
October 27, 1977

1 Introduction

This application addresses the continuation of research on the
applications of artificial intelligence (AI) (1) to exper imental
molecular genetics. It is an extension of a longstanding effort to
cultivate attention to ongoing laboratory research as a domain of
explorations in artificial intelligence. Our major effort in this field
had been in the DENDRAL project, with analytical organic chemistry as
the object discipline. The present effort, "MOLGEN", focuses on a new
object domain, namely molecular genetics. However, for reasons that
will be elaborated, the focus is on programs to suggest experiment-
planning sequences needed to solve a given structure, rather than on
hypotheses about the structures themselves, which characterizes
DENDRAL,

Our primary motivation is to deepen our knowledge of the art
and science of creating programs that reason with symbolic knowledge to
aid human problem solvers. The task domain--molecular genetics--serves
as a rich intellectual and scientific environment in which to develop
and test our ideas.

The major computer science issues we are addressing are:

Present Grant period (June 1976 - June 1978)

(1) Creation of a knowledge representation system with a
knowledge acquisition package. The system, known as
the Units Package, may be used to build a knowledge
base in any suitable domain. It provides an object-
centered approach for storage of both declarative and
procedural information concerning all entities in the
domain. Section 1.2.1

(2) Structured representation of process information,
Procedures which simulate the action of the various
processes in the domain form an integral part of the
knowledge base. Moreover, the representation
framework allows for inspection and acquisition of
those procedures. Section 1.3.3.1.

(3) Creation of program schemata and instances for general
problem solving steps. Domain-independent knowledge
about general problem solving methods also fits into
the knowledge representation structure we have
devised. Section 1.3.3.3.

(1) For definitions of many of the genetic and computer science
terms used throughout this proposal, see Appendix I,

October 27, 1977

(4) Domain Specific Critics. Mechanisms for the
activation of various domain specific strategies when
certain predefined situations occur during the course
of experiment design. Section 1.3.3.4.

(5) Development of a specific planning strategy designed
to provide high-performance for the class of genetic
experiments known as discrimination experiments. The
idea is based on indexing abstracted experimental
designs to the types of structural features for which
they have proven useful. Section 1.3.4.°

Grant Renewal Period (June 1978 - June 1980)

(6) Creating a more comprehensive genetics knowledge base.
Expanding the knowledge base within the area of DNA
Structural manipulation problems. This work will be
done mainly by the Stanford Genetics Department.
Section 2.1.

(7) Abstracting and Saving Plans. Recognizing when newly-
created experiment designs are worth saving and then
generalizing those plans so they are useful for more
than the specific problem environment which caused
their generation. This work will be done in the
Computer Science Departments of both Stanford and UNM.
Section 2.2.

(8) Making use of the process of hypothesis formation to
help debug MOLGEN-produced experiment designs. This
process is especially important in a domain like
molecular genetics where incomplete knowledge about
objects and processes is the rule rather than the
exception. This work will be done in the Stanford
Computer Science Department. Section 2.3.

(9) Experiment planning by analogy. MOLGEN provides an
excellent environment for exploring various types of
analogical reasoning. We integrate problem-solving by
analogy into☂ the experiment design system as one of
the possible tools for solving subproblems. This work
will be done in the UNM Computer Science Department.
Section 2.4

(10) Performance evaluation as an integral part of the
knowledge representation and acquisition system. We
view the process of evaluating a system's performance
and suggesting improvements as an AI problem solving
task. The strategies for this evaluation will be

October 27, 1977

stored within the same framework as all other MOLGEN
planning strategies. This work will done in both the
Stanford and UNM Computer Science Departments.

Section 2.5.

We have designed our effort to facilitate generalization to
other domains beyond genetics in future research and applications.

A second motivation behind the proposed research is to develop
tools that can benefit molecular geneticists. We believe there is

substantial. benefit to be derived from programs that act as

"intelligent assistants" to scientists. First of all, the sheer amount
of detailed knowledge a scientist is expected to know makes it likely
that good experiments are being missed. Second, we believe that an
intelligent planning assistant can offer some help in reasoning about
the consequences of combining experimental facts in many possible ways.

