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The purpose of this research is to understand language acquisition.

There has been a great deal of research on first language acquisition in

children, second language learning by adults, and learning of artificial

languages by laboratory subjects. The principle goal of this research is

not gecting more experimental evidence. Rather it is to develop a working

computer simulation model that can learn natural languages. The model

would attempt to explain the already available set of experimental facts.

It is also hoped that such a model would be a contribution to the artificial

intelligence goal of developing language understanding systems.

Some of the detailed plans of the research are described in the

accompanying grant proposal that was awarded by NIMH (grant number 1 RO 1

MH26383-01). The period of this award is May 1, 1975 to May 1, 1977. That

proposal states an intention to use Augmented Transition Networks as the

basic grammatical formalism. I have already completed some initial learning

programs using the augmented transition network formalism. The very earliest

of this work is described in the NIMH proposal. More recently I have decided

to try to develop a production system formalism asen alternate to the

augmented transition network. There are three main reasons for this switch
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in representational formalism. First, I think it is easier to represent

the grammatical knowledge contained in highly inflected languages (eg.,

Finnish, Latin) by production systems rather than augmented transition

networks. Second, I think it is easier to represent human information

processing limitations in terms of production systems, Third, I think

production systems serve as a means of representing non-linguistic proced-

ures such as inference-making. Therefore, a theory of induction of pro.

duction systems for language has the promise of generalizing to the induc~

tion of other human cognitive skills.

I have bean using the SUMEX facility in a pilot project this

summer. I have been bringing up a version of my production system called

ACT on this facility. It is hoped that in a few months this program will

be in a sufficiently developed form that other SUMEX users may use that

t
+production system. t uses an associative network representation as its

basic data base. This is a variant of the HAM propositional network that

I developed earlier and is described in the accoupanyine proposal (p. 23 -

27). In the ACT system various portions of the network are active at any

point. of time. The productions look for patterns of activation in the net-

work. If these patterns exist, the productions are executed causing exter-

nal actions to be taken, building network structure, and possibly changing

the state of activation of the network, Activation spreads associatively

through the network and there is also a dampening process which deactivates

network structure. A preliminary description of the ACT system is given

in the accompanying document "An Overview of ACT." It is a chapter froma

forthcoming book. The most relevant section in that chapter is from pages

il to 25.



It was originally projected that this simulation work would

be performed on the Michigan Computer Systen. However, there are @ number

£of advantages of the SUMEX-AIM facility. All the programming will occur

in LISP. The INTERLISP system in SUMEX, as surmised from my own experi-~

entation, permits programming and debugging ¢0 progress at least twice

as fast as with Michigan LISP. Also programs in INTERLISP would be more

available to other A.f. users than programs in Michigan LISP. The Michigan

computer is isolated from the national A.i. community whereas I can take

advantage of the connections SOMEX-AIM has through the TYMNET and the

ARPANET. Finally, the SUMEX-ATM facility provides free computing resources

and so will relieve someof the-strain fron my tight research budget.

It is intended that there will be continued development and

testing of this production system formalism as a model of human information

processing. There are plans to build substantial ACT production system

models for language generation and understanding.and for inference making.



A.2.

cC.3.

c.4.

c.5.

Responses to SUMEX-AIM Questionnaire

Read the accompanying proposal.

The research is currently supported by a grant from NIMH (grant

number 1 RO 1 MH 26383-O1) for the period May 1, 1975 to May 1,

1977. The amount of the award for the first yearis $20,000.

This is to pay for a programmer, computer time, and rental of a

terminal.

Read the accomparnjing proposal.

It is expected that this research will have some general contribution

to make to development of language understanding systems, modeling

human cognitive processes, and development of production systems.

None

There should be no difficulty in making my programs generally’

available to users of SUMEX-AIM.

Yes

Yes

Read next to last paragraph in accompanying proposal.

The INTERLISP language on SUMEX is the principle requirement of my

research. I do not anticipate requiring any additional systems

programs not already available at SUMEX.

Estinated requirements per month:

100 connect hours

2 CPU hours ee
~ Lb iQa UY a>

1500 file pages bh 2
_ us ‘

The principle times of use in Ann Arbor would probably be 0600-0900

and 1800-2100

I intend to communicate with SUMEX via the TYMNET. I would either

use the private node in Ann Arbor or the public node in Detroit.

The toll cost to Detroit could be met from my current grant as

could the cost of terminal rental.

Not really relevant
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x Special Note

I am in the second year of an exchange visitor's visa. [I can renew

the visa for another year. My wife, an American citizen, is currently petitioning

to have my status changed to that of a permanent resident. Therefore, I /
will be able to be at the University of Michigan for the entire period of the

proposed research.



     
 

   

COMPUTER SIMULATION OF LANGUAGE ACQUISITION

: -

A. Introduction

iL. Direction and goals of the research

Most simply stated, the purpose of this research is to understand language

sequisition, There has been a great deal of research on first lenguage ecqui-

sition in children, second Language learning by adults, and Learning of arti-

ficial lenguages by Laboratory subjects. Tais research is not principally

concerned With getting more experrimental evidence. Rasner it is concerned wit

developing an infornation-process
ing model that can be used to explain tne

already aveilasle set of experimental“facts.
One of tne principal concerns

governing the design of this model is just that it be able to Learn a natural

Language Twill snow that this, in itself, is a very significant goal.

it that algorithms adequate to learn & naturel language are

quite complex. It is not possible to sit down and sinply specify tnem verovally

or with. quations. This research makes Use of the computer as &

tool tc pnd test complex modes. Wwaererore, i nave been aeveLouinis &

computer jon model of language acquisition. Tris model is calied LAS

(en acronym ror Langu23® Acquisition Syste). Most OF the proposed budget is

concerned with supporrting the developmeant of this progre®. Input to LAS con-

sists of sentences of the Language paired with represenvaettons of their

meaning. Therefore it simulates langusge learning in sitnetions where 4

Learner cen figure o f the sentenc

ease of such & situation

simple pictures and sentences describing then.

grammar which allows it to go from sentences to

lying meaning. The grammar can also be used to

meanings. It is also hoped that this program

evolution of computer language understanding sys

really has two purposes, one in psychology and one

ut the meaning oO

would be one in

I became interested in language acquisition

with a computer simulation model of human memory-

in e book by myself and Gordon Bower entitled Hunz

computer program Was 6m attempt t

principal purpose of that re

retrieval system (called HAM) and test it in

ersion of HAM is used witnin LAS. HAM 's sy

understander which was capable. of dealing with

subset of English and which was capable of usin

toresolve reference. Nevertheless, itwas re
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OQubline of Provosal

The concern in this proposal will be primarily with developing a systen

logically adequate for language acquisition nd only secondarily with 2 systen

t } ,

that simulated actual humen performance. I do not

istic goal until we have a characterization of the so

adequate for natural language acquisition. Tais emphasis’ on Logical. adequacy

is clear in the organization of the proposal. I will irst review the work

that has been done on computer language understanding. This is importent ce-

cause LAS is a language understander as well es a learner. Then I will review

the formal results on granmar induction. Tnen LAS-1 will be deseribed. LAS 1

is a first pass version of the LAS program adequa to learn simplelanguages.

r
h

O
Y

te

Than I will propose en extensive set of developments to be added to the progran,

aimed both at increasing its Linguistic powers and making it a realistic sinu-

Jation. In describing LAS-1 and the proposed extensions, I will review rele-

vant research in the child language literature. Finally, I will propose a

series of experiments with artificial languages to check specific claims LAS

makes about language jearnability.—
‘

om2. Computer Language nderstanding

Computers have been applied to natural language processing for 25 years.

There has been & succession of major reconcentualizations of the problem of

language understanding, each of which constitutes @ clear advance over the

previous. conceptions. However, any realistic assessment would concede that

we are very far from @ general language understanding system of human capability.

The ergument has been advanced that there are fundamental obstacles that will

prevent this goal from ever being realized (Dreyfus, 1972). ‘These arguuents

are shamefully imprecise and lacking in rigor. Te best (e.g., Bar-Hillel,

1962) has to do with the extreme open-endedness of language, that en effectively

unbounded variety of knowledge is relevant to the understanding process. It is

boldly asserted, without proof, that it is not possible to rovide the computer

with the requisite background knowledge.

In reviewing the work on natural language systems, T will constantly

measure them with respect to the goal or general language understanding. I

appreciate that it is a legitimate artiviciel intelligence goal to develop

a lenguage system for some special purpose application. Such attempts are free

from the Dreyfus and Bar-Hillel criticisms. However, from any psychological

point of view these systems are interesting only as they advance our under-

standing of how lenguage is understood in general.

9
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effort turned out to be & dismal, failure (ALPAC, 1955; Jus agner

1965). Today, it is fashionable to attribute the Failure to che then-current

ingoverished concepsion oF lenguage (e.g., Simmons, 21970; WilKS, 1973). Tre

early attemots took the Tors of substitution of equivalent words across lansguagss

This was ausnentes oy use oF surface sbtrucvure and word associations but ab no

point was tne word abandoned 2S the princioal unit or meaning. Recent work

on language understanding (e.g., Schank, 1972s Winograd, 1973) has ecandoned

the word as tae mit of meaning. It remains to be seen “~hether current attempts

e.g., Wilks, 1973) at machine translation nave better success.

Interactive Systens
inveracties=f

Tae now popular task domain for applications of computers to lenguase is

in constructing systems thay can interact with tne user in nis own langusgs2-

.

PS
~

a

Question-answering
systexs are the most common, the User can in

program abouts Kno
s data base and input new xno

depen j

% yp pu

    

DY
%

eantatinn snd store n taat Lo. the ini is 37 & wh

used to guide an interrogetion of the data base For the answer. The f

system is critical in tne answering of questions since many answers will not

be directly stored but will have to be inferred from what is in memory. Both

parsing and inferencing run into time problems.

The central tine problem in parsing has to do witha the exsrerme syntactic

end lexical ambiguity of natural languege. Rach word in & sentence admits of

nsyntactic and semantic interpretations
where mon the average may be as high

es 10. If there are a words, mt interpretations must be consicere ealtnoughna

only one is intended. ‘The fact that language 4s so amoiguous Was & surprising

6
n

discovery of the early machine attempts at parsing (e.g., Xuno, 31955). Thus,

there is exponential growth in processing time with sentence length. To date,

no heuristics have been gemonstrated that change in general this exponential

function of sentence length to something closer to @ Linear function. The

human cen use general context to reduce ambiguity to something approxinating

the linear yelation.

Suppose there are m facts in the data base and the desired @educt
wineti

long. Then, there 15 something Like mm possible comssne
There is also an exponential growth factor in tne task of in

xr

the desired @eduction. ‘This suggests that very caeep ings
n

is difficult to acnieve and this is certainly true of our every-c38y yeasoning.

However, it also suggests that inference making should become more difficult as

we knoy more facts (i.e., nigh & shich is clearly not the case. The provlem

fecing inference systems is to select only those facts that are relevant.

10
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Resolution theorem-proving (Robinson, 1965) is the most studied of the mechaai-

cal inference systems. It is also here thet the most careful work has Been cone

on heuristics for selecting facts fron the data vase. ‘These methods include

semantic resolution (Slagle, 1965), lock resolution (Boyer, 1971), and linear

resolution (Loveland, 1970; and Luckhan, 1970). In practical applications these

heoristies have served to considerably reduce the growth in computation tine.

e t nstrations of the optimality of these heuristics are tasx-

ir are no gensral theorems about their optimality. I suspect that

eral deal effectively with the problens of exponential g20¥ he

 

Althousn there are potentially serious time problems both in pars

pr

 

inferencing, 2 problems have not surfaced in tne past ograns might

haye expects isis because these programs have all been rather narrowly

constrained. ir lenguage systems only need to deal with a srall portion of

possible syntactic constructions and possible word meanings. Also, because of

restrictions in the domain of discourse, only 4 restricted set of inferences

are needed.

Some of the interac

ano r

etive systems (ELIZA - Weizenbaum, 1966; PERRY -— Colby &

effort to Go a complete job of sentence analysis.

gs performed to permit success in marrowly circum-

‘antences were generated by filling in pre-prosramnzed

The ambition in programs like Colby's or Weisen-

earance of understanding. Weisenbaun's program

jan psychotnerapist and cColoy's a paranola patient.

L uage understanding it was difficult
» %
H

nat these might just be manifesta-

    

  

      

Other attempts made more serious efforts at language understanding. They

avoided the time vrobdlems inherent in arsing and inferencing by Gealing with

restricted task domains. Slagle's DEDUCOM (1965) dealt with simple set inclu-

Sion probleas; Green, Wolf, Chomsky & Laughery (1963) with baseball questions;

Lindsay (1963) with kinship terms; Kelloggs (1968) with data management systems;

Woods (1953) with airline schedules, Woods (1973) with iumar geology; Bobrow

(1964) and Charniak (1969) with word arithmetic problems; Fikes, Hart & Nilsson

(1972) with a robot world; Winograd (1973) with a blocks world. Other systems

like Green and Raphael (1968), Coles (1969), Schank (1972), Schwarez, Berger,

2 3 (1969), Anderson and Bower (1973), Rumelhart, Lindsey end Norman

(1972), and Guillian (1969) have not been especially designed for specific task

domains but nonetheless succeed only because they worked with sericusly Limited

data pases and restricted classes of English input. Because the parser deals

with only certain word senses and certain syntactic structures Linguistic am-

biguity is much reduced. Those programs that use general inference procedures

{ke resolution theorem proving are notabdly inefficient even with restricted

a bases. Winograd made extensive use of tne Ta itie

ecting inferencing with specific neuristic information. Tne validity of

se heuristics depended criticaliy on the constraints

Ae
.

to
e

li
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Winograd (11973) has comoined good task analyses, programming: iil,

powers of advanced progreépning languages to create the oeast ext neud

standing system, I have heard it seriously claimed that the W sys

could be extended to baceme a general model of language unders 2 WHRAD

is needed would be to program in all the knowledge o n adult chend the

parsing rules to the point where they handled all English sent Admitted

ly, this would be a big tasx requiring hundreds of man-years oO put, it

is argued, no greater than the work that goes into writing big ing

systems, Clearly, this argument is faulty if only because it + deal with

the time problems in general inferencing and general parsing. r, it is

also unclear whether human langueze understanding can ve captur a Fixed

program, Further, it is dubious whether it is manageable to a ookkeeping

-thas is necessary to assure that all the specific pieces of Kn are

properly integrated and interact in the intended ways. Our Li e conpe=

tence is not a fixed object. This is clear over the period of as We

learn new gramnatce styles, new words, and new ways of thinki think this

is also true ove nort spans of time. That is, the way humans ¢ with the

time problems naan in parsing and inferencing is to adjust the parsing and

inferencing eccording to context.

