

Figure 4. An example of a HAM structure enc ding both categorical information
and word class information

```
(Ideate red I)
(Ideate square 2)
(Ideate above 3)
(Ideate circle h )
(Out-of X 1 )
(Out-of X 2)
(out-oi \(X 8\) )
(0bjectify 8 Y)
(Relatify 8.3)
(Out-or Y 4)
```


The Yetwork Gramans

Here the formalisms of LAS's network gramar will be described. These fomalisms are intended to apply to any natural language. In illustration, the grammars for two test languages will be presented. Inese test languages will also be used to illustrate the SPEMS and UDERSTAD programs to be described shortly. The iirst, GRAMMAl, is a simple artificial grammer. The second, GRAMAR2, is a more complex grammer for a suoset of Englisin. Frafy are deined by the rewrite rules in Table 1 . GRADNAPI wes designed to be maximally different from Fnglisn word order. The sentences of GRAMAARl are to be read as asserting the first noun-phrese nas the relation specified by the last word to the second noun phrase. For purposes of readobility, the words of thes languages are English but they nees not be. GRAMARL is a finite ianguage without recumsion. In contrast, in GRASMAR2 the MP element has an
 ite embeddins oî constructions.

In both grammars, it is assumed that above and below are connected to the same idea as are right-of and left-of. The Fords aiffer in the assigment of their Il arguments to subject and object roles. Thus the difference between the Ford pairs is symtactic. Tiis is indicated by having the words belong to two word classes RA and RB. Snus. DNDERSPAD with GRASLAR2 would derive the same HAM representation in Figure 3 for the sentences The red square is above the circle and The circle is below the red somere. It would have been possible to generate distinct representarions for these two sentences. I think this would heve been less psychologically interesting. Basicelly, the network gramar makes the inferences that A belot 3 is equivalent to B above A and encodes the latter.

TABIE I

The Tro Test Gramers
GRAMMARI

S	-		S	NP is $\triangle D . T$		
		INP NP RA			NP is RA NP	
		NP NP RB			NP is RB NP	
NP	\rightarrow	SHAPE (COLOR) (SIZE)	N	\rightarrow		CLAUSE
SHAPE	\rightarrow	square, circle, et.	MP*	\rightarrow	SHAPE	
COLOR		red, blue, etc.		\rightarrow	ADJ SHAPE	
SIZE		large, small, etc.	CLAUSE	\rightarrow	that is A.DJ	
RA.		above, right-of			that is RA	NP

MABIE I continued
R. \rightarrow belon, leftoot

Figure 5 illustrates the parsing netrorts for the gramars. It should be understood thet these netrorks heve been deliberately witten in an inefincient mancer. For instance, note in GRARARl thet there are tio distinct paths in the main SLARP netwow. The first is for those sentences rith RA relations and the second for those sentences with R relations. If a sentence ingt to UMESSMD has a PS relation, UMDESTALD Fill first attempt to parse it by the first branch. The tro noun phrase branches will succea but the relation branch will fail. UDERSTAD will have to back-up and try the second branch that leads to R3. This costly back-up is not realiy recessary. It woult have been possible to heve constructed the STAR netroriz in the folvoring form:

In this form the network does not branch until the critical relation word is reache. This means rostponing until the erid the assignaent of noun phrases to subfort ani obient, ontes in the representations of the sentence's meaning. The above netrork was not chosen deceuse we wantea a more demanding test of the backup facilities of SPEAK and UMIRSTAND.

Table 2 provides a fomal specification of the information stored in LAS's network gramers. A node either has a number of arcs proceeding out of it (la) or it is a stoo node (1b). In speaking end understanding las will try to find some path through the network ending with a stop noce. Each arc consists of some condition that must be true of the sentence for that arc to be used in parsing (understanding) the sentence. The second element is an action to be taken if the condition is met. This action will create a piece of RMA conceptual structure to correspond to the meaning conveyed by the sentence at thet point. Finaliy, an arc includes specification of the next node to which control should transfer after performing the action. An action consists of zero or more HAM nemory commands (rule 3). A condition cen consist of zero or more memory comands also (rule $4 a$). These specify properties that must be true of the incoming word. Alternatively, a condition may involve a push to an embedded network (rule lib). For instance, suppoce the structure in Figure 3 were to be spoken using CRADARI. The STAPT netrork rould be called to realize the X is above Y proposition. The embedded IP netrork vould be called to realize the X is red and X is soure propositions. In pushing to a netrork two things must be specisied-ninde, which is the emodaed network and VAR, which is the memory node at wich the man and emodded propositions intersect. The element is rule tb is a place-nolder for intormation that is needed oy the control mechanisms of the UnPRSQDD proznam. The three rules $6 a, 6 b$, and $6 c$ specify three types of erguments that memo:y comands can have. They can either directiy refer to memony nodes, or refer to the current word in the sentence, or refer to variables rinich are bound to

Hetworks for GRAMOAS?

