Diploid studies: The preceding evidence points to a chromosomal

Iocalization of the Lp lysogenicity determinant closely linked to a serfes of Gal loci. Evidence for the segregation of a prophage linked to the Gal 4 locus suled out the possibilitiy of a random distiribution of cytoplasmic particles in cells carrying 人(10). These observations have since been extended to Gal_{2} and GaI_{4} hybrids (all heterozygous $\mathrm{Lp}^{+} / \mathrm{s}$), and also $\mathrm{GaI}_{4}{ }^{+1 p}{ }^{+} / \mathrm{GaI}_{4}{ }^{\mathrm{LLp}}{ }^{\mathrm{r}}$ dipIoids (table 10). A study of such diploids segregating out distinguishable λ types is in preparation, Prelininary evidence also has been obtained elsewhere from crosses with Iysogenic parents, one carrying a mutant λ (or one "doubly lysogenic") the other doubly sensitive; which yielded Gal/Lp progeny in parental couplings (1).

The mutational independence of Gal and Lp was also examined in the doubly honozygous diploid. Comparable experiments with the closelyLac_{1} and $\overline{7}_{6}$ loci have already been reporied. Lac ${ }^{4}$ •revorsions were selected in $\operatorname{Lac}^{-} \operatorname{V}_{6}^{3} / \mathrm{Lac}^{-\pi} 6^{B}$ diploids. The resulting doubly heterozygous diploids were of two types: $\operatorname{Lac}^{*} V_{6}{ }^{T} / \operatorname{Lac}^{-} \nabla_{6}{ }^{s}$ and $\operatorname{Lac}^{-1} T_{6} T / \operatorname{Lac}^{-7} \nabla_{6}{ }^{3}$, and with equal frequezcy (11).

A double homozygots $\mathrm{Gal}_{2} \mathrm{Ip}^{B} / \mathrm{Gal}_{2}{ }^{L p} p^{3}$, also segregating a few othor marisers, (end pnfortunately also Ip_{2}) was prepared by stepwise exposure of
the double heterozrgote to U-V (In) and the isolation of suitable "reorganized" diploids. The resulting diploid, H-331 was infected with入. Several $\mathrm{Gal}_{2} \operatorname{Lp}^{*} / \mathrm{Gal}_{2}{ }^{\text {Lps }}$ isolationg, A to G, were then allowed to papillate on HMS galactose agar. Independently cccurring Galt were selected, and the segregation pattern of Lp and Gal2 of the resulting double heterozygotes was tested. The incidence of mutation to Gal* on the Lpt chromosome (coupling phase, or cis configuration) was come pared with that on the $I p^{s}$ chromosome (repulsion phase, or transconfiguration). The analysis included a single Gal ${ }^{+}$and a single Gal ${ }^{-}$ segregant from a large mumber of diploids, (pair analysis) and the examination of many segregants from a single mass diploid culture (random analysis). From diploid $B, 5$ cis configurations and 6 trans configurations (table 11)
were scored. The conclusion from thils ovidence/is that the condition of the Ip locus, whether Iysogenic or sensitive, has no significant bearing on which one of the 2 Gal- alleles will mutate to Gal^{+}. (These preIIminary data will be expanded, and also extended to a corresponding study of diploids first made heterozygous $\mathrm{GaI}_{2} \mathrm{Ip}^{\mathrm{B}} / \mathrm{GaI}_{2}{ }^{+} \mathrm{Lp}^{8}$, and then infected with 人,
 λ coupled on the one hand with Gel ${ }^{*}$ (cis) and on the other, with Gal ${ }_{2}{ }^{-}$(trens) If the activity of from "trans" becteris is conilned to non Gal ${ }_{2}$ "recipient colls, a chromomal but not meleen linitation to λ specificity is indicated. A32 tal. inciuding $\mathrm{Gal}_{2}{ }^{-}$is expected to respond to cis λ_{0} A difference in λ fron theas diploids which are phenotypically identical, and genetically Ldentical except for the arrengement of component parts established a "position effect" So far, only (from the trans-bype diploid bas been prepared. Table whows that mhile $\mathrm{GaI}_{4}{ }^{-1}\left(\mathrm{Gal}_{2} \mathrm{Gal}_{4}{ }^{\circ}\right)$ cells are subject to trancuction, only rare $\mathrm{GaI}_{2}{ }^{+}$transhuctions vere recovered. The developm ment of an adequate diploid culture to satisfy the nutritional prerequistes for $0-T$ induction in $K-12(3,5)$ and an internediate growth period receasarily permits sone selection for haploid segregants. The yield of λ obtained very probably includes a linited portion derived from $\mathrm{Gal}_{2} \mathrm{Lp}^{+}$ and Gal. ${ }_{2}^{\text {tip }}{ }^{*}$ haplolds, The latter eroseover types zay account for those transductions which were found. The data so far allow the tentative conclusion of a position effect hypothesis and strengthen the concept of an Intimate relationship of λ and $G a l$ at a specific action site on the chronasome. Transductions of the double honorygote th-331 and lysogenic
derivailves has apparently been obtainsd. The analysis is complicated by the fact that diploid-haploid jnstability can be confounded with trans. duction instablitivo