Language Acauisition as the Road to General Language Understanding

The preceding remarks were meant to suggest how an adaotive language

system might provide the solution to the fundanantal croblems in general

language understanding. Rather than defining and hand-programming all the

reauisite knovledge, way now let the language understanding system discover

that hoovledges and yrugrau iusel1i ‘ine language acquisition system is a

mechanized bookkeeping system for integrating ell the knowledge required for

language understanding. By its very nature it treats linguistic knowledge as

constantly changing object. So we know 1t would change with a changing

linguistic community. We might hope that it could adapt over snort periods

(like hours) to its current context

Learning systems are frequently regarded as the universal panacea for

all thet ails artificial intelligence. Therefore, one should be rightfully

suspicious whnetker LAS will provide a vieple route to the creation of a

general language understanding system. Certainly, the initial version of

LAS falls far short of the desired goal. However, with our current state of

knowledge it is just not possible to evaluate LAS's pretensions as an eventual

lenguage understanding system. It is only by systematic exploration and

development of LAS that we ever will be able to Getermine the viability of

the learning approach.

a
+

 

Whatever the potential of the learning approach in artificiel intelligence,

clearly it is the only viable psychological means of characterizing human lin-

gauistic knowledge. It would be senseless to provide a catalog of all the knov-

ledge used in language widerstanding. A catalog of everything is a science of

nothing {a quote from T. Bever). Rather, we must characterize the mecnonism

that creates that knowledge and how that mechanism interacts with exverience.

12
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The Linguistic formalisms used by LAS are very similar to W

Bugnentec transition networks. This sechion on computer Langes. ¢

eoneludges with a description of Woodst systema and an exposition of the suita~

bility of his formalisms for the current praject. There are three critical

features that LAS reauires of the formalisns thet will express jts grammatical

knowledge. First, it should be a formalism thay can be used with equal facility

for language parsing and lenguage generation. Tnis igs pecause it is unreeson-

able to assume that a child incependently learns now to speak and how to under-

stand, Second, we want @ formalism for whicn it is. easy to devise a constructive

algorithm for inducing grammar. That is to say, some descriptions of grammatical

nowledge are computationally easier to induce when others, even though theCAS

Janguage they describe.

Third, we want the f rmalism to be close a t to the assumptions it

makes about the interpretative system that uses tne gremnar for speaking and

understanding. This is because that interpretative sysven is taken as innate.

Thus, it is not possible to induce new programs for interpreting the grammatical

rules, it is only possible to induce new grammatical rules.
g:

A guiding consideration in this research is that these

gronmatical formulation are satisfied by a finite-state tran

x

u
n w
e

r
i
e

Q
u

om ry fo ct p r
H

© Hy Q

epresentation. Tne proclem is that natural languages are fundamentally more

complex than finite state languages. However, Woods has shown a way to keep

ke

some of the advantages of the finite state representation, put echieve the

trang?farmational crammar . Unadst angmanted transition nebworks
 

are similar to and were suggested by the

and Dewar (1968) end Bobrow end Fraser (1970). Transition networks are like

finite state grammars except that one permits as labels on arcs not only termin-

al symbols but also names of other networks. Determinetion of whether the

are should be texen is evaluated by a suoroutine call to another network. This

subd-network will analyze 4 sub-phrase of the Linguistic string veing analyzed

py the network thet called it. The recursive, context-free aspect of language

is captured by one network's ability to call another. Figure 1 provides an

example network taken from Woods’ (1970) paper. The first network in Figure 1

provides the Mainline” network for analyzing simple sentences. From this

mainline network it is possible to call recursively the second network for

anaiysis of noun phrases or the third network for the analysis of prepositional

phrases. Wood (1970) describes how the network woule recognize an illustrative

network grammers of Thorne, bratley,

To recognize the sentence "Did the red bam collepse?" the network is

started in state S. The first transition is the aux transition to

state qo permitted by the auxiliary "did." From state qj we See that

we can get to state a3 if the next "thing" in the input string is an

NP. To ascertain if this is the case, We call the state NP. From

state NP we can follow the are lebeled det to state gg because of the

determiner "the." From here, the adjective "red" causes & loop which

returns. to state qg, and the subsequent noun "harn” causes a transi-

tion to state q7. Since state q7 is 2 final steve, it is possible

to "pop uo" from the NP computation end continue the computation of

the top level 8 beginning in state 43 whieh is at the end of the iP

arc. From q3 the vero "collapse" permits a transition to the state

13
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q),. and since this state is final and “collapse is the last

worg in the string, the string 1s accepted as & sentence

(po. 991-592).
+ .

. : bennei ke

nat 1s known as & recursive transitior

Hq

 

T have illustrated in Pigure l

n a

network which is equivalent to 2 context-free phrase-structure grammar.

Woods! networks are in fact of much stronger computats nal power - essentially

that of a Turing Machine. This is because Woods permivs arbitrary ections.

This gives the networss the ability of transformational grogmars to permute,

copy, and delete fragments of a sentence. Thus, with nis network formalisms

Woods can derive tne deen structure of a senbence. The croblem with this

grammaticas representation 1s that it is too powerful and permits commutation

of many things that are nov pars of 4 speaker! grammatical competence. In

+e
Ve

o

e % & of Ss

the LAS system all conditions and ections on networs arcs are teken from 2

small repertoire of oper tons possible in the HAM memory system {see And

son & Bower; 1973}. This vay some context-sensitive
xr

duced into the language without introducing psycnologically unreslistic powers.

Tn many way

pover and beh

one criticai

@ network formalisas of Woods ere isomorphic in their

to the program granmars of Winograd. However, + i

neer Tne flow of coatrol is contained in Winograd’s pro-

a particular progran is committed to 4 certain beha-

e in the network formalism. The flow of control is

~ which uses the grammatical enowledge contained in

different interpretative systems the same net-

be used in different Ways. This is critical

gram gramrars

vior., Tnis is not th

econtaineé in sni r

the netKerss. nus by WwW

Ss

ee=

 

war’ (orarcar enecifiecation can

to LAS's success where cnree different interpreters use the same gronmaticel

iL

formalisms to guide understanding, generation, and language inducticn.

3. Researen on Gramucar Tnduction
 

Apparently the modern work on the problem of grammar snduction began with

the collaboration of N. Choasky and G. Miller in 1959 (see Milier, 1967). There

have been significant formal results ootained in this field and it is essential

that we review this researcn before considering LAS. The approach taken in this

field is well characterized by the opening remarks of & recent highly-articulate

review chepter by Biermann and Feldaxan (1972):

The grammatical inference problem can be described as follows: a8

finite set of gmbol strings from some language L and possibly @ finite

set of strings from the complement of Lare known, and &@ grammar for

the language is to be discovered . +--+

Consider & cless C of grammars and a machine 4M. Suppose some

Ge C and some I (an information sequence) in t(L(G)) are chosen for pre~

sentation to the Machine Mc. .--

Intuitively,
jdentifies G if it eventually guesses only

one grammar and that grammar generates exactly L(G),

(pp. 31-33)

The significant point to note about this statement is that 44 is completely

abstracted away fron the problem of a child trying to learn nis lenguage.

There has been virtually no concern for algorithzs that will efficiently

induce the subset of gremmars that generate natural languages. The problem

15



  
is posed in general terns. The character ization is

with inducing 2 characterizaation of the well-formea

However, this is not the task which the child faces.

mappings between conceptuali ons and strings oF th

must understand what is $90: to him and Learn how

Te a characterization of the well-formed strings €©

product of the mapping between sentences and meanings

in the formal work on language induction, there has

about the contribution that semantics might have to”

man is without any practical so

he set of possible langusges ig too unrestricted. Worrable solutions are pos-

sible to practical problems only when it is possible to sreeatly PRStELeythe

candidate languages or because important clues exist wW!

The grammatical inference problem as characeterized by Blermann and Feld-~

tutions. Workadle solutions do not exist because.

c
t ib w
a

priori possible languages. Chomsky (1965) argued ssentially Yor this view

with respect to the problem of a child learning his firs» danguage. He suscgested

that the child could take advantage of linguistic universals which greatly

restricted the possible languages. i will argue that such universals exist

in the form of strong constraints between the structure of a sentence and the

semantic structure of the referent. These constraints provide critical cues

for the induction problem,

Gold's Work

 

- Prahahiy the most influential paver in the field is by cola (1957). He

provided an exp icit diterion for success in 2& languese induction proolem and

pod

,

proceeded to formally determine which lLearner-teacher ractians could achieve

thet criterion for which languages. Gold considers 4

= the Limit if after some finite time the Learner discove
s

enerates the strings of the Jenguege. He considers tyvo information S

ner

 

eq

in the first the learn is presented with all the sentences of the language

and in the second the Learner is presented with all strings, eacan properly

jdentified as senvence or non-sentence. ‘Then Cold aszs this question: Suppose

the learner can assume the language comes fromsome formally characterized class

of languages; can he identify in the limit “hich language 1t is? Gold considers

tne classical nesting of language classes — finite cardinality languages, reguler

(finite state), contexc-Tfree, context-sensitive, and primitive reeursive. His

clessic result is that if the learner is only given positive information acout

the language (i.e., the first information sequenc e), then he can only identity

finite cardinality languages. However, given Po itive
arn

S

(i.e., the second information sequence), he can le

sive languages.
,

The proof that the finite state cless is not identifiable with only pos-

itive information is deceptively simple. Among the finite state banguages

are all languages of finite cardinality (i.e., with only finitely rany strings).

At every finite point in the information sequence the learner will not know

if the language is generated by one of the infinite, nite cardin-

te

ality languagesswhich includes the sample or ani

state grammar which includes the sample. Logica

s similarly easy to prove that any language in the primitive recur-

S c s can be induced given positive and negative iinformation. Tt is

possible to enumerate all possible primitive recursive grammars. Assume an

AZ



  
algorithm that proceeds through this countably in

one fter another until it finds the c

sta greammar 2S Long 4s the informati

it. incorrect grammar G will be rejected

inf sequence-~either ecause the seque

& 8 anerated by G, or 35 & positive ins

G. correct grammar has some Tinite p

alg LL eventually consider it and stay

tec atser than the above but these wi

fhe algorithm outlined in the second proor m

For instance, the position is astronomical of E

ordering of all possible eontext-sensitive lan 3 g

terminal symbols. However, Gold also proved the here 15
L . aa

a

ehniaue. That 1s to Sey, given any alsgo-Ss

more effective t 1

3 ve language for which the enumeration

rithm one can pick som

algorithm will be fast

So, Gold le two very startling results that we must live with.

First, only fin: lity languages cea be induced without use of negative

information. 2 necause children get little negative fTeedoack

  

 

ck they do get (Brown, 1973). Second,-

and make Litel Se *arnat negative reecpa t
oO

4 enumeration. This is startling because

no procedur
than blind

blind ennun opeless 85 a practical induction elsorithm for natur-'

al langu2:: see how natural language can be induesd despite

Gold's res: 3 review some other research of the same ilk.

€ the esrly attempts to provide & constructive algorithm was proposed by

T is, he attempted to define an elgorithm waich would con—

by bit the correct grammar rather than enumerating possiole grammars.

LAS is a constructive algorivthn. His ideas were never programmed an had theirou
logical flaws exposed by Shamir and Bar-Hillel (1962) and by Eorning (1969). In

nmart Solomonorf hes served as @ straw man that served to justify the enumerative

pproeach over the constructive (e.g., Horning, 1969).

8
br

arried the Gold analyses ferther. Feldman (1970:

Feldman and his students have c e

provided some urtner finitions of languages jdentifiability and proved Gold-Liks

results for these. F man considered not only the task of inferring a grammar that

generated the semple, --- also the task of inducing the most simple grammar. Gran-

mar complexity was measured in terms of number of rules and the complexity of sen-

tence derivations. Horning (1969) provided procedures for inducing grammars whose

rules have different provabilities. Biermann (1972) provided e nucber of efficient

constructive algorithms for inducing finite state grammars when the number of states

is known, ‘Tnis is a relatively tractable probvlen first formulated in 1956 by Moore,

however, Moore's algorithms are much less efficient than Biermann's.

 

stave grammar induction that
4Pao (1969) formalized an elgorithn for finite ste

n advance. A sample set of

did not require the number of states to be known

sentences was provided which utilised ell the rules in the grammer. A minizal

finite state network was constructed that generated exactly the

sentences. Thea an attempt was made to generalize by merging nodes in the

work, The algorithn checked the consequences of potential generalizations

D
E
O
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Andersen

mwledy Tey os a ’

asxing the teacher waa
u

in the target langu

t

    
aieJ

sented these induct p
o oD

at voods' work, she d

Shoe Found that such a

if sne provided punc

networks occur. Bas

the sentence's surfa

and Ruff (1963) foun

easily when surface

Crespi-Reghizzieo
C

in

program was gives. Lnroi we 5
4

in the inéuction of operat r-precedence lenguegz> wal 2 S cont

free languages. For a special subset of operator precedence languages he was

able to define an algorithn that worked with only positive information. Except

s the only available result of success

for finite cardinality languages, this 1

with just positive information.

S

have shown relatively efficient, constructive algoritams are Bo

esting lenguage classes if the algorithms nave access to informetion ab

neets surface structure. The provlem wita their work is thet this

is provided in an ada hoe manner. It has the flavor of cnsating and cer--

tainly is not the way things happen with respect to naturel language induction.

a *.

T think the work of Pao and of Crespi-Regnizzi neve promising
352

7  
Dow. Risface thructure of the contomce mov be inferred hy com]

paring te to its semantic referent. Crespi-Reghizzi has also shown

how the properties of a restricted subclass of languages can be used to reduce

tre reliance on negative information. While natural languages cartainly have

aspects that can be best captured witha context-sensitive grammatical forralisms,

most context~-sensitive languages are ridiculous candidates for a natural languege.

An efficient induction algorithm should not become bogged down 2s does Gold's

enuneration technique considering these absurd Janguages.

