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The purpose of this research is to understand language acquisitiom.
There has been a great deal of research on first language acquisition in
children, second language learning by adults, and learning of artificial
languages by laboratory subjecté. The principle goal of this research is
not gecting more experimental evidence. Rather it is td develop a working
computrer simulation model that can learn natural languages. The model
would attempt to explain the already available set of experimental facts.

It is also hoped that such a model would be a contribution to tHe artificial
intelligence goal of developing language understanding systems.

Some of the detailed plans of the research are described in the
accompanying grant proposal that was awarded by NIMA (grant number 1 RO 1
MH26383~01). The period of this award is May 1, 1975 to May 1, 1977. That
proposal states an intention to use Augmented Transition Networks as the
basic grammatical formalism. I have already completed some initial learning
programs using the augmented transition network formalism. The very earliest
of this work is describéd in the NIMH proposal. More recently I have decided
to try to develop a production system formalism asAan alternate to the

augmented transition network. There are three main reasons for this switch



2.
in representational formalism. First, I think it is easier to represent
the grammatical knowledge contained in highly inflected languages (eg.,
Finniéh, Latin) by production systems rather than augmented transition
networks. Second, T think it is easier to represent human information
processing limitations in terms of production systems, Third, I think
production systems sexrve as a ﬁeans‘of representing non-linguistic proced-
ures such as inference-making. Thefefore, a theory of ipduction of pro-
duction systems for language has the promise of generalizing to the induc;
tion of other human cognitive skills.

I have been using the SUMEX facility in a pilot project this
summaer. 1 have been bringing up a2 version of my production system called
ACT on this facility. It is hoped that in a few months this program will
be in a sufficiently developed form that other SUMEX users may use that
production system. It uses an associative network representation as its
basic datz base, This is a variant of the HAM propositional network that
I developed earlier and is described in the accomﬁanying proposal (p. 23 -
27). 1In the ACT system various portions of the network are active at any
point.of time. The productions look for patterns of activation in the net-
work, If these patterns exist, the productions are executed causing exter-
nal actions to be taken, building network structure, and possibly changing
the state of activation of the network, Activation spreads associatively
through the network and thefé is also a dampening process which deactivates
network structure. A preliminary description of the ACT system is given
in the accompanying document "An Overview of ACT.” It is a chapter from a
forthcoming book. The most relevant section in that chapter is from pages

11 to 25.



It was originally projected that this simulation work would
ba performed on the Michigan Computer Systed. However, there are a number
of advantages of the SUMEX—AIM facility. ALl the programming will occur
in LISP. The INTERLISP system in SUMEX, as surmised from my own experi-
entation, permits programming and debugging to progzress at least twice
as fast as with Michigan 1ISP. Also programs in INTERLIS? %ould be more
available to other A.L. users than programs in Michigan 1ISP. The Michigan
computer is isolated from the national A.I. community whereas I can take
advantage of the connections SOMEX-AIM has through the TYMNET and the
ARPANET. Finally, the SUMEX—AIM facility provides free éomputing resources
and so will relieve some of the-strain froa my tight research budget.

1t is intended that there will be continued development and
testing of this prqduction system formalism as a model of human information
processing. There are plans to build substantial ACT production system

models for language generation and understanding.and for inference making.



C.3.

C.4.

C.5.

Responsas to SUMEX-ATM Questionnaire

Read the accompanyiung proposal.

The research is currently supported by a grant from NIMH (grant
aumber 1 RO 1 M 26383-01) for the period May 1, 1975 to May 1,
1977. The amount of the award for the first year is $20,000.
This is to pay for a programmer, computer time, and rental of a
terminal.

Read the accomparying proposal.

It is expected that this research will have some general contribution

to make to development of language understanding systems, modeling
human cognitive processes, and development of production systems.

None

There should be no difficulty in making my programs generalfy/
available to users of SUMEX-AIM. '

Yes

Yes

Read next to last paragrazph in accompanying proposal.

The INTERLISP language on SUMEX is the principle requirement of my

research. I do not anticipate requiring any additional systems
programs not already available at SUMEX.

Estimated requirements per month:

100 connect hours
2 CPU hours VRS 1
- \(Jl' i
A W Cy; \

1500 file pages S >
s !

The principle times of use in Ann Arbor would probably be 0600-0900
and 1800-2100

I intend to cowmunicate with SUMEX via the TYMNET. I would either
use the private node in Ann Arbor or the public node in Detroit.
The toll cost to Detroit could be met from my current grant as
could the cost of terminal rental.

Not really relevant
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Special Note

N

I am in the second year of an exchange visitor's visa. I can renew

the visa for another year. My wife, an American citizen, is currently petitioning

to have my status changed to that of a permanent resident. Therefore, I )
will be able to be at the University of Michigan for the entire period of the
proposed research.



1. Dir=sction and goals of the research

Most sicply stated, the purpos e of this resesarch is to understend language®
scquisition. There has been a great denl of reseerch on first lenguage zcguli-
sition in children, second languape leerning by adults, and learning of arti-
ficial longuages by 1aboratory subjects. Tais research is nov principally
concerned with getting more experinental evidence. Ratner it is concarned wit
developing an information—processing podal that cen be usad to expilain the
already evailadle sabt of experimental_fa:ts. One of the principal concerns
govarning tne design of this model is just that i~ be =ble to leera a natural
languagze T will show thab this, in itself, is & very significant zoal.
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quite cn*olex. i 4 simply specify them veroally
or with Tbis “esearch makes use of the coapu uter as a

tool tc e cmplex models. whererore, L nave DESN GEVELO opiay &
computer io of langusgse acguisition. Tnis rmodel is called LAS
(en acronym for Languzs2 épquisition System}. tost of the proposed budyget is
concernad with suppor rting the developue ant of this Drogral Input to LAS con-
sists of sentences of tn ions of thelr

e lenguage paire =4 with repressnhe
meaning. Lnarefo* , it simulates languzge 1e3*n1“, in s
Jearner cen figure out the meaning of the sentence from ¢ ntext. The Slnp‘ st
case of such & situation would be one in which the le:rner is presented with
simple pictures end sentences deseribing them. The Drogran constructs a
grammar which allows it to g0 from sentences to rea*esop+atlcns of their under-—
lying meaning. The grammar can also be used to genarate sentences to convey
meanings. 1% is also heoped that this progranm will m=ke 2 contribution to the
evolubion of computer language understending systems. Thus, the2 research
really has two purposes, onein‘psychology and one in arbl‘lLlQl intelligence.

T became interested in language acquisiticn as & €
with a computer simulation model of human mmmory. This program is described
in & book by nyself and Cordon Bower entitled Humpan
computer progrem wes sn attempt to simulate SL_ble cue
principal purpose of that research vas to develop &a model ct une ﬂdraq fact-
retrisvel system (called HAXM) and test it in a serles of ¢

ersion of HAM 1is used within LA&S. HAM!'s systexm included e simgle languaz

understandar wnich was capable. of dealing with & restricted butb conslucr¢b
subset of English and which was capable of using nmemory bo Gise=3 1guﬂpg and
to resolve reference. Havertheless, 1t was relebively primitive in its capoe-~-
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program, Rather, I decided that the oaly compact way to characterize the
linguistic competsnce of the human was to characterize the language acquisition
svstem that generated the competence. '

Outline of Provosal

The concern in this proposal will be primarily with developing a systexn
loziecally adequate for isnguage acquisition ~d only secondarily with e system
L ) I

that simulated actual humaen performance. 1 do not
istic goal until we have a characterization of the s0O

adequate for natural language acquisition. Tpis emphasis on Logical adequacy
is eclear in the organization of the proposzl. I will irst review the work
+that has been done on computer language understanding. This is importent te-
cense LAS is a language understander as well as & learner. Then I will review
the formal results on grammar induction. Tnen LAS.1 will be deserived. LAS 1
is a first pass version of the ILAS prograzm adzgua to learn simple languages.

+h U

te
Than I will propose an extensive set of developzents to ve edded to the programn,
eimed both et increasing its linguistic powers and ~aking it a reslistic simu-
1ation. In describing LAS-1 and the proposed ewtensicns, I will review rele-
vant research in the child language litersturs. Finally, I will propose &
series of experiments with artificial languages to check specific claims LAS
makes about language 1earnability.' ’ ’

i

2. Computer Language nderstanding

Computers have been applied to natural language processing for 25 years.
There has been & succession of mejor reconcentualizations of the problem of
language understanding, each of which coastitutes 2 clear advance over the
previous conceptioas. However, any realistic assessment would concede that
we are very far from & general languzge understending system of human capability.
Tne ergument has been advanced that there are fundamental obstacles that will
prevent this goal from ever being realized (Dreyfus, 1972). These erguzents
ere shamefully imprecise and lacking in rigor. The best (e.g., Bar-Hillel,
1962) nas to do with the extreme open-endedness of language, that an effectively
unbounded veristy of knowledge is relevant to the understanding process. 1t is
boldly esserted, without proof, that 1% is not possible to rovide the computer
with the requisite background knowledge.

In reviewing the work on natural languzge systems, 1 will constantly
measure them with respect to the goal of general language understanding. I
appreciate that it is a legitimate artificiel intelligence goal to develop
a lenguage system for some special purpose application. Such attempts arz free
from the Dreyfus eand Bar-Hillel criticisms. Eowever, from any psycnological
point of view these systens are interesting only as they advance our under-
standing of how lenguage is wnderstood in general.

9
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Aagdorson

fnesolubion thesrem-proving (Rebinson, 19565) is the most stujled of the mechanl-
cal inference systems. It is also here that the mosi careful work has bean donz
on heuristics for selecting facts fron the data base. These nethods include
sapantic resolution (Slagle, 1965), lock resolution (Boyer, 1971}, and lin=ar
vesolution {Loveland, 1970; and Luckham, 1670). 1In practical applications these
heuristics nava served to considerably reduce the growth in compubtatiocn bime.
However, the demonstrations of the optimality of these heuristics ars taszi-
specific. There are no general theorems sbout their opitimzlity. I suspect that
they do not in genersl deal effectively with the problems of expenentizl growtil.

Althouzn there are potentially sericus time problems Db

o} ingz and
inferencing, ﬁhCSSvPTOUILQS have not surfaced in the pasi progrerns as oneg might
have expectai. This is becauss these programs have all been rather narrowly
constrained., Taeir language systems on.iy nesd to deal with & srall portion of
possible syntactic conshruc tions end possible word r meanings. Also, because of
restrictions in the domain of discourse, only a restricted set of inferences

are needad.

Seme of the interactive systems (ELIZA — Weizenbaum , 1966; PERRY - Colby &
o rious effort to ¢o a complete job of sentance analysis.
was performed to permit success in narrowly circum-
entences were generated by filling in pre-programzed
The ambition in programs like Colby's or Weisen-
arance of inderstanding. Weisenbaun's progran

1an psycnotnerapist and Colby’s a Pparanolc poilent.
3 errors of lvqghagp understanding it was difficult
e possibility that these nmi ight just be manifeste

+ies of the simulations.

g +s made more serious efforts at language understanding. They
ime orodlems inherent 1n arsing and inferencing by dealing with

yestricted task domzins. Slagle's DEDUCOM (1965) dealt with simple set inclu-
sion probleas; Green, Wolf, Cnomsky & Luuonerv (1963) with baseball questions;
Lindszy (1963) with kinship terms; Kellog z (1968) with datz management systems;
Woods (1953) with airline cnedule“; Woods (1973) with lunar geo1ouf Bobrow
(1564) and Cherniak (1969) with word arithmetic problems; Fikes, Hart &I 1WSson
(1972) wita a robot world; Winograd (1973) with a blocks world. Other systen
like Green and Raphael (1J68) Coles (19549), Schank (1972), Schwarcz, Berger,

s (1969), Anderson and Bower (1973) Rumelhart, Lindssy end Norzman
(19(2) end Guillian (1969) have not been especially designed for specific task
domains buu nonetheless succeed only because they worked with sericusly limited
deta vases and restricted classes of English input. Because the parser deals
with only certain word senses and certain syntactic structures linguistic amn-

biguity is nuch reduced. Thnose programs that use general inference or ocedures
1ike resolution thecrem proving are notably inefficient even with restricted
data Dases. Ulnogrud nade extensive use of the facilities in PLANLER for
directing inferencing with specific heuristic information. Tne validity of
these heuristics depended criticaliy on the constraints in the task dom ain.

11
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5% analy
poFers < to craat
standing system. I have heard it seriously clainz
could be extended to beccma a general model of la
i3 needed would be to program in all the knowledsg
parsing rules to the point where they handled all
ly, this would be a big task requiring nundreds o ,
is argued, no greater than tne work thst goes int i z big or ting
systems, Clearly, this ergument is fauliy if only because 1t do=s not deal with
the time problems in general infersncing and general parsing. However, it is
elso unclear whebher human lanzuege understanding caan ve capturad in a rixed
program, Further, it is dublous whether 1t Is manageadle to do the bookkeeping
~that is necessary to assure that all the specific plecess of knowledge sre
properly integrated and interact in the latended ways. Our linguistic conpe-
tence is not a Tixed object. This 1s clear over th= pariod of yzars as we
learn new grammatical styles, new words, and new ways of thinking. I think this
is also true over short spans of time. That is, the way humans dezl with the
time problems inherent in parsing and inferencing 1s to adjust the parsing and
inferencing according to context.

The preceding remarks were meant to sugzest how an adaptive language
system nignt provide ths solution to the fundemantal Troblems in general
larnguage understanding. Rather than defining and hand-programaing all the
reguisite xnowledge, wny nol let the language nnderstanding system discover
thot Kaovladss eud prugran iLselll cine language acgulslition system is a
mechnenized bookkeeping systen for integrating all the knowledge required for
language understanding. By its very nature it treats linguistic knowledge es

constantly changing object. So we know it would change with a changing
linguistic community. We might hope that it could adapt over short periods
(1ike hours) to its current context.

Learning systems are frequently regardsd as the universal panacea for
all that ails artificial intelligence. Therefere, one should be rightfully
suspicious wnetner LAS will provide a vieble route tc the creation of a
general language understanding system. Certainly, the initial version of
S falls far shorit of the desired goal. However, with our current state of
+ledge it is just not possible to evaluate LAS's pretensions as an eventuzl

E

{?J

S0

¥

language understanding system. It is only by systematic exploration and
developnent of LAS that we ever will be able to determine the viability of
the learning approach.

Wnatever the potential of the learning approach in artificizl intelligence,
clearly it is the only viable psychological means of characterizing huzman lin-
guistic knowledge. It would be senseless to provide a cetalog of all the Knov-
ledge used in language understanding. A catalog of everything is a science of
nothing (a quote from T. Bever). Rather, we must characterize the mecannlism
that creates that knowledge eand how that mechanism interacts with experience.