Figure 50 The netwosk grammars used by IAs
memory nodes in the course of parsing.

TABLE?
Formal Specification of the lietrock Cramer

Table 3 proviles the encoaing of the netrork for GRMMMRI.
Note that there tands to be a l-l correspondence betreen rai propositions and LAS netrorks. That is, each network expresses just one proposition and calls che embedded netrork to express any other propositions. This correspondence is not guite periect in GRAMARI or GRMMAR2, bit as we nill see, the

These gramar networks have a number of features to commend then. SPEAK and UNDERSPAD use the same network for sentence comprehension anc generation. Thus, IAS is the first extant system to have a unifory gramatical notation for its parsing and generation systems. In this wey, IAS has only to induce one set of gramatical rules to do both tasks. Such netrorks are noduiar in two senses. First, they are relatively indepencent of each other. Second, they are independent of the SPEAK and UNDPSSTAMD crograms that use then. This modularity greatly simplifies LAS's task of induction. IAS only induces the network gramers; the interpretative SDEAK and U.DERSMAD prozrams represent innate linguistic competences. Finally, the netmorks themselves are very simple with. limited conditions and actions. Fus, LAS need consider only a small range of possibilities in inducing a netrork. lae network formalism gains its expressive power by the embeding of networis. gecsuse of netrork modularity, the induction task does not increese witi the complexity of embedding.

It might be questioned whether it is really a virtue to have the same representation for the gramatical knowledge jotin for understanding and production. It is a comon ooservation that childrea's ability to understand sentences precedes their ability to generate sentences. IAS would not seem to be able to simulate this basic fact of language Ieaming. Eowever, there may be reasons why child production does not mirror comprenension other than that different gramatical competences undemie the two. The chila ray not yet have acquired the physical mastery to produce certein nords. This clearly yet have acquired the physical for instance, with Lennebers's (I962) anarthric child who under-

(rhCon
GUTEPGMP STAPT PATH
((lPUSH XI T NP) (! (NOT-UF XI X5)) 52)

flot fung S 2 PATH

\therefore (IITPKOP S3 PATH
(DLIPMOP SA PMTH

(WHFPRUP S5 PATH (OUT-OF HURD \#RBI) (IRELATIFY X5 XG) STOP IDEFPROP NP PATH

1DEFPRMP NP2 PATH
((IPUSH X) T COLOR) NIL NP3)
(NIL NIL NPT) I)
IDFFPRCP RP3 PATH
(GPUSH XI T SILEJ NIL STOP $^{\prime}$
(NIL NIL STMP))
(Def Fing color path
 (DEEPROP SIZE PATH
(rnik)
(fideate square xi)(Ideate circle xz))
((UUT-UF XL *SHAPE) (GUT-OF X2 *SHAPE))
((INEATE REO XJ)(IDEATE GREEN X4))
((INUT-OF $\times 3 \times$ COLOR) SOUT-OF $X 4=$ COLOR))
(LISP SETO XI NIL)
((IUEATE SMALL X5) (IUEATE LARGE XI))
((UUT-OF X5 *SIZE)IUUT-UF XI *SIZE))
NIL
(TALK)
((IDEATE TRIANGLF XI)(IDEATF BLUE X2)(IDEATE MEOIUM X3))

(LISP SETO XI NTL)
(LISP SETO XZ NIL)
((IUEATE RIGHT-UF XI) (IDEATE ABUVE X2))
((OUT-CF RIGHT-OF *RA) (JUT-UF ABOVE $*$ RA))
((OUT-OF LEFT-OF *RB) (CUT-OF BELCh *RB))
(IIDEATE LEft-of Kil IIDEATE BELUW X2):
H11.
stood but wes not dole to spen. Also the child may have the posentinl to use a certain sramatical coasituetion, but instead use obher preferrad coles of production. The final possibility is that the chile wy be resorting to non-linguictic strategies in lenguage undorstanding. Eever (Iy ij) nes pyesented evidence that young children donot understand passires, but can atill act out passires when thoy are not reversiole. It seems the chad can the evaragge of the coneptual constraints betreen suoject, verb, and object. cne chiza's eramatical deficit only appears when asked to act out eversio
 terns likn in, an, and under by resorting to neurn tho and koring the simax. that we alao hove tre ablity to und boy at we know wat he must teen. This For instance, wen Tarzan utters fon conceptual constraints among the roris. is because we cen take adventage of conch

Bloom (1973) has also argued that the general bethe that of the adict obprecedes production in a child is a mispan Brown (i963) is oiten cited as server. The stury of Fraser, Bellugis and They foma children hed a hisher showing comprehenjicn precedes productio (as mianifested by pointing to an approprobability of understenaing a sentensy producing the sentence. rowever, there priate picture) then of spontareoushy pres of production anc compehension. were dificuties of equating the mean procedures, foud no dieference. InterFerma (1970), usinz dirferent sorng correletion between rinich sentence estingiy, Fraser et al. did find a surid be prodice $亠$. Thet is, sentence forms could be understood gid which counderstand were reletively eas; to proauce. forms risin fore relatively easy to It is ken to maerstana ins.