CORPARATEE GENTICS OR LD ATD GaI IT OTHER LINES

Arong the independently isolated crosseble strains of E. coli (12) the wild type of three lines (28,47 , and 51) were sensitive to λ carried By line I_{0} A fouring lire 3I, threa off rough varsants whtch were all A sensitive. These strains occumed in rature as pe but could be Itrared to T^{4} by Eromblith $\mathrm{E}-12$ or cutable derivativos. So far, st Ieast ona Gai" mbant is subject to trensduction. Preliminary intraLinemp crosses established an Lp locus Iike that of Kw12, and a Criomp Iinkage. Very little mapping mork has been completed among these strain, and the erphasis so far in these studies has been the genetic behavior of 人in outcrosses with K-I.2.

Sensitives of each line are readily lysogenized by K-12 λ but these Iysogenics show a reduction of eop on K-12 sensitive indicators. This system is entirely analagous to host modification demonstrated for T2 (19) and 入produced by atrain C (2). The torninology established for these systams will be used to describe thie properties of our strains.
 Line 1．sensitives are more resistant to 人 at than to type 人．人 ix can be introduced at low rates into $\chi^{\text {sensitive hosts，but normal rather than }}$ An is recovered．Similarly，normal λ is converted to ${ }_{\lambda}$ after a single passage in λ^{*} sensitive hosts．The four phenotypes are readily dis－ tinguishable in cross－brush tests as follows：

Tho major hypotheses cen be tested by intercrossing these types：
I Ip controls all reactions：the types $A-D$ are determined at a single locus．

II Lp controls lysogenicity／sensitivity；another locus，Mp，controls resistance or sensitivity to 人 ${ }^{*}$ 。
（a）Both λ and λ^{*} are fixed at Ip in phenotypes A and D 。
（b）λ is fixed at $L p$ in type $A ; \lambda *$ is fixed at $M p$ in type D 。

The consequences of these hypotheses are show in table 12. The critical
crosses for I and II are Ax B and C x D. The only decisive cross for II a V5. II b is $A \times D$. II b would be favored by the recovery of sensitive recombinants as well as a novel genotype whose phenotypic effects are unpredictable. Since there is a possibility that Lp and Mp are closely linked a large sample of progeny many be required. One must bear in mind, in reviewing these intercross data that the prototrophs represent recon binetion of as yet unmapped nutritional factors. In addition, chromosome and other irregularities correlated with interstrain hybrids have not been analysed.

Effective transductions have been achieved in these strains. Galin lItres 47 and 31 hove been used as recipients, for λ produced by line 1. 23, 31, and 4.7. A reduction in the effectiveness of transduction to line 1 recipients is parallel with the reduced effectiveness of lysegenization, In general no important differences with the $\mathbb{K}-12$ mechanism have been demonstrated. Hypothesis II b is doubtiful.so far. The ifferentiation of the lp 1 of different lines is still to be tested. A single intercross shows no genetic difference so far.