12



Lnderson

Woods! Systenm
The linguistic formalisms used by LAS are very similar to W
augnented ~ansition networks. This sechion on computer langua €
concludes with a descriptlon of Woods! systex and an exposition of the suita-
tility of his formalisms for the current projsct. There are three critical
fostures that LAS reaquires of the formelisms that will exorsss its grarmatical
¥nowledge. First, it chould be o formelism thau can ve used with egual facility
for language parsing and lenguage generation. Tnis is pecause 1t is unreason-
able to assuze that o child incdependently learns nhow to speak and hod To under-
stand. Second, ve want &a formalism for whicia 1% 1S.e25y to devise a consiructive
algzorithm for inducing gramzar. That is to say, S03e€ descriptions of gramnatical
onally easier to > than others, even though thz

tng

lznguage they describe.
Third, we want the formalism to be close e t to the assumptions 1t
rekas about the interpretative system thal uses tne gremmar for speaking and
understanding. This 1s because that interpretatlve systen is takan as innate.
- .

Thus, it is not possible to induce new prograns for jpterpreting the grammatical
rules, it is only possible to induce new grammaetical rules.

cnowladge sre computat
wo formalisms may be

ol
.
!

A guiding consideration in this reszarch is that these
grammatical formulation are satisfied by a finite-state tran
T

n
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PJ'
[a ¥
4]
ry
W
-
o
-
O
L
v

epresentation. The provlem is that natural languages are fundamentally nore
complex than finite stete lenguages. HoWever, Vaods has shown & way to keep

scone of tne advantages of the finite state representation, but echieve the

Ea

t?—?_r\_?f'j(\rr‘nfn_'}iiongi orammar. Vnads! aneomented transition nebWworks

are similar to and ware suggested oy tae network grammars Of Thorne, pratley,
and Dewar (1968) end Bobrow snd Fraser (1970). Transition networks are like
finite state grammars except that one pernilis as iabels on arcs not only ternin-
a2l sywbols bubt also names of other networks. Determination of whether the

ere should be tazxen is evaluated by a sudroutine call to another networx. This
sub-natwork will aneiyze & sub-phrase of the linguistic string veing analyzed
by the network that called it. The recursive, context-free aspect of lanzuage
is captured by one network's ability to csll another. Figure 1 provides an
example network taken from Woods' (1970} paper. The first network in FPigure 1
provides the "rainline” network for analyzing simple sentences. ¥rom this
paipnline network it 1is possible to call recursively the second network for

sis of noun phrases Or the third network for the analysis of prepositional

phrases. Wwood (1970) describes how the network would recognize &l illustrative

i
analy

To recognize the sentence "Did the red barm collepse?" the network is
started in state S. Tae first transition is the aux transition to
state qp permitted by the auxiliary "aid." From state qp W& see that
we can get to state g3 if the next "thing" in the inpus string is an
NP. To ascertain if this is the case, Ve call the state WP, From
state NP we can follow the arc leveled det to state qgg because of the
determiner "the." From nere, the adjective "red" causes a loop which
returns. to stete g4, and the subseguent noun "parn'' causes a transi-
tion to state q7. Since state q7 is 2 final steve, it is possible

to “pop up" from the NP computation and convinue the computation of
the top level S beginning in svate dg which is at the end of the iP
arc. From q3»the vero "collapse' permits a transition to the state

13
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FlG. ::1«‘, A sample transition network. S is the start state. g,
- Gy>Gy- Qa0 300 Qy 3T the final states. (From \Woods, 197

)

ik

Gg»



q),, and sincs this state is Tinal and "eollzpse' 1S the lest
word in the string, the string is accepted as & senteance

(pp. 571-592) -

T have illustrated in Figure 1 what is known as & recursive transitior
el o

Eggzg;ﬁ_which is equivalent To 2 context-free pnrase«structure LraTmar.
Woods' networks are in fact of much stronger computati nal power - essenblizlly
that of a Turing ¥Yachine. Tnis is because Woods parmius arbitrary actions.
This gives the networxs the obility of transformational granmars Lo DErEuLE,
copy, and dalate fragnents of a senbence, Taus witn his network formalisms
Woods can darive the desd s+ -ucture of a seunlonce. Tpe problem With this
grammatical re;:esenta:ion is that it 1s oo powerful and parmits comnutation
of many things that are nov pars ol & SPeaker‘ grazzatical competanca. in

—~ o 4+ Y o~

e < L of s
+he LAS system all conditions and sctions on networs arcs are tekxsa from 2
rations possible 1n the HAll memory system {ses And
nis way some context—sensitive T
anguage without introducing psychologically unrezlistlc povwers.

In meny ways the network formalisms of Voods are isomorphic in thelir
pover and nehevior to the progrem grasmmars o Winograd. HoWever, there is
one ecriticazl differencs: e flow of coatrol 1S contained in'Winograj‘s pro-
gram grammirs. Tnhat is, & particular progran 1is committed to & certain beha-
vior. Tnis is not the case in the network forzalisd. The flow of control is

interprat L

contained in en T
the netwcrus. Tous by ¥

wArl orarTsYn anacification

3

ser which uses the grammatical xnoWwiedge contained in
o z different interpretative systems the same net-—
: an be used in different WAY3. This is eritical
o LAS's success where Th: different interpreters use the same grammaticel
formalisms to gude understanding, generation, and langusge inducticn.

L
3]
o D

3. Research on Gramzar TInduction

Apparently the modern WOTrK On the problem of grawmar snduction began with
the collzboration of . Cnomsky and G. Miller in 1959 (see Miller, 1967). There
have been significant formal results obtained in this rield and it is essential
that we razview this researcn before considering [AS. The approzach teken in this
field is well characterized by the opening reparks of & recent highly—articulate
review chapter by Biermann and Feldman (1972):

The gramratical jnference problem cal pe described as follows: &
finite set of gymbol strings from some language E_and possibly & finite
set of strings fron the complement of L are known, and & grammar for
the language is 1o he discovered . . - -

Consider & class C of grawmmars and a machine M. Suppose some
G ¢ C znd soxe I (an information sequence) in 1(L(G)) are chosen for pre-
sentation to the Machins Mg. ...

Intuitively, M jdentifies G if it eventually guesses only
one gramzar and thail grammar generates exactly L{G).

(pp. 31-33)

The significant point to note sbout this statement is that 34 is completely
sbstracted away from the problem of a child trying to learn nis lenguaze.
There hzs been virtually no concern for algorithzms that will efficiently
jnduce the subset of grammars that generate natural languages. Tne problen

15



js posed 1in gencral terms. The character izaticn is
with inducing a characteriza ation of the well-formed
However, this is not the task which the child faces.
manping betwasn conceptualli 0 1 strinzs of th
pust understand what is s20 t and learn ROW
17 a characterization of th 21 ed strings em
product of the mapping petween sentences and meanings
in thz formal work on language induction, there has
about the contribution that semanbics might have to-

. o>

The grammatical lnference problem as charac cterized by Blermann and Feld-
Tutions. Workedble solut ions 4o nou axist ba=cause

man is without any practical s0
ne set of possible langusges iz too unresirictes
sibie to practical problems only when it is po:os

capdidate languagzes OT because important clues ex

.. Worrable solutlons are pos—
e to grez tly rP>*r‘cf the
Y

ct
n)
|43

priori possible languages. Choasky (1965) argued ssenzially Ior this v1ew

with respect to the probled of a child learning his first language. iHe suzgested
+hat the child could take advantage of linguistic u.Lxe sals which greatly
restricted the possible langusges. L will argue thabt such universals £xist

in the form of strong constraints oetween the gbruCuuAe of & sentence and the

sermantic structure of the referent. These constraints pr ovide criticel cues
for the inductlion problen,

Gold's Work

Prahabhly the mosh influential paver in the field is by Cold (1957). He
provided an exD icit criterion for success in a langusge 1ﬂahcb101 proolem and
o~

)
proceaded to formally determine which learner-teacne ractiaqs could ﬂchﬁeve

r
thet criterion for which languages. Gold considers a

in the limit if affer somxe finite time the learner discove a grarmer hut
gencsrates the strings of tne language. He con 1siders two 1nformation sequences -
in the first the learner is presented with all the sentences of the leangucze
end in the second the learner is presented with all strings, eacl properly
identified as senvence or non-sentence. Then Gold asks this guestion: Suppose
+he learner can assums tha language comes from some fTormally characterized class
of languages; can he identify in the limit “aich language it is? Gold considers
+the classical nesting of langusge classes - finite cardinality lanzuages, regular
{rinite state), context-iree, conueku—sen31u1ve, and imii ive. His

an

the language (i.e., the first information seguenc
finite cardinality languag25. However, given posi
(i.e., the second information sequence), he can le
sive languages. '

T
classic result is that if the learner is cnly gLu ©o
t

ve

The prooL that the finite state class is not identifieble wiih only posS-—
itive information is deceptively simple. Among the Tinite state languages
ore all languages of flnltec“?dﬁnalluy (i.e., with only finitely many strings) .
At every finite point in the information sequence the learner will not know
if the language is gener ated by one of the infinite, aite cardin-
te

ality languages s which includes the sample or an i
state grammar which includes the sample. Logica
s similarly easy tQ prove that eny leznguage in the primitive recur-
S c s can be induced given positive and negabive 1 informatioz. It 13

possible to enumerate all possible primitive recursive graminars. Assuze an

RS



2

2igorithm that proceeds through this counbably in:
one groammar after another until it finds the c
stey with any grammor as long &s the informatl
it. Any incorrect grammer G will be rejected
information :eku:nce—~eizhe;- ecause the s=2gque
e sentence generated by G, or as & positive 14s
G. o L mra he finit
alg
tec
1 1i ;
For instancaz, the pasiti nomical gr T tic
ordering of all possible context-sensitive languagss using English morphenes as
terminal symbols. HoWever Cold also provad that theres is no alcorithn uniformly
- 4

o)
s enumeration technigue. That is to say, given any algo-

nore effective then thi (v 1
ritha one can dick sone context—seusitive languege for which the enumeration
algoritha will be faster.

s startling results that we must live with.
cardinality languazes be induced without use of negative
ldren g2t little negatlive Teeddack

ck they do get (Brown, 1973). S=zcond,

and rake 1ivs (¥
nuparation. This 1is startling ovecause

=
le use of what negative reecpa
r i e

no procadure a effentive than blird
blind enumeraticn is clearly hopeless &3 2 practical induction zlgorithm for natur-
2l lang tL w2 will see how natural language can b2 induc2d despite
oS s =3 I
Gold's re v Pirst latl's review sone other research of the seme ilk.

enpts to provide & constructive algorithn was proposad by
st is, he attempted to gefine an elgorithm wnich would con-
struct bit by pit U correct grammar rather than enumerating possiole grammars.
IAS is a coastructive algorithm. His ideas were never programmad an had theilr

o

logical flaws exposed by Shamir and Bar-Hillel (1962) and by Horning (1569). In
nart Solomonoif has served as a straw man that served to justify the enumerative

. . . . -~
ppreoach over the constructive (e.g., Horning, 1969).

[ovIg

Feld=an and his students have carried the Gold analyses farther. Feldman (19707
provided some urther definitions of languages jdentifiability and proved Gold-like
resulis for these. TFeldman considered not only the task of inferring a grammar that

generated the semple, T.% &lso the task of inducing the mosit simple grarmar. Grad- -
rmar complexity was measured in terms of number of rules and the complexity of sen-
tence derivations. Horning (1969) provided procedures £or inducing grammars whose
rules have different probabilities. Biermann (1972) provided a nus-ber of efficient
constructive algorithms for inducing finite state gropmars when the numbar of states
is known. fnis is & reletively tractable problen first formulszied in 1956 by lMoore,’
however, loore's glgorithms ere much less efficient than Biermazan's.

Pao (1969) formalized an glgorithm for finite state gramsmer induction thet
did not reguire the number of states to be known in advance. A sazple sehb of
sentences was provided which utilized 211 the rules in the grazemer. A minizal
finite state network was constructed that generated exactly th
sentences. Then an ettempt was made to generalize by me o
work. The algorithm checked the conssquances of potential genevalization

v opr

17
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of Woo not was,
She I be induce
if she provided punc

networks occur. Bas

the sentence's surfa

end Ruff (1963) foun

easily when surface

Crespi-Reghizzi (: 3 a
progren was glven info =i ub surfe 2
in the induction of overator-precedence lenguagss wal e S T
free languages. rFor a special subsen of opzrator precedence langiazes ha was
role to define en algorithm +hat worked with only positive inforration. Except
for finite cardinality languzzes, this is the only available result of success
with just positive information.

1 think the work of Pao and of Crespi~Reghizzi nave promising aspecis. They
have shown relatively efficient, constructive algori nms are possible for inter-
esting language classes i€ the algorithms have access to information about the
sentence's surface structure. The prodlem with their work is that this informa-

n W

is provided in en ad hoc manner. 1t has the fiavor of cnsating and cer--
tainly is not the wey things happen with respect to naturel languaze induction.

hl 2

8]

I il > neefran ohructurc of tho conionoe moyv ho inferred bar ~om-
paring te to its scmantic referent. Crespi-Reghizzl hes also shown

how the_properties of o restricted subclass of languaeges can be used to roduce
the relience on negative information. Wnille natural languages certalnly have
gspects that can be pest captured with context-sensitive grammaticel forrzalisms,
most context-sensitive languages are ridiculous candidates for a natural language.
An efficient induction algorithm shoild not become bogged down =s does CGold's
enumeration technique considering these absurd Janguages.

BNV =

Gra=m—ar as a Mapping Between Sentence and Canception

There is one sense in waich 211 the preceding work is irrelevent to the
tesk of inducing a natural languzge.. They have as their goal the induction of
a correct syntactic characterization of a target language. bBut this is notv

what neturel language learning is sebout. In learning a natural langucge the
2l is to leara a ggg_that allows us to go from sentences to thelr corres

go tn responding
conceptual structures or +ice versa. I argue that this task is easier than
o

ing the syntactic structure of & natural languzge. Thais is not bescaus

b
[
o

ore is any meglc power in semantics per sz, bus pheecause natural languages are
+e in a very non-arblirary manner the s

so structured that they incorpore
ture of their semantic referent. The importance of semantics b

25 b
forcefully brougnt home to psychologists by a pair of expariments by Moesser
end Bregrman (1972, 1973} on the induction oI artificial languages. They com-
pzrad language lesrning in the situntion where their subjects cnly saw well-
; thev sav well-formed

formed strings of the languuge versus the situaticn wasre

¥ <
strings plus pictures o0f the semantic referent of these strings. XIn eitner
case. the criterion test Was for the subject to be able to detect wnich strinzs

18
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of the languige were well-formad —-— without aild of any rererent pictures. After
3000 tr roining trial s subjects in the no-referent conditlon were et chonce Iin
the criterion test whareas subjects in the referent condition were essenvially
perfect
The Role of Semantics
Results like those of ioesser and Bregman have left sons
there 18 some magic power 1n naving semantie referent. Howe
toat there is nohnecessewy advantage to having a semantic reie
letionship batween a sentencs and its semantic referent could,
be an erviirary recursive relatlion. Inducing this relation 1s
difficult as ivducing an arvitrary recursive language. This 1
in nzed of e proof wnicn I have prOVldDQ {Anderson, 1975). It
to reproduce here, bu t‘ t algorithm to
bitrary semantlic rela ences, CC
identify en arbitraxy Gold's wWo
tion algorithm for th £ be more i
impossible enumzratio g chz g an arobiirary
for it to b2 possible to induce the semanitic relstion, tnere
constraints on possitle form of that semantic relation.

i a
ee ways: . First, rules of natural language &
i -~ o +

0

with respect to single WOTAS hut with respect to word clessss lixe noun or
traasitive verd which have & COmuOi samantic cors. Sc semantics can help
determine the word clesses. This is much more efficient thnan learning the
syntactic rules for each word separately.. Second, semantics is of cecnsiderable
aid in gensralizing rules. A general heuristic employed by LAS is that, if
two syntactically similar rules Function to create the same semantic structure,

then they cen be merged 1 into & single rule. Third, there is a non-arbitrary

correspondence vetwaen the structure of the semantic referent and the structure

of the sentence which permits one to punctuate thes sentence with surface siruc-
i

<
ture information. The nature of +this correspondence will be explained later.