A third motivation for applying artificial intelligence
techniques to an experimental science like molecular genetics is to
help us better understand the scientific method. The rigorous detail
required for creating computer programs that assist in the performance
of scientific tasks forces us to explicate concepts and procedures much
more carefully than practicing scientists usually do.

During the current grant period, the basic MOLGEN system will
be completed. (See Section 1.2 for details). This system will have
a modest genetics and problem solving knowledge base, an ability to
design a subclass of genetics experiments and a representation and
acquisition system capable of handling all.of the knowledge used by an
experiment design system. During the renewal period we will expand the
system's expertise and use the system to explore new problem solving
capabilities. (Readers can skip to Section 2 for details of work to
be completed during the renewal period). ☁The basic MOLGEN system will
provide an excellent framework for exploring more sophisticated
experiment design activities and problem solving techniques. We have
found in our analysis of the activity of geneticists that designing
experiments is intimately coupled with forming hypotheses about the
failure of the experiment design in the laboratory, then testing the
hypotheses and, as a result of the tests, gaining new knowledge wtich
effects the design. The new hypothesis formation component . of MOLGEN
will extend problem solving capabilities in this direction. Another
important element in the repertoire of an expert human problem solver
is the ability to form analogies between problems and to use the
analogy to solve new problems. Our exploration of analogical reasoning
within the MOLGEN system will lead to a new problem solving component
integrated with the rest of the design system. New expertise will come
in a direct manner from the expansion of the knowledge base by
geneticists. At the same time we will increase our problem solving
knowledge base by adding a component which monitors the problem solving

October 27, 1977

experience of the system and abstracts new experiment designs for the
design process. The generalization process developed for this monitor
will be used by the analogical reasoning component. Our final
extension to the MOLGEN system is the ability to evaluate its own
performance. This evaluation will aid the development of all of the
other extensions,

ll Motivations

The successful initiation of and perseverance with
interdisciplinary research of this kind can be hindered or aided by
many intangible factors in the local context, as well as by the
personal idiosyncrasies of the participants. We need only point to the
history of the DENDRAL project as evidence of our proven capability,
for whatever reasons, to engage in such research in the Stanford
University environment. It is inevitably true that no one person can
embrace a professional level of critical insight over all the fields
represented, but this has been surmounted by dint of hard work on
mutual communication from all sides. More problematical is the problem
of communicating our findings to a disparate group of disciplinary
experts outside, e.g. to computer scientists and to molecular
geneticists who customarily have had little need of perusing each
other's disciplines. The best solution is to get these parties engaged
not just in reading proposals or publications, but in the actual
manipulation of the working programs -♥- particularly with the help of
computer networks that link dispersed sites. Even so, an amount of
technical detail that could well try the patience and skill of the most
tolerant reviewer is unavoidable if we are to offer a concrete, fair
picture of the status of our efforts, especially in the formative
Stages. We trust that, as is often true, the maturation of these
efforts can be accompanied by a simplification in presentation, and
Meanwhile we must appeal to the patience and good will of constructive
critics. The supporting documents attached to this proposal offer a
sample of our working papers and publications. Further documentation
on any aspect of the present system is, of course, available.

1.2 Progress To Date

The following sections describe our progress towards developing
an experiment planning program. The first part discusses a knowledge
management system. Most of our design and programming effort has been
in this area. A. package of programs for the representation and
acquisition of knowledge is discussed and our progress in using it in
creating a genetics knowledge base is also described.

1,2 October 27, 1977

The next section focuses on our examination of genetics
knowledge. It discusses various studies we have made of genetics
experiments and what we have learned from them. A short section
describes some work we did in representing the action of the ligase
enzyme and how this was of benefit to work in Prof. Lederberg's
laboratory.