The SPEAS Proxran

SPEAK starts with a FAM network of propositions tasged as to-be-spoken and a topic of the sentence. The topic of the sentence rill correspond to the first meaning-Dearing element in the START network. Spak searches through its STATT network jooking for some path that will express a to-be-spoken proposition attached to the topic and wich expresses the topie as the first element. It determines whether a patil accomplishes this by evaluatins the actions associated with a path anc determining if they created a structure that appropriately matches the to-be-spoken structure. When it finas such a patin it uses it for generation.

Generation is accomplished by evaluating the conditions along the path. If a condition involves a push to an embedded network SPEAK is recursively called to speak some sub-phrase expressing a proposition attached to the nain proposition. The arguments for a recursive call of EUSL Ere the emoedded netFork and the node that connects the main proposition and the embedied oroposition. II the condition does not involve a FuSi it will contain a set of memory comands specifying that some features be twine of a rord. It will use these features to determine what the word is. Tae nord so detemined rill be spoken.

As an cxample, consider how SEAM would exnerate a sentence correspondiag to the Wh structure in Figure 6 using GRAMSA, the English-like Eramar in Figure 5. Firure 6 contains a set of propositions about three objects denoted by the nodes G2l,6, G195, and G182. Of node G246 it is ssserted the it is a triongle, and that $G 195$ is right of it. OP GM95 it is asserted that it is a square and that it is suove GIB2. OR Cl82 i\% is asmerted that it is square, mall, and red. Figure 7 illustrates the geajaraion of this sentence frod GRAUMAR. IAS enbers the START network intent on vroducins sone utterance soout G195. Thus, the topic is G195 (it could neve been G246 or G182). Gie first path through the network involves predicatins an adjective oi Gl95, but there is notning in the adjective class preaiceted of 6195 . lae second path through the SrAbi networy corresponds to something Lis cen say about Gl95-it is above Gl82. Therefore, LAS plans to sey this as its main proposition. First, it must find some noun phrase to express Gl95. The substructure under G195 in Fjgure 8 reflects the construction of this subnetrork. The NP network is called which prints the and calls HPl which retrieves square and calls CLAUSE which prints that, is, and right-of and wich recursively calls No to print the square. Similarly, recursive calls are made on the NPl netrork to express Gl82 as the small rea square.

The actual sentence generated is dependent on choice of topic for the START. netwonk. Given the seme to-be-spoken Fiv retwork, out the topic Gato, SPEAK generatea A triangle is left-of a square that is above a small red sauare. Given the topic Cly2 it generated A red savere tiau of the relation fords left-right-of a triantle is small. Note hom the cnonce or ben choice of topic. of vs. right-oi and of anove vo. ben

It is interesting to inquire what is the free language since its transition
speaker. Clearly it can generate any content, However, it turns networks correspond, in structure, to a conteppects because its productions are out that LAS has certain context-sensitive ases some well-formea fiM conceptual constrained by the requirement that they (1957) resarded as not handled structure. Consider two problems that the first is agreement of number between a subwell by context-free grammes: to arrange in a context-iree gramar because ject iNP and vero. This is hard to arme choice of verb number must be made. the NP is already built by the timen botin the if and verb are sooken their numTne solution is trivial in LhS- of whatever concept in the to-be-spoken structure Der is determined by inspection , homsky example involves the iaentity of underlies the subject. The other Chon passive sentences. This is also achieved solutional restrictions for activentictions in both cases are regerded. simply eutomatically in LAS, since the as reflections of restrictions spoken.
tences are spatures of natural language suggestive of tences are spoker.

While LAS can handle those features or manyles like languages of the form contexumsensitive rules, it cannot hand exmars. It is interesting, horever, ${ }_{a} n_{b} n_{c}$ which require context-sensithe grame sentences of this structure, bhe best that it is hard to find natural languege sentences, e.g., Tohn and Bill hit and I can come up with are respectively. This sentence is of questionaole acceptaioil kissed Jene and Mary, respectively.

Figure 7. A tree structure showing the notworik ralisand word eutait. These networks were called in generating a sentence about G195 whicn expressed the information contained in Figure 6.

The search in SPEAK for a Grammationl realizotion of the concegtial strueture was limited to search hhoush a single netrork at a time. Search traminated when a path was found which would express part of the to-be-spoten fori structure. Becouse search is limited to a single parsing netriont the control structure yab simply reguired to execute a depth-ifirst search through a finite netfork. In the UNDERSTAD proenen it is necessery, when one path throum a netrork fails, to consider the wossiuility thet the failure may be in a parsing of a subnetrora called on that peth. Therefore, it is possible to have to bací into a netrork a second time to atcempt a diflerent parsing. For this reason the control structure of the UWDRSTMD prosman is more complicatez. The uDPRSMD progran and its control structure rere mrituen by Carol Fafner, a compiter science stucent at Michigen.