Cetnee deGraczar as a Mapping Between Sentence and Canception

 

There is one sense in which ell the preceding work is irrelevant to the

tesx of inducing a natural language... They have as their goal the induction of

2 correct syntactic characterization of a4 sarget language. But this is now

what natural language learning is about. In learning a natural language the

al is to learn a map that allows us to go trom sentences to their corresponding

eptual structures or vice versa. I argue that this task is easier than

learning the syntactic structure of 4 natural Langusze. This is not becaus

there is any magic power in semantics per se, but peceause natural languages are

to in a very non-arbitrary manner the s

so structured that they incorpora

ture of their semantic referent. The importance of semantics nh as b

forcefully brougat home to psychologists by a pair of experiments by Moesser

and Bregman (1972, 1973) on the induction of artificial languages. They con-

pared Language learningin the situation wnere their subjects only saw well-

formed strings of the language versus tne situation where they 547 well-formed

strings plus pictures of the semantic referent of these strings. In eltaer

case. the criterion test was for the subject to be able to detect wnick strings

18
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of the language were well-formed -- without aid of any referent pictures After

3909 training trial s subjects in the no-referent condition were at chance in

the criterion test wnerea subjects in the referent condition were essentially

perfect

The Role of Semantics

Results lize those of Moesser and Bregman have left some b

there is some magic power 1m naving senantie referent. However

that there is no necessary advantage to having a semantic rerere

lationship between a sentence and its semantic referent coulc, i

be an aroditrery recursive relation. Inducing this relation 15 3%

aifficult as inducing an arbitrary recursive language. ‘This la

in need of ea proof which ft have provided (Anderson, 1975). It

to reproduce here, bu 4Y Ot + algoritnm to

bitrary semantic rela
ences, coul La

identify an arbitrary
Gold's wor o ind

tion algoritha for the se iv c - be more effective than tne

impossible enumeration alsoritaum for identifying en arbitrary lenguase. Thus,

for it to be possible to induce the semanzic relation, there. must be strong

constraints on possible form of that semantic relation.

How does this semantic referent facilitate grammar induction? There are

at least three weys: . First, rules of natural language ere not formulated

with respect to single waras but with respect to word classes Like noun or

transitive vero which have & common s2nantic core. Se semantics can help

determine the word classes. This is much more efficient than earning the

syntactic rules Yor each word separately... Second, semantics is of considerable

aid in generalizing rules. A general heuristic employed by LAS is that, if

two syntactically similar rules function to. create the same semantic structure,

then they can be merged into a single rule. Third, there is a non-arbitrary

correspondence between the structure of the semantic reZerent and the structure

of the sentence whi permits one to punctuate the sentence with surface struc-

1

~ en

ture information. The nature of this correspondence will pe explained later.

Siklossy 'S Work

 

The only attenpt to incorporate semantics as 2 guide to grammar induction

Was by Siklossy (1971). He attempted to write @ program that would be able

to learn languages from the language-through-pictures books {e.g., Richards

et al., 1961). The books in this series attempt to teacn 2 weenae*y pre-

senting pictures paired with sentences that describe the

Sitlosey 's program, Zbie, used general pattern—mai

correspondences between the pictures (actually han

end the sentences. The program does use information

to help induce tne surface structure of the senten

of LAS. However, it remains unclear exactly what u s of semantics

or what kinds of Lenguages the program can learn. Tne displayed exexples 0of

the program's behavior are very Sparse with exanoles n

tions. AS we Will see, & progran must have strong

it is to learn a language. The few examples of gen

lows: Suppose Zyie sees the following three senten

caniques:to find

picture descriptions)

on in the picture encodings

e at in the manner

po
e

a

8i
t

W

19



Anderson

3) Joha walks

2) Mary walks

3 John telks

able sentence. If dees not

athese generalizations.

 

des no discussion of now his program's benavior relates

ng a language. The one example of an attenpt to simulate

x
+}

is Kelley (1957). His progres attempted to simulate the

Cc utterances Yrom one word, to two words, to three words.

aan to be making use of semantic lmao bub he never speciries

ro 's performance. In general the details of the program ar

exanple the program never gets to the point of producin

gd iti nelear whether 1% could.

b
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ption in the LAS project is that 4 language learner can some-

meaning of sentences and that language Learning takes volace
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complexity, it is ess

acquisition ake the form of 4a computer pro

need of a computer model after describing +

imate go21 to provide a faithful simulation

of child language 4 quisition. One mi question whether 4 system constructed

just to succeed at age learning W have much in common with the child's

acquisitian systes. I strongly suspect it will, provided we insist that the

system have the sanejurormation processing linitations as a child and provided

its language les suetion has the sane information-—processing
demends as

at of the chile. ne consideration underlying this optimistic forec

at learning & naturel language imposes very severe and highly unique

on-processing demands on any induction system and, consequently, there §

very severe Limitations on the possible structures for 4 successful system.

A similer argument has been forcefully advanceed oy Simon (196

to the information-processin1
g demands of various problem-ssolving te

This project does have as an ult
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The current version of the progran LAS, L works ~en overly simpli

domain and maxes unreasonable assumptions abou z gz

Nonetheless, it predicts meny of the gross rea

generalization in child language learning. Tt i errivly "off" in other aspects.

It turns out thav many of its failures of simulation can be traced to the un-

realistic eratens it is making about tass domain and inforzation processing

abilities. Many of the proposed devel oments of the prograd nave as their goal

tne elimination of these unrealistic assucpcicons. The assumptions vere made to

make the problem more tractayle in a first-pass attempt.
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Tis section deserives LAS I, 4 relatively smali progrem that was put together

in eight montas. Tt has achieved success in é€ non-trivial natural languzge in-

duction
will be principally concerned wita extending

SPRAK which uses the network formalisms %o generate
2

uses the seme networss for sentence understancing
BRACKET which punctuates

sentences With their surfece structure by compari

referents, aid SPFAKTEST which puilds an initial ®etbwork grammar to parse a

sentence end GENERALL = which eneralizes the initiel ranmar.

>

LAS is an interactive program written in Michigan Lisp (Hafner & Wileox,

1975). The progres acceots as input Lists o* words, whica it treats as sentences,

and scene descriptions encoded in 2 yariant of tne HAM propositional language

{see Anderson & Bower, 1973)
. obeys commands to speak, understand, and learn.

The logical structure of LAS is illustrated in Figure 2. Central to LAS is an

augmented transition network grammar similer to thet of Woods (19TG). ‘In response

to the ccmaand, Listen, LAD eVORES vie wEUSt oH UNDORCTAND. Tac inet to UDR

STAND is a senvence- LAS uses theinformatio
n in the network grammar to parse

the sentence and optain 2 representation
or the sentence's meaning. in response

to the command, Speak, LAS avoxes the progres SPEAK. SPEAA aceives a picture

encoding and uses the information in the network grammar tO generate a sentence

e

409 describe the encoding. Note that LAS i S

Doth to speak and understand. The principle pur

in LASis to provide & test of the grant

3 using the same network formalism

pose of SPEAK and UNDERSTAND

ed by LEARIMORS.

H “ o
d

.

ts au C QO

The philosphy pehind the LEARNMORE program iS to provide LAS with the

sene information that a child has when he is learning a langusse through osten-

sion. it is assumed that in this learning mode the adult can both direct the

child's attention to what is being described and focus the child on that

aspect of the situation wnich is being deseribed. Thus, LEARNMORE is provided

with a sentence, & HAM description of the scen ana an indication of the main

o

proposition in the sentence. It is to proauce @5 output the network grammar

that will be used by SPEAK end UNDERSTAND. + is possible that the picture

description provides more information then is in the senvence. This provides

more information than is in the sentence. This provides no obstacle to LAS's

heuristics. In this particulsr yersion o- LAS 4% is assumed shat it already

knows the meaning of the content words in v! entence. With this informetion

BRACKET will assign a surrace structure & he sentence. SPRAXTEST will deter-

mine whether the sentence is handled by tne current grammar. if not, additions

are made to handle this case- These additions generalize bo ovhner c2se5 SO

that LAS can understand many more sentences than the ones it was explicitly

trained with.
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Figure 2. A schematic represeentation sivin

of the major subcomponents of Ls
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     The SPEAKTEST program would permit LAS to construct a parsing network

adequate to nanceile all the sentences jt was presented with. Also it would

make many Llow-Levevel generalizations
about phrase structures and word classes.

would permit
ssfull nalyae or generate many novel sentences.

es
c ization i % the

BRALL
re i he

3

“grammars is essential ©

GENERALE is oO

The HAM, 2 Memory Syste
The

H

e

t

6
De

LAS. L uses 4 version of the HAA memory syste (sea Anderson & Bower 1973)

ir
>

called HAM. 2. HAM, 2 provides LAS with two essen al features. First, it

provides & representational
formalism for propossiti onal knowledg2- This is

used for representing the comprehension ouspus of UNDERSTAND, the to-pe-spoken

input to SPEAK, the semantic information in1 long-ter menory, end syntactic in-

formation about word classes. HAM: 2 else “contains a memory searchi

rithm MATCHAL which is used to evaluate various parsing ¢conditions. F

stance, the UNDERSTAND progrem requires thee certain features be true of 2@

ora for 2 parsing rule to apply. These are checsed bB &

The same MATCHL process is used by the SPEAK prosras to Get

et

D
s

ection essociated with a parsing rule ereates part of th en struc-

sure. This MATCHL process is ° variant of the one deseribed in Anderson and

Bower (1973; Cn. 9 2 12) and i sg details will not be discussed here.

However, it would be useful to de ripe here the repressntational
L ror-

r now the inteornmation in thesc

malisms used bY HAM, 2. Figure 2 jllust es

sentence A rec. square isabove the circle would berepresents’
©ith the HAM. 2

networs formalisas. There are four distinct Pr

two nodes X and Xi xX is red, X_1is 2 sauere, 4

Each propossitsonis
represented by 4 distinecs tre

ture consists of a root proposition node conn

node and by @ Bliink to a predicate node. ;

posed into 4 R link pointing to a relavion node and into & ° Link pointing ‘to

en object node. The semantics of these represenstations
are to be interoreted

in terms of simole set-theoretic notions. Th subject is @ subset of the

predicate. Thus, tne individual X is & subset of the red things, the square

things, and the things aoove x. The individual yis a subset of the circular

things.

»

One other point needs empnasizing epout this representation.
There is

e distinction made between words and the concepts which they reference. The

words are connected to their correspoonding ideas oY Jinks Labelled W. Figure

3 illustrates all the network notation needed in the current japlementation

of LAS. There are & number of respects in which this represeatation is simn-

eee then the old HAM representation.
Cnere are not the means for represent—

ng the situation {time + place) in whicn such a fact is true or for enbedding

one proposition within another. Thus, we cannot express in EAM. 2 such sen-

 

2

tences as Yesterday in =y¥ pedroom 2 rec square Was Boove the circle oF John

believes that 8 red guuare Ts apove tae circle. nepre

be
li
ev
es

that
§



q
d

Figure 3.

 
An eyample of 2 propositional netw

CIRCLE

ork representation in HAM-<
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Lng

ostension, tac assumed time and place are
. Concepes Lise pelief

woich require enoedded propositions are too for ostension. In future

yesearch LAS will be extended oceyona the c asive domain. At that

point, complications Will pe reqgaired in + resentations, however,

wien starting out on 4 project it is prefe
seep things @s simple as

There are @ numocr of motivations for the associative network representa-

tion. Anderson and Bower (1973) have combined this representation with a nun-

per of assumptions about the psychological processes that use then. Predic-

tions derived from the Anderson and Bower mo ‘ & to be generally true

of human cognitive performances. Howeve
2c

HAM's representation have not been emple

 

that recommends associative network. represenvetions
s a compute

has to do with the facility with which they can be searcned. Another advantage

of this representation
is particularly relevant to the LAS project. This has

to do with the modulerity of the representation
. Bach proposition is coded

as a netyorn structure that can be acessed end used, independents of other

So far, I have snown how the HAM. 2 reoresentation encodes the episodic

hn input to SPFAK and the output of UNDERSTAUD. It cen alse

Ss

the semantic and gsyntectic information required by the parsing

eatentenctan
sy TAM 9 weavta anaods the foot that rircta

ae ot PRIUS UL LCoS sew oa
=

and square are potn shapes, red and bine a

belong to the word class *CA bub square and blue telong to the word ciass FCB.

Pr
. 7 oT

-ae
3 2

Note the word class information 15 prediceved oF the words while the categor-

teal information is predicated of the concepts attached to these words. The

a mntactic rule only applied to
s

 

  e both colors, circle and red

te
)

categorical information would be used if 2
2 anrm7.37
i

shaves or only to colors. Tre word class information micnt be evoked ifa

2S
vy —_

y~ a ae

language arbitrarily applied one syntactic rule to one word class and onother

rule to @ different word class. Inflections are @ common example ort syntactic

s
3

rules which apply to arbitrarily defined vord cle

HAM, 2 has 2 small - language oF commands which cause various memory

Links to be built. The following four are eli. that are currently used:

1. (Ideate X Y) = create 2 W link from word K to idee XY.

2, (Out-of X Y¥) - create & proposition node Z, From this root node ereate

uk

3. (Relatify X Y) - create an R link from X to

h. (Objectify % Y) - create an QO link =

These commands wilkL appear in LAS's parsing networks to create memory

erions. Often rather than memory

structures required in the conditions ane iv

appear in these commands. Tf the

nodes, variables (denoted X1, Xe, etc)

variable hes as 445 value a memory node that node is used in the structure

puilding. if the variable has no value, @ memory node is created and assigned

to it and that node is used in the menory operation.

 

To illustrate the use of these comzands, the following is & Listing of

the commands that would create the structure in figure 3:
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Figure 4. An example of a HAM structure encoding both categorical information
and word class information a



(Ideate red 1)

(Ideate square 2)

(Ideate above 3)

(Ideate circle hy

(Out-of KL)

(out-of X 2)

(Out-of X 8)

(Oojectify & Y)

(Relatify 8°3)

(Out-oF Y

 

t ply to any m2

st languages will b

will also be used to illustrate the SPEAX anc UNDER

eribed shortly. The first, GRAMMARL, is a simple artificial grammer. Ta

second, GRAMMAR, is a more complex gramzar Tor @ Su
aYnAAD

D

aefined by tne rewrite rules in Table l. GRAMMARL wa

mally different fron Englisn word order. Tne sentenc

be read as asserting the first noun-phrese nas t

last word to the second moun phrase. For purpose
il

of these languages are English but they need nov oe. GRAMMAR] 1s 4 finite

Language without recurssicn. In contrast, in GRAL-MARe the NP element has an

amb dann t OTATOS eratnh naam manwnndiareadear aot) MD  oeamarctine 2 nntoential infin-

Sp eee
See
e MOCUPILV R

y mem
y peo

r cv.
meen et

constructions.

we

a

ite embedding of

uy fo 3 fp

In both gremmers, it is assumed that above end below are connected to the

idea as are right-of and left-of. Tne words differ in the assigment of their

NP arguments to subject and object roles- Tnus the difference between the

word pairs is syntactic This is indicated by having the words pelong to

two word classes RA and RB. Thus, UNDERSTAND with CRANMAR2 would derive the

same HAM representation in Figure 3 for the sentences The red square is evo0ve

the circle and The circle is below the rea square. It yould have been pos

sible to generate distinct representations For these two sentences. I think

this would have Deen less psycholegicetly interesting. Basically, the network

ise

 

grangar makes the inferences that A below 3 quivalent to B above A and en-

codes the latter.