1.2.1 Knowledge Base Research

The success of MOLGEN as an experiment planner will depend on
the quality of its knowledge base. Therefore, much of the research
effort to date has been in the design and implementation of a knowledge
representation and acquisition system. All of the information relevant
to the planning process will be an explicit part of the knowledge base.
The motivation for this aspect of the design is the necessity to expand
the program capabilities in a modular fashion and to explain the
rationale behind the program's planning behavior. We need to represent
concepts (e.g. enzyme), instances (e.g. EcoRI), relationships among
concepts, and relationships among instances. In addition, we need to
represent processes. Two recent papers [42] [3] have delineated
problems which arise in interpreting a knowledge base when the
semantics of the representation are not clearly specified. We have
purposely limited the expressive power of our representations to enable
us to clearly define their semantics.

The result of this work is the Unit Package. Although this
package has been designed in the context of our genetics application,
the package does not contain any genetics knowledge. At this time one
other group within the Stanford Heuristic Programming Project, the AGE
group, is using the package.

Our knowledge base design has been reported in the literature
[24]. Other documents relating to its use are included in the
appendices. Also included is a sample session illustrating the
acquisition of a DNA structure and a current summary of part of the
knowledge base dealing with enzymes. Section 1.2.1.1, Section
1.2.1.2, and Section 1.2.1.3 describe the implemented portions
of the representation package. Section 1.3.1 discusses some of the
further developments for the knowledge base that are planned for the
rest of the current grant period.

1.2.1.1 The Unit Package: Background and Relation to Other
Research

Design of the representation package (termed the Unit Package)
was started in November 1976 although most of the programming has been
done since March 1977. The design of the Unit Package profited from

1.2 October 27, 1977

the experience of other efforts e.g. KRL-O [1], SMALLTALK [20], and
the work at the MIT AI Lab on frames [27] [21]. One important
difference in perspective between the Unit Package research and many
other efforts is that it is at once a knowledge acquisition system and
a knowledge representation system. The knowledge acquisition system is
in the same spirit as Davis' work on TEIRESIAS [7] where schemata were
used to guide the acquisition of knowledge. Another distinguishing
feature of the Unit Package is that it is also used to represent and
acquire process information, that is, action and strategy knowledge
(see Section 1.3.3.1). The package performs many other knowledge
Management tasks for the system.

The basic element of our representation is an entity called a
unit. Units are either "prototypes" or "instances". Prototypes are
used to represent Woods' intensions [41], Brachman's concepts [3].
That is, a prototype defines a class, that is, the knowledge expected
for a particular concept in terms of slots with the appropriate fields
(e.g, role, value/specification, default). (2) Individuals are defined
as instances of prototypes. Subclasses can be formed with a special
link called generalization/specialization. Concepts can only have one
generalization and instances only one prototype. Other relationships
among units can be expressed by the value/specification of a slot or by
creating an explicit relation unit.

The knowledge acquisition system is used to acquire both
prototypes and instances. This system is being used by system builders
to create the bootstrap network described in the next section and by
Jerry Feitelson, our genetics research assistant, for defining and
instantiating knowledge about several families of enzymes. (See
Appendix II and the supporting documentation for examples of
knowledge acquisition.)

Other knowledge base management chores include automatic
bookkeeping and knowledge integration. The bookkeeping chores simply
keep a record of all pertinent information about the creation or
modification of a unit.

1.2.1.2 The Bootstrap Knowledge Base and Object-centered
Perspective

One important aspect of the design of the system is that the
knowledge base contains knowledge about its own data representations.
We have provided what we term a "bootstrap knowledge base." It contains
domain independent knowledge about commonly used data types. When

(2) The slots in a prototype are similar to Brachman's DATTR
links. A limited version of Brachman's MODALITY link is implemented,
MODALITY specifies the necessity of the specific DATTR in instances.

1.2 , October 27, 1977

using our knowledge base in a new domain, an artificial intelligence
researcher would probably start with the bootstrap knowledge base and
then proceed to create units for the specific knowledge of his task
area. Both the AGE and genetics knowledge bases have been started in
this manner.