Perhaps an Ensiish example would be useful to motivate the need for a complex control structure. Compare the two sentences The Denocratic perty hoves to win in '76 with The Democratic Darty hopes are hish for ifo. A mein parsing network would call a nown oncase nebrori to identiny the jirst now phrase. Supsose UMESSAD Identified me Democratic dart. Leter elements in the second sentence would indicate that this choice wes rrons. Inerefore, the main nevork rould have to re-enter the nown phess network anc attempt a difierent parsing to rewieve The Demo natic perty byjes. Whon UnDnsmad re-enterec the nowmphase network to retrieve this persins it must remember which parsings it tried tine first time
 control etructure are described in a more complete report (Anderson, 1975).
 to find some path though the Smar notrort wich mill result in a complete parsing $0 \vec{i}$ the sentence. It evaluates the acceptebility oin a particular patin by eveluating the concitions associated with that petin. A condition may require that certain features be true of words in the sentence, Tinis is determined by checking memory. Alternatively, a condition can require a push to an embedded network. This network must parse sore subphrase of the sentence. When fas finds an acceptable patn throurn a network it will coliect the actions alons that path to create a temporary memony structure to represent the meaning of the phrase that LAS has parsed. This, for instance, given tine sentence, fine square that is right-of the triensle is above the small red sciare, ris woula parse it in tine Form illustrated for Figure 7 , retrieving the Fiv structure in Finure 6 . Tinat is, in LAS. l, understandins really is simply generation put in reverse. Tnis is the rirst displayed example of a reversible augmented transition network. Simmons (1973) comes closest with two different netrorks, one for generation and one for analysis.

It is also of interest to consider the porer of LAS as an acceptor of languages. It is clear that LaS as presently constituted can accept exactiy tine context-iree languages. This is because, wilke Foocs' (1970) system, cctions on arcs canot influence the results of conditions on arcs, and therefore, olay no role in determining whether a string is accented or not. However, rinat is interesting is that In'S's behavior as on langhase múnstander is relatively little affected by its limitations on grammaticsl poners. Consider the following example of where it mignt seem that lis would neea a context-sensitive graminr: In Englisin noun pinases, it seems we can heve an aroitrary rumber of adjectives.

This led to the rule in GRAPAR2 where $N P 1$ could recursively coll itsolf cach time acceptins another adjective. There is nothing in this rule to perent it from accepting phrases like the smoll bis square or other ungramatical mases. Shover, in practice this does not lead iAS into eny whe constraints on wat ronla never be presented with such a sentence due to the constraine speaker may properly say to las.
General Conditions for Ianguage Acquisition
having now reviewed how LAS. I understands and produces sentences, I wid present the three asyects of the incuction probiefly state the conditions under
 which LAJ learns a language. languaze. That is, lexicalization is complete. atteched to the words of the language. Thar of the language-that is, hor to go The task of LAS. I is to learn the eration of their comoined meaning. Seceuse from a string of words to a representang reaning, it cannot oe a very realistic LAS. I is not concermed with learning me meny concepts can transier from the model ior second langege learning first to the secone lenguage.
with leernins word neanings.
Another feature of LAS. I is that it works in a particularly restricted Semanic domain. It is presented with pictures indicating relations and properties of twoaimensional geometric objects. Tnese pictures ane actaly wions with these pictures into tre Fix propusitional network repres picture and an indication of thet LAS is presented sertences descrioins to the min proposition or the sentume. espect in the picture fich corfeophy famar is constructei. The semantic From this information input, a netw boal is to be able to leem any natural or domain may be very simple,

natural-like language which may describe that

The BRACKCT Progran

A major aspect of the LAS project is the BRACET progran. This is an algori A major a sentence of an aroitrary language and a Had conceptual structure and roducing a bracketing of the sentence that indicates its surface structure. Fis surface structure prescribes the hierarchy of networis required to parse the sentence. For BPACFT to succeed, four conditions must be satisijed by the infor Eation input to it: to the RRACNET algorithm whether there is more information in the conceptual structure than in the sentence.
Condition 2. The content words in the sentence are connected to the elements in the conceptual structure. Psychologically, this arounts to the claim that phic in its connectivity to a language-free prototype structure.

The main proposition in conceptual struature is indiceted.
Conditions 3 and 4 require considerable eqosition. To explain Condition 3 I will first assume that the prototype structure is just the Eid concentinl structure. Later I will explain why something sifghty diferent is required.