 

TABLE 1

The Two Test Grammars

GRAMMARL
GRAMMAR

Ss + WP NP RA
Ss: +> WNP is ADJ

NP NP RB

NP is RA Ne

NP + SHAPE (COLOR) (SIZE)
WP is RB NP

SHAPE + square, circle, et. NP + (the,a) NP* CLAUSE»

COLOR + red, blue, etc.
. ye* +» SHAPE

SIZE > large, small, etc.
. + ADI SHAPE

RA- > above, right-of
CLAUSE > that is ADI

that is RA NP

27



 

TART? 4 abbas
TABLE 2 continued

g +» below, left-ot CLAUSE + thet is RB uP

SHAPE + square, circle, euc.

ADS + red, bis, blue, ebc.

RA + above, right-of

RB + below, left-of

Figure 5 illustrates the parsing netuorss for the grammars. It should

be understood that thes networks have been deliberately written in an inefri-

cient manner. For instence, note in CRAVMARL thet there are tyo distincs patns

in the main START network. Tae first is for tnose sentences viva RA relations

and the second for tnose sentences with 2B relations. If a sentence input

to UNDERSTAID nas a RB relavion, UNDERSTAND will first attempe to parse it by

the first branch. The tyvo noun phrase branches will succeed bus the relation

branch will fail. UNDERSTAND will have to back-up and try the second branc

that leads to 23. This costly back-up 25 not really necessary. It would have

been possible to have constructed the START network in the following form:

STGP

NP HP aT

 

not branch until the critical re

until une e&

1e reoresentati  
Table 2 provides a formal specification of the information stored in LAS's

network grammars. A node either hes a number of arcs proceeeding out of it

(1a) or it is a stop node (1b). In speaking end vaderatandins LAS will try to

find some path through the network ending with a stop noce. Each are consists

of some condition that must be true of the sen z to be ed

in parsing (underrstanding) the sentence. Tn
t

be taken if the condition is met. This acti

conceptual structure to correspond to the m

thet point. Finally, en are includes speci

control should transfer after performing the

zero or more HAM memory commands (rule 3).

or more memory commands also (rule ba). These

e true of the incoming word. Alternatively,

push to an embedded network (rule hb). For instanc

  

in Figure 3 were to be spo:ken using CRAMMARL. Tae START ne be

called to realize the X_is above ¥ proposition. The erpedded NP netvork would

be called to realize the ¥ is red and X ls scuare propositions. in pushing

to a network two things must be specified--“NODE, raich is the embedded net-

work and VAR, wnaich is the memory node at waich the main end emoecded propo-

sitions jntersect. The element t is rule ib is 2 plsce-hnolder for invormation

that is needed vy the control mechanisms of the UNDERSTAND progran. The

three rules 6a, 6b, and 6c specify three types of arguments thay memory

commands can have. They can either directly refer to mexory nodes, or refer

to the current word in the sentence, oF refer to varieble: c} 3
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Networks for CRAMMARDa

 

 

 

 

 

NP 2 COP  € AdT

START awenetiemnenntomSZ seSh tom STOP

NP = RA NP
7 OSSDG errnoSTOP

4 2 COD = RB . NP
Ns3 = CO! 20 SJ aannammeemtioe SB mm 2STOP

enem ae
NP — se Nl —sSTOP

€ ©SHAPE CLAUSE
NPL > AL— - toSTOP

NPL
AD ceeeenrnnrernennrentnnntonnstoTD

& REL = cop
 CLAUSE CL

 

Figure 5. The natwork grammars used by BAS
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NODE > ARCS
(1a)

> stop
(1b)

ARC > CONDETION ACTION NODE {2)

 

ACTION > OMMAND*
3)

CONDITION > (COMMAND®}
(he)

> + NODS
(uD)

COMMAND > aG ARG (5)

ARG id menory node
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+
Ady xh, KS

(Se

FUNCTION > , oojectify, relatify, ideate (7)

Mable 3 provides the ancoding of the nebyork for GR

   
  

  

Note that there tencas to be a l-

and LAS networ: Tt each network expresses just

calls one ; to exoress

dence is not quilt: Tt in GRAMHARL or G@

no Lave necessalasy
© pore ce

tures to commend then. SPEAK
L:

These grammar networks have a2 number of a

rc mtence comprehension and generaclon.

7?

and UNDERSTAND use the same network for sent

Thus, LAS is the first extent system to have & uniform gremmetica notation for

jts parsing and generation systems. in this way, LAS hes only to induce ons

set of grommatical rules to do poth tasks- Such networks are nodular in two

senses. First, they are relatively indepencent of each otner. Secona, tney

are independent of the SPEAK and UNDERSTAND rrograms snav use then. Thais

modularity greatly simplifies LAS's tasx 0 induction. LAS cnly induce

maa

r gr
Poaz

3

the network grammars; the interpretative SPEAK and UNDERSTAND programs repre

i

lve x

sent innate

r

inguistic competences. Finally, the networks themse

very simple with. limited conditions and actions. Tous, LAS need consider

only a small range of possibilities in inducing 4 network. Tae n=

salism gains its expressive power by tne embedding of networks. Hec

network modularity, the induction task does not incresse with the complexity

of embedding.

f
e
e

Tt might be questioned whether it is really 2a virtue to have the same

representation for the grammatical knowleage both for unders

a +5 :

duction. It is 4 com=on ooservation that children's ability to uncer cand

sentences precedes their ability +o generate sentences. LAs would noe seen

to be able to simulate this basic fact of languese iearning. However, there

may be reasons way child production does not mirror comnprenension otner than

that different grammatical competences underlie the two. The child rey not

yet have acquired the physical mastery to produce cartel b

is the case, for insvance, with Lenneberg's (1962) enarthric cnila wno under-
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Tha eontruetion of CRAMMARL

qPpuT aoEErKUP TNSUBK CORT epuT *SuBRd}

A

? {PRKCON

4 corr PRP START PATH

“e CELPUSH AL TONP) ({QUT-UF Al X5}) S2)

5 Ci PUSH XL T Npy £f08JeECTIF %5 X1l)) S4 }))

6 (DEEPROP S2 PATH

i CE CPUSH Ke T NPQ (AOUGETCTIFY x5 xX2)3 S3 y)}

8 > (WEF PROP 33 PATA
s

3 QE CEPOFATE FORD X¥4) (GOUT-OF WORD #QA)) (CRELATIFY 45 Ad) stop

LO Coir enOP S4& PATH
ee

Li (UE PUSH X2 T NP) £(OQUT-DF %¥2 X5)) S5 423

L2 LDEEPRUP $5 PATH

13 LE UCLOFATE WORD %G}) LOUT-GF WORD HRA)) (ARELATIFY X5 X43) STOP ?

io LDEFPROP NP PATH

:

15 COC CTUEATE WORD X43} ({GUT-OF A4 a SHAPE) ) {(OUT-OF Al X43) NPZ 7;

17 {OCFPROP NP2 PATH

is (CUPUSH Xl T COLGR) NIL NPS }

13 C NTL SIL NP3))}

20 {NFFPROP NPB PATH

2i CO¢PUSH X11 T SIZE} NIL STOP 3}

22 {NIL NIL STOP ))}

?3 (DEF PROP COLGR PATH

2% CLL CEDEATE WGRD %4) {QUT-UF X4 *CULOR)} ({QUT-OF Xi X49) STOP

29 (NEF PROP SIZE PATH

26 . CELL IDEATE WORD X42). (OUT-UF X* aS1ZE)3 @(OUT-DF ¥1 X43) STUD }

2t (TALK) -

2d ({IDEATE SQUARE XLICTCEATE CIRCLE X23

29 C(UUT-UF AL *SHAPEV(OUT-OF 2 *SHAPE}) }

30 (CIDEATE REO XB) CTOCATE GREEN %4))

31 ((NUT-OF X%3 COLOR) (OUT-OF X4% #COLGR))

42 CLISP SETO X1 NIL)

33 CCIDEATE SMALL X5) (1 DEATE LARGE X1)})

34 ({UUT-GF X5 KSIZEV(OUT-OF Al *SIZE)}

35 NIL

36 (TALK)

37 ((LOEATE TRIANGLE MLL UDEATE BLUE X2)CIDEATE MEDIUM X3))

38 ((OUT-GF Xl &SHAPE) { GUT-OF A2 =CGLOR}{OUT-OF AB *SIZE))

39 (LISP SETQ XL NTL}
-

400 {LISP SETQ Xe NIL)

Gi CC TOEATE RIGHT-OF XLICLOEATE ABUVE K29)

A3 , ( (QUT-CF RIGHT~Ge KRAVE OUT-OF ABQVE *RA))

44 {(OUT-OF LEET-OF RRBICCUT-OF BELCH *RBDY

4&5 ({IDEATE LEFT-OF XLPMTDEATE BELLY 4223

&4 NIL
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   with a HAM network of propositions sagged 25 to-pe-spoken and

a topic o sentence. The topic of the sentence will correspond to the

first neaning-oearing
: etwor! cpraxX searches through 1vs

START network Looking £0 a7
4 xen proposition

attached to the topic and woich expresse
pic 28 first element. It

determines wnetner @ path accomplishes this by evaluating the actions associated

witn @ p2acn ang determining if they created a structure that appropriately

matches the +o-be-spoxen structure. When it finds such @ path it uses iv for

generation. *

Generation is accomplished by evaluating the conditions along the path.

cursively
v

a

If a condition involves 4 push to én embedded networs SPeAK is re

c speak some gub-purase expres

allied to
sing @ proposition attached to one

proposition. The arguments forarecursive call of FUSH ere the expedded net-

work and the node that connects the main proposition and the emoedded ororo-

sition. if the condition does not involve 4 TUSH it will contain a set of

menory commands specifying that some features ‘Qe true OF @ word. % will use

these features to determine what the word is. Tae ~ord so Ceterminec will

3

t
o n
h



  
As an example, consider how SPHAK nerate a sentence correspoading

to the HAM structure in Figure 6 using , the En.eLish-11isce
amar in

“Boeure 6. Figure 6 contains set of propositions about thre
denoted

by the nodes G2k6, G195, and G182. Of node C26 it is ass “ht is 2

srianghe, and shat G195 is right of it. Of G195 it is ass
it is a

square and that it is above G1g2. OF e182 it is asserted © SQUAT,

smalL, and red. igure 7 1jliustrates the generavion of this froa

GRAMMAR2. LAS enters tne START network invent cn producin
ueterance

exoout G95. Thus, the topic is G1i95 (it could neve been G26 OX 162). he

first path through the network involve vedi n aaa OE G195, pet

the
ve clas

Tre second pata

here is nothing in the adjectiv

through tac SPART network corrESsDoones
“say eyout G95 -~- -

it is above G182. Tuerafore, LAS pia Ss
main proposition.

First, it must find some noun phrase“to express G195- The substructure under

G195 in Figure 8 reflects the construction of this. $ssupnebvork « The NP network

jis called which prints the and calls NPL wpicn retrieves Square and calls

CLAUSE which prints that,

.

is, ana right-of and ain recursively calls NP

to print the squert- Sinilarly, recursive calls ere made on the HPL network

to express G162 as the small red square.

 

The actual. sentence generated is senna on choice of topic

START network. Given the seme to-be-s =.xf network, but the topic G2k6,

alt

  

   

 

SPEAR generated A trijangle is Left—o8:mn gauere %o2% is above a sheik red square.

Given the topic GiLg2 it generated Ax Foauase thas is below 4 SGUarS that is

right-of a trianglegleissme
lt. Note ho the cnoice of tne reletion words lefc-

of vse 2SYehecot and or Guove VS- below is Gependent on choice of topic.

It is interesting to inquire what is the Linguistic power of LAS as &

speaker. Clearly it can generate eny conbext-Tree
Tanguegse since its transition

networks correspond, in structure, to a con ree grammar However, it turns

out that LAS nas certain context-sensi
tive asnects because its productions are

constrained by the requirement that they express Some well-formed HAM conceptual

structure. Consider two proolems that Sky (1957) regarded as not handled

wellby context-free pramnars: The first 15 agreenent of number between 4 sub-

ject NP and vero. This is hard to arrange in @ context-free grammer because

the NP is already puilt py the time the choice of verb number must be made

The solution is trivial in LAS——wnen 09 4 the NP and yerb are spoken their. num-

per is determined by insspection of whatever concept in tne ~o-be-spoken
structure

underlies the subject. The other- Chomsky
©xanple involves the identity of

solutionel restrictions
for active and 2passive senvences.- Thais is also achieved

automatically
in LAS, since the restrieticns

in both cases are regarded simp
ly

as reflections of restrictions in the serantic structure from which both sen-

tences are spoken.

While LAS can hendle those features of naturel language suggestive of

contexb-sens
itive rules, it cannot handle examples Like languages of the form

oms
i

oO
S
s

aNpich which require context-sensiti
jive grammars. it is interesting, however ,

that it is nerd to find natural languese sentences of this structure. Tne best

T can cone up with ere respectively-ty
Pe sentences, G-+B-2 JohnandBill

nitand

kissed Jene and Mary . respectively:
This sentence is of questioaasle aoceptavil
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Perhavs an Englisn example would be useful +o motivate the ne oO:

control Structure. DB he two sentences tre Deroeratic party hones to win

in'76 with The Democrs carty hopes ere hign for ‘To. A main parsing network

would call a noun. vars ork to identify the Sirgt noun phrase. Suppose

UNDERSTAND identi? * ratie party. bLeve elements in the second sentence

would indicate
narerore, the mein netvork would have

to re-enter ths
:fferent parsing to retrieve

The Deamocresic
4ereq the noun-pnrase network

to retrieve on i% must remember woien persings 44 tried tne first time

so that it doe ievye the same old parsing. Tae complexities of this

control ssruct wiped in a more compleve report (Anderson, 1975).

Here © “lib gu a general strucwre of the
gr

to find some pata START network waich wibl 3 e

parsing of the sentence. + evaluates tae eeceprsollity o

eveluating the conditions associated with that path. ond on ma

thet certain features Sa true of words in the sentence. This is Setermined by

checking memory. Alternatively, 4 condition caa require & pusn to an embedded

network. This network must parse some subphrase of tne sentence. When LAS finds

an acceptable path Shrougn a network it wilh collect tne actions along that path

to create a temporary mory structure to rep

   

 
>

exemple of wnere it might seem that LAS would need &

In English noun phrases, it seems we can heave en arbitrary numbe

me

that LAS has parsed. This, for instance, given 4 antence, Tne square thet is

risht-of the triangle is abd
na TAS woulé parse it in tae

form illustrated for
Pigure 6

in LAS. 1, understandin

first displayed exanp

(1973) comes closest
analysis.