. The bootstrap knowledge base serves to illustrate our approach
to extensibility. Most of the bootstrap knowledge base is made up of
the procedures which capture the knowledge in the system about
primitive datatypes. To add a new datatype to our system, one needs to
provide the knowledge base with procedures for some basic Operations -~
such as editing and printing. Actually, the same approach is used in
the unit package for defining a new datatype as is used for defining a
new enzyme. The process of defining new datatypes requires, however,
an understanding of Interlisp because the primitive processes in the
system are grounded in that lenguage. New datatypes must be defined
together with their basic operations and entered into the knowledge
base,

The approach used for attaching the basic operations to the
primitive data types is very similar to SMALLTALK [20] and KRL-0 {l].
As far as the knowledge base is concerned, in order to edit a DNA
structure, one sends the DNA unit an edit message. Another way of
Saying this is that the procedure for editing a DNA structure is
attached to the DNA unit. Thus, indexing of the "edit procedure" is
via the "DNA object" so that this is an application of the object-
centered viewpoint introduced in the languages mentioned above. This
Organization makes it easy to add new datatypes to the knowledge base.

An object-centered viewpoint is used in our system for other
applications as well. An example of this is the "inspector" idea
discussed in Section 1.3.3.4 which illustrates the Significance of
object~centered indexing during planning. In that example, particular
knowledge about related planning situations is associated with the
genetic object -- "pH", Generally only operations basic to primitive
data types are represented in LISP code. Other process information is
expressed as units. Instances of process units can also be associated
with objects.

1.2.1.3 Considerations of Human Engineering

Because we expect our knowledge base to be maintained by
geneticists, it has been important to carefully consider the
interaction expected between a geneticist user and our Unit Package.
This effort has resulted in the crafting of a package which is
particularly easy to use. This ease is verified by the acceptance of
our system by both geneticists and users on the AGE project,

1.2 October 27, 1977

One part of human engineering has already been mentioned above.
The system automatically records who has entered or modified any of the
information in the knowledge base. It provides summaries of what is in
the knowledge base and can indicate which areas of the knowledge base
have been changed recently. (See the attached supporting documentation
for a summary of a recent version of the genetics knowledge base.)

Another example of this human engineering is the "User Profile"
maintained in the unit editor. A user's profile contains such
information as whether he is a programmer; whether he☂ prefers verbose
printouts, whether he likes to be informed when thesystem does things
automatically for him (i.e. that he has not requested). This
information helps the system to tailor its interaction with a user. In
addition, terminal communication is handled via very general routines
which check for type ahead and allow help information to be provided to
the user at any point in the dialog. The result of this is that an
experienced user can have very brief interactions with very little
prompting from the system. An inexperienced user will be prompted at
each step of the dialog and may type "?" at any time to get an
explanation or example of what the program expects. (See the User's
Guide to Units in the attached supporting documentation.)

Many of the human engineering parts of the system take
advantage of the facilities of InterLisp. For example, when a
programmer is changing some procedures in the knowledge base, he need
not explicitly request that the changed functions be recompiled. This
part of the updating is performed automatically at the end of a
session.

Our final example of human engineering illustrates the fuzzy
borderline between the technical problems of making the system easy to
use and some more complicated issues of knowledge base management.
Recognizing the importance of experimentation in representing
knowledge, one of the facilities of the unit system is to merge
knowledge bases. This makes it easy to update various knowledge bases
when changes are made -- for example when the bootstrap knowledge base
is updated. Part of the transfer protocol includes the facility for
one unit to imply a requirement for another. For example, suppose that
the bootstrap knowledge base has just been updated so that it has
knowledge about the representation of an important data structure - say
"trees", If this is useful in representing knowledge in the AGE
system, they need only request to transfer the "tree unit" from the
bootstrap knowledge base. Any other units essential to complete the
knowledge about "tree representation or tree operations" will be
transferred automatically at the same time.