Consider Panel (a) of Figure 8 which inlastretes the fan structure for the series of propositions in the English sentence The red Guare is gove tha omall circle. Panel (b) illustrates a gronh defomation of that structure eivins the suriace structure of the sontence. Mote now elenents within the same noun phrase are appropriately assigned to the same subtree. Note that the prototype structure is not specific with respect to which linhs are above whicn otners and which are right of which others. Although the Fhi structure in Parel (a) is set forth in a particular spatial array, the choice is arbitrary, In contrast, the surfice structure of a sentence does specify the spatial relation of links. It seems reasonable that all natural langlages nave as their semanties the same order-iree prototype network. They differ fron one another in (a) the spatial ordering their surface structure assigns to the network and (b) the insertion of non-ieaning-bearing morphemes into the sentence. Forever, the surface structure of all natural languages is denived from the same graph patterns. Panel (c) of T isure 8 shcws how the prototype structure of Panel (a) can provide the surface structure for a sentence of the artificial GRWMARI. All the sentences of GRAGARI preserve the connectivity of the underlying ham structure. By this critericn, et least, GRAMARI could oe a natural lenguage.

Howerer, certain conceivable languages would heve surface structures which
 such a hypothetical language with the same symtactic structure as English, but with different ruies of semantic interpretetion. In this language the adjective trates, there is no deformation of the prototype structure in Penel (a) to achieve a sucfece structure for the sentences in the language. Mo matter how it is attempted some branches must cross.

IAS will use the connectivity of the prototype network to infer what the conectivity of the surface structure of the sentence must be. The netrork does not specify the right-left ordering oi the branciss or the above-below ordering. The right-left ordering can be inferred simply from the ordering of the words in the sentence. However, to specify the aoove-below ordering, BRACKET needs one further piece of infomation. Figure 9 illustrates an alternate surface structure that could have been assigned to the string in Figure 8 (c). It might be translated into English syntax as Circular is the small thing thet is below the red square. Clearly, as these tro structures illustrate, the Fin network and the sentences are not enough to specify the hierarchical ordering of subtrees in the surface structure. The difference between the sentences in Fisure 8 (c) and 9 is the choice of which proposition is principal and which is subordinate. If pracrep is also given information as to the main proposition it can then mamoigiously retrieve the sentence's surface structure, The assumption that RRACKET is given the main proposition amounts, psycholozianily to the claim that the teacher can direct the learner's attention to what is being asserted in the sentence. Thus, in Panel (c), the teacher would dircet the learner to the picture of a red triangle above a scall circle. He would both have to assume that the learner properly conceptualized the picture and that he also realized the aboveness relation was what was being asserted in the picture

(b)

(c).

Figure 8. The surface structures of the sentences in (b) and (c) are graph deformations of the thin structure in a a a

FIgure '9'. Altemate surface structure for the sentence in Figure qc.

Wore on the Gran Deformation Condition

I think that the graph deformation condition has scmething of the status of a universal property of language. Honever, to make this cleir risole it is clear that something other than the Hat netrort will have to be suoped as the prototype structure. FAn's binary branching works well enowg for the domain of discouse that I have Deen interested in so far, but it 7 fill not ecneralize to sentences that have verbs that take more than two noun phase
 the doo. ribi a hey. This is decomposed into a set of sub-propositions-abne turned the Ger whin caused the door to de ovened. In Particular, Jons and key are ture certain elenens are Groped are closer together. If Figume ich vere the proto closer tosether and done and open are chich alternated words from the two subtype, LAS cold not oracset a senco deformation of the structure in (a) that groups. Fof instance, there is John opened rith a key the door. Branches of would provide a oracketing for John open This English sentence and other English the Hol structure woula nave to crosto condition for figure loa hove all a sentences which violate the deformorer, this is almost certainly a peculiarity semi-unscceptable ring to thern. Hot iree ordering of their noun phrases. What of English. Other lansuges permit in is something like the case representation is needed for a prototyee structure are equally accessible from the main propoin Fisume 100 where ail erguments are forb open is one posed by any vero wich sition rode. The problea posed by the verb open is cone postation rules out certakes -are than two nolm phrase argmonts wile it is likeij that all tain seavences of the varo and its argmanguage. There are tro ways to deal
 with this dileza. Une could resoricant considerations that wotivate the HAM ever, there are a number or Sigoreover, representations like (o) finesse one representation in panel (a). Mor in language acquisition-hor re learn the of the most interesting questions in adaress this question we need a represencase structure of complex verbs. Ment veros into a representation like (a) tation that decomposes multi-argumen of the case arguments. Learming the role which exposes the semantic function on involves learning hof to assign its noun of the verb open in the language the (a). I will sketch a system to do this phrase arguments to a st
in the proposal section.

If we keep the $H 2$ representations then some chenges are reduired in R RACKET reph defomation condition. What is characteristic of multi-araument verbs in FAM is that the arguments are interconnectea by causal relations as in (a). Thus, BRACEET should be rade to treat all the terminal arguments in such causal structures as defining a single level of nodes in a graph structure all connected to a single root node. That is, BRACKI can treat a such as (a) if it were (b) for purposes of utilizins the graph ceformation condition. In fact, BRACNT already does this in the current impleaentation.