It is also of interest to consider the power of LAS as an acceptor of lan~

guages. it is clear that LAS as presently constituted can acceps exactly the

context-free languages. This is because, unlike Woods' (1970) syster, actions

on ares cannot influence the results of conditions o4 arcs, and therefore, play

no role in determining wnether & string is accepted or not. However, “nat 15

interesting is that LAS's behavior aS 2m Janguese understander is relatively

Little affected by its Limitations on grammatical powers Consider the following

a n
o

contextb-sensitive
gramnars

x mber of adjectives.
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General Conditions Tor Language Acquisition
_— Dnnea

  

Having mov reviewed now LAS. 2 understands and produces sentences, I will -

present ne three asveces of the induction progres: BRACE, SDRAXYTSST, and

GeieRALIZS. Before doing SO» it is wise to priefly state tne conditions uncer

waien LAS learss 4 Language. tt is assumed that LAS. 1 already nes CONnceDpes

attached to the words of the Languege» Tiat is, jexicalizetion
is complete.

Phe task of LAS. L is to learn the grammar of the janguage--that
is, how to 9

from a string of words to 4% representation
of their combined meaning. Secause

Li oy concerned with Learnings meanings, it cannot be a Ver! realistic

econd 1 learning where many concepts can transfer fron she

yage. i Will propose extensions oF 43, L concerned

ZS.

52° LAS. 1 is that if works in 2 particularly
restricted

semantic co is presented with pictures indicating relations ana proper-

ties
ail geometric objects. These pictures ave aetueliy encoded

into
sonal networs representation

. Along with these pietures

LAS 2
anees describing the picture and an indication of tnat

aspec
which corre sponcs

to the main proposition
OL TRE SUULEHES:

From 0:
nm input, @ network grammar 1s constructed.

The semantic

dona
y simple, put the goal is to be able to learn eny natural or

natoral-like
Language which may. gescribe that domain.

A major aspect of the LAS project is the BRACKET progran. Tais is an alsori-

for taking # sentence of an aroitrary Jeanguage nd HAM concepsual structure anc

sroducing @ pracketingo
f the senvence shat i

nis surface structure prescribes the hirerarc

sentence. For BRACKET to succeed, Four condition

etworks required to parse the

must be satisried by the infor

Condition 1. All content words in the sentence correspond to element

cepsuel structure. This amounts to the clain that the teacher is 4 L

the learner to conceptualize
the information in his sentence. It does not. matte

to tne BRACKET al oritnm whether there is more information in the conceptualPp

structure than in the sentence.

Q °ndition 2- The content words in tne sentence are connected to the elements

in, the conceptual structure.. Psychologicall
y, this amounts to the c nat

exicelization
is complete. That is, the Learner KNOWS ne meanings of the wor

3e surfece structure snterconnect
ing the content words is isomer

phic in its connectivity
to & janguage-fres

prototype structure.
Condition 3.

*
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Condgition 4. The main proposition am conceptual structure 2s indicated.
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Consider Panel (2) of Figure 6 which iit sbrueture for the

series of propositions in the English sentence re is noove the small

cirele. Panel (b) illustrates a grapu deformation of that structure giving the

surface structure of the sentence, OVS how elements within the sane nom phrase

are appropriately assigned to the same subtree. Note that the prototype struc~

ture is not specific with respect to which Links sre avove whien otners and

which ere right of which oceners. Althouga the HAM structure in Panel (aj is

get forth in a particular spatial array, the choice is arbitrary. In contrast,

the surface structure of a sentence does specify the spatial relation of links.

Tt seems reasonable that all natural languages nave as their semantics the same

order-free protovuype network. They differ from one enother in (a) the spatial

ordering their surface structure assigns to the networs and (bo) the insertion

of non-ucaning-bearing imorasmes into the seatence., however, the surface

structure of all natural languages ig derived from the same graph patteras.

Penei (c) of Figure & shows how the prototyse structure of Panel (a) can pro- -

vide the surface structure for 4 sentence of the artificial GRAMMARL. All the

sentences of GRAMMAR] preserve the connectivity of the underlying HAM structure.
S$ OF L

By this critericz, atleast, GRAMMAR could be 4 natural language.

tain conceivable languages would have surface structures which

jons oF the underlying structure. Panel (d) illustrates

COU1 bad G

such a hyvothetical language with the same syntectic structure as English, but

with difver Le
+

the

ent rules or semantic interpretation. In tnis languege the adjective

inz the object noun modifies the subject noun. As Panel (a) illus-

trates, there 1s no deformation of the protovyD sructure in Panel (a) to

achieve a suctace structure for the sentences in the language. No matterr how

it is attempted some renches must cross.

n {a

u
y OR

oO

c
r

Y
l
G
s

$

connectivity of the prototype network to infer what the

LAS will use the t t

connectivity of the surface structure of the sentence must be. The network

does not specify the rignt—Lett ordering of the yrancnss or the above-below or-

dering. The rignt—Left ordering can be inferred simply from the ordering or

the words in the sentence. However, to specizy the aoove-below ordering, BRACKET

needs one further piece of information. Figure 9 illustrates an alternate

urface structure that could have been assignad to the string in Figure 8 (c).

t might be translated into English syntex as Cir ula
+

ig the small thing the
 rear

ures illustrate, the Has

 
s below the red square. Clearly, #S these two s

Reet

r

network and the sentences are not enough tc spe eify the hierarchical ordering

of subtrees in the surface structure. The difference between the sentences

in Figure 8 (c) and 9 is the choice of wnich proposition is principal and

which is subordinate. If PRACKET is also given information as to the main

proposition it can then unambigiously retrieve the sentence's surface structur

The assumption that PRACKET is given the main propo

to the claim that the teacher can direct the learne

asserted in the sentence. Thus, in Panel (ce), the te c would direct the

learner to the picture of a red triangle above @ srall circle. He would both

have to assume that the learner properly conce tyalized the picture and that

he also realized the aboveness relation was what was peing asserted in the picture.
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T think tht the graph deformation cond
aa

ae

of 8 universal property ot language. However, to make a

is elear that something ther than the HAM network wilh neve to

3
neh > works weil en

     

  

1

a

nn

sroused togeuner.
  ed

ture ceria

    

  closer tog?
nd open are closer together. If Fig

fro

sentences woiecn alternated words

is no deformation of the structure

or.

2
ae

type, LAS cold n

groups. Por ins

would provice 2

  

o’
cr

O

or John opened with a key the do
  

sentences Wal    

  

the HAM structure
to cross. ‘This Saglisna sentence &

Hien violate © deformation condition Tor Figure 19

6 :

snething Lixe the case

ually necessiple from §

erguments are equally

= posed by the verp open is one posed
bat

vary and its arguneres woile it is likeLy

3-2 some natural language. There are two Ways to deal

could resort to a memory peprepenvalivn
Tithe (uy. HOR

ar or significant considerations
that motivate tne HAM

(a}. Moreover, representations
like (o) finesse ons

questions in Languege acquisition--nc7
we learn the

ax verbs. To address this question Wwe need a represen-

$i-argument verbs into @ representation
Like

tt bE

ike (

semantic function of the case arguxents. Learning the role

anguage then involves leerning hoy to assign it

o a structure Tike (a). Tf will sketch systen to do this

If we Keep the HAM representation
s then some changes are required in BRACKET

grepn deformation condition. Whet is characteristic
of multi-argumens

verds

in HAM is thet the arguments are interconnected
py causal relations as in (a).

Thus, BRACKST showle pe made to treat all the terminal argucent

structures &5 defining @ single level of nodes in a graph structuz

nected to 4 single root node. Tnat is, BRACKET can treat a HAM structure

such as (a) if it were (b) for purposes of utilizing tne graph reformation con-

fact, BRACKET already does tnis in the current jmplenentation.

QOdition. In G5

The Details of ARACKET's Output

So fer, only & deseription of how one would retrieve tne surface struc

ture connectng the content words of the sentence nos been given. Suppose

MACKET were given A triangle is lett-of a scuere shat is ebove & small red

this senvence wnien will
ce

square. A bracketing structure must be imposed on

41

   



JOHN PURN KEY CAUSE. DOOR OPEN

(d)

JON KEY -—s OPEN DOOR

Figure 10. Alternative prototype structures for the sentence Jorn

onened the door with a “eve The HAM structure in (a)

introduces too many distinctions:
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also include the functicos words, Given enis sentence ane she conceptual Ssoruc~

ture in Figure 6, BRACES rev ned (G257 (G2k6 Geby 2@ triangle) is Left-of (G195

Gi96 a square (Gig5 G225 tna. is above (G1b2 Gi83 a smell (q182 G1s5 red (G182

Gi8h square))))))-
Tae oain mroposition is 2257 which is give? as the first

term in the bracketing. Tre first bracketed suD-2xoression
aescribes the 3uo-

ject noun o element in the sub-exXpre gon G2b6 is the node tnat

h

aa
* =

    

jinks the

Te rst

two words

as

The next two worGs is.

propositions corressouaing
& chese The re ft

corresponds. to 3 description of the element G1u95. Tne first emoedded prop si G

Gi95 asserts this object is 4 square and tne secoad proposition,
G225, asserts

that Gi95 is above Gio2. Note that the G225 proposition is emoedded a5 4 supe

expression within tne G196 proposition. Te last element in the G226 proposi-

tion is (G182 G1i83 11 (G Gi85 red (C182 Gish squere))). Tsais exoression

G

p wi
»

FA wy b 162

has in it three propositions G183, G

ut. of BRACKET. Aostractly, the out—

The above @X@sp
0G

a by tne following three yexrite rues:a

put of BRACKST may be specifi

1. S* proposition element

2, elemene + word

> ejenent > (topic S)

That is, eacn OF veted output is 2 proposition node followed yy 2 sequence of

"
nese elements are either rewritten @5 words (rule 2) or

ans (rule 3)- A pracketed subexpression pegins with 6

tes the connection between the emoedded and embedding

ants within an exoression @re either non-meaning pearing

=

e
t

ct

elements (rate 1,

bracketed gubexoress

topic node which ind

propositions.
The €

words or elements corresponding
to sudject, predicate, relation and ooject

in the propositio
ote that BRACKET induces @ correspondenc

e between &

level of pracketing and 4 single proposition.
Zach Level of pracketing will

also correspond to a new network in LAS!s grammar. Because of the modularity
aay

of HAH propositions,
e modularity 15 acnieved for the grammatical networks.

When a number of embedded propositions are attached to the same node, they

are envedded within one another in 4 right-oranchin
g manner.

e is no semantic features to indicete waere they belong.

WsThe insertion of non-~function
words into the bracketing is 4 troublesome

problem becaus®
Yr

Consider the first word 2 in the exemple sentence above in Figure 6. It could

have been placed in she top level of bracketing OF in the subexpression
con~

taining triangle. Currently, all the function words to the right of ¢ content

word are placed in the sane level 2s the content word. The bracketing is

closed jmnediatels after this content word. Therefore, is is not placed in

the noun-pnrase prackeving This heuristic seems to work more often than not.

However, there clearly are cases where it will not work. Consider the Sen~

eat. ‘The current BRACKET program would

a
vo

Ss

tence The boy who Jane spoke to was a

return this 2s ((fne boy who dane spose) ) to was deaf). That is, it would

not identify to 4s in the relative clause - Sinilerly, non-meaning-b
earing

suffixes like gender would not be retrieved 45 part of the noun by this

heuristic.
However, there is 2 strong cue to make pracketing appropriate

in

these cases. There tends to be 4 pause aften morphemes Like to. Perhaps such
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pause structures could be called woon to help the BEACHES? prograa decide how

to insert the non-meaning~bearing morphemes into tne bracketing.

  
aring morphemes pose further problems besides

such morphemes in a noun phrase. Thes seq

nat, in principle, might constitute &n aroit

ets semantic referent could provice no cues

t language. Therefore, we would be back to 4

ag duction tasz that ve naracterized in the i

comro gz to observe that the structure of these st g

non-meaning~bearing morphemes tends to pe very Simple. There are nob many

exumples of tnese strings being longer than a single word, Thuc, LL Seems

baat the languages constituted by these non-neaning-veuring strings are nothing

m than very simple finite cardinality lenguages which posc, in themselves,

no serious induction problems. The yarious stretches of non-mzaning-peacing

morpnemes in a senvence could also have complex intercer endencss thereby posing

t hese
serious induction problems. Again it does not seen

= pet

simple gust at those points where it would hav

on program to Work.

a

o be the cas¢ that thes

ndencies exist. So once again we find that the structure of natural language

a to be for a LAS-like induc-0(
ch

pt
e

c
e

In concluding this section I should point out one example sentence which

BRACKET cannot currently hendle. They are respectively sentences Like Jonn and

Bill Ganced end laughed resvectively. ‘The problem wWWill such a sentence is that

1 ~ is the following prototype structure:

1
2ba

} rd

Jonn dance Bill | lauga

Thus , John and dance are close together and so ere Bill and laugh. However,

tne sentence intersperses these elements just in thewa!way thatnakmakes bracketing

impossible. There are probably other exemoles like this , but IT cannot think

of them. Fortunately, this is not an utterance that appears early in child

speech nor is a particulerly simple one for adults, Of all the grammatical

constructions, the respectively construction is the one that most suggests tne

need to have trensformational rules in the gramcar.

 

s capable of

Te funetion of SPEAKTEST is to test wnether its i

ely modify the grammar 50
generating a sentence and, if it is not, eapproprlat

that it can. SPSAKTEST is called after BASCART 15 complete. It receives’.

from BRACKET a HAM conceptual structure, @ pack ted sentence, the main pro-

position and the topic of the sentence. As in the SPEAX program SPEANTSOT

attempts to find some path through its network which will express a proposi-

sion attached to the topic. iz it succeeds no modifications are made to the

network. If it cannot, & new path is built through the network to incorporate

the sentence.



t
s 5 ae 3) id “ © a]

The best way to understand the operavion af &

through one example. ‘ine target Language js wag given to le

a, GR
’ arn is illustrated

in ail Lh. ais is a very simple languase, yasieally GRAMMAR of Table 1. it

nas a smaller vocabulary +9 make it more tractable, The reason for choosing

this Lan:guage is that it is of just surricient complexity to jllustrate LAS's

acquisition mechenisns. In addition, LAS hes learned GHAMMAR2, also given in

Table l.

  

Figure iL 4llustrates LAS's

come in. Tre first sentence i

returned by BRACKET es (GiT4 (GLL5 6 &

CLT refers to the main proposition given as an ar t

this is LAS'ts first sentence of the languag® the sr network will, of course,

completely fail to parse the séntence. It has no Ff mnar yet. Therefore,

it induces the top-level START network in Fi 1.“A listing of the czact

s given below th
are information induced is e graphical illustration in Figure ll.