The more difficult aspect of merging knowledge bases concerns
how the system can determine which units should be transferred when a
particular unit is transferred. Restated -- how can the system find

1.2 October 27, 1977

all of the relevant knowledge about a unit? Our approach to this
involves a method of inserting knowledge about relevance into the
knowledge base itself,

Considerations like those in the previous paragraph are simple
enough from the implementation point of view and are described in the
appendices. They are representative of the effort we have taken to
make the units package easy for a geneticist (or a programmer) to use.

1.2.2 Studying the Process of Experiment Design in Molecular
Genetics

Considerable effort was given during the first fifteen months
of the MOLGEN grant to the study of the process of designing
experiments. Attempts were made to determine subsets of the domain
which would provide realistic target areas for automated experiment
design and to collect the strategies and domain knowledge used by
experts for those subsets. Detailed descriptions of the results of
this investigation are given in the appendices.

The work included four major efforts:

1. Designing as many rational experimental plans as
possible for an experimental problem from Prof.
Lederberg's laboratory, the determination of the
presence of poly-A sequences in DNA. (See attached
supporting documents: "The Embedded Sequence Problem")

2. Collecting "skeletal" or abstracted plans for a wide
variety of structural elucidation problems. These
plans are meant to capture the re-usable aspects of an
experimental plan for use in planning other
experiments. They are an essential component of an
approach to planning described in Section 1.3,

3. Analyzing in detail the logic and development of a
single experiment performed in Prof. lLederberg's
laboratory. This study considers both the knowledge
which led to the successful experimental design, and
also the process of hypothesis formation to account
for experimental failures. (See attached supporting
documents for a copy of [14])

4. Analyzing a collection of experiments suggested by
several geneticists as good examples of logically
produced experimental designs in order to extract the
knowledge needed for MOLGEN to design the experiments.

1.2 , October 27, 1977

Our design of the system has been strongly influenced by these
studies. Rather than give detailed results in the body of this
proposal, we present a summary of these influences.

1. We will concentrate our initial efforts on experiment
planning to the subfield of restriction enzyme
experiments and then expand to applications to plasmid
and sequencing experiments.

2. We will represent genetic objects so that they may be
viewed from a variety of different perspectives. Our
studies showed that different perspectives led to
different experimental algorithms. (See [40] for a
Similar finding in program synthesis.)

3. While we are restricting the range of objects and
processes as indicated in (1), we must represent many
different types of knowledge about each object. Even
in a single experiment, a great diversity of knowledge
was needed to design the experiment [14].

4, The planning system will be one component of an
eventual genetics expert. The experimental design
process is much more event-driven than anticipated.
The eventual expert system will need a hypothesis
formation component and techniques to exploit
serendipity. For example, results of a particular
transformation may indicate interesting sidelights
which could be investigated in the context of the
current experiment.

1.2.2.1 Simulating the Process of Enzymatic Ligation

An attempt was made early in the first year of the current
grant to simulate the action of enzymatic ligation on DNA structures.
There were several motivations behind this effort. We wished to test
our newly developed DNA structural representation and to learn
something about representing the processes that modify those
structures. Also, we were presented with an interesting problem where
we could be of actual use to a laboratory geneticist (Dr. S. D.
Ehrlich).

The experiment. in question was one in which sticky ended DNA of
uniform length was reacted with ligase to ☁join together ends. Each
ligation could either join two different DNA structures or could
circularize a single structure, In the former case the new structure
would still have two sticky ends and the total number of structures in
the sample (concentration) would be reduced by one. In the latter case

10

1.2 . October 27, 1977

the number of structures would remain the same, but one structure would
be "inactivated" for further ligation. The problem was to predict what
the total sample population would look like after some portion of the
original monomeric structures had disappeared. That is, what percent
of the total structures would be monomeric circles, dimers, dimeric
Circles, and so on. These percentages would be compared with
laboratory results in order to determine how many different ends types
were present in the sample. (The more different end types, the greater
the ratio of circles to linear and shorter structures to longer
structures).