The Details of Bracher's Output

So fre, oniy a description of how one would retrieve the surface structure connecting the content words of the sentence has been siven. Suppose ERACAET Were given A triangle is left-of a scuere that is above a small red sounce. A bracketing structure must be imposed on this sentence which will.
(a)

(b)

Figure 10. Altemative prototype structures for the sentence Jov. onened the ronc with a rav: The FAM structure in (a) introduces too many distinctions.
also include the function ronds. Given this sentence and the conceptual structure in Figune 6, B2ACEI reuturne (G257 (C246 G247 a triangle) is leftor (Gl95 G196 a square (G295 G225 tha is above (G182 G183 a smali (G182 G18) red (G182 C184 square))))) . The main proposition is G257 when is given as the finst term in the bracketirg. The first bracketed sub-expression describse the subject noun phrase. Tae first element in the sub-apression 6245 is the note that links the embedued proposition 624 to the main proposition G257. Mu-erorst tro words of the sentence A triangle are placed in this bracketed no embedded The next two words is left-of are in man oracketing. The remainder of the output of BPACST propositions corresponcing to these tro. t . 195 . The first embecied poposition corresponds to a description of the elsment second proposition, G225, asserts G195 asserts this ooject is a square and une proposition is erioeddec as a subthat G195 is above GI82. Note that, the G225 propt element in the G235 proposiexpression within the G190 proposing (G185 red (G182 Gl34 square))). This expression tion is (G182 G183 a small (G1883, G1E5, G184 about G182. has in it three propositions G183, G185, G184 ebout G18?.

The above examie illustrates the output of BRACKI. Aostractly, the output of Exacis may be specified by the following three rerrite ruies:

1. $S \rightarrow$ proposition element *
2. element \rightarrow norl
3. eiement \rightarrow (topic s)

That is, each bracketec output is a proposition node followed by a sequence of aloments (rinte 1) Prose elements are either rawritten as mords (rule 2) or oracketed subexpressions (rule 3). A bracketed subexpression bezins with a topic node wich indicates the connection between the either non-meaning bearing propositions. The elements within subject, predicate, relation and object words or elements corresponding to in the proposition. lote that bat proposition. Each level of bracketing will level of bracketins and a single prophy frammar. Because of the modularity also correspond to a new network is achieved for the grammatical networks. of EAl propositions, ε modularity is are attached to the same node, they When a number of embecced proper in a right-branching manner. are embedded within one anotier in a right-oranching maner.

The insertion of non-function rords into the bracketing is a troublesome Consider the first word 2 in the example sentence above in Figure 6 . It could have been placed in the top level of bracketing or in the subexpression containing triangle. Currently, all the function words to the right of a content word are placed in the same level as the content word. The is not pig is closed imediately aiter this content word. Therefore, is is not placed in the noun-phrase bracketins. This heuristic seens to work more often than not. However, there clearly are cases where it will not work. Concric progran sentence The boy who Jene sooke to was deat. The current brAchat is, it would return this as ((Tne boy (rio Jane spoke)) to was deaf). non-meaning-b would not identify to as in the relative clause. Similarly, non noang-bearing suffires like gender rould not be retrieved as part of the noun by this heuristic. However, there is a strong cue to make bracketing appropriate in heristic. However, thers to be a pause after morphemes like to. Perhaps such
pause structures could be called upon to help the BaCRE prosmen decide how to insert the non-meaning-beaxins morphemes into the bracketarg.

Mon-meaning-bearing morphemes pose further problans besices bracketing. Consider a sequence of such morphemes in a noun phrase. finct seguence could have its oma grammar that, in principle, mignt constituten aroitrary recursive language, The sentence's semantic referent oula provice no cues at all as to the structwe of that langlage. Therefore, we would be back to the sfae imgossible lancuage induction task that we characterized in the introdustion. Hence, it is comporting to observe that the structure of these strings of non-meaning-bearing morphemes tends to be very simple. There are not many exmplos of these strinse being longer thea a single word. Thus, it seme
 more than very simole finite cardinglity language which pocc, in thomorovres, no serious induction problems. The various stretches of non-meaninz-incaring morpaemes in a sentence could also have complex interdependencias thereby posing serious induction problems. Again it does not seem to be the case that these depencencies exist. So once again re find that the structure of natural language is simple Just at those points where it would have to be for a IAS-ilike induction prosram to work.

In concluding this section I should point out one example sentence which BRACKA cannot currently handle. They are respectively sentences like Jonn and Bill Eanced anc laushed respectively. The problem will such a sentence is that underlying it is the following prototype structure:

Thus, John and dance are close together and so are Bill and laugh. However, the sentence intersperses these elements just in the way that makes bracketiry impossible. There are probably other examples like this, but I cannot think of them. Fortunately, this is not an utterance that appears early in child speech nor is a particularly simple one for adults. of all the grammatical constructions, the respectively construction is the cne that most suggests the need to have transformational rules in the frammar.