Since the first two elements acer GLT4 iin the bracketed senvence are them-

sees bracketed, the Tir
network will ne pushes to subo-

rc

st two arcs in the

e contains 4 conaition om the word aoove. The restric-

is that it be & enber of tre word class Aig? . This class Was

+ this senvence and only contains the. word above at this point.

: d a path through ene START network, SPEAKTEST checks the

a %
che  Having now conssrucee

subnetworks in thas path to see whether they can hendie the bracketed subexpres

sions in the sentence. Tis is accompished by 2 recursive cail to SPRANTES?T.

For tne first phrase SPRAKTEST 15 called, taking aS arsuzents the network AL95,

a (GLLo sq 4 aes =
Pe netrrertk A105 the word class

 

ana “Uue . UUpLe oa

nm square, and in network ALOT theword class A22] con~

2 se two Suonetworks should pe the same in ea final grammar

4 prepared to risk such @ generaalizavion at this point.

 

Note in this example how the oreee provided by BRACKET completely

specified the embedding of network The sentence provided by BRACKET was

(Girl (G11L5 G116 square) (G148 culo. triangle) esove). The first element GLT

ag the main proposition. The second element (G11L5 G116 square) was 4 bracketed

wubexpression indicating 2 subnetwork shoule be ereated. Similarly, the third

expression indicated a sionnetwork. Tae last element above Was @ single word

and so could be hendled by | memory condition in the mein network.

   

The second sentence is triangle sauare rignt-of. This is transformed by

BRACKET.to (G315 (G2k6 G2k7 triangle) (6283 G264 square) right-of). Because

s sentence cannot be handled by tre

  

or the narrow one-member word cclasses this Ss

current grammar. However, SPSAKTEST does not add new network arcs to nandle

the sentence. Rather, it expands wor class AL9G to include right-of, word

class A211 to include ‘riensle,
and word class A22h +9 include square. The

grammar is now at such @ stage that LAS couid speak cr understand the sentences

triangle sauare above or squuare sauare ricnt-of and other sentences which it

had not studied. Thus, elready the Firss generalizations have eenmade. LAS

can produce and understend novel sentences.

This illustrates the type of generalizations that are:mage Wetaune

SPRAXTEST prograa. For instance, consider @ ge

SPEAKTEST decided to use the existit i
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. S Ne

C247 C316 Case

7 NX | V N 3/ P

;
iA?

PRIANGLE Gate RIGH?-OFr ass SQUARE -

( (@RIANGLE) (SQUARE) RIGHT =OF)

A199———ABOVE, RIGHT -OF

A211 ty SQUARE,TRIANGLE

 

A22h-——— TRIAN GLE, SQUARE

Figure 1}. LAS"s treatment of the first two sentences in the

induction sequence»
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Anderson

the first wotra of th

work Al9D that head been cr

to include triangle Both deci

al

e second sentence . his involved (a) using tne same subpnet—

xc (ob) expandingthe word class A2i1

ons“Tested on semantic criteria. The networn

ge attached to the main propo-

5f the node G2h6 which is

this identity of semantic

 

   
In making these general izations, SPEAXTAST is making a strong assumptlon

about the nature of huey‘Language. This assumption is stated as Condition

Condition 5. Words or phrases with identical sementie functions at identical

a
tatchically. This is the assumption

points in a network behave identically syn u

of semantic-induced equivalence of syntex. it is another way in wnica senantic

information facjlitates grammar induction. it clearly need not be true of an

arbitrary language. For insvance, Gecisions made in tne sudject noun phrase

might in theory condition syntactic decisicn made in the object noun phrases.4

LAS. because of its heuristics in SPEAKEES?T for generalization, would not be

> D se

able to learn such a language.4

wee ee BRK TAG
Figure 12 illustrates LAS's networ% gremiar after two more sentences have

g
- ‘ = 7

come in. penvences 3 ana 4 LinVOLVe tise

 

aubuiua OtaGiaw arenes pans 7

treats these 4s syntactic variants of above en rigat—of which differ in their

assignment of their noun phrase ArguURENnts © 9 the“Logical categories subject and

object. Therefore, LAS creates an alternat 2 branch through its START network

to accommodate this possibility.

Figure 13 illustrates the course of LAS's learning. Altogether LAS will

is will have to meke three extra
a

be presented 14h sentences. Subsequently,

generalizaations to capuure the entire vaerget lenguage. Piotted on the ebscissa

s this learning history and along the ordinave we have the natural Logarithm

of the number of sentences which the gremmar can handie. This is a finite

4 e, unlike GR MMAR2, and therefore tne number of sentences in the language

will always be finite. As can be seen fron Figure 13, by the fourth sentences

LAS's gramaar is adequate to handle 16 sentences.

 

LAS's grammar arter the next five senvences ig illustrated in Figure Lh,

These are LAS's first encounters with two word noun phrases. ALL five sentences

involve the relations right-of and above and therefore result in the elaboration

of the A195 and Al9T suo-netWOrks. Consifer the first sentence, square red

ariangle blue above, which is retrieved oy PRACKET as (C329 (C270 Ce71l square

(C270 C272 red)) (6303 C304 triangle (C2 ove) Ce sider0}. Con

C+ ct

03 C305 blue) above

the parsing of the first noun phrase. Hote that the adjec 1

is embedded within the larger noun vohrase. This is an example of the right

embedding woich BRACKET always imposes on @ sentence. ‘This will cause SPEAK

TEST to create a push to an anbadded network within its A195 subnetwork. As

can be seen in Figure Ls the exiscing arc containing theA2LL word class

is kept to handle square. Two alternetive arcs are added—-one with a push to
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square, triangle

square, triangle
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The growth of LAS's grammar with its learning history:

ve deses be ce nee
1 2° °37

Ceneralizations



Additions to LAS’s grammar after studying:

Le SQUARS RED PRIANGLS BLUE ABOVE

2, PARTANGLE LARGE SQUARE SMALL RIGHT-OF

3° TRIANGLE RED PRIANCLE RED ABOVE

i. SQUARE SMALL MRTANCLE RED RIiGHP-OF

5, SQUARE BLUE TRIANGLS LARGE RIGHT-OF

A211
HB

\ NIL
SSTOE

€ A221
C560

$9
STOP

NIL

r

——-== STOP

. o
£0585

ough colo Ss. stop C560STOR

C510 = gmail, blue,large,
red

small, blue, large r
ed

C
3

oa
t

c
o
O
r !
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the Chgl nebvos : ce with a NIL trens: io sithin the Cho: network

the word cle

“yord red.

Supeose &

neato! ontein saquence
: DOs 2 phrase

“
Psat -

AS

fully parsed.

i?

fares A ao

-

ee a
1

=

. 3 Ly a?

ok,

assigned to

1 .

Huils 4

tne Cx

OULLG. Kw
A

_ar
C :

--. An,

oy

a .
; 1,3 _%

Als 2S rth are Laat : €
LS on mazing to

7% ge

des-induczed equivalence of

(a) illustrete how

son in natural language.

at, eta. He would set

a 7

wed by any noun. Suppose, he

LiS as The + poy + 's.7

oe network illustratea in

sion that foots is the
: Y 7S
Jian is, af eaurse,

gelege vvin, 1964). What

n2

atecariousoep
aegoneralize

% OS
+ there ere 2 nunib er of alterna—

uch norphenic rules is.
=

tives end no semantic vasis zo choose besween them. Because of its principle

of sementics-indu
ced equivalence of syntax, LAS will eoyonerelize in those

situation Apparently, ¢children ere opetrating under 4 similar rule.

LiS needs to be endowed with a mechanism to allow it to recover from such

overgeneralizati
ons. Therefore, One of tne future additions to LAS will have

to be a RECOVER Prose
Consider how it would work witn this pluralization

example. Suppos LEARNMORE receives the genience The Scat ave above the

triancie. In oecating to analyze the sentence in SPPAXTSST, the plural

foots will be generated put Will mismetch the sentence. RECOVER has as its

function to note such mismatches. sinceait is possible that there are two

alternate Ways of expressing plurality, RECOVER cannot assucs its grammar is

wrong. Rather it will interrupt the information flow and check the accepta-

bility of The foots are aboveOFthe triangle. Tat is, RECOVER will explicitly

seek negative information.
Upon 7Learnan ne exoression is ungrammatical

gv

RECOVER will teke foot out of the word cless that is pluralized py 's.

 

1 . .
fo accomplish this T would have to put within TAS some ‘pechanism that will

segnent words into their morpnenes.
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Figure 15

Some possible network grammars
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Every bit as much as LAS, 4 enild logically needs negative information ta

reeover Trom overgeneralizations.
The interesting quest2on igs where the negative

information comes from in the case of the child. Parents ao correct the cnild

in such cov ious morphemic overgeneralizations
(Brown, 1973). Even today x

find myself corrected (not by my parents) for my failures to properly pluralize

esoteric words. ‘The child may also Use statistical evidence for a negative con

elusion. In some manner ne may. notice shat the morphesic form foots is never

used by the aduls and so conclude that 1% is wrong. Horning (1969)has formalized

an algorithm for detecting such overgeneralizations
py assigning probabilities

to rules.

vw

Figure 16 illustrates LAS's treatment o

training sequences. These involve some thre

sion of the noun phrases on the brancn of the start network for RB re

As can be seen from Figure 13, at the point of the hth sentence LAS has

its grammar to the point where it will nandle 616 sentences of the target lan-

ZuaZe. Actually the grammer has produced some overgeneralization
s—-i

ept a total of 750 sentences. LAS has encountered phrases like square,

f the last four sentences

e word noun phrases and also expan-

1

  

ace
square small, square red, and square red small. From this experience, LAS

has generalized to the conclusion that the sentences of the language consist

of a shape, followed optionally by either @ size or color, followed optionally

py @ size Thus the induced grammar includes phrases Like squares small small

because
ptable in poth second and third posi-

size words were found to be acce

erestingly, bhis mnisbake will nov cause LAS any problems. It will

phrase like square small small beceuse it will never have a to-

structure with.two smalls modifying an object. it will never

so and thus UNDERSTAND can nov moxe any mistakes. This is

how an over-general grammar can be successfully constrained

of semantic acceptadility-

he
e

QO

a fonever spea

hasspoken HAM

hear such @ pArese
mo}

@ nice exaipic

fhe problen of learning to sequence roun modifiers has turned out to be

a source of unexpected difficulty. in part, the oréering of modifiers is

governed by pragmatic factors, For instance one is likely to say small red

square when yeferring to one of many red squares, but red small squer when

referring to one of many small squares.. Differences like tnese could be

ef om

controlled by ordering of Links in the HAY memory structure.

G2NERALIZE .

After teking in 14 sentences LAS has built up 2 partial network grammar

shat serves to generate many more sentences than those it originally encountered.

However, note that LAS has constructed four copies of a noun phrase grazer.

One would Like it to recognize that those grammars ere the same. The failure

to do so with respect to this simple artificial languag
e only amounts to an

inelegance. However, the identification of identical networks is eritical to

inducing languages with recursive rules.
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Additions to LAS’s grammar atu:

  

   

      

         

16. SQUARE BLUE SMALL ERIANGLE

Tle PRIANG ® RED SQUARE BLUELEPP-OF

12. TRIANGLE SSMALG SQUARE REO

13° SQUARE BLUS PRiraNGLE BLUE e

Lhe SQUARS RED LARGE TRIANGLE RED LARGE SELOW

oY
4 i)

NIL ;
STOP

E— 8593 D1095

B566-6
SOP

KS NIL
S>STOP

£5580 DLO23

B564 SeD1OLeeSTOP

NIL

peerSTOP

conn he

p102322SEl 94—FL208__s=>STOP

ON Nib
SeSTOP

€D1117 E884

D1LO95 >E90L- SSTOP

NIL
TOP

Sp71l4

D692———-————pSTOP

EDLOLS

D1095—£PLY_s»st0P D1023 DLONS ssPOP

E

298h—©E205 s~ STOP £1368E22seestor

D714 = small

D1O45 = red, biue,small

DLiL? = plue,red

£905 = small,large

E1395 = large

23
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ye, > NOUN
3 k

 

That is, there are four networks, NP, HPL, NPno and uP. whose structuce is in-

dicated by the eoove rewite rules. It Ts assumed that LAS has only experienced

three consecutive adjecvives and therefore SPE KTEST has only created three

embeddings. se critical inductive steo for LAS is to recognize iP, = iP...

This requires recognizing the jdentity of the word classes NOUN, and HOU. and

the word classes Add, a ADJ This will be done on the criterion of the

emaunt of overtan af” 7 classes. it also reauires recognition

that network 2Pp = Neg. Thus, to identify two networks méey require that tvo

other networks ce identified. The network HP 3 is only 2 subnetwork of HP.

So in the recursive jaensification of networks, GHVERALIZs will have to accept

a subnetwork relation pesween one network Like NP, whieh contains another Like

NP... The assumption is thet with sufficient experience the emoedded network

would become filled out to be the same 45 the embedding network. After NPL

hes been identified with WP2 HAM will have a new network structure where NP*

represents the amalgamation of NP1, NP2, and NP3.

NP > the NOUN

the ADJ NP*

P* + NOUN*
ADJ* NP*

Hote that new word classes NOUN* and ADS*have been created es the union of

the word classes NOUN2, NOUN3, NOUNL and of the classes ADJ2, ADJ3, respectively.

ENERALIZE was called to ruminate over the networks generated after the

first fourteen senvences. GENERALIZE succeeded in identifying AlL9> with ALOT.

As a consequence, network A195 replaced network Al9T at the position where 1t

  

ceurred in the START network (see Figure 312). Similarly, B566 was identified

with and replaced network pS564. Finally, B566 was identified wita and replaced
4

A195 througnout the START network. Te final effective grammar is illustrated

in Figure 17. Iv now handles all tne sentences of the grammer. it hendles

more sentences then the granmar that Was constructed after the fourteenth.
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sentence. Tis is because the noun-parase network E556 has been expanded to

jncorporate all possible noun purases. sefore the generalizations, none or

~f} 4¢. c
~ , ot

e 4564, BOOS, ALQD, oF ALOT were complete. ‘The network B965 be-

 

a. e
L c

types of languages. The first is the assumption of the correspo c at

the surface structure of the language and the semantic structure. This is

critical to BRACKET's identification of the surface structure of the sentence

woich is, in turn, critical to the proper embedding of parsing networks.

Second, there is the assumption ofa semantics-induced equivalence of syntax.

This played a eritical role poth in the generalization of SPEAXTEST and ofa

GENERALIZE. It was noted with respect to pluralization that such seneralize-

tions can be in error and that children also tend to make such errors. However,

I would want to argue that, on. the whole, natural language is not perverse.