In preparing this report, it has been necessary to make numerous references to the unpublished work carried on in this laboratory by Professor J. Lederberg, Mr. Mu L. Morse, and others, under other auspices. These are cited by number to the bibliography.

Table 1
Characteristics of F (compatibility factor) and λ (virus)

Table 3

$$
\begin{aligned}
& \text { Linkage of Gal, Inp, and Hfr } \\
& \text { TLB }{ }^{3} \\
& \text { W-1.895 x W-2308 }
\end{aligned}
$$

Part A:
Genotypes recovered ${ }^{1}$ Totar

Part B: 2 又 2 contingencies

Parntal combination
I Selected as Gal and Gal prototrophs.

Table 4
Lysogenization in Transduced and Nontransduced Lp ${ }^{8}$

Part A: Cal ${ }^{+}$and Gal" from single papillae

$\begin{aligned} & \text { Gal }^{+} / \mathrm{Gal} \\ & \text { Pair type } \\ & \hline \end{aligned}$	Mumber		Gal ${ }^{(108}$	Gal- ${ }^{-1}{ }^{+}$
$L^{+}{ }^{+} / L p^{*}$	13	$\mathrm{Gal}^{+} \mathrm{Lp}{ }^{\text {s }}$	2	3
$\underline{L T}+/ \mathrm{p}^{3}$	15			
Lip ${ }^{8} / \mathrm{Lp} p^{+}$	3	$\mathrm{Gal}^{+} \mathrm{Lp}{ }^{+}$	17	13
Lp ${ }^{8} / \mathrm{Lp}^{3}$	2			
Lip ${ }^{2} / \mathrm{p}^{3}$	2			
	$\begin{aligned} & 15.2 \\ & 47.2 \end{aligned}$			

Part Bi Lysogenization of transduced and inserted Gal*

Lip ${ }^{8}$ atrains	AYo No. Ca3 ${ }^{+}$recoyered		Types in mixture ${ }^{x}$	Wo. tested	\% Iysogenic
	Control	Treated*			
Gal ${ }^{+} \mathrm{Iac}^{+}$	109	92	Gal ${ }^{\text {Thac }}$ ' (inserta)	46	68.5
	11租	432		- 40	72.5
Mixturex	105.5	1619	Galtae (triansductions)	103	100.

3 30\% 人

* S Spontaneous roversions per 20^{8} inoculun
** $10^{8} \mathrm{Gal}$-Iac and $209 \mathrm{Gal}{ }^{\prime} \mathrm{Lac}{ }^{*}$.

Table 5
Transductions to $\mathrm{Gal}_{4}{ }^{\circ}$ Imrane-I: Segregation Patterns
Exp. 385: Strain 1924: $27 \mathrm{Gaz}{ }^{+}$

Exp. 431: Strain 2110: $38 \mathrm{Gal}^{+}: 28$ non, 1 semi (it23), and 9 lys

Segregation patterns	all Gal* lys, all Gal non:
of lys	all Galt lys, all Galo lye: 5
	011 Gal* lys, Gal* lys and non

Table 6

Survival and Tyensduction gith Trradiated λ

Table 7

Segregation of Gal, Ip, .o. diploids

Table 8
Allelic Specificity of the Gal - transduction at the
Gal 1, Gal 2, and Gal 4 loci.

Table 9
Summary of Current Allelism Tests

All Gal ${ }^{}$ recombinants in these experiments are Lp ${ }^{s}$.
Hitsitivated total.

Behavior of Gal and Lp in Lac $* / \sim$ Diploids

1/ In Het crosse B, Ip does not segregate. Cal 1 and Gal 4, two closely linked loci also differ: Gal 4 segregates,
2/ Diploids resulting from delayed disjunction revealed by heterozygotes of two Lac pseudoalleles show no segregation of Cal or Ip. Reversal of F status reverses the polarity of the Gal, Lp segregation.
3/ Tho only successful demonstration of heterozygosity of Gal and Ip.
I/f Avration phenocopy.
$5 /+/$ - indicates purity for + , whother hemizygous or homozygous.