SZEAKTEST

The function of SPEAKTEST is to test whether its grammar is capable of generating a sentence and, if it is not, appropriately modify the gramar so thet it can. SPDAKTSST is called after BPACAET is conolete. It receives'. from BRACKET a HAM conceptual structure, a bracketed sentence, the main proposition and the topic of the sentence. As in the SPaN program SPEATEST attempts to find some path through its netrork which will exoress a proposition attached to the topic. If it succeeds no modifications are made to the network. If it camot, a new path is built through the network to incorporate the sentence.

The best way to understand the operation of SPaADPST is to watch it go hrough ons example. Tno target languase it ras given to learn is illuctater in Tabie 4 . This is a very sinple language, Dasiceliy GRAMMARI of Teble l. It nas a smaller vocsbulary to make it more tratevile. The reason for choouing this languge is that it is of fust sufiacient complexity to illustrate LAS's acquisition mechanisms. In adaition, LAS has learned GRANHED, also Eiven in Table 1.

Figure 11 illustrates LAS's handiing of the first two sentences that com Tro first sentence is Sunare trianole aoove. This sentence is core in. by BPACKLT as (G174 (G115G16 Square) (G140 G149 triangle) above). Cl74 refers to the main proposition given as an argument to LEAPMORE. Since this is LhS's first sentence of the language the STADT network will, of course, completely fail to parse the sentence. It has no gramar yet. Therefore, it induces toe top-level SAART network in Figure 11. A listing of the caact arc insonnation induced is given below the grapnical illustration in figure 11. Since the first two elements arter Gl7t in the bracketed sentence are themselves bracketed, the first two arcs in the network will be puses to subnetrorks. The third arc contains a condition on the word aoove ine restriction made iss that it de a member of the word class Alog. Inis this point. created for this sentence and only contains the word above atiras checks the Having now constructed a path through the SiAn newande the bracketed subexpressuonetrorks in that path to see whetnolished by a recursive call to cpenirssi. sions in the sentence. Mris is accombis called, taking as arguments the netuork Al95,
 the phrase (Glio squerel arlu whe wou in network 4197 the word ciass A22l conA211 is created to contain square, an should be the same in a final gramar tains trians? These two suonetwors shour bing generalization at this point. but LAS is not prepared to risk such a generalizawion at thin point.

Hote in this example how the bracketing provided by BRACFST completely specified the emoedding of networks. The sentence provided by BRACnET was (G174 (G115 G116 square) (G148G149 triansle) aoove). The first elenent GI74 Fas the main proposition. The second element (G115 G116 square) was a bracketed suoexpression indiceting a subnetwork should be created. Similarly, the third expression indicated a subnetwork. The lest element above wes a single word and so could be handled by a memory condition in the mein metrork.

The second sentence is triansle square right-of. Tnis is transformed by BRACKET to (G315 (G246 G247 triangle) (G233 G284 square) right-of). Because of the narrow onemember word classes this sentence cannot be handled oy the current srammar. Howevar, SPEAKNEST does not add new network arcs to handie the sentence. Rather, it expands word class A199 to include right-of, word class $A \geq 11$ to incluae triancle, and word alass A221 vo incluce square. The gramar is now at such a stage that Lis could speak or understard the sentences triangle suaare above or square saure misht-of and other sentences which it had not studied. Thus, already the first generalizations have been made. IAS can produce and understand novel sentences.

This illustrates the type of generalizations that are made within the PFARMEST program. For instance, consiaer the generalization that arose when SPEAKIEST decided to use the existing network stmeture to incorporate triangle,
(a)

222? -2 RITNCEE

the first word of the second sentence. This involved (a) using the same subnetFork $i 195$ that had been creeted for square and (b) expanding the word elass A211 to include triangle. Both decisions rested on semantie criteria. The netrork Al95 was created to analyze a description of a node attached to the main proposition by the relgtion S. Triangle was a description of the node gatb which is relatea by S to the main proposition. On the basis of this identity oi seantic furction, LAS assigns the parsing of triangie to the network 195 Within the A195 network the word class A2II contains rords winch are predicases of the subJect node. Triangle has this semantic function and is therefore added to the word class.

In making these generelizations, SPEATEST is making a strong assumption a.out the nature of natural Ianguage. This assumption is stated as Condition 5:
Condition 5. Words or phrases with identical semantic functions at identical points in a network behave identically symtartically. Tnis is the assumption of semantic-induced equivalence of syntax. It is anotiner way in wich seantic information facilitates gramar induction. It clearly need not oe true of an arbitrary language. For instance, decisions made in the subject noun phrase might in theory condition syntactic decisions made in the object noun phreses. IAS, because of its heuristics in SPEAKPES for generalization, would not be able to learn such a language.

Figure 12 illustrates LAS's network gramar after two more sentences have come in. Denvences j anci 4 invuive dire treats these as syntactic variants of above and rivht-of which differ in their assignment of their noun phrase arguments to the logical categories subject and ooject. Therefore, LAS creates an alternative branch through its START network to accomodate this possibility.