Therefore, most of tnose generalizations will turn out to be good decisions.

Cleariy, for languages to be learnable there must be some set f generaliza~

tions which are usually safe. The only question is whether LAS hes captured

the safe generalizations.
.

Tne importance of semantics to child lenguege learning has been suggested

in various ways recently by many theoreticians (e.g., Bloom, 1970; Bowerman, .

1973; Brown, 1973; Schlesinger, 1971; and Sinclair-de Zwart, 1973), but there

has been littie offered in the way of concrete elgorithms to make explicit

tne contriputicn oF semantics. LAS. L is a Tirst small step to making thi s

contribution explicit.

Conclusion

This concludes the explanation of the algorithms to be used by LAS.1 for

language induction. In many ways the task faced by LAS. 1 is overly simplistic

and its algorithms are probably too efficient and free from information-pro-

cessing limitations. Therefore, the acquisition penavior of LAS. 1 does not

nirror in most respects that ofthe child. Later versions of this program will

attenst a more realistic simulation. Nonetheless, f think LAS.1 is a signifi-

cent step forward. The following are the significant contributions embodied

so far in LAS. l.

1. The transition network formalism has been interfaced with a set of

simple and psychologically realistic long term memory operations.

In this way we have bridled the unlimited Turing-computable power of

the augmented transition network.

2. A single grammaticel formalism has been created for generation and

- understanding. Thus, LAS only needs to induce one set of grammatical

rules.

3, Two important ways were jdentified in which a semantic referent helps

grammar induction. These were stated as the grapn deformation condi-

tion and the semantics~induced equivalence of syntax conditions.
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L, Algovrithzs have deen developed adequate to learn natural

The general mode of developing the program LAS is as follows: A lanyvusge

learning situation is specified py a set of conditions. tn LAS, 2 it was

specified that LAS already know the meaning of the words and that it be given,

as input, sentences with HAM representations of their meaning. The semantic

domain was specified to be that constituted by geometric shapes. Cnee @ set

of conditions is svecified, 2a set of goals is specified. In LAS. 1 there was

only one real goal: to learn any natural-like language taat deserived the

domain. Once a set of goals 15 specified a plan of attack is sketched ont.

However, the problem is such that the details of that plea only evolve as we

attempt to imolement th i Inde2d many interesting

problems and ideas that
in LAS. 1 were discovered

in attempting ea impl
ity of computer simulation

in theoretical develo

 

The LAS. 1 progr verated in a task domain which 2s

means identical, to that of atural language learning situation. Its benavior

was similar to © o earning a lenguage, but ezain by no means iden-

tical. In sre xn two yeers i propose to create a program LAS

considerably closer to sinuleting naturel language learning. I

elaborate set of goals than did LAS. 1:

   

ss __.
2whien comes
h

«

1. The program will incorporate realistic assumptions about short-term

menory limitations and left-to-right sentence processing.

2, The program will learn the meanings of words.

3. The program should use semantic and contextual redundancy to partially

replace exnlicitly provided HAM-encoding of pictures.

h, The program should handle sentences in a more complex semantic domain.

5. The progran should be elaborated to handle such things as questions

and commands as well as declarative sentences.

The general methods for achieving these goals in the LAS. 2 program will

be sketched out in the proposal section. Also in that section I wilt propose

some experiments to evaluate the LAS program. While it is true that the task

faced by LAS. 1 is not really natural language learning, it still is a learning

task at which hucan subjects apparently can succeed, The experiments will de-

termine whether humans have the same difficulties in such tasks as does LAS

and whether they make the same generalizations. However, I regard these exper-

inents as of secondary importance relative to program development. It is more

important to further articulate our understanding of what algorithms are ade-

quate for natural lenguage learning.

oT



  

It is probably inevitable tha

is really necessary to expend the c ry

program, Could not the model just be specified nnn Tne reason1 way

this is not possible has to do with the comroLexity of any theory that addresses

the details of natural language. There is no other way to test the predictions

of the theory or to assure tnat ly c¢ isten The experience

with large transformational gramin language is that

they have hidden inconsistencies. these ere only exposed by trying to simu-

late tne Eranmers on a computer (e.g., Friedman, 1971). Consider the deserip-

tion given of LAS. 1 in the preceding section? Although lacking in many details,

it was complex and lengthy. Could the reader esteblish for himself from tals

deseription whether the model is really internally consisstent? A computer

iw

c

program provides a proof of the consistency end @ means o2 determining &

model's behavior. The stated goals of this project are to develcp explicit

algorithms for natural languege learning veecify the relevant details of

these algorithms, and evaluate empiricalty tne& psyehologicalviability or

these algorithms. Without the use of computer simulation none of these goals
ane

could be achieved.

C, Methods of Procedure

First I will describe the proposed extension of the LAS program. Then I

cribe some experimental tests. In reading the specific extensions pro-

posed for LAS, the reader should keep in mind that they have ‘as their intent

e goals set forth in the preceding section.achieving th

The Semantic Domain
 

The first matter to settle upon in the new progren is some semantic dem.in,

. ie relations 2 2
the LAL, tp wertd of ataves, prorperties, na s2cnstric Te-2Ulcns +2 20 surat

ished ror further work. Tne following is oroeposed as a suggestion altacugh

there is nothing critical ebout its exact form. It is critical, however, that

some semantic domain be chosen. It is only when there is a specified domein

that an explicit goal for success in the program can pe specified. The progran

will be regarded as successful if it can learn eny natural language describing

this domain.

I have chosen to look at a world close to that of a young child although

there is perhaps nothing sacred about this domain. This world is set forth in

Teble 5. There are three people in this world. In addition to these there are

four categories of objects--locations, containers, supporters, and toys.

These objects can have four types of properties--number, color, size, and quaii-

ty. Thus, LAS will have to deal seriously wita problemas of sequencing adjec-

tives. It will also have to deal with number es a property of objects. The

objects permit a much richer variety of reletions than in the vorid of LAS. 1.

This will provide a demanding test for the learning of complex multi-argumeat

relations. There can be sentences like Mommy traded Daddy the car for a ball.

In this world, people, containers, supporters, and toys can be in locations.

People can change their location and that of toys. People and toys can be on

supporters, toys can be in containers. People can possess toys, containers,

and supporters.
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Anderson

TABLE 5

Categories in the World of LAS. 2

   

PEOPLE

|

LOCATIONS. COMPATUERS SUPPORTERS

Mommy bedroom
box table

Daddy’ kitchen
closet chair

LAS den
dresser bed

TOYS NUMBERS COLORS. - SIZES GUALISIES

dolly one
red big dirty

ear two blue media pretty

pall three
green small shiny

Thus the differen: catexzories of objects enter differently into different types

of relations. This Te + will prove jmoortant to the predictive parsing facili-

ties that ZT will want to introduce into LAS. 2.

Left-te-Zisht Processing

Cnildran learn language auditorily. Thus, their induction algoritans must

process incoming material in a left-to-right manner. The current LEARVMORE

program does not go this. BRACKET completely processes the senten

SPEAKTEST even begins to work on it. Clearly, PRACKET an

integrated so that the beginning of the sentence is pracket

py SPEARTSST before the end of the sentence ts considered by eithe

ducing this left-to-right processing is a preliminary to introducing short-

term menory limitations into the induction situation.

Figure 18 illustrates in highly schematic form the left-to-right algorithn

proposed for LEARNMORE. Words are considered as they cone in from the sentence

LEARVMORE, as in UNDERSTAND, tries to find a path through its netvork grammar

to parse the sentence. The difference petween LEARNMORS enc UNDERSTAID is

that LEARNMORE hes available to it a HAM conceptual structure to enable it to

better evaluate various parsing options. Suppose LEARNMORE is at some point in

processing the sentence. It will also be at some point in 4 parsing n

Let us consider how it would process the next word. At box 2 it

in the word. At pox 3 it would set 1 to the various grameatical options (ares)

at that node in the network. Boxes Ty through 7 ere concerned witn evalua.

waether any of these options can handle the current word. Box 4 che

there are any options left. Box 5 sets a to the first option and re

the remaining options. Box 6 checks whether the word would be parse

and box 7 considers whether the action associated with that ere corr

a HAM structure. “If a passes the tests in 6 and 7, FARIMORES advances to con~

sidering the next word. Otherwise it tries another arc. Tf it exheus

arcs, it will call FIITDPATH (box 8) to build e new are fron the curreat node.
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The work currently assigned to BRACKE? will have to be assigned to 9x [-

That is, box 7 will have to determine when an are snould involve @ push to en

embedded network and when it snould pop back up to an anbeddirg network. This

will be done by consulting tne information in the semantic struc vure. Tt would

also be possible to consult the pause structure of the sentence tor information

about phrase structure poundaries,

Note that certain sentences which the old LEARNMORE system could handle

will not be handled by this system. For instance, consider the sentence The

Square that is above the triangle is rignt-of the square. After the firsttwo

 
 
   

3

words it would not be clea: which squer a

object or the subject of ; 3 a.

an appropriate action to the path. In tne old LEARNMORS thi

the referent of square Was resolved by let 2 n

* - « —_—__
.

dealing with it. Presumably, however, cal a

from such sentences.
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In this system it will not be assume that LAS knows the meaning of the

words, Rather this will be something that LAS will have to learn from the

pairing of sentences with conceptions. First let's discuss the learning of

words whose reference is a simpie concept or object, ©-&-> box or mommy, and

postpone discussion of c mpolex relational terms like trade. Logically, the

task of lexicalization is quite simple and it would not require complex algo-

rithms to succeed. For instance, consider this elgorithm: LAS is given a2

sentence with n, words and a conceptualization it Geseribes with ny concepts.

tore with each word the my, concepts. The next sentence that comes has Ro

words and its conceptualization consists of zp concepts. If a word in this sen-

tence is new, store with it the mp concepts. if the word is old, store with

it the intersection of the concepts previously stored with it and the new mo

concepts. Eventually, ignoring problems of polysemy, & word will become pared

down to zero or one concepts. Those with zero concepts are function words

end those with one concept have that concept as their meaning.

 

 

a
=

+
w

Of course, this elgorithm will ma into trouble if LAS does not always

eptualize all the concepts referred to by the sentenee, This can bea

died by having the algorithm wait for a sequence of disconrirming pieces

r idence before rejecting 2 hypothesized meaning. Incidentally, subjects

ehave just this way in concept attainment situations (see Bruner, Goodnow &

Austin, 1965), not teking negative evidence @&s having its full logical force

about the meaning of the word.

The basic problem with this algorithm is thet it makes unreasonable assunp—

ions about the information processing capacities of humans. In pilot researecn

£ my own, I have found that adult subjects can learn the meanings simultane-

ously of a number of words in a sentence. However, they do suffer difficulties

when there is high ambiguity about what a word means. Presumebly, children

would have even greater difficulties extracting word meanings from complex sen-

tences. Broen (1972) and Ferguson, Peizer, & Weeks (1973) report that new items

of vocabulary seemed to be introduced through use in set sentence frames such

as Where's ..., Here comes ...-, There's ... known as deitic phrases. The noun

tends to be heavily stressed and repeated. ‘The parent frequently points to help
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ah env t

3, provided the child Knows

 

  

  

more complex Se nes
g most of the ne

satical
of the sentence fT. compine these yarious considera-

p L t
eure 18 to deal

word is reac if Li
ag

%

about context and about the word's position in tae grammar, it {Ll co

‘this guess to menory and stick with the guess i ess later disconfirmed.
Tne

program wilt only hazard a guess in circumstances of low uncertainty. Thus,

“4b will only guess if it can otherwise parse tne grammatical structure in which

the word appears. It will not guess if the word is receded or followed bY

know. Thus, the progres, much a8 adults appear to, will

contrasts between grammatical pattern and a

e program knows the grammatical rule NP - determiner

p
>

a Oo r
h o
c
t

L
e

rt Pe [3

adjecti .
the phrase the ¢lick box it will suppose thet

glick rerers to some property of the box.

Thus, the progren will have to acquire its initial vocabulary by means of

simple frames, 85 do young chilcren. With this initial vyocebulary information,

it can begin to learn grammatical rules. Once in possession of grammatical

rules, it will no longer nesd simple frames +o learn new lexical items.

One interesting question is how function words are ever identified as non-

meaning-pearing in this scheme, Presumably, 31 is done on the vasis of failing
a

d and any semantic yeature. FHLS

esses had been associated with a word,

 

So far I have assumed that all concepts are constructed before language

acquisition takes place and that the only problem is to link up these concepts

with words. But this is very unrealistic. Consider the verd give in the sen-

ives the dolly to Daddy. The meaning of give is something 1ike

 

   

   

ng

one to cease to vossess 3h object end someon’ elise

as ooject. Tt seens very implausible that a child comes

learning situation wits sucn a concept ready made. What probably —

he sees Mommy pushing the Goll to Daddy or Momny handing the

ball to vany. With these experiences he hears sentences like Mommy gives the

golly to Daddy or Mommy gives the pall to baby. From these examples he induces

the appropriate meaning of give. Cancept attainment in these situations can be

achieved by using the sort of concept jaentification used py Winston (1970) for

inducing geometric concepts. That is, each use of the word give is paired with

e EAM network structure given the meaning oF the sentence. Winston's heuristics

allow. us to extract what these network structures Pe

mon. ‘Tne concept give, es verb, is then attached to

For this sort of algorithm to succeed, LAS must be set to regerd certain con~

figurations of propositions, interlinked by causal terms, 4&5 being associated -

with a single relational term in the langu2ege.
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Note also that the

meaning of complex re
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na 2 caild is that

first the child

eh has been

in two and three

wordueterances.
es ib appears

that children have omitt ad mo function + eonstructions.

One explanation of the origin of telegraph e pealing from the

point of view of LAS is the following: Suppose that LAS did not receive as input

to its Teenaroutine complete sentences lesrapnic sentences.

liy induce a te [t seexs reasoneole

otel sentence he

. If so, then his

be receiv
as their basic

celesraghic

Shis necothesis com fron studies of chiid imitation of adult

mid bhay these tmdtations. amnile tanger than tha chiid's awm

iso telesraphic in nature (e.g., Srown 2 Fraser, 1964). Blas-

1970) found that childre tend to repezt those words which are

words which occur in terminal positions. The semeannem

eng to be stressed in adult speech. Scholes (1969, 970)

en tended to omit words that had unclear senantic 2oes or

What I find striking 1s th these ere just the veariebdles

"ranch sentence--a language

of serial posone per-

es

C

fectly. Of course, wh

Tm
tablished effects in

eaningfulness el

ments on immediave memory.