Table 11

Diploid number	Total segre. gants	Gal"		Gal"		Gal*		Oal*		Gal ${ }^{+}$		Gal-		Inferred type of diploid
		$L^{4}{ }^{+}$	Lp ${ }^{8}$	Ip ${ }^{+}$	Ip^{8}	$\mathrm{Lp}_{2}{ }^{\text {r }}$	$\mathrm{Lp}_{2}{ }^{\text {s }}$	$\mathrm{Lp}_{2} \mathrm{I}$	$\mathrm{Lp}_{2}{ }^{8}$	MaI^{+}	Mal ${ }^{-}$	Mal^{+}	Mal*	
A 1	161	76	6	3	76	45	0	39	0	1.	53	17	36	cis
B 1	127	2	58	60	1.	52	8	60	1	38	22	61	0	
B 2	73	0	40	42	0	32	7	37	0	33	22 7	61 33	0	trans
B 3	76	61	4	1.	10	65	0	57	5	65	0	4.4	18	cis
C 1	48	1	23	24	0	23	1.	24	0	9	1.5	24	0	trans
E1	60	30	0	3	27	26	4	24	6					
E 2	24	0	12	1.2	0	12	0	12	0	6	6	12	14	trans
E 3	23	12	0	0	21	12	0	11	0	12	0	+12	8	cis
FI	66	32	1	2	31.	31	2	30	3	32				
$F 2$	4.0	20	0	2	19	20	0	20	0	20	1	$\frac{2}{7}$	12 13	${ }_{\text {cis }}$
F 3	23	12	0	0	13	12	0	10	1	12	0	3	13 8	Cis
F 4	18	13	0	1	6	1.0	1	0	7	11	0	7	0	cis

Table 12
Genctic Determination of Host Modification:
Iine 1 Iines 28, 31, 47

F- parent underlined.

Table 13
Genetic Control of the Semiresistant Phenotypes: Monlysogenic ($\mathrm{W}-2247$) and Lysogenic (W-2172)

Part I

Hypothesis I
A new allele at Lp a:

Hypothesis II
A Std locus, Lp_{3}, is involved:

Results: $B \pm F \quad$ No. of Progeny $C x E$
Hal ${ }^{*}$

MaI	0	58	0	0	1	0	0	0	0	0	59	1

Part II Inintage of $L p_{3}$ to $\mathrm{Lp}_{1}-m \mathrm{Gal}$ and Lpz-Nal ? No. of Progeny

The above data are consistent with the hypothesis that an Lp 3 locus separable from $L p_{1}$ and $L p_{2}$ modifies the reaction to $\lambda-1$ ard $\lambda-2$. This locus is not Inked to $\mathrm{I} p_{1}-\mathrm{Gal}$ or $\mathrm{Lp} \mathrm{p}_{2}-\mathrm{Mal}$.