Siklossy 's Wgrk

The only attempt to incorporate semantics as a guide to grammar induction
was by SlulOSSy (1971). He attempted to write a program that would be able
to learn languages from the language-through-pictures books {e.5., Richards
et al., 19581). The books in this series attempt to teacn 2 houaSD by D*ea

senting pictures paired with sentences that describe the

’..J

SlnlOSSy 's progran, Zbie, used general pattern-matcning echnlques to find
correspondences between the pictures (&ctuully hand-encoded picture descriptions)
end the sentences. The progren does use information in the picture encodings

to help induce the surface structure of uhe sentence, somewhalt in the manner

of LAS. However, it remains unclear exactly what us o} X cf semantics

s
or what kinds of languages the progrem can learn. Tna displayed exzzpl
n

e es of
the prograx's behavior are very sparse with examoles of it making generoliza-
tions. As we will see, & program must have strong powers of generalization if
it is to learn e language The few examples of gen neralization all work as fol-
loWws: Suppese Zble sees the following three sentences:

19
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1) Joha walks
2) Mary walks
3 Jonn telks

ig an a2cceptable sanience. It de=s notb
in guiding these generalizations.

8iklossy also providaes no discussion of how his program's ben wavior relztes
rring

to that haz ning & languaze. The conz example of an attenpt to simulate

cnild lenguage learaning 1s Kezlley (1967). His progranm attempted to simulate the

in'tial grovwtn of child utherances Irom oaz word, to two werds, to three words.
Kelley claims to be making use of semantic information, but he never specities

its ro+& in the program's T rformgnre In general the details of the vrogram are

not explained. In his exampies, the program LeVeEr gets to the point of producing

grarmmaebical sentences and it 1is unglear whether it could.

Yy, Rationnzle

A central assumption in the LAS project iz that a languege learner can some-
times identify the neaning of santences and that languaze learning takes vleace
in these cilrcumstances. The specific goal is to explain how The pairing of ihe
sentence with its semer +tic referent permits language learning. The form of this
explanaticn 15 TO develop a computer prograi wfnich cen learn & language given an
inout of sentencsas vaired : +ith -semantic inters sretations. The ccmputer Drogran
buiids up & gramzer that permits it to undersiand and generate sentences. e
causa of the irherent complexity, it is essential that this theory of language
ecquisition zke the form of a computer Prograii. T will argue further for the
nead of a computer model aTher describing the current version of LAS.

This project does hove as an ultimate gozl TO provide a faithiul simulation
of child language ac vl m question whetner & systen constructed
Just to succeed at age learning W hawve puch in common with the child's
acqguisitian sysiel. T stroangly suspact it will, provided we insist that the
system have the sane infor mation processing linitations as a child and provided
x
w L

e

its language les zation has the sane ;nfo*mavloﬂ—p*Oﬂessing demends as

£ w

that of the Chll ne consideration underlying this optimistic forecast is
that learning & natx*al language imposes Very severe and highly unigue informa-
tion-processing demands on any induction systen and, C consequently, there are
very severe limitat ions ou the possible structures fer a successiul systen.

A similer argument hes been ~ forcefully =advence d by Simou (1969) witq_respoct
to the 1nfor“3+10n—proce551 g demands of various problem-s solving tasks.

The curreat version of the program LAS. 1 works in Qn o«erly 51mali’
donain and mzkes unreasonable assumpptions &bous p
Nonetheless, it predicts many of the gross Ieatures OI generullzlulon and over—
n chlld langucge lesrning. 1t t "ofs"

generalization i is terrivly oIX in other aspects.
It turns out that many of its faillures of simulation can be traced to the un-
realistic ab~uzptions it is making about task domain and inforzaticn processing
abilities. ifzny of the proposed devel pments of the proaraﬂ have as thelr goal
the elimination of these vnrealistic assuwesticns. The assunpbions vere rade ©o
make the problem more trac tghle in a first-pass attemnpt.
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Figure 2. A schematlc reprecnnuatlﬂn sziving the input and output
of the major subcownonenus 0f LAS-LEARNMORZ,SPZAK, and

. UNDERSTAND.
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The SPTRAKTZST progran would peramit LAS 2 construct
. .

adzquate to ha adle all the seatences it was P

neke many 701-1~an Ben aeralizacions about phrase st peturess and word class2s.,
LAS to successtully analyzs OF zenorate many novel senblncEs.

%1 tic g fzation 1 to be mads by the
3 1y, 1 & i the
ord rr] T S oFS

of identical graamarls ig essenbial to identiiyizg T e et o

the 1angua~e. CENERALIZE is a Prograt which is only called atfoer fairly stable

networks znd word classes have peen built uD. iz is oaly at this point that

it is safe o —ake these critical generalizations.

The HAM, 2 Menory Syste

e

LAS., 1 uses 2 version of the HA memory system (see Anderson % Bower, 1973)

celled HAM, 2. HAMLL 2 provides LAS with ©we e irst, 1

provides & renresentatlonaW formalism for propos;t'onel wnowledge. This is
used for representing the comprehension ouuuu* of UHNDERSTAND, th & j

input to sPrAX, the gemantic information 1o , long-term meRory, 2nd syn i
fo“”aulon about word classes. HAM.: 2 elsd conualns A pemory searching alzo-
rithma MATCHL which is used +ta evaluate various persing conditions. For ine-
sbance, the UNDERSTAUD progradl requires thav certain features DE true of &
ord for z parsing rule to apply- These arse checked by the MATCHL process.
T“e same MATCHL process ig used by the gPaAX rem to GET rmine whether the
t

3 with a parsing rule creati? n
tyvre. This i process is & variant of the on2 dethlbed jn Anderson and
Sower (1973; Ca. 9 z 12) and its details will not be discuss

action 8_:40\.‘"

ace
AL A Y
.ﬁ P

However, it would be useful to describe here the represse nsational for-
malisms used Y uaM. 2. TFigure 3 jllustraves hoW the jnformation in the
centence A red square is gbove the circle would be represenbed 'ith the HAM. 2
A Teo Buoel 5 abeve LOE =o - )
or
X

3

e

network formalisas. There are four distince
two noges X and Y: X is red, X 1s & saquare,
Each propos Sit ion is reer“senued by a dgistinco Tre

+yre consists of a root prop051tlon noda connh
node and by & P link to & redicate node. !
posed into a R link pointing to & relation node and into & O link pOLnbwng to
en object node. The semaniics of these represeiv tations are to he interpreted
in terms of simple set~theoretic noticns. The subject is & subset of the
predicate. Thus, the jpdividual X is & subset of the red things, the square
things, and the things avove Y. The individual Y is & subset of the circular

things.

One other D01n+ needs emphasizing zoout this representation. There is
e distinction pade betweaed words and the2 concepts wnich they reference. The
words are connected to +their corresponc iing 1deas by links 1abelled W. Figure
3 lllthf&tLS all the network notatlon nezdad in the current implementation
of LAS. There are & nucber of respects in waich this represzatation is sim-

[
¢

pler than the old HAM representat tion. Thnars are nov
ng the situation {time + place) in wilch sucn a

one propoqlulon within enother. Thus, W carnot expre
tences as Yester day in TV be room 2 T2Z SOUZTS was ab
believes that & red s4ud Ve

believes LUAL B 2o —ao—
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stateneants are not needed in the current LAS ecause we are only con-
cerned with repres:nting information that cen yed DY ossension. In
ostension, the assumed time and place are nere . Concepts like pelief
which reguire embedded propositions are TCO ror ostension. In fuoure
yesaarch LAS will be ex-andad beyond the Ccur noive domain. At that
point, complications «ill e regaired in ths @Al resentations; hoWwevel,
when starting out on & project it is preferradl coep things &5 simple as

Theve are & nurber of motivations for the assoclative network representa-
tion. Anderson and Dower (1973) have combined this represantation wita a num-
ber of essuaphlons about tne psychologi:al Troces3es that use thel. Predic-
tions derived from the Anderson and Bower moisl wurn out to be genasrally tLrue
of human cognitive performanies. However, » gne specific detalls oOf
HAM's representation nave not been empiricea tested. The principal feaiure
that recomzend3s associative network rapress’ as & r formalisnm

res
has to do with the facility with which they
18

rened. Another advantage
of this representation is particularly rel to the LAS project. This nas
to do with the rmodulerity of the repressnié i Tach pro*osition is coded
as & networx structure that can be acessed sed, independent of other

So far, I have shown how the HAM, 2 re;resantation encodes the episodic
n

jnformziion that 1s input to SPRAK and the output of UNDERSTALID. It cen also
hHa usel TO encode the cemantic and symbectic intormation reguired oY the parsing
S, S eneam e S L T otoate TTANS A ermand A PmmmAa tho fomnt thaot ~Tre o

Cg e v P -r NPTV L g JOROASEEDSTY L L SRMMRAEERSESE S Il Ll - - . -

and square are poth shabes, »ed and blue are both colors, circle and red
belong to vie wvord cless FCA put square anc ~lue belong to the vord ciass *CB.
~r o . . ST . T - .
Hote the word class information 1S5 predicated O the words while the categor-
ical information is predicated of the concedis attached to these words. Tne

<

categorical information would be used if mtactic rule only applied to

o

Q
K
rh (D
)

shanes or only +o colors. The word cl&ass information niznt be evoked if a

dabiad-aibe = e ) oo =

language arbitrarily applied one syntactic TuLe to one word class and cnother

rule to & different word class. Inflecticns 2re & common example of syntactlc
s

]
rules which epply to arbitrarily defined word classes.

HAM. 2 has a small - language OF cozmands which cause varicus memory
1inks to be built. The following four &are 211 thav are currently used:

1. (Ideate X Y) - create 2 W link from -ovd X to idea Y.

o (Out-of X Y) - create & propos'tion T . From this root node create

' a §.link to X_an& a g_llnk to Y.
3. (Relatify X Y) - create en R 1link from X o

L. (Objectify X Y) - create an 0 link ¥

These coxmands will eppear in LAS's parsing networks to create memory
otions. Often rather than memory

structures required in the conditlons nd T
appear in these commands. If the

nodes, variables (denoted X1, X2, etc)
variable has as jts value & Memory node that node is used in the siructure

puilding. if the variable has no value, & ermory node 1S created and assigned
=} ] J =]
to it and that pode is used in the mensry opevation.

To illustrate the use of these ccozmands, the following is & 1isting of
the commands that would creste the siructure in rigure 3:



g2

<

CIRCLE FCA RE SUARE - w(RB | BLUE

Figure 4. An example of a HAM structure encrding both categorical information
and word class information -



(Ideate red 1)
(Ideate square 2)
(Ideate above 3)
(1deate circle )
(Out-of 1)
(Out~cf X 2)
(Qut-of X 8)
(Objectify & Y)
(Relatify 8 3)
(Out~of'¥

t ply to any 02
WO st lanzuages will b C
will also be used to ;1lustrate the SPEAX and UNDER
erived shortly. The first, GRALIARL, is a simple artificial grammar. 1o
second, GRAMMARZ, is a more complex g apmar ror & suo
defined by the rewrite rules in Table 1. GRAMMARL va
mally different rrom Fnglish word order. The sentenc
be reed &s asserving the first noun-phrazse nas the &
last word to the second noun phrase. For purposes of readad
of these languages are English but they need not © A
janguage withoub recursion. In contrast, in CRAMDMARZ the NP element has an
et iAnal OTATIET thich Coon nmenivaly 22l HP camoroting o poteontiol infin~

o TOZUTIZIVS—s e T y ™

e~ PSRRI S S

jte embedding of constructions.

t
i)

i
w

In both gremmars, it is assumed that above and below are connected to the
idea as are right-of and left-of. Tne words daiffer in the assigment of their
NP arguxents to subject and object roles. Taus the difference between the
ctic Tuis is indicated by naving the words belong to
two word classes RA and RB. Thus, UNDERSTAND with CRAMMARZ would derive the
same HAM representation in Figure 3 for +ha sentences 1he rod squaore is adbove
the circle and The circle is below the red sguzre. It woutd have been pO5-
sible to generate distinct representavions Tor these two sentences. I think
this would have De2€n less psycholcgiciL‘ interesting. Basicelly, the network
is e

~

word pairs 1s synta

\

gramuar makes the inferences that A belov 3 quivalent +o B zbove A end en-

codes the latter.

TABLE 1

The Two Test Gramma2rs

GRAMMARYL GRAMMARZ

) > WP NP RA s - ~» NP is ADJ

NP NP RB ¥P is RA NP
NP » SHAPE (COLOR) (SIZE) P is RB MNP
SHAPE + square, circle, etb. NP » (the,a) NP¥ CLAUSE:
COLOR -+ red, blue, etc. . i > SHAPE
gIZE -+ large, small, etec. . »> ADJ SHAPE
RA- » gbove, right-of CLAUSE - that 1is £DJ

that is RA NP

27



MARTT 3 e
TABLE 1 continued

R »  Dbelow, left-ol CLAUSE - +thet is 23 L2

SEAPR - sguare, circle, =il

ADJ + red, big, btlaz, etc.

