorry thet I here delayed so long mpiting tals leties and ave been seeping your nimuscript. when 1 cane buch tuere Wes here first trie syluposiun and tnen a phege course ior three we ke, and neither left sufitolent lelsure the The symuosium
 tiey asa indicttions ot sex lite in bacteria. Lf bscteriz rave sex it is entirely reascnable thet it snould be aissovered no since now for tiae first time geogle dre doing experiments vilta oeneticuliy narien struins. The wost excitine ex_erinents were some done at Yale in Tatums leboratory by a youn, follow lederberg. fie first secured tio double mutint: of a strain of F.colt (X-ray Induced). Dach of the double mut nts mas had two growta factor deficiencies, Une mutanix tas deficient for A nad B, stiy, and the other for C and D, Then he grew those two mutints tobether da brothe Then he piated tias mixtura out on basul medium and obtsined a few "grototreghs" ise. colonies ot bucteria requiring no gronta fictor, Hxarx he scemad to fare cio:e mosi oi the obvious control experiments. He ass since trici to ao the same thing witía our strein mis". He did secure two doublo ceficient mutents, but dia mot gei, any prototrogas wnen wrowino them togetaer.

Luria nas been tryins to do a similer experiment witu who tents of the phage reaistance type. He taxes, sty, b/L/2 aria 5/3/4.ena orows vaen tojether and taen tests to sea whetior ne has eny B/1/2/3/4. So far no Luck.

Fith best regtras
singerely yours

L5. Delbrick