The simulation we developed was based ona kinetic theory of
ligation [11]. The simulation results correlated remarkably well with
the actual laboratory experiment when a model with two different end
types was chosen, This gave additional support to Dr. Ehrlich's
conclusion that indeed two different structure types had been present.
The program was then used for the related experiment of maximizing
inserts of a small gene into a plasmid. The idea was to cut the
plasmid with the same restriction enzyme that had produced the sticky-
ended gene, join the two, and then recircularize the structure to
produce a recombinant plasmid. The problem is that many other
structures, monomeric circles, long linear concatemers, etc., can
occur. The problem was to determine optimum starting concentrations of
the two structures and the length of time to carry out the ligating
process to maximize the desired product. The suggested values given by
the simulation program were of considerable assistance in carrying out
the laboratory operation.

The major significance of this work for future MOLGEN
development (besides giving a working geneticist assistance and
encouraging his ccoperation in communicating problem-solving knowledge
to us) was that this was our first attempt to capture the knowledge
needed to simulate a genetic process. We made no effort to consider
environmental side effects like temperature and pH, but the results
were still quite encouraging. The major problems we discovered were
twofold and related. First, the simulation program was hard to expand
to other problems. Adding other relevant information, for example
stereochemical effects, or about new processes such as cutting
structures, would involve considerable additional programming. Second,
all of the knowledge was hidden in the simulation program (written in
SAIL). The program could offer no explanation of its predicted
results, nor could the user make interactive changes to its guiding
theory. These results led to our decision to make all knowledge, not
just knowledge about static genetic objects, explicit in our knowledge
base. A discussion of how this is being accomplished is given in
Section 1.2.1 and Section 1.3.3.

li

1.3 October 27, 1977

1.3 Plans for the Remainder of this Grant Period

1.3.1 Continuing Knowledge Base Management Research

Our progress in developing a knowledge representation system
for MOLGEN has been discussed above. Our continuing effort during the
grant period is divided into (1) filling ina knowledge base with
entries specific to a specialized subset of molecular genetics, and (2)
expanding our representational capabilities to include knowledge about
the process of experiment design.

1.3.2 A Genetics Knowledge Base for Restriction Enzyme
Experiments

The Units package described above will be used to acquire and
store the knowledge needed to plan experiments. The initial knowledge
base will be limited to the facts and heuristics necessary to reason
about restriction enzyme experiments. This will include:

1. Units for basic concepts like DNA structure, enzymes,
and samples.

2. Units for each individual restriction enzyme.

3. Units for laboratory techniques which make use of
restriction enzymes.

4, Procedures which describe the action of restriction
enzymes on DNA,

After the restriction enzyme knowledge has been debugged,
knowledge about the fields of plasmid technology and
sequencing DNA will be added.

1.3.3 Knowledge About Processes and Planning

The basic planning work in MOLGEN will be divided into two
Major efforts. General domain-independent planning Strategies will be
developed within the units knowledge representation system as part of
the process of making an "AI toolbox." At the same time, work will
proceed on a specific strategy tailored to provide high-performance for
discrimination experiments in molecular genetics. The specific
approach for discrimination experiments is discussed below after the
discussion of our general approach to process representation and
planning.

12

1.3 , oo October 27, 1977

1.3.3.1 Representation of Processes

Extending the Unit Package to accommodate the representation of
processes is the important next step in the development of the
knowledge base system. We view both simulation (of a laboratory
technique) and planning operations (e.g. selection of a subgoal) as
processes. Our approach to the representation of processes has
previously been discussed [24] [36]; the main ideas are reviewed below.

We want to provide a facility that makes process description
and debugging as easy as possible. For example, the system will
provide an appropriate set of primitive operations for the operations
on DNA models. The geneticists and the computer scientists will create
prototypes for laboratory steps. Geneticists will then use these
prototypes as guides during the acquisition of knowledge about
particular laboratory tools. The same prototype/instance system will
be used to represent planning operations.

Many of the processes we want to represent can be grouped into
classes such that there is a prototypical action for each class. That
is, the individual processes (e.g. action of EcoRI) can be viewed as
instantiations of a process concept (e.g. action of restriction
enzymes) just as individual objects are the extensions of object
concepts