RA -+ akove, righi-of

B > pelow, left-of

Figure 5 il1lustrates the parsing networks for the grazmzars. Iz should

be understocd that thesa2 networks have been deliberately written 1n an ineffi-
cient manrer. For instence, note 1in CRAICIARL that therz ere two distinct paths
in the main START network. Toe first is for those Sentencss with RA relaticns
and the second for thnose sentences with 2B relations. If a sentence irah
to UNDERSTALD nas a B3 relasion, UIDEZRSTAND will first attempt TO parsse it by
the first branch. The tWo noun phrase braaches will succe=d bui the relation
brench wiil fail. UNDERSTAND will have +to back-up and try the secsnd branc
that leads to BB. This stly back-up is not really n=cessary. 1t would have
been possible to have ccnstruct 4 the START networx in the following form:

P WP ' T

not branch until the critical re
unuLl tnhe @
e reores‘nﬂ"'

Table 2 provides = formal specification of the information stored in LAS's
network grammars. A node either has a number of arcs procesding out of it
(1a) or it is a stop node (1b). In spezking end upaerutanalng LAS will try to
find some path througn the network ending with a stcp noce. Tach arc consists
of some condition that must be true of the sen € 2o ke ed
in parsing (under SuundWhO) the sentence. T i

n
be taken if the condition is met. This
conceptual structure +o correspond to th
thet point. Finally, an arc includes specl
control should trensfer after performing the
zero or wore HAM memory commands (rule 3).
or more memory comzands also (rule La). These

e true of the incoming word. Alternatively,
push to an emoedded network (rule bv). For instanc
in Pigure 3 were to be spoken using CRAIDIARL. The START n

e

called to realize the X is above ¥ proposition. The erheddzd NP network would
be called to realize the X is red and X 1is osliti L hing
to a network two things must be Specifiad«~KODE~ s b

work and VAR, which is the memory node at

B

sitions 1nue*aoch. The elemerrt t_is rule

that is n“edgd by the LOUbrol mechanlsms ©
three Tules 6a, 6b, and 6c specify three ©
commands can have. They cen either direct

to the current word in the sentence, or ref



Netwaorka for CGRAMNMAR?

NP £eoP . £ ADT
START s e S 2 =Sl 7 STOP
< RA
NP NP
: 7 TENS6 e STOP
A el Z RB ' NP :
*\».53 £ CO~ 2o § e . e 58 ==STOoP
C & nEn MDY
NP —— s N1 e STOP
€ “SHAPE CLAUSE
NP1 2o AL - =STOP
NPL
A2 : 2GS TOP
& REL Scor
CLAUSE 01

Pigurs 5. The nelwork gramnars used by LAS

29
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Thea contruction of CRAMARL

(PuUY spERTRUP THSURK LGET spui *SUBHIY

1

7 {PRCLN

3 {urf PR START PATH

@ CLIPUSH X1 T NP (IOUT-UF X1 %Xs5)) S2 )

5 (iPUSH x1 T NP} {{ODJECTLF X5 Xi1)) S4 )i}

6 (BEF PROP S2 PATH

H [{{PUSH X2 T NP) {10BJECTIFY 25 X2}3 53 IRR

8 o AuEFPROP 53 PATH s
Y s {{{TIDFATE WORD x4) {QUT—OF WORD *RAJI ({RELATIFY X5 X4}) 5T0P
1o {(DLFPROP S4& PATH o

11 (L{PUSH X2 T Np) L{0OUT-OF %2 %X5)) 55 31}

12 LDEEPRUP S5 PATH :

13 {{{LI0FATE WORD ¥4} $0OUT-0F WURD #RR)) {(RELATIFY x5 X6}) STOP &
S {NEFPROP NP PATH :
15 ({{{TBEATE wORD X&) {GUT-0F X4 =SHAPE)) {{QUT-0OF X1 L6633 NP2 Vi
17 {NTFPROP NP2 PATH

18 {({pPUSH X1 T COLOR} NIL NP3 )

19 { NIL NIL NP3))D
20 {NEFPRCP NP3 PATH

2i {{tPUSH X1 T SIZE) NIL ST0P 3}
22 {NTL NIL STOPI)
23 (DEF PROP COLOR PATH

24 {{{LIDEATE VYGRD X4) {QUT-0F X& #*COLOR)] {{OUT~-0F X1 X&)) STQOP
25 {NEFPROP STZE PATH

26 ~ {({{IDEATE vORU v%). {UUT-UF X4 =SIZED] {{QUT-0DF X1 x&)) STop
21 (TALK) ‘ o _
23 ({1DCATE SQUARE 1) {1CEATE CIRCLE X213

29 {{uuUT-uUf X1 #SHAPEI{CUT-0F X2 =SHAPE) }

30 { (1DEATEC RED X33} {IDCATE GREEN X4))

31 ((NUT-0F X3 #COLOR) {QUT-QaF X4 *COLORY

32 (L1ISP SETO X1 NIL)

33 {{IOEATE SMALL %5} {1DEATE LARGE X133

3a {{uUT-GF X5 #S1ZEY{0OUT-0F K1 %SI1ZE} ]
35 NIL

36 {TALK)

37 {{IDEATT TRIANGLF ¥1){IDEATF BLUE ¥2){IDFATE MEDIUM X31))

33 ({OuUT—0F X1 £SHAPLE){QUT—~OF A2 *CGLOR){OUT-0F X3 =*SIZE})
39 (LISP SETQ X1 NIL) ' - ,
407 (L1SP SETQ X2 NIL)

41 {{{UEATE RIGHT-OF X1){IDEATE ABUVE X21)
43, ((QUT—-CF RIGHT-0OF %R A) LOUT—OF ABQVE *RAIJ}
4Ly {(OUT~OF LtET-0OF «RB) {CUT-0F BELCW *RB}J
45 { {IDEATE LEFT—-0OF X1} {IDEATE BELUM %233
L0 NIL

3L



stood Also the cnll
use o certal el L ryction, but 10
of produchion. The final possibility 1s that
non-linguictic strategles in-language i
evidence thal FOWlg cnildran dnnob undcrstand BC
nassives when Lhey ara nov raversinle. It see
of 1 8! 55 bevwasll sunject,
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(1973) hes also ergued

roduction in 2 child is
The study of Fraser, Bellug

morenensicn pracedes produc n. They

¥ of und andiing a sentence (as manifest

ture) B - ataneously vroducing the
iculties equsting the neasures of produstl
970, using gitferant scoring procedurés,

Prager et al. 4id £ind a strong correlatio
uid e wnderstood aud which could be procuce
~h wersa relatively e&asy to understand were

A 4 rend ad AR Rk :/.—v,n»&-—\!-va&-

with a HAM network of propositions taggaed &3 to-pe-spoken and
a toplic O sentencs. The topic of the sentence will correspond to the
first peaning-oearing : etwor: cpmiX searches through 1Us
START networx ilooking 10 t i xan proposition
attached to the topic end wnich expresse pic 2g rirst elemsnt. it
getermines wnsiner & path eccomplishes +his by evaluvating the actions associated
with 2 paih and deternining if they created & structure that approprlately
zatches tine to-be—-SpoKen structure. Vhnen it finds such & pain 1t uses it for
generation. *

Generation 1is accomplished by evaluating the conditions 2

i¥ & condition involves & push to an embedded networx gPzAX is re

c peak sSOmE sub-pnrase expressing & progosition agtached ©O R
si eds

alled to 5 =¥el cha
proposition. The arguUmancs for a recursive call of FUSE are +he e-bedlad pet-
vork andé the node that counects the main proposicia: and the embedded DroTO-
sition. I the condition do2s pot invelve & TiEE 18 will centain a sat of
nemory commands specifying that soma features pe trus O & word. 1 will use
these features 1o deternine what the word is. Tas —ord so determined y st

5
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As sn cxample, CONS =ider how SPEAL nerate a sentencs correspoading
to the qulutrUCLU“e in Figure £ using , the rn gngh ~like grammar in
wigure 5. Figure 4§ conboins 2 set of PrOPesSitlons aboubt taree objects denoted
by the nodes GoL6, G195, and G182. Of node Czib it 15 soserted that it 1s 2
criongle, and tnat G195 1s right of it. Qf Gi95 it is asserted that it is =
square and that it is sbove G182, Of ¢lfz it 15 asserted That it is sguars,
gmall, and red. Figure 7 illustrz toc the geanzration of this sentznce frod
gRAMMAR2. LAS enters the START network intent cn produclng soma utterance
about G195. Thus, the topic is G195 (1% could have Degen o6 or G182). qha
first path +throusn the network involves *redicati“? an adjective of G195, but
there is nothing in the adjective class predi:a:ad of C195. The second paiil’
through toe oTART nebworn corr e¢sponds O somsthing IAS can s5aY avhout G195 ——
it is above G182. The rgfgre, LAS plans to s&y tnis as its main proposition.
First, it must find some noul phrase to exoress G195- The substructure under
G195 in Figure 8 reflects the construction of this subnetwork. The NP network
is called which prinfts the and calls NPl whicn retrieves square and calls

PRelsu

to print +the square. Slmllarly recursive calls ar
to express ¢182 as the spall red sguare.
the so !

CLAUSE which prints bqwt, is, and right-of and which recursively calls P
o pade on the Pl network

The actual sentence g“norat°d ig de
START nebtwork. Given the sene to-be~spPoxen
SPRAK enerated A STl iangle 1S left—o* a
leen +tre tople Cle it generated A red

qht—u. t?lancle “le is :*111 Note how tne

of VS *Lgxu—o- end o1 &

__._.__

It is interesting to inguire what is he linguistic pOWEY of LAS a2s &
speaker. Clearly it can generate any conbext-Irac language since its transition
networks correspond, in structure, to a contexs-free grammar. Howsver, 1t twrns
out that LAS nes certain cowtvxt~sen°itive aspactis pecavse its D;OddCblOﬂS are
constrained by the requlreﬂanu that they express SOmS well-Tormed ;s conceptual
structure. Consider two proolems th Cnoz=sky (1957) regarded as not handled
well by context- free gramiars: The + is agreement of number between & sub-
Ject NP and vero. This is hard to & arrange in a context-free grammar because
the NP is already built py the time the cnoice of werb number must be made
The solution is trivial in LAS-—wnen 00 n +he P and verb are SDOKenN tholr numn-
per is determinad by ins spection of whatever concept in the to- -be-gpoken styuchure
underlies the subject. The other- Chomsky eX xample involves the jdentity °F
solutional restrictions for active and passive sentences. Tais is also achieved
au topatically in LAS, since the Trestr ictions in both cases are rgqurdpﬂ_simoly
as reflections of restrlctTOng in the sera ntic structure from wnich both sen-
tences are spokert.

While LAS can hendle those features of natural language suggestive of
contex*nsoq51u1ve rules, it cannot handle &xX gmples 1ike langueges of the form

(U cr

e ba

pDbich which require coqteXu-seﬂ51b ive gramoars. it is interesting, hoWever,
trat it is hard to find natural language sepntences of this struciure. The best
T can come up with ere rebpactlvelf— tvpe Sentencss, e.2-., 19:2,:;§__3}1”233;§nd
kiss=2d Jane»and Mary , respectively. This sentence 1S of questicaavle aCCupuaEEl



progr‘am.

Pigure o The to-be-cpoken HAMN network for the SPLEAK
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Figure 7. A tree structure showing the neiwork r2llSand word cutput.
These networks were called in generating a sentence about
G195 which expressed the 1nfoz¢at70n contalned in Figure 6.

35



Ture

wnen

B R % M . -~ -~
arsing. For this reasolh tne ¢ rucLure o
coxzplicated. he UIIDIRSTAND nd its con=
: . N
c T =nt at Michigan.

would be useful 0 motlva for a conplex
two sentences Ine Tamocrat on=2s L0 Win

in '76 sarty hopes ere high 107 'T5. sing nebtwork
would call a nowl parass 2 work Lo identify the Tirst nou Supoose
UNDERSTALD ideatifiled g cratic marty. Later elemenis second sent=ance
would indicate that a was Wronsg. Tharefore, the vork would have
to re-enier b iffere
The Democrasll e ered th
to rectrieve sings
so that it ng The ¢
control gLrucuure &r complete report
fere I ©L31 Ut Iorabaiarty ther maneral siTncuure of the D
to find some patl torousa <ne START network vaich will re
parsing of the sentence. It evaluates ta2 geceptadility
eveluating the conditions associated with that path. A cC
that certain Tfeatures wa true of words in the sentencsa,
checking R2mory. Alternatively, & condition can requlire
network. This network must parse SoRe subphrese oI the S Vnen LAS find
an acceptable patn rnrouzh a network it will coliesct tne long that path
to create & temporary memory structure to represant the & the phrase
that LAS has parsed. This, for imstance, given the sanbtel square thab is
rizht-of the triangle is ad ~2, LA e it in the
Torn illustrated for Figure T, Teirieving the Hal struct are 6. That 1is,
in LAS. 1, understanding really is simply generaitlon DU e. Tnis is the
first displayed example ol & reversible augmented transit rkx. Simzons
(1973) comes closest with two different networks, one Ior generatlion and one for
analysis.

It is also of interest to consider the poweT of LAS as an acceptoT of lan-
guages. 1t is clear that LAS as presently constituted can accepht exactly the
context-Tree languages. Tnis is because, unlike Woods' {1970) systemn, actions
on arcs cennot jnfluence the resulis of conditions ©n &rCS, and trnerefore, play
no role in determining whether a string 1is accented or not. Howsver, wnat 13

. - . N .

5 that LiS's behavior as &n language Unasrs 1y

cted by its limitations on grammaticzl DOWELS. Consider thne following
exemple of winere it mignt seem that LAS would n2e2G & context-sensitive gremanr s
In Englist r sher of adjectives.

{

n poun parases, it ssems we can heve &n aroliraXy rumoe
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General Conditinns for Tanruage Acquisition

— ____.._..__-,.....-‘.‘____,_——._.

Having now reviawad hoW LAS. 1 understands and D
n tnree aspects of the induction prograi:
-

0]
o
[l
o
e
4]
:
pe
U
[0
cr
O
o
Lo}
pebs
]
+ly
}_J
L
o
pas
|9
ct
+
oy
IR
2
o]
jol
[N
¢
ot -
e
O
o}
[
5
p
44
"

. 1. S W C
waich LAS learns & langeage. It is assumed that LAS. 1 alread
a ke acuage. Taab is, lexice i

1 is to learn the graziar of the langudl

rds to a representation of thelr ccobined meanis
corned with learning meanings, it cannot be & Ver; a
cond languzges learning wisre pany concepis can transier b
o

A
. I will propose extensions of 1S, 1 concarned

Another featurs o LAS, 1 is that 1t works in & particularly restricted
gerzantic Jomalil. It is presented +rish plctures indicating relaticons and proper-
ties 27 twr—iime:sio:al gecmetric objects. These plctures &€ actually encoded
into the Had Prooost ional network representation. Along with these pictures
LAS is cressntad senTances descriping the picturs arnd an indication of that
aspect in +ha picture wnich corresponds to the main proposition oI TRE SUMLTICS.
From this inforz: jon input network gremmar 1S constructed. The selantlc

k=] f24

= LY Co

domain may ve Very simple, but the goal
natural-like language which may desc i

The BRACKET Progrei
A major aspect of the LAS project is the BRACKET progral- Tais is an algori

for taking 2 centence of an arpitrary 12ng age and EAM conceptual structure anc

Sroducling & bracketing_of +the senvence that 1

nis suriace structure prescribes +he hierarc

sentence. fOT BRACKET to succeed, four condition

etwerks required to parse the
must be satisTied by the infor

Condition 1. A1l content words in the sentence correspond TO elements in the co:
r ol '

Longruv -’ .
cepbuel st wcture. This amounts to the claipm that the teacher is a0

+the learner O conceptualize the information in his sentence. It does not. matte
to the BRACKET algorithm.whether there is more information in the conceptual
structure than in the sentence.