Figure 13 illustrates the course of IAS's learning. Altogether LAS will be presented 14 sentences. Subsequently, 䜣 will have to make three extra generalizations to capture the entire target language. Plotted on the abscissa is this learning history and along the orainate we have the natural logarithm of the number of sentences which the graman can handie. This is a Iinite language, unlike GRAMAAR2, and therefore the number of sentences in the language will always be finite. As can be seen Ircm Figure 13, by the fourth sentence LAS's gramaar is adequate to handle 16 sentences.

LAS's gramar after the next five sentences is illustrated in Figure 14. These are LAS's first encounters with two word noun phrases. All five sentences involve the relations right-of and above and therefore result in the elaboration of the A195 and Al9T suo-networks. Consicer the first sentence, square red triangle blua above, which is retrieved by 2e40KET as (C329 (C270 C27l square (C270 C272 red)) (C303 C304 triangle (0303 C305. blue) above) C270). Consider the parsing of the first noun phrase. Note that the aojective (C270 0272 red) is embedded within the larger noun phrase. This is an example of the right embedding wich BRACRM always imposes on a sentence. This will cause SPEAKTEST to create a push to an embeddea netrork within its Al95 subnetrork. As can be seen in Figure 24 , the existing are containing the A211 nord class is kept to hande square.

Two alternative arcs are added--one rith a push to

Fimace 2 ?

Lus's yrammar aftor studying:

1. SQUARE TRTAMGEE AEOVE
2. GRTANGE SQUARE RTGHT~OF

3, SGUARE TRIANGLE EELOM
4. TRIANGLE Square Lept-of

Figure 13. The growth of LAS's grammar with its learning history,

Additions to LAS's gramar after studying:

1. SQUARE RED TRIANGTE ELUE ABOVE
2. TRTAGGLE LARGE SQUARE SURT RIGGT-OR
3. TRIANGIE RED RRIAMOLE REJ KBOVE
4. SOUARE SMALL MRTAMEE RED RIGTR-OR
5. SQURE BEUE TRLAMGE MROE RIGHMOF
$\mathrm{Al.95} \xrightarrow{\mathrm{EA211}} \mathrm{C509} \xrightarrow{\mathrm{C} 484} \mathrm{STOP}$
NII

$C 434-\operatorname{EC5IO} \quad \operatorname{STOP}$
$\operatorname{c560} \mathrm{E5586}=\operatorname{sio}$

C510 = small, blue.large, red
C586 = small,blue, large,red
the clal, notrors and the other with a MIE transition. Within the chelu netronk the word class 6510 is set up which initially only contains the rord red.

This illustrates the principle of left generalination in Las: Suppose a network contains a sequence of arcs Al, A2, ...A. Suppose further a ghrase nssigned to the notrork requires ares $X_{1} \ldots A_{m} \ldots X_{n}$ to be mion as required of arcs x, It arcs $A_{i}, A 2, \ldots A_{m}$ have the same semantic iuncion ss mase is assimed to ... χ_{m}, thos the persing of the first m elaments in the porse pre buin a
 HIL arc is adaed to permit the phrases that wed to be parsed in is maing Am

 placed in front of ant sequence of elotion of semantics-induced equivalence of eralizatisn may be seen as an elaboration of semancicsindumed a syntax (Condition 5).

Figure 15 illustrates a more conservetive way thet LAs misht have made this generalization. Instead of netrork (e), it might here set up network (b). In netrock (b) a ned word class X has been set up to record fust those words Which can ce followea cy an adjective. iletrorks (c) and (d) illustrate how left generelimation can and does lead to overgeneralization in natural language. Suppose 5 chind hears girases like Mne boy, A doz, the foot, ein. Suppose, he
 then heers The bove. This would be representen in the network illustrated in Eecaus of left-generalization LAS rould d the generaliaation that foots is the (a). Z this networi Zas has incorporatanomin genoroliontim is, of comrse: piucini a notorious orergenemalization in is distinctive ejout such morphemo be between them. Because of its principle tives end no sementic basis to once of syitax, LAS will overgeneralize in those situations. Apparently, children are operating under a similar rule.

LAS needs to be endowed with a mechanism to allow it to recover from such overgenerslizations. Therefore, one of the future aditions to LAS fill have to be a F已COVER program. Consider how it would work with this pluralization example. Suppose IPARMORE receives the sentence Tre reet are above the triancle. In attemoting to analyze the sentence in SPEAXIPST, the plural foots will be eenerated but will mismatch the sentence. Ruco there are its function to note such mismatches. Since it is possible that the its grame turo alterrate ways of expressing plurality, RECOVER cannot assuman chack the acceptar is wronc. Rather it will interrupt the information flow and coeck the acceptability of The roots are above the triangle. That is, heor is ungramatical seek negative information. Upon learning the expression is ungratical RECOVER Hill take foot out of the word class that is pluralized by 's.

I To accomplish this I would have to put within LAS some Eechanism that will segment words into their morpienes.