1. Appleyard, R. K. 1954 Segregation of lambda lysogenicity during bacterial recombination in E. coli K12. Cold Sprir. Harbor Symp, Quant. Biol. 19. In Press.
2. Ber'cani, G. and J. J. Weigle. 1953 Host controlled variations in bacterisl viruses. J. Bact. 65: 17.3-121.
3. Borek, E. 1952 Factore controlling aptitude and phage development in a Iysogenic Escherichia coli K-12. Bichim. of Biophys. Acta 8: 211-215.
4. Cavalli-sforza, I. Iow and J. Lo Jinks. 1953 Observations on the genetic and mating system of $\%$. coli K-12. Abstr. 9th International Congress of Geneties, Bella/sio.
50 Gots, J. S. and G. R. Eunt, Jr. 19\%j3 Amino acid requirements for the renturation of bacteriophage in 7ysogeni, Escherichia coli. J. Bact. 66: 353-363.
5. Jacob, F., A. Incff, A. Siminovitch and E. Wollmano 1953 Derinitions de quelques termes relatifs a le Iysogenie. Ann. Inst. Pasteur 84: 222-22h. 7. Iederberg: E. H. 3950 Genetic control of mutability in the bacterium Escherjchia colis Pho. Thesis, University of Wisconsin.
6. Iederbort, E. M. 1951 Iysogenicity in E. coli K-12, Genetics 36: 560 (abstruct).
7. Federberg; E. M. 1952 Allelic yelationships and reverge mitation in Egelerychia coli. Genetics 37: 469-483.
8. Lederberf, F. M. and J. Telerberg. 2953 Genetic Btudies of Iysogenicity in Escherichia coli. Geneties 33: 51-640
9. Lederberg, J. ISN1 Cenevic 3tudiep with bacteria. In: Genetics in the 20th Canturya Mackillan: New Forko pp. 263-289.
10. Lederberis; Jo ISY2 Call genetics and hereditary symbiosis. Physiol. Rev. 32: 402-430.
14 Lederverg, J. Unpublished.
15 Lederberg, J., I. L. Gavallis and E. M. Lederberg, 1952. Sex compatibility in Escherichia coli. Genetics 37: 720m730.
11. Loderberg, J. and P. R. Edwards. 1953 Serotypic recombination in Salmonella. J. Immanol. 7a: 232-210.
12. Lederberg, Jo, E. M. Lederberg, M. D. Zinder, and E. R. Lively. 1951 Recombination analysis of bacterial heredity. Cold Spring Harbor Symp. Quant. Biol. 16: 1133-433.
13. Lieb, H. 1953 The establishment of Iysogenicity in Escherichia colis. J. Bact. 65:542-651.
14. Lusiia, So E. and M. L. Human. 1952 A non-hereditary, host-induced variation of bacterial viruses. J. Bact, Q 2 : 557-569.
15. Imoff, A., I. Siminovitch, and N. Kjeldgaard. 1950 Induction de production de phage dans une bacterife lysogene. Ann. Inst. Pasteur 79: 815-858。 21. Kapian, A. S. and A. Inoff. 1953 Factors affecting the Iysogentzation of Salnowella typhiturium, VI Int'l Congress of Microbiology IItco3. Abstract No. 545.
16. Horse, H. L. Onpublished.

23A. Neison, T. C. and J. Lederberg. Unpublished.
23B. Pariy, W. Ro and Jo Edwards. 1953 The induction or Ifsogenesis in Salmonella typhirariumo J. Gen. Microbiol. 9: 342-34.9。
2\% Sikaar, F. D. Unyublished.
25. Stocker, B. A. D., N. D. Zinder, and J. Lederberg. 1953. Transauction of flagellar charactars in Salmonella. J. Gen. Microbiol. (In press). 26. Wahi, R. and L. Blum-Enerique, 1952 Les bacte ies semi-resistantes au bacteriophage. Ann. Inst. Pacteur 82; 29-43.
27. Hollman, E. 1953 Sur le determinisme genetique de la 1ysogenie. Ann. Inst. Pasteur 84: 281-293.
28. Zinder, N. D. and J. Lederberg. 1952 Genetic exchange in Salmonella. J. Bact. 64: 679-699.

Keysort cards carry 68 bits. The following scheme is tentatively suggested for organizing the stockbook. Further suggestions urgently requested.

Stock number and series (3 digits only)
Line: (1; 2-10; 11-20; 21-40: 41-.. i)
and E. coli not vg; Not E. coli:

Brent and agency:

"Mutation" spontaneous, spored. spent; selected UV
 X-rays or other mutagen

Not "mutation": new isolate or receipt segreg. orrecombinant (sex or -x) Infection (Fire" or lambda....)

Kind of locus changed:

Not indicated
$L_{p 1}$ or x_{x}
Cal (by transduction)
auxotroph
fermentation
Sm
Other resistance

Genotype: 1 bit each for:

Snudence of Itiniogenotes
Eve Eno En N imse.

$$
\text { 4- 2- } 5\left(\text { abiot } \operatorname{cim}_{\text {an }} \text {) } \theta \text { AFT } / a \times 5=45^{-}\right.
$$

291	$8-$	4	3	$($ apg. oeg $)$	$0 / 201$
248	1^{-}	+	4	sughe	$0 / 4$
$247 B$	8	4	1	single	$1 / 1$
2474	8	+	4	sugie	$0 / 4$
243	1	8	3	sugen	$0 / 3$
242	4	8	1	sure	$0 / 1$