Condition 2. The content words in tone gentence are connected 1o the elements
in. the conceptual structure.. Psychologically, +his amounts ©O the clainm that

lexlcalization is complete. That is, bthe learner KuOWs he @m22ninLs of %the wWorr

Condition 3. The surfece structure interconnecting the content words is 1sozor
phic in its connectivity to a language-fres prototype structura.

37



3 and b require considerabls 2xposi
wassume that the prototyps suruct
s I will explaln v something
Consider Penel (2) of Figure 8 which
cqerics of propositions in the English s=ntenc T ove
circle. Panel {b) illustrates & gradi deformation of that structura giving the
surface structure of the sentence. Note how elements within the szze noun phrase
are appropriately assignad to the same subbree. lote that the prototype struc-
tyre is not specific with respect to which 1links are atove walcn otners and
which are rignt of which oulsevs. Althougn the FAd structure in Panel {(aj is
set forth in a particular spatial array, the choice is erbitrery. In contrast,
the surface structure of a sentence does specifiy the spatial relation of links.
It soems reasonable that all natural languages haves as +heir semnanties the sane
order-~ireé protoiype astwork. They differ from on2 ano. +her in (2) the spatial
ordering their surface sbructurs assigns to the natworz and (b) the insertion
of non-umecaning-bearing I O“p mes into the seatence, LOWEVEX, the surface
structure of 211 natural languages ig derived from the same graph patierns.
Penel (c) of Figure 8 shcws how the prototype structure of Panel {(a) can pro- .
vide the surface stiructure for a sentence of the artificial GRAMMARL. All the
sentences of GRAMMARL preserve the connzctivity of th2 underlying HAM structure.

s of 1
By this critericz, et least, CRAMMARY could D2 a natural lenguage.

+tain conceivable languages would have surface structures which

cinng OI The underlying structure. Panel (d) illustrates

tha 1 language with the seme syntactic structure as English, but

ent rules of semantic interpretation. In tnis languagz the ad jective
i he

phrase preceding +the object noun modifies the subject noun. As Panel (d) illus-
trates, there is no def ormation of the prototype structure in Penel {(2) to

> - Py
achieve a suriace structure for the sentences in the language. Io matter haow

i+ is attempted some ranches must CYOSS.

connectivity of the prototype network to infer what the
i) the sentence must be. The network

+the right-left crdering of the branchzs or the above-below or-
ght-left ordering can he inferred simply from +he ordering of
2 ntence. However, to speciiy +the avbove-bhelow ordering, BRACKET
ca of infeormation.
ac + could have been assigned
1ight be translated into English syntax as Ci
s below the red square. Clearly, &s these TWo
networi and the sentences are not enough to sncc'
of subtrees in the suriace structure. The diffe
in Figure 8 (c) and 9 15 the choice of which
which is subordinate. I Bl ACKET is also given
proposition it can then 2 amolclously retrieve U
The assumption that PRACKET is given the main promo
to the cleim that the teazcher can direct the learne
asserted in the sentence. Thus, in Panel (¢), the te
learner to the piciure of & red triangle above
have to assume that the learner properly coace *ualized the pictura and that
he also realized the abOVen°ss relation was what was being asserted in the pieturs.
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CIR&LE_ SWALL SQUERE RED BELOW
Figufe 9. The surface structures of the sentences
in (o) and (e) are graph deformations o'
+he HAM structure in (a). Panel (a) '
. e Anfnrrm {-E';”fo a
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crouped togeoher.

4 open ara closer together. 1F Figire 101 wers the proto
a sentence wnich a lue”ﬂdtnd words from ths twWO sub-
groqps. e is no deformation of the structure in {a) that
would orovfde for John opanad with a key the door Branches ol
the HAM structiX ;e b0 cross. <LThis =nglisn sentence anﬁ octher Znglish
sentences walc > deformabion condition for Figure 10a have all a
' them. HoWwever, this is al»usd ca*ua uld

1 . 1s one posed by any verd wil

p*a.) e ?..1" gumen

arn and its 2Y8W v X
in some nath‘a* langVage. There are two ways Lo deal
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e Q’Ll_ a resort <O & menory 1
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1
15, questions in languag
1lex Veros. To address +this question We ne

s ti-—argusent verbs invo & recresenuauloh like
arning tae role
t

,EJ

mantic function of the case grguments.
he lan ghagﬂ then involves leerning how to assign 1

Lcture like (= ), I will sketc n a system to do this

If we Aoeb the HAM ropresentatloqs then some changes are recuired in RRACKZT-

greaph del cormation condition What is characteristic of multi-argument veros
in HAM is th 2t the arguments are inte*connecbeq by causal rel 1zticns as 1in (a).
Thus, SRACKET shouid be made 1O treat all the terminal arguments in such cousal

a single 1evel of nodes in & graph struciure all con-

structures &5 defining &

nected to a single roct node. That is, BRACE =7 can treat 2 un structure

such as (a) if it werD (b) for purposes of uhilizing the graph deforms icn con-
gition. In fe SACKET already doess tnis in he currenu 1mn*54eqbatxoﬁ

The Datails of ARACKET's, Outpu

So fer, only & description of how one& would retrieve +he surface struc-
ture connectng the content words of the sentence nos been given. Suppose

RACKET were glven A triangle is rhat is sbove 2 small red
A brecketing structure m"°t be imposed on this sentence whicpn will

L1

att_of & sQuare

square.



JOHN TURN ‘KEY  CAUSE. DOOR OPEXN

(v)

JOMN KEY  OPEN DOOR

Figure 10. Alternative prototype structures for the sentence Join
gnened the door with a ¥sve The HAW structure in (a)

introduces too many distincitionss
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also include2 the functicn WOTAS. Given tnis sentence ané she conceptual soruc—
ture in Figure 6, BRACHZE resurnad (G257 (coug GEnT 2 cpiangle) is left-of (G195
G196 a square (G195 G225 thav 1S sbove (G162 G183 2 cmn1l (G182 G185 red (c182
c18L Square)))))). The nain nroposition 15 1057 waicnh 1s gLVED ng the first

term in the wracketing. Tne ?irqt brackeced Sup-2XPression dascribzs tno suo~
ject noun shrass. The vt in the gub-expression Zgié_ls the node that
links the ex edded pro he ma it The I

(V'
tywo words oL +ne sont
The next Two words
proooo~JlokJ corres

=

}
{1
tw

'y
U
ok

gonaing © whese The re v
corresponva to a description ¢195. The jrst embed $TOD
S
v

gl?? asserts this cvjact 15 & quare anc L secoad Pr 5

that gggé_is above G102, Love that the G225 proposition is empadded as & sSUH-
expre:smon within the Q;ié_proposition, "he last element in the (225 proposi-
tion is (€182 G183 a small (G182 G185 red (c182 G1oh square))). This exprassion
has in it three propositigns G183, c185, G18h ebout G182.

ut of TRACKET. Abstractly, the out-

The ahove EX2ED v
d by *Th= rollowing three rewrite rutes:

B andt -

Q
put of BIACKET may o€ spect

i. S~ Droposition element
2. eleu&e;Av "O“d
- element (tooic 8)

That is, each 02

oy
alamant e {-v-n’i o 11

cxeted output is 2 oroT sition node followed by 2 sequence'of
mnese elements arse oither revritien as words (rule 2) or
ons (rule 3). & orackebed subexpression pegins with &

ztes the connection between +he erpedded and empsdding
mepts within an expression are eitner non-meaning be aring

&

N ..t m

pracketed subeXpr es
topic node which ing

[\ ‘-ll Ul

io
ic
prop051t1015. The ele
words or elements corresponding to sudbject, predicate, relation and object
ion. MNote fhat BRACKET induces & CO”“ESuaﬂdque petwesn &
level of brack a 51ngle proaabltloﬁ. Tach level of bracketing will
also correspond to a n network in TAS!s gramial. Because of the modularity
of HAM Dpr OUUS*b*OW:, e modularity is 9C31°V9d for the g“?mhaulcal LEeLWOTKS.

5

4 =

in the prop051b

-

). (D

Ling and
.3
S

When a number of Daagﬁd nrooocﬂuloxu are attached to the same node, they
are er edqad within one another in & ,15ht—oranch1ng manner.

The insertion n of non~function ¥ cords into the bracfatlﬂv is a troublesou&
provlem because there is no semantic features to indicete where they belong.
Consider the first ¥ ord & in the EX"“Dle sentence above in Figure 6. It could
have been placed in the toy jevel Ot £ pracketing oOT in the subdbex® regsion con-
taining triangle Currently, all the function words to the rignt of = content
word are placed in n the sane level as the content word. The bracketing is
closed 1imw nediately arter this content word. Therefore, is is not placed in
the noun-phrase bra c?etlng. This heuristic seems 1o WOrk % more often than not .
Eowever, there cleer rly are cases where it will not work. Consider the sen-
tence The boy wno Janp spoke to Was deaf. The current PRACKET program would
return this as (Z;no Loy (wWho Jane 'pohe)) to was deaf). That la, it would
not identify tO to as in the relative clause. olAllarli, non-meanis ng-bearing
suffixes 1like geqdo* would not be retrieved &S part of the noun by this
heuristic. HoWever, there is @& strong cue to makKe bracketing &pPPrOPT riate in

these cases. 1Tnere tends to be & pause afteh morp hemes like to. Perhaps such

L3



pause sLruciurs=s could be called upon to help the BRACKET program descide how
to insert the non-neaning-beaving morphemes into tna hrackebling.

aring morphemes pose furthar problons begidss
such wmorphemes 1 a noul phrase. Thes Seq
hat, in principle, might constitu'z &n arpit
e's semantic refer=nt ~ould provids no cuss
t lanzuage, Thersfore, we wonld be back to t
g duction task that vwe naracterized in the 1
comfo z to chserve that the structure of tonese st
non-meaning~bearing morpaemes tends to be very simple. There arz nout many
exumples of thnese strings being longer thon a single word., 'Thuc, iy gecns
thet Lhe languagesz constituted by thecoe non-ne enning-veuring strings are nothing
more than very simple ficite cardinality 1unéuagcs which poce, in tnemoclves,
no serious induction problems. The various stretches of non-mzaning-boacing
rorphenes in a sentence could elso have complex interdeps endencias thereby poslng
serious induction problems. Agein it doss not seem to be the case that these
¥ structure of natural langzuzg

dapendencies exist. So once agaln wWe find that the st
simple just at those points where it would have to be for & LAS-1ike induc-

o]
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O
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Tn concluding this section I should point out one example sentence which
RRACKET cannot currently nandle. They are respec tively sentences 1like Jonn_and
nd langhed resovectively. Tne n*oblam will such a sentence is in 2t
is tne following prototype structure:

1 2

vd
g

Jonn dance Bill . laugh

rhus John and dance are close together and so ere Bill and lzugh. However,

the senbence intersperses these elements JLSﬁ in the wa wvay tnau nakes bracketing
impossible. There are probably other exenr ples like this, but I cannot think
of them. TFortunately, this is not an ubterance that eppears early in child
speech nor 1is a particulerly simple one for adults., Of all the grammatical
constructions, the respactively constructlon js the ocane that most sugzests the
n=zad to have t”ansfovmaulonal rules in the graxiir.

s is capable of
ly modify the grarmar sO
complete. 1t receives’ ..

The function of SPEAKTEST is to test wnether 1t
generating a sentence and, if it is not, appr opriate
fthat it can. SPEAKTEST is called after BRACKET
from BRACKET a HAM conceptual structure, & ormck d sentence, the main Pro-
position and the topic of the sentence. As in the SPEAX progran SPEANTEOT
ettempts to find some path through its network which will express a proposi-
tion attached to the topic. 1¢ it succeeds no modifications are made to the
retwork. If it ceanot, & new path is built through the network to incorporate

the sentence.

"1
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The best way to undershand the operatica of E

through one example. 1ne tarzet languazge it was given tO le

Ldble L, This is & very simple languase Git

a3 a smaller vocsbulary to make it mor

this 1an unge 1s that it is of Just suf
io I

n, LAD has leern

acquislt ion mechenisms. In aQQAt

P

Table 1.

Figure 11 11lustrates LAS's
come 1in. Tao first senteace 1 DLk
returned by BRACKET as (G174 (G115 GLLo
c1Th refers bo the main proposition given &s an &r
tais is LAS's first sentence of the lanzuag® the START network will, of course,
conpletely fail to parse the sentence. 1t nas no gramrar veb. Therefore,

it induces the top-level START networs in =1 igure 11. A llSulF5 of the cxact

) s given below the grapaical lllUSbruU on in Figure 11.
nts after G17h in the bracketed sentence are them-
3t two arcs in +he network will be pushes to Sub~

¢ contains & condition on the wWor d 2oove, Tne restric-
is that it b= & empber of tne ¥WO ord cWas AlOO This CWass was

» this sentuence and only contal o*d apove at this polnt.

zins e

' tructed & path through the START network, SCDAKTE T checks ths
subnetworks in that path to see whether thsy ca hendlie tne bracketed subexpres
sions in ithe sentence. This is accoi? siishad by 2 recursive cail to CPEANTEST.
Tor the first phrase, SPEAKT‘QL is called, taking as ar gunants the network AL95,
the pnrase \Glld sqa&re) and uue. Lopic S AP notvoyl STHA 8105 the word clﬂss
A211 is created to contain square, and in neotwWork AL9T the e word class A221 con-
fains triangle. 1nes:2 two sudbnetworls should be tne seme in e Tinal gremmar
but LAS is nov prepared to risk such a gen=rad alization at this point.

Note in this example how the bracketing provided by BRACKET comaletely
specified the ex pedding of natwork Tne sentence provided by BRACKET was
(Gl?h (G115 G116 square) (G118 G1L9 trianzle) evove). The first element GLTh

as the main UL00051u10ﬁ. The second elemsnt (G115 G116 sqpore) was a bragh,bed

suoa<preosLon indicating & subnetwork should ve created. Similarly, the third
expression indicated a subn network. The last element above was & single word
end so coula be hendled by = meRory condizion in the mein network.