 

ough an aspect

“I propose to introduce telepraphic
i
the variables

Ss

¢ D

of LEARNMORE called BADEAR. The BADEAR program will simulate

of stress, meaningfulness, and serial position in orovidings LAS with a depleted

version of the sentence. The locus of the effect of BADEAR will be between

boxes 4 and 8 in the flowchart of Figure 2. Basically it will not bass all

words onto BUILDPATH. Rether some words will "slip fron consciousness” after

failing to be persed. It will tend to omit words wher: (a) they are unstressed,

(ob) their meaning is not known, (c) a critical nusoer of new words in the

sentence nave already been passsed to BULLDPATH. I suspect this critical number

is something Like one or two.

Factors (2) and (b) wouldgenerate che effects o

Factor (c) would yield good memory Tor the fir

good memory children do show Hr last wor

term acoustic memory.

7 oi
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An interesting fez @ B at, expanded, LAS

sould tbe able to receive more of the sentence.
tons and imita-

sions would grow as Goes a child's. This would be colicit mechanisn

for an ides suggestes ty Braine (1971), Olson (1973, Tnducing 2

grammar Drom derenerate sentences presents an intere How is it tnat

pangon its rules for generating te eecn? verely

ed 4 r oR fuller sé does not follow

S$ are W
oe le means for

expressing tne same tho hanisa incorporated

that will strengenen some & mat lative Rules to be

would be t essTul FUDERSTAND and

uccessfully
ignt. tt & ares ont of

parsing netw ack ¢ eir relative

Subjects wo of a sta i Tneffective

ne originel rc oO a on word utterances would descend

4 of the stack and so become unavailable. This strengtn mechnanisn

the same as used to order Links in the HAM memory model. This is a different

way to bring formation to vear in grammer induction than thac bron

posed for rather than seexing explicit éisconfircation of rules,

the rules ned out of existence as more adequate rules taxe
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with the following form:

 

START

NP
é,

This grammar requires considerable backup if the sentence does. not have an RA

relation. As suggested earlier it would be more efficient if LAS were given the

power to transform the grammar into the following form:

STOP

GRA

iP NP

E&.2RB
a
STOP

Given that there are s ous time problems (see introduction of proposal)

in parsing, it isc i 4 methods be incorporated in the learning program

for optinizing the grammar. The merging of arcs, besides making the grammar

more efficient, would be another form of generalization. It could be used to

further merge and build up word classes.
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A Procedural Semantics

So far LAS hes been principally concerned with representing the meaning

conveyed by a declarative sentence. However, language hes other purposes than

er commands

oO

just to communicate meanings from one speaker to enoener Co dé

ly in the box,

D
a

end questions. For instance, consider the sentence Put the do

Currently, UNDERSTAND might retrieve the sentence'ts meaning as S

of LAS that it out. the dolly in the box. This is the decLaratiy

However, in addition LAS should evoke an action that

an ection to decide whether to comoly. Al

21 meaning of the sentence. The procedural meaning of decl:

$ very Simple: store this sentence. This is already as

ment of the sentence. However, the procedural meanings underlying
‘o
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pes of sentences are more complex. A large part of the success of

's system is that it.was adequately able to deal with the procedural

of various sentences!’ semantics. It is important that LAS begin to

tnese too. .
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this would mean, in terms of LAS's network grammars, is enrich

set of tions vat can be stored. Currently, the only actions are ones

result in the creation of pieces of HAM structure, i.e., : i

LAS will have to ene other internal actions that svecify whet it does

the declarative knowledge. These will include commands to answer the qu

or obey the order. HAM already has commands that direct it to answer aq

but executing orders would be something new. As part -the HAM project,

working on methods for incorporating procedural knowledge into a network

tem. It is unclear yet what success I will have here.
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language whose semantics

n a r Consider for

ch Pinite article--the ab

bjeck whi: > listener
t

  

Li s be
i

This partic ly
g is to ¥y

to speaker and context. Since the referent or you completely chanzes with

speaker, a child would be lost if he tried to associate its meaning with some

f a at it as having as meaning @ pro-
HAM memory-node. He must be pregared to tre

cedure for determining the referent.

Provided that LAS has the facilities for representing and evaluating pro-

cedures, there seem no difficulties in learning those aspects of language

which are heavily embued with procedural seransies. Language learning wi

tinue to arise from pairing sentences with secentic interpretations. Howeve

serantic interpretetions will now contein & procedural as well as a declarat

aspect. Again language learning will consis learning mappings betweea s

tences and the now-enriched semantic represenvations.

Experimentation

 

As stated before, I do not think that i

the principal focus of the project. There 11 much further research that

needs to be done in the way of specifying elgorithn that are capadle of language

induction. Nonetheless, in parallel with shis research, I would like to perform

experiments to get some initial assessments of the viability of the proposed

elgorithms. The type of information relevant to evaluating LAS is only acquired

by looking at artivical languages. With these artificial languages it is possible

to test LAS's predictions about language learnability and generalization.

mental research should yet be

Criticisms of Experiments with Artificial Languages

For ethical reasons it is not possible to expose young children, just

learning their first language, to an artificial language which LAS had identi-

fied es degenerate and probably not learnable. This means that all experimen-

tation with artificial languages must be Gone on older children already vell-

established in their first language or on aaylts, Conseauently, the first lan-

guage may be mediating acauisition of the second language. ‘There is evidence

(see Lennenoerg, 1967) that there is a critical initial period during which

languages can be learned much more succéessiu.y than in later years. Lennenberg

speculates that there is a pirysiological basis for this critical period. ‘Thus,

one might wonder whether the same processes are peing studied with older sub-

jects as in the young child. Personally, i o doubt that the mechanisms of

language-acquisition are the entirely same wi

c
t

.

s

h the young child in first language

learning as With the older subject in second language Learning. However, it does

cr
Oo



 

  
     

 

   

 

Other criticisms (e.g., those of signin, 971; Milter, 1967) of stucies

re 7 1a arvnoin n the fact that tnese Languages are a

é molicated t an artificial labora-

j lex functions; the

ech. LOWa"

GACL

1 phenomena. Another

ose studies of

5
a semantic referent.

Clearly, 5:
3 f:

of algoritans @ subject

can employ.
neuristics used bY LAS would be useless without senan-

tics.
(1972, 1973) neve shown that the existeace or a

seman
uge effect on Language acquisition. Except for control

‘condi
iments will involve @ seransic referent

  
  

Languege Learneboility
2 oS

on elgorithm is that the graph defo mation condi-

tion ts ms
ation between the surface structure of tne sen-

tence and the sal structure. These is, the surface structure mist

preserve the original connectivity of concepts. In Section A5 we described

languages which violated this assumption. Consider the following language:

oS
at

Bucs

S$ > NP NP relation

HP > noun (Color) (adjective) {clause )

CLAUSE >» te NP relation

NOUN + square, circle, triangle, diamond

Color > red, blue

Size > small, large

Relation > above, pelow, right-of, Laft-of

cS

This is en expanded version of GRAMMAR] described in Table 1. (The element te
a

in

An

serves the function of a relative pronoun like that.) An example of a sentence

a

Loy

this languege is Squere red te triangle pig above circle Dive small right-of.

experinent Twill Go compares Four conditions of jearning for this langucge-
 

  

No reference. Here subjects simply study strings of the language trying to

infer their grammatical structure,

Bad semantics. Here & picture of the sentence's referent will be presentea

elong with the sentences. However, the relatioaship between the sentence'’s

semantic referent and the surface structure will violate LAS's constraints.

The adjective associated uth the ith noun phrase will modify the (n+ 1- iL}

shape in the. sentence (where n is the number of noun phrases). For example,

the adjectives associated with the first noun phrase will modify the last

6T
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shape. Similarly

(q + 2 - ijth rel

So for instence the

petyeen the first pai
triangle. Gne ay in

picture for the example sentence 15 given in Fiuuce 19a.

ud
)

 

 
h, Good semantics plus main oroposition. The picture in this condition wiil

be the same as in 3 but the two shapes in the main proposition will be

highlignted. In this cond@ition LAS would be guaranteed of successfully

bracketing the sentence because the main proposition is given.

In some ways this experiment is Like Moesser and Bregman's, However, here

English words are used s0 that the subjects do not need to induce the language's

j its grammar. Fob corresponds to the situation faced
1 5

sh words were replaced by nonsense syllables this would

tion of the Language to make
pLiti

induction tractisle. Tne |

predictions of LAS are, of course, that best learning occurs in Condition 4,

next best in 3, and failure of any learning in 1 and 2. It would not be sur-

prising ta see gunjects perform better in Ltren in 2 since in they might par-

7 ~ 77 * : a cute ce eee ok peace kDa

BLL Ve BULB
ti Ch BO PL OPE Bae ewdecent theo

> ve

The procedure would have subjects in all conditions study the same sequence

of sentences but vary the accompanying semantic information according to condi-

tion. After a study phase they would be tested for grammaticelity judgments

about a set of sentences, Some of which violate one of the rules for generation.

Since the syntax of the language is the sane in all four condivions, the sane

sentences will be eramnat 1 in all four conditions. @yen though the synvtac-

tic information given d study will be the same in all conditions, marked

@ifferences in syntacti
Tr

r 52
+

Ss
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3
9

o
o

2
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t

u
w
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wledge should appear across conditions. ine

guences of study trials with sequences of test

tudy six sentences, with the semantic information

jate to his condition, if any). Then he would see six test pairs, one

ce of each pair violating some syntactic rule. For each pair of he would

o- choose the grammatically correct pair. By frequently alternating study

st, 44 would be possible to carefully monitor the growth of information

in the conditions.

Many readers may not be surprised by the prediction of petter learning in

Conditions 3 and hk. Hopefully, the significance of such an outcome would be

clear. It would snow shat semantics is impo tant to induction of the

structure of a natural language. Hovever, i c
k

o (b

would also show that semantics

is useless if the relation between the semantic referent and the syntactic

structure is arbitrary. The surface structure of the sentence must be a praph-

deformation of the underlying semantic structure. Failures to eppreciate the

contribution of semantics to Language induction and failure to understand the

nature of this contribution of senanties to the induction process nave been

fundamental in the stagnation of attempts to understand the algorithms permitting
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been unavailable to the Linguistic theorists 19F fifteen years.
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3
ssibl

so that the target

language can be identified. However, ainc ed by LAS are not tre

came ag those suggested by Chomsky. For insvance, Chomsky proposed that vrans—~

formations which reversed the order of words in 4& sentence would be unaccentanle.

Tris is because such 2 rule does not refer to tne santence's constituent struc-

tore. However, 2 languesge which contained sentences of a natural language and

their reversals would be learnable by LAS. Te would just develop one seu or

rules for sentences in one order and another indesendent set for reverse order

sentences. It would be interesting to see whether numan subjects could iearn

such a language.

In the example of the induction of GRAGIARI we found that tne

for LAS to detect non-senantic contingencies between syntactic cno

a
°

first noun-phrase end tn the second noun-phrase pushed to in the. main network.

Wor instance, it is possible that a morphenic emoellishment of the a jectives

i ; hrase may depend on & choice of morphemie embe

the noun in the first noun phrase. Human subjects should also find it hard

to detect such syntactic contingencies.

  

oO mThere ar nother set of predictions, besides those concerned with language

learnability, waic + will be useful to explore. LAS makes predictions about

the situations under whieh humans will ten to generalize rules end when humans

will not. Suppose LAS learned the following gremmar:
,

S$ > VERB WP NP

we > (PREPP) Wy, (ADS)

PREPP > PREP Ne

Ny > boy, girl, ete.

No > room, bank, etc.

ADJ + tall, nice, etc.

PREP > in, near, etc.

VERB > like, nit, etc.

1 +

  

A typical sentence in this language would be Like

  which means The tall boy in the room likes the nice 83 1. Tnis lang e is

given English terms only to maxe its semanties Clearer. Suppose, in fact, words

in the language were das meaning man, ji> meaning wonar, Fos meaning boy, and
3

tuk meaning girl. Suppose the subject studies the following pair of sentences!

1. Like das tuk.

2, Like fos jir.

10



 

      

   
   

  

Then, it is interesving to consider his judgmenes of the nacceptaoility of

sentences Like:

3, Like das tuk.

4. Like das jir.

5S, Like jir Gas.

Accept involves recalling senteace (1), but

nVOLV c LAS would currently mexe th

3' ’

cy
fa

wv
ip uy)  oa _- a “~

Oe wONeECNE 3, 5325

oo 5 mS 7
of their semantic similarity

\
s. ‘Tne words 3:

could, for Dax 4iff 5 cane inflection wnen they apr

ferent
t when pr

 

ion in this artificial

Jangu
Would he accent

senven

6. Like in room boy tall girl

7. Like girl in room boy tall

That is, will rules generalize from the subject noun purase to the object noun

phrase. As LAS is currenntly constituted such generraitzassons would not occur

until it hed built up fairly stable now pnrases. Again suppose LAS had initially

only encounterecé simple sentences suen es (8):

uch as (8) LAS would learn the class of nouns that Go
From sentences Ss

e

first and second noun phrase slots. Suppose then sencence (9) was studied. On

the basis of it, would senvence (10) be accepted as grammatical? That is, would

the preposiitional phrase in bank generalize to Ov“near nouns in the same class as

woman?

9, Like boy in bank women

10. Like girl in bank man

This would be am example of right zgenereli

In contrast, LAS does perform left generali

LAS would accept (12).

zation which does not occur in LAS.

zation. That is, after studying {11}

lL. Like boy woman nice

12, Like boy man nice

fi



 

   

 

poses, one concerned with psycnology and one

ence. IL think this mixed purpose is fruic-

réilization of ideas from two fields and so

on. There is no gueranvee that LAS, in the

will ever achleve the goal of an adequate

acauisition of language. However, 2 certain outcome

er understanding of the information-processing
demands

and of the role of a semantic referent in gremmar in-

“re Will learn wnet is wrong with one explicit set of

i | =ven that would be 2a significant contribution to the

Currie UbEUre be cas Gevelupmeub dn a PlelG rich in Gave Dub abmvel, LuLaLiy

Jecking explicic information-processing
theories. I hope, of course, that the

processes uncovered in the LAS project wiil be the same as those used bY

humans in language learning. A successful simulation program would constitute

an enormous advance in our understanding of cognitive development.

The contributions of LAS to the artificial intelligence field are less

certain and more distant. Nonetheless, generality in language understanding

systems is an important goal and one for which a learning system approach

seens ideal. It is therefore importent to understand the contribution language

learning systems can make in this field. It yould be a significant advance to

know in detail way & learning system approach was not the answer to language

understanding or at least why LAS was not the right sort of learning systen.

Of course, if LAS does prove to be the basis for a viable language understanding

system, its contribution to artificial intelligence will also pe of considerable

importance.
,
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