The seccnd seuntence is triangle sguare right-of. This is transformed DY
BRACKET.to (G315 (gehb GehT Triangle) ( 3L square) right-of). Because
of the narrow one-member word C classes thi entence cannot be handled by tnhe

s

current grammar. However, SPEAKTEST does not add new network arcs to nandlie
+he sentenca. Ratner, it expands WOT class 2199 to include right-of, word
class A211 to include tr*anrle, and word class A221 g include square. The
grawmar 1s nov ot such a stage that LAS could speaX CT understand tha senuences

triangle sauare abova Or square Sauare rizht-of and other sentences which 1%

BN
¥
ere oy =
Ted not studied. Thus, elready the Firs:t generalizations have been made. LAS
can produce and unders uan& novel santenc

This illustrate
SPEAKTEST prograll.
SPEAKTEST decidgd to use the exist

the type of generalizations that are made within the
or instance, consider e g2 zation that erose when
Ling netvork.struch;re to incorporate triangle

c‘fﬂr

S S
25
—
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START A5 5195
£ 4211
AL95 e s STOP
£ A22]
a9y —EREE —»STOP
A199——2=ABOVE
A21Y ~~SQUARE
5957 e TRIANGLE
s G)}i_
A Y 7 S P
) rd G‘ F
GH7 G316 ASF
7 Y | V N’ S/ P
| 28:
G246 RIGHT-OF 483 SQUARE -

TRIANGLE
((TRIANGLE)(SQUARE) RIG

1 e
jyel -0 Iy

Al99~—*—~“e>ABOVE,RlGHT~OF
;?SQUARE,TRIANGLE

A211:

A22}-—~v—5>TRIANGLE,SQUARE
f£irst two sentences in the

FPigure 1} 14S%s treatment of the
jinduction saquence.
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Anderson

LJ

tence. This involved (2) using the same subnet-
for square and (b) expending the *er class A211

the {irst . 1 of th :
work :}?5 +tl had bzen ¢

rezted
to include triangle. Both decisions rested on cemantic criteria. The network
al a T

ALGS was creatcad to analyzz a desc iptinn of ode attached to the main propo-
sition by t 2 S. Trianzle was & G=3T; tion of the ﬂo&~ o6 which is
' by 1 in n i
s th
twork tine
de.
ass.

In making these generalizations, S
eoout the nature of natursl language. This

jop 5. Words or phrases with identical sementic functions at identical

in 2 network behave identically sY¥ ~tzatically. Tanis is the assunpticn
s e-induced egqulvalence of syntex. 4+ s another way in walch sexzantic
on fac 111ta*ﬁs grammnar inducti I arly need not ve brup o? an
trary language. Fror instance, decisi
i r ecl e in ube ooﬂect noun phrases.

jzation, would not be

I S PR S R - TAC

Figure 12 illusir ates LAS's nptw rk gremnar after two more sentences have
come in. Dbenvences 3 and b iivolve bue rol i

treats these &as syntactic variants of atove an rigat- of which differ in their
assignment of +heir nown phrase argut uments ©o the lovlcal cauevor*ea subgect apd
object. Therefore, LAS creates sn alter

+o accommodete this possibility.

LUned oCade Gaaa ek T e - -

Figure 13 illushrates the course of LAS's learning. Altogether LAS will
be presented 14 sentences. Subsequently, = will have to meke three extra

generaliza ations ©To cepuure the enbire terget language. Piotted on the ebscissa

ot U)

3o

is this learning history and along tne ordinaie We have the natural logarithm
of the number of sentences which the greamzar ca2n handie. This is a Tinite

ianguage, unlike GRAMMARZ, and therefore tae number of sentences in the language
will elways be finite. As can be seen frcn Figure 13, oY the fourth sentencs
1AS's gramoar is adequate 1o handle 16 sentences.

LAS‘S grammar after the next five sentences is illustrated in Figure 1k,
These are LAS's first encounters witn twe word noun phrases. A1l five sentences
involve the relations right—of and above and therefore result in the elaboration
of the A195 and A19T suo-networks. Comsider the first ce, square red
triangle bluz above, waich is retrieved oy BRACKET as (CeTo €271 s
(G270 C272 red)) (C303 C30k triangle (c20 270). Cons
the parsing of the first noun phrase. Hot C
is embedded within the larger noun phrase

embedding which BRACIKET always imposes o & seqtenve_ Tmis will cause SPEAX-
TEST to create g push to an erbadded network within its A195 subnetvork. As
can be seen in Figure lh, the existing &rc centaining the A211 word class

is kept to handle squa*e. Two alternative arcs are gdded——one With & push to

cr U’\l

L7
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Generalizations
The growth of LAS's grammar with its learning history.



Additions to LAS®s grammal after studylng:

1. SQUARE RED PRIANGLE BLUE AZOVE

2, TATANGLE LARGE SAUARE SuALL RIGAT~OF
T TRIANGLE RED PRIANCLE RED ABOVE

L, SQUARE SIALL MRIANCLE RED RIGHT-OF
5, SQUARE BLUZ TRIANGLE LARCT RIGHTD-OT

>~ STOR C560 -

C510 = small,blue,large,red
small,blue,large,red

a

N

w

(02
I
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A f‘f.l =T 500

- . | A
the Chih 1,0), petwork ena the

o)
tho —o‘d class €510 is s=t up which

ronsition. within tha cLEL n=ivork
ond n e word red,

llustra‘es g, more con ar vcti 2 way tha
- A o} c o

ust those words
(d) illustrate how
lef r ion in natural languzge.
Suppose £ ~nild hears pirases 1ike Tne bo¥, £ G9o» at, ebc. He would seb
2 -crﬂnt an{ artic;e ‘oLloJﬁd Ly any noun. Suppose, he
e ha 1 =L
r&seﬁ*Pd in Lib as 12 T DOy T S.
1leftv - 2 ratior ; =1d.co struct the n2b wors illustratead in
ate=d the ceneral ation that foots is the
- 100v>

pruralsass v 8 ":r;hezic gﬁ*ﬁ*ﬂ“ﬂvﬁ*Wﬁﬂ is, of conwrse;

2 notorious OV wal 4 lanzuage (e.g., EXVii, l9oh) Vnat

js distinctive ach mo*pﬁemlc cules is that there are & namoar of alterne-—
tives gnd no sis to choose betwaen them. Because of it 5 principle

of sementics—in uivalence of syntaX, LAS will ovargﬁna“allze in those
situation Ap , children &re operating under a similar rule.

LAS needs to be endowed with a mechanism TO allow it to recover from such
Cvprce“vralizations. Therefore, one of tne future aaditions to LAS w11l have
to be a RECOVER program. Copsider how it wo ould work with this DluraWization

example. Suppos LEARIDMORE receives ithe sentence Th2 toet are above the
sriancle. 1o atbeuvulnc to analyze the gentence in SPFA{TRoT, the plural
foots will be generated but will mismat ch the sentence. RECOVER has as its

function to no-e such mismatches. Since it 1is possible that there are tTWO
alterncte Ways of expressing plu urality, B RELCOVER cannot assuze its gramdar is
Wrong. Rather it will interrupt the jnformation flow and chack the accepta-
bility of The foots are above U the trianzle. That is, RBECOVER will explicitly
seek negative information. Upon learning the expre;31on is ungr@m¢au1cal
RECOVER will take foot out of the word cless that is oluralized by 's.

o

;

1 . .
To mccomplish this T would have TO put within 145 som? pschanism that will
segment words jnto their morpnemss.
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Figure 15

Some possible network grammars

¢ A211 cLBh
\—-{r\‘ 2> STO?

A195 7 .
N HIL
> STOP

>~ STOP

THE “‘3’/’0* b ‘NOUN . STOP

THE TN £ NOUN LN 's -, STOP
NP 7 _ f\ij

Sam STOP
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Every bit as much as LAS, & child loglcally needs negative information 1o
rooover from overgeneralizations. The interssting quastion js where the negabtlive
irformation COm2S5 £rom in the case of tha child. Parenlbs do correct the child

in such vious morpheric overgeneralizations {Brown, 1973). Even today I

find myself corrected (not by my parents) for my fallures to properly pluralize
esoteric words. The child may also use statistical evidence for a noagative coil-
elusion. In some manaer he may notice +nat the morphezic form foohs is nezver
used by the aduld end sO conclude that 1% is wrong. Horning (19069} has formalized
an slgorithm for detecting such ovargen=ralizallons by =assigning prooabllitied

to rules.

t

Figure 16 illustrates LAS's treatzent O
trajining sagquences. Thesa involve SORS thre
cion of the noun phrasss on the branch of the start network for BB re
As can bz seen from Figure 13, at the point of the 1Lth centence TAS has
its grammer to the point where it will handle 616 sentenccs of the target lan-
guaze. Letually the grammaer has produced some overgeneralizations-ai

ept a total of 750 sentences. LAS has encountered phrases like square,

£ the last four sentences
a word noun phrases and also expan-
1

acc
square small, square red, and square resd small. From this experience, LAS
hos generalized to The conclusion that Tte senbences of the language consist
of a shape, followed optionally by either & size OT color, followed optionally
by & size. Thaus the induced grammar inclules phrases 1ike squares small small
baczuse size words Were found to be accepizble in both second and third posi-—
tions. Interestingly, this mistake will nat cause LAS any problems. It will
never spesak & phrase 1ike square small small beceuse it will never have a to-
namspaken HAM strucihure with.tvo small's modifying an object. It will never
TTCITA T

heay Such & parase 50 nd thus UNDERSTAND can not moke any mishares. This 1is
howleover—general grommar can be successfully constrained

e nice exampls
i of semantic acceptadllity.

The problem of 1earning to seguence roun modifiers has turned out to be
a source of unexpacted difficulty. In Dpare, the ordering of modifiers is
governed by pragmatic factors, For insvance one is likely to s&y small red

square when referring to one of many red SQUATES, put red small sguar when
referring to one of many small squares.. Differences like tnese could be
Mo

controlled by ordering of 1inks in the HAM remory structure.
GEFERALIZE .

After teking in 1l sentences 1.4S has bullt up 2 partial network grammar
+hat serves to generate many more sentences than those it originally encountered.
However, note that LAS has constructed four copies of a noun phrase graziat.

Ope would like it to recognize that those graomars ere the same. Tne fallure

to do so with respect to this simple arbificial language only emounts to an
inelegance. HOW=2VETr, the identification of identical networks is eritical %O
inducing languages with recursive rules.
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Additlions

i

to LAS®s grammar afier studying:
10 . SQUARE BLUE SMALL TRIANGLE RIGHT-OF
11 . TRIANGLE RED b”U m RLUD Levt-0r
12 . TRIANGLE Sl AUT, SOUARE RED SUALL SELOW
13 - SQUARE BLUT TRIANG = BLUE LARGE LEFY
1L » SQUARE REDI TLRGE TRIANGLE RED TARGE BELOW
21 L5072
cuey L0 2> 0713 DoY > STCP
\\\; RESE
: =37 0P
[l 4 z
& 8593 D1095
B566 D111 6= STOP
x\\ MiL
>ST0P
3580 D1023
B56L ==D104% 2 STOP
\ NIL '
5T 0P
51045 £173
p1o23-E220%0 s B1394 E1368 - s7op
WL
\ STOP
, ED1117 E88L
D1095 = EQOL =~STOP
: NIL
31 0P
£D71L
D692 2. STOP
E 1 <" O y &
p1095—EBEALY 5 STOP D1023-SPR0%S 5709
T
5881 —CE-E905 o STOP £1368—2EE222 =5 STOP
D714 = small
Dloks = red,blue,small
D1117 = blue,red
£905 = small,large
E1395 = large
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other networss CS2 identifiad. The network WO
So in the recursive identification of neumo*ks G*wERALILZ will ha
ion bvtwaen one network like LLQ which contzins an
ption 1s thet with sufficient experience the embedded
would become Till + +o be the same &S5 the embedding networ k. Afte 5
has been identifie with HP2 HAM will have a new network structure where N
represents the amalgamation of ypl, NP2, and NP3.

ir o)
netWOTﬁb may reguire tha
i e o)

1

a subnetwork ralsa
NP The &S3UmD

¥p ~+ the NCUR
' the ADJ NP¥

Io% » TOUN¥
ADJ¥ NP*

ote that new word classes NOUN¥® and ADJ* have been created =s the union of
the word c1¢sses 1ouN2, NOUN3, NOUNL and of the classes ADJ2, ADJ3, respectively.

M

ENERALIZE was called to ruminate over the networks generated after the
first fourteen sentences. GENERALIZE succeeded in identifying A195 Vly n ALOT.

As a conseguance, network A195 repl laced network AXST at the vosition where it
ccurred in the START network (see Figure 12). Similarly, 8”66 was identified
with and replaced network B564. Finally, B566 vas sdentified with and replaced
A195 throughout the START n@t&o k. Tne final cal effective grammar js itlustrated
in Figure 17. IT nov handles all tiae sentences of the grammer. It hendles

rore sentences then the grammir_that was constructed after the fourteenth.
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Figune 17

The final roannal

- B566 12
i = ass7—E2550
START | Uk
RS 7
52
565 S=AL96——2— >A19877 7 4199
i . 28593 D [
B566- >>-D1116 1095 ~-STOP
NIL
}»STOP
£D1117 o £8
D10%5 ~%7—E904 84 s STOP
NIL .
~=ST0P
& E905
E88L 2 e STOP
8568 = nelow,loft-of
A199 = above,rignt—of
B593 = square,triangle

D1117 = blue,red,large,small
F905 = large,snall
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sentonce. This is because the roun-phrass setwork ESH6 has besn expanded to
jncorporate all possible noun phrases. oDa2fore the generalizations, none ol
ne

— P s . =y 4 z

networks——B58k, BS6S, AL9S, or ALOT ware complete. The networy. £565 ba-
s . . z A

te through merging wWith BSEL end 4195,

At this point, LAS row has a grammar
targst language. There are Lwo pajor assum
the relation between sentvence and referent =rol c t a
types of languages. The first is the assumption of the correspondsnce between
the surface structure of the language and the semantic structure. This is
critical to BRACKET's jdertification of the surface structure of the sentence
wnich is, in turn, critical to the progper embedding of parsing networks.
Second, there is ihe assumpoion of a semantics-induced equivalence of syntax.

This played & eritical role both in the generalization of SPEAKTEST and of
GFNERALIZE. It was noted with respect to pluralization that such generaliza-
tions can be in error and that children =lso tend To make such errors. iHowever,
T would want to argue that, on the whole, natural language is not perverse.
Therefore, most of those generalizations will turn out to be good decisions.
Cleariy, for languages 1O be learnable there must be some set f generaliza-—
tions which are usually saie. The only question is whether LAS has captured
the safe generalizations. ’

The importance of sementics to child lenguege learning has been suggested
in verious ways recently by many theorecicians (e.g., Bloom, 1970; Bowerman, .
1973; Brown, 19733 Schlesinger, 1971; and Sinclair-de Zwart, 1973), but tnere
has keen little offered in the way of concrete elgorithms to make explicit
tne contriputicn oI semantlcs. LAS. L is a Tirst small step to making thi §

contribution explicit.
Coneclusion

This concludes the explanation of tne algorithms to be used by LAS.1 for
language induction. In many ways the task fTaced by LAS. 1 is overly simplistic
end its algorithas axre proobably too efficient and free from information-pro-
cessing limitations. Therefore, the acquisition benavior of LAS. 1 doess not
mirror in most respects that of the child. Later versions of this program will
ettendt & more realistic simulation. Nonetheless, I think LA3.1 is a signifi-
cent step forward. The following are the significant contributions embodied
so far in LAS. 1. :

1. The transition network formalism has been interfaced with a set of
simple and psychologically realistic long term memory operations.
In this way we have bridled the unlimited Turing-computable power of
the augmented transition network.

2. A single grammatical formalism has been created for generation and
" understanding. Tohus, LAS only needs to induce one set of grammatical
rules.

3.  Two important ways were jdentified in which =a semantic referent helps

grammar induction. These wers stated as the grap deformaticn condi-
tion and the semantics~-induced equivalence of syntax conditions.
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L. Algovithms have daen devaloped adequate ©O 1earn nabural leanguzges

The gereral mode of developing the program LAS ig as Tollows: A languzge
learning situation is speeified by a set of conditions. Tn LAS. L it was
spacified that LAS already know the meaning of the words zad that it bz given,
as inpubt, sentences with HAM representations of thelr mean-ag. The senzntic
domain was specitfisd to be that consdtuted by gecastric snhzpsSs. Cnce 2 set
of conditions is specified, a set of goals is specified. In LAS. 1 there was
only one real goal: to learn eny natural-like language thzt descrivad the
dozain. Once a set of goals 15 specified a plen of attack is sketchad out.
Howaver, the problea is sush that the details of that plan only evolve as wWe
ettempt to implezent the plen as a computer prozran. Indc2d many interesting
provlems and idsas thal ware not initially anticipated in LAS., 1 wers discovered
in attempting en implemenvatlion. This is part of utilivty of computer simulation
in theoretical developmens.

The LAS. 1 progr perated in a task domain which was
means identiczl, te that of = natural language learning situation. Its behavior
was similar o o) hirmen learning & language, bdub ezain by no means iden-
tical. In =fe =& I propose Lo creasve T by 2 which comes
considerably closar To sirulsting natural language learning. h
elaborate set of zoals than did LAS. 1: '

-

3

~

1. The progrem will incorporate realistic assumpbicns about short-term
memory limitations and left-to-right sentence processing.

2. The progrem will learn +the meanings of words.

3. The program should use sementic and contextual redundancy to partially
replace exnlicitly provided HAM—~encoding of pictures.

. The program should handle sentences in a more complex semantic domain.

5. The program should be elaborated to handle such things as quastlons
end comzands as well as declarative sentences.

The general methods for achieving these goals in the LAS, 2 program will
be sketched out in the proposal section. Also in that section I will propose
some experiments to evaluate the LAS program. Wnile it is true that the task
faced by LAS. 1 is not really natural language learning, it still is a leazrning
task at which huxan subjecis apparently can succeed. Tre experiment§will de—

termine whether humans have the same difficulties in such tasks &s does LAS

end whether they make the same generalizations. However, I regard these exper-

irents as of secondary inportance relative to progran development. It is more
>, -

important to further articulate our understanding of wnat algorithms are ade-
quate for natural lenguage learning.
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C. YMeihods of Procadure

First I will describe the proposed extension of the IAS program. Then I

cribe some experimental tests. In reading the specific extensions pro-
posed for LAS, the reader should keep in mind that they have ‘as their intent
achieviug the goals set forth in the preceding section.

The Sewantic Domain

The {irst matier to settle upon in the
\

some semantie domaln be chosen, It is only
that an explicit geal for success in the prograd can be speci
will be regarded as successful if it can learn eny natural lan
tnis domein.

The LA, 1 world of ahaves, yropertiss, sod <
ished ror further work. The following is D L
there is nothing critical sbout its exact T e
d
T

I have chosen to look at a world close <o that of a young child although
there is perhaps nothing sacred about this domain. This world is set forth in
Teble 5. There are three people in this world. In addition to these there are
four categories of objects--locations, containers, supporters, and toys.

These objects can have four types of properties--number, color, size, and quali-
ty. Thus, LAS will have to deal seriously witn problens of sequencing adjec-
tives. + will also have to deal with number as a property of objects. The
objects permit a much richer variety of relzsions than in the world of LAS, 1.

This will provide a demanding test for the learning of complex multi-argument
relations. There can be sentences like Momzy trad 1

L
g
ed Dzddy the car for a2 ball.
In this world, people, containers, supporters,and toys can be in locations.
People can change their location and that of toys. People and toys can be on
supporters, toys can be in containers. People can possess toys, containers,
and supporters. '
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Andsroson

TABLE 5

Categories in the World of LAS. 2

PEOPLE LOCATIONS, CONTAIUIRS SUDPORTIRS
Mozmy bedroon box table
Daddy kitchen closet chair

LAS den dresser bed

TOYS NINABERS COLORS - 8IZES GUALITIES
dolly ona red big dirty
car two blue mediun pratiy
ball three gresn small shiny

Thus the catazories of objects enter differently into ais
of relations. ~t will prove important to the nredictive parsing
ties that I will want O introduce into LAS. 2.

Left-to-Tizht Processing

2

lanzuage avditorily. +Ious, rheir induction algorithnms nust
process incoming metericl in a left-to-right mauner. = rent LEARUMORD ‘
progran does not do this. BRACKET completely processes the senten
SPEAKTEST even b2gins to work on it. Clearly, PRACKET and SPZali:-
integrated so that the beginning of the sentence is pracketed and cons?
by SPEAKTEST hefore the end of the sentence is considered by either

ducing this left-to-right processing is & preliminary to introducing short-
term memory limitations into the induction situation.

Uy 0O

Figure 18 illustrates in highly schematic form the left-to-right algorithn
proposed Tfor IZARIMORE. Words . are considered as they coze in frcxz the sentence
TARIMORE, as in UNDERSTAND, tries to find a path throusgh its netvork gramzar

to parse the sentence. The difference petween LEARINORE and UNDER3TAID is

that LEAREMORE hes available %o it a HAM conceptual structure to enable it to
better evaluate various parsing options. Suppose LEARNMORE is at some point in
processing the sentence. It will also be at some point in & parsing nev

Let us consider how 1% would process the next word. At box 2 it wouwld r
in the word. At Dox 3 it would set 1 to the various granmatica
at that node in the network. DBoxes L through T are concerned witn evaluz
wnether any of these optilons can handle the current word. Box 4 che
there are any options 1eft. Box 5 sets a to the first option and re

the remsaining options. Box 6 checks whether the word would be DIXse
end box T considers whether the action associzated with that arc cCOrr
a HAM strucuure. " If a passes the tests in 6 and T, TARINMORE advances to con-
sidering the next word. Otherwise it tries another &arc. If it exhaus

arcs, it will call BJTLDPATH (box 8) to build & new arc fyram the curreat node.
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The work currently assigned Lo BRACKET will have Lo be assigned Lo BOX 1.
That is, box T will have to determine wnen an arc should involve 2 push Lo an
enbedded network and when it should pop back up to oca znbedding nobworn.  Tnis
vill be done by consulting tne information in the semantic struchure. It would
also be possibla to consult the pause struciure of the sentence 10T inforzation
about phrase structure boundaries,

Mote that certain sentences whilch the old LTARIMORE system could handle
will not ©e handled by this system. For instance, consider the sentence The
square thalt is above the triangle 1s rignt-of the sguare. AfTter the= first two
words it would not be clear which square it was that we were referring to, the
object or the subject of the right—of relation. Thus, buildpath could not assign
an appropriate action to the path. In the old LEARIDMORE this amdbiguity about
the referent of square was resolved by letting ths whole sentence come in dbefore
dealing with it. Presumably, however, children would have difficulty learning

from such sentences.

In this system it will not be assume that LAS knows the meaning of the
words, Rather this will be something that LAS will have to learn from the
pairing of sentences with conceptions. First let's discuss the learning of
words whose reference is 2 simple concept or object, €.8-, box Or MmOy, and
postpone discussion of ¢ mplex relational terms like trade. Logically, the
task of lexicalization is gquite simple and it would not require complex algo-
rithms to succsad. For instance, consider this algorithm: LAS is given a
sentence with n; words and a conceptualization it c¢escribes with oy concepts.

tore with each word the my concepts. The next sentence that comes has B
words and its conceptualization consists of ip concepts. If a word in this sen-
tence is new, store with it the mp concepts. 1f the word is old, store with
i+ the intersection of the concepts previously stored with it =znd the new mo
concepts. Eventually, ignoring problems of polysemry, & word will becoms pared
down to zero or one concepts. Those with zero concepts are function words
end those with one concept have that concept as their meaning.

o
<
€1
(%)

Of course, this algorithm will run into trouble if LAS does not always
evtualize 211 the concepts referred to by the sentenee, This cen ba

died by having the algoritim wait for a sequence of disconiirming pieces
T idence before rejecting a hypothesized meaning. Incidentally, subjects
ehave just this way in concept attainment situations (see Bruner, Goodnow &
Austin, 1965), not teking regative evidence &s having its full lozical force
about the meaning of the word.

The basic problem with this algoritha is that it makes unreasonable assuap-
ions about the information processing capacities of humans. In pilot research
T ny own, I have found that adult subjects can learn the meanings simultane-
ously of & nugber of words in a sentence. However, they do suffer difficulties
when there is high ambiguity about what a word means. Presumzbly, children
would have even greater difficulties extracting word meanings from conplex sen-—
tences. Broen (1972) and Ferguson, Peizer, & Weeks (1973) report that new items
of vocabulary seemed to be introduced through use in set sentence frames such
as Where's ..., Here comes ..., There's ... known as deitic phrases. The noun
tends to be heavily stressed and repeated. The parent frequantly points to help
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it e 3 e

the gral;atica* structure of Lhe s tepece., TO CODDIRE these various CONSLGEra=

tions, I Ppropose the folloving sadition to the Ilow chars in Figure 186 to deal

with the receptlon of words with unknownh mezning. In box 2, when an unknaown

word is read in LEARIMORE will make a guass zoout 1S ~eaning using knowlengs

sbout context and sbout the word's position 1n the grammal. T+ will commitb

this guess To menory and stick with the guess unless later disconfirmed. Tne

program will only nazard a guess in ecircumstances of low un ertainty. Thus,

it will only gu=SS iT it can otherwise parse ine grammatical structure in wiich
a { eded or followed by

tne word apnears- 1+ will not guess if the word is Dprec
other words it does no Thus, the Progradl, much 2

+ o

L ) =3

jearn on tne ba is of miniza contrasts betwsen grammatical pa
f=1

: s, if the prograx knows the grammatical rule 1P - determiner
adjective noun. - and encounters the phrase the glick boX it will suppose thab
Tt - o T a £ +the

glick reiers -0 some property © the box.

Thus, the prograi +ill have to gequire 1ts jnitial vocabulary by means of
simple frames, 85 do young children. With this initial vocebulary infornation,
it cen begin to learn grammatical ruies. Once in possession of grammatical
rules, it will no longer nead gimple frames +0o lezrn newvw lexical items.

ion is how function words are ever identified as non-

s is done on the vasis of failing

4 and any semantlic Teature. A0LS
sses had been astociated with a word.

assumed that all concevts are constructed before language
place and that the only problen is TO 1ink up these concepls
s is very unrealistic. Consider the verb g}xg_in the sen-

e dolly to Daddy. The meeaning of give 1s somebhing like
sae 10 DOSSESS 8n object end someons else
25 coiject. It seeds vary implausible that & child ccones
Tearning situstion with such a concedl ready mads. Wnal P
he sees Mormy pushing the éoll to Daddy or Mommy handing the
ball to bany. With these experiences he hears sentences like Mommy gives the
dolly to Daddy or Mommy glves the ball Lo bzby. From these exsmples he induces
the appropriate meaning of give. Cancept ~itainment in these situations can De
achieved by using the sort of concept idensification used by Winston (1.970) for
jnducing geometric concepis. That is, each use of the word give is paired with
e EAM network structure given the meaning of the sentence. iinston's heuristics
ellow. us to extract what these network structures
mon. The concept give, 85 Vero, is then attached
For this sort of aglgorithm to succeed, LAS must pe set to regerd certain con-
figurations of propositions, interlinked DY causal terms, &8 being associated -
with & single relational term 1n the langu2ge.

So far I have

ecquisition takes

with words. But
i
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Nate also that the effect oL suad an induction scnas would bte to =ncods
e lational b0 th SO SramTmar That is, in

The cle SCTeDAnaY ! j2er e ior of L and 2o czild is that
LAS. 1 genarotes no i ' first thz child
only generates ungrails 2ech has b2en
erudely characterized 2 % in two and thrae
word utterances. To :nces it azppears
that children have © e constructions.
Onz explanation of th pealing from tae
point of view of L&S not receive as input
to its induction rout rapnic sentences.
Then It seexs reasonabdle
to otal sznhtence he
has . If so, then his
indu 2s their basic
dat )

hitothesis comes from studies ol child imitation of adult
SD +hmT, thage dminations, ile than +he ehiidls owm
pr legzraphic in nature g % Fraser, 185L4). Blas-
de found that children d to pzzt those Words whlech are
str s which occur in terminal positicms. The semaatically
im ve stressed in adult speech. Senoles (1969, 1970)

aded to omit words that had wnelezr semantic roles or

Tnx I find striking is that these &re just the varizbdbles
which control wnat I can repeat back after neering a French sentencs--a language
I know quite imperfectly. Of course, the variables of serial position, per-
ceptual isolation, and meaningfulness ell have well established effects in
verpal learning experiments on irmadiate nemory.

-

iptroduce telepraphic

d BADEAR., The BADEAR T

of stress, mean fulness, and serial posit
varsion of the sentence. The locus of t £
boxes b and 8 in the flowchart of Figure 2. Ba

£

"I propose

w0
of LEARNMORE call
in

e
g

1catey T
words onto BUILDPATH. Rather some words will ''slip from consciousaness' after
failing to be parsed. It i1l tend to onit words wher: f{a) they are unstressed,
(p) their meaning is not xmown, (¢) a critical nusver of new wWords in the
sentence nave already been passed to BUILDPATH. I suspact this critical number

is something like one or two.

Factors (a) and (b) would generate the effects of
] T

Factor (c¢) would yield good memery for the firs the sentence. WwWhatl
good memory children do shovw Hr iast words in phrases prodably refiects short-

term ecoustic memory.
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An interecsting feature Ol BADEAR is that, expanded, LAS
would be able Lo receive wore of the sentence. iong and imiba-
riong would groWw 45 Goes e child's. This would be mlicit mechanisn
for oan idzn suggested by Sraline (2571), Olscn (1973, Inducing a
grammar Iren jerenerate santences presents an intere Yow is it tkhat

oandon its rules fTor generaiing e eech? Uvierely
ad B T ti fuller se does not follow
5 Are W Te le means for
expressing the s3ne tho chanisn incorporated
that will sirengihen SOR lative Rules to de
would ba t cesstuld LDEIRETAND and
uczessiully mignt tt e 2rcs out of
zarsing nels stack 2ir relaiive
Subjects wo op of a stz i Tneffechlve
he original T o a three word utterances would descend
- of the stack and so bsccme unavailable. Tnls strengin mechanlsm

e sate as used to order 1inks in the HAM mexory rodel. Tnis is a different
way to bring formation to vear in grarmer induction than thau pro-
posed for rather than seeking explicit disconfirzation of rules
the rules ned out of =xistence as roOre adequate rules takxe

]
over the used to occupy in seatence understanding and

P N
generaticn.

+h the following form:

START

N ///g
NP ‘70

This grammar regquires considerable backup if the sentence does. not have an RA
relation. As suggested earlier it would be more efficient if IAS were given the
power to trensiora ihe grammar into the following form:
STOF
ERA
1P NP

ERB
™
sSTOP

Given that there ere = ous time problems {see introduction ot proposal)
in parsing, it is c i £ methods be incorporated in the learning prozram
for optimizing the grammar. The merging of arcs, besides raking the grammpar

& o [ bl B

more efficient, would be another form of generalization. It could be used to
further merge and build up vord classes. ' '
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Turther Use of Semantics in Lansuage Acgulsition

There are ab least tvo further ways thab semantics cuan be used to aid languaza
acguisition ipn addition to thos 5 5. 1 : ’
taal information as a further a
class tend o have & Ccommon seman
its threshold for wmerging words
ol

color nams23.
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v
ct ct I
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£ the amount of overlap batwaan
lap threshold becaus

tic property.

Another use of semantics would be to lessen LAS's reliance on explicitly
given semantic interpretations of sentences. It should sometimes be able to
zu=2ss these inbtarpretations. TFor instance, suppose & sentence caze in with the
words ball box and in. Because of the conceplual consiraints betvween these,

IAS should be able to guess their connection., This use of concepiual constrzints
in the semantic domain could also be used by UNDEZRSTAND to permit predictive
parsing along the model of the Schank's (1972) systea. Tnai is, as an alternate
to understanding a sentence by use of syntactic information, it 1s possible to
loock For conceptual constraints to predict what the interpretation of the sen-
tence should be. This prediction can then be checked for syntactic correctness
by use of the network grammar. It would be profitable to try to place a pre-
dictive parzing systenm like Schank's within the rigors of the Yioods!' network
TerEnl i5as,

A Procadural Semantics

So far LAS has been principally concerned with repres
conveyed by a declarative sentence. However, languagsa has
just to communicate meanings from one sp2aker to another.

enting the meaning
er purposes than
der commands
ernd questions. For instance, consider the sentence Put the dolly in the box.
Currently, UNDERSTAKD might retrieve the sentence's meaning as Speaker requasts
2
h

T LAS that it oubt the dolly in the box. This is the declarativ
ce. Howaver, in addition LAS showld evoke an actlon &
least take an ection to decide whether to comply. Thi
21 meaning of the sentence. The procedural meaning of decl

5 is very simple: store this sentence. This is already assun d in
eatment of the sentence. However, the procedural meanings underlying
pes of sentences are more complex. A large part of the success of

's system is that it.was adequately able to deal with the procedural
of various sentences' semantics. It is important that LAS begin to
these too0. :
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is would mean, in terms of LAS's network gremmars
a ns that can be stored. Currently, the only actlo
i e creation of pieces of HAM structure, i.e., decls
1 have to store other internal actions that spe
larative knowledge. These will include commands
or obey the order. HAMY already has cowmmands that dire
but executing orders would be something new. As part
working on methods for iuncorporating procedural knowledge into a neiworx s
tem. It is unclear yet what success I will have here.
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Anderson

ner as cural longuage Wiooe sermantics
docuzen: -red.  Consider for instance
aite and erticle——the red ball versus
an ob the listener kaoWws. Thus bhe
ite art be to search his mem
In co listene
t5 construdt & NEW repras
in the current HAM syste
.onvincinzly that the semantics of pronouns and cliner
r S by procedurss Lo determine their referents.
t i rms llke you wnose meaning is totally relative
o spe xt. in etely changes wWith
speaker, & child would be lo S !
A be

HAM memory -node. He must
cedure for determining the

Provided that LAS has the facilities for representing and evaluating pro-
cedures, thare seem 1O difficulties in learning those aspects of language
which ere heavily exbued with procedural seransics. Language learning will con=-
tinue to arise from pairing sentences witn sezzntic interpretations. However,
serantic interpratations will now ‘contain e procedural as well &5 a declarativa
aspact. Again lengu=ge leerning will consist of learning rappings betweea sen-

g 3
tences end the now-enriched serantic represenzations.

Experimentation

As stated before, I do not think that = ri
the principal focus of the project. There is still much Ffurther ressarch that
needs to be done in the way of specifying elgorithm that are capable of language
jnduction. WNonetheless, in parallel with this research, I would like %o perform
expsriments to gel some initial assessments of the viebility of the proposed
elgorithms. The Typse of information relevant to evaluating LAS is only acquired
by looking at artifical laenguages. With tness artificial languages it is possible
1o test LAS's predictions about language learnability and generalization.

mental research should yet be

Criticisms of Exveriments with Artificisl Lanzuazges

For ethical reasons it is not possible o expose young children,>just
learning their first language, to an artificial leanguage which LAS had identi-
fied as degenerate and probabdbly not learnablz. This means that all erxperimen-
+ation with artificisl languages must be ‘dons on older children already well-
established in their first language or Oi sélts.  Consequently, the first lan-
guage may be mediating acquisition of the second language. Tners is evidence
(see Lennenverg, 1967) that there is & critical initial period during which
languages can be learned much more successfully than in later years. Lennenberg

speculates that there is a phrysiologlical basis for this critical period. Tnus,

ct O

one right wonder whether the same processss &re peing studied with older sub-
jects as in the young child. Personally, I also doubd that the mechanisms of
language-ecquisition are the entirely same with the young child in first language

learning as with the older subject in second lencusge learning. However, it does
J guag
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lex funchlonsg
ec oy
ta
nix 1z
) tif a2 ose
3 ler, 1957; er, 1959) a sem e
Clearly, this nmekes an @nornmous differenc of algnritnzs a subj
can employ. The criticzl neuristlcs usad by LAS would pe useless withouh senan-
tics. a (1972, 1973) have shown tnat the existeace of a
seman £ % languaze acquisition. Except for control
condi involve & semantic referent.
LAS!'s 11 on out Language Learnzpilllty
fuction elgoritim 15 that the graph deformation condi-
tion T2 me relation oetweel the surfacsz structure of tha2 sen-
tence and the 1 structure. That is, the surface strusture must
preserve +the original cennectivity of concepts. In Section A5 we described
languages which violated this assumption. Consider the following language:

g » NP HP relation

P » noun (Color) (adjective) {clause)
CLAUSE - te NP relation

XOUN -+ square, circle, triangle, diamond
Color + red, blue

Size - small, large

Relation = above, pelow, rignt-of, laft-of

This is en expanded version of GRAMMARL described in Table 1. (The element
4

te

sarves the function of a relative pronoun 1ike that.) An exempla of a sentence

et

in this language is Sguare red te triangle big above circle Hlue small right-of.

An experiment I will do compares Four conditions of learning for this lang

guage.

1. No refesrence. Here subjects simply studs strinzs of the languege trying to
- S5 ) he g

=

infer their grammatical structure.

2. Bad semantics. Here & picture of the semtence's referent will be presanted
elong with the sentences. However, the relationship between +he sentence's
semantic referent and the surface structure will violate LAS's constrainis.
The eadjective sssociated sith the ith noun phrase will modify the (n + 1 - i)
shepe in the sentence (where n is the numder of noun phrases). For example,
the adjectives associated with +the Tirst noun phrase will modify the last

6T
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shapa. Similarly, the 1

(m + 1 - i}th related o

So for instence the s

petween the first Da

picture for the exan
3. Good zemantics. Here the adje a i

Houn iu tunt phrase.. Relatlons will rela

the surface structure. 1n= anpropriate Tl

in this case is given in Figure 125, LAS I

this picture if 1% could guess the n2in pProposinicon.
L, Good semantl olus main oroposition. The picture in this condition will

ba the same as in 3 but the two shapes in the main proposition will be
highlignted. 1In this condition LAS would be guﬂvﬁﬂuepd of sugcessfully
ting tha sentence baecause the main proposition is given.

in some ways this expezi sent is like Moesser and DBredl man's. However, here
English words are used so that the subjects do not need O ixduce the language's
Jexicalization as well as 1os grammar. "his corresponds to the situation faced
by LAS. 1. f Bnglish words were replaced by nonsense 1lables this would
Pad C A " - L

T sy
ation of the language 1o rake induction tractible. The
c

Aliz.i 1
predictions of LAS are, of COurse, that best learning occurs in Condition k%,
nex: best in 3, and failure of any learning in 1 and 2. It would not be sur-
prising tc see subiects perford petter in ltren in 2 since in they might par-
Liellry e zuic wu :.uc.é:..u, cat c‘"""'L}P‘i&.tC Somantics.

The procedure would have subjecﬁs in all conditions study the same sequence
of sentences but vary the accompanying semantic information according to condi-
tion. After & study phuse they would be tested for &T ramuaticelity Judgments
about a set of sentenc some of which violste one of the rules for gener ation.
Since the syntex of tke l Laga is the same in all four conditions, the sane
sentences will ©e gr T 1 in all four conditions. Rven though the synta
tic information given d uudy will be the same in all conditions, marﬂed
@ifferences in syntac i ledge should appsar across conditions. The

rent plan 1s to alte equences of study trials with saquences of test
so the subject study six sent=nces, with the semantic information
jete to his condition, i€ any). Then he would see six test pairs, one
ce of each pair violating some syntact ic rule. For each pair of he would
o choose the grammatica ally correct pair. 3By frequently 2l ternating study
st, it wou]d be possible to carefully monitor the growth of infor iation
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Many readers may not be surprised by the pved1ctwou of better lear
Conditions 3 and k. Hopefully, the significance of sucn an outcone woa¢d be
clear. It would show that sexentics is import tant to induction of ihe synbactic
structure of & natural language. Kowever, it would also show that semantics
is useless if the relation between the senz ntic ref rent end thne syntactic
structure is arbitrary. The surface structure ne must be a graph-
deformation of the underlyin g semantic St**‘turp Failures to eppreciate the
contribution of Semantics to language induction and failure to understand the
nature of this contribution of semantics to the induction Process nave been
fundamental in the stagnation of attexzpts to understa nd the elgorithms pernitting
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language inducticn. Thesa Tachs may pe obvious wWhen pointed out vut they have
been unovailable to the linguistic theorists oy fiftesn years.

m 3 -~ - f. Rad
There are other experiments OL
i .

anZuages wale

1 ASts induction lgovrithms, Thes2 €O B the same Durdose as
choasky's {1665) proposals foz linguistic tniverszls. That is, they counstrain
tha set of pessible hypotheses ebout language structure SO that the target
language can be identified. However, the constraints used by LAS are not tne
came as those suggested oY Chomsky. Ffor imnsvances, Chomsky proposed thait wrans—
formabions which reversed the order of words in & sentence would be unecceptadle.,
Tris is because such 2 rule dseg nobt refer to tne contence's constitusnt struc-
ture. However, a languag® which contained senvences of a natural language and
their reversels would be learnable by LAS. T+ would just develop one sew of
rules for senteances in one order and another ipdevendent set for reverss order
seatences. It would be interesting to sea wWnetiher nhumen subjects could learn

such a language.

In the excmple of the induction of GRAMIARL we found
A

ét
for LA3 to detect non-semantic contingencies betwesn syntactl cz3 in the
o)

first noun-phrase snd jn the second noun-phrass pushed to in the. nein network.
Tor instance, it is possible that a morphenic erdellishment of the a jectives
in the second noua phrass may depend on & choice of morpnesic emnbe

the noun in the first noun phrase. Human subjects should also find
to datect such syntaciic contingencies.

Predictions gboud Generalizetion

+ get of predictions, besides those concernad with language
learnasbility, w2 + will be useful to explore. LAS mekes predictions aboub
the situations under whiecn humans will ten to gensaralize rules end when humans
will not. Suppose LAS jearned the following gremnar: '

§ - VERB IP NP

up - (PREPP) N3 (ADJ)
PREPP > PREP N2

Ny » boy, girl, ete.
Wp » room, bank, evc.
ADJ - tall, nice, etc.
PREP <+ in, near, etc.
VIRB -~ like, hit, etc.

A typical sentence in this language would be Like
which means The tall oy in the yoom lires the ni
given English terus orly to mexe its semantics cl

in the language were Qgi_meaning ran, Jir meaning WORAl,

tuk meaning girl. ©Suppose the subject studies the following palr of sentences:

>

1. Like das tuk.
2, Like fos Jir.

70



Then, it 1is interesting to consider his judg eats of thea sccephanility of
santences lixet:
3, Like das tnk,
Y., Lika das Jir.
5. Like jir das.
Accept involves recallling sentence
nvoiv Lzaticn: LAS would currently

an
be z 1
a5 never encowstered Jiv
+~ . llonetheless, n2 233123
of their semaniic sinilarity
s. Tne words jir end das
could, a different case inflection whan Tney apozarl in dif-
ferenu 2 make (5) unacceptzble. Sentence (4) could be uvnacep-
1 hen preav G

in this ariificial
ould he eccept

6. Like in rooa boy tall girld

7. Likxe girl in room voy tall
That is, will rules gener alize from the subject poun dhrase to the object noun
parase. As LAS is currem atly constituted such gener ralizations would not occur
until it had built up fairly stable nown varases. Agaln suppose 1AS hed initially
only encountered simple sentences such as (8):

of nouns thait ©

Trom sentences such as (8) LAS would learn the class ceurred in
first and s=cond noun ph;ase slots. Suppose then sentence (9) was studied. On
the basis of it, would seantence (10) be accepted as grarmetical? That Is, would
the preposi tional phrase in bank generalize to Ov “har nouns in ths same class as
woman?

9. Like boy in bank woman
10. Like girl in bank man

This would be an example of right generalil
In contrast, LAS doas perform lelt geaerall
TAS would accept (12).

zation which does not cccur 1n LAS.
zation. That is, efter studying {(11)

11. Like bOj woman nice
12. Like boy man nice

T1



zcauisition of language. However,
(=}

-
information-processing demnoncs
T o e

semantic referent in grermmer in--
«will leara wazd wrong with one explicit set of

nd i . Tven that would pe o sipnificant contribution to the
Ccurreny VlimuiTL e ';::‘.'::luyx;z:‘ui} 1it & fiwid ricn Lu Gaua wub alimus s LULELLY
lzcking explicizc information-processing theories. I hope, of course, that the
processes uncovered in the LAS project wilil be the same as those uszed by
humans in language learning. A successiul simulation progren wowld constitute
an enornmous advance in our understanding of cognitive developnent.

Tne conbributions of TLAS to the artificiel intelligence field are less
certain and more distant. Nonetheless, generality in language understanding
systems is an important goal and one for wnich a learning systen approach
seens ideal. It 1is therefore importent to understand the coatripution language
learning systems can rake in this field. It would be a significant advence to
xnow in detall why & learning system approach was not the answer to languege
understanding or at least vhy LAS was not the rignt sort of learning system.

Of courss, if LAS does prove to pe the Dbasis for a viable language understanding
system, 1iis contribution to artificial intelligence will also be of considerable
importence.- ' ’

®., TFeacilities Available

1 shall nhave available the entire facili
Center, University of Michigan. My current a

but cen be extended for one to three years. My princ
Michigan Terpinal System which supports a rich variety of progranos. Most of
sP (s tafner & Wilcox, 197%)

the programming will be performed in Michigan LI &
£ LISP.

which is e relatively economical and an error—iree Ve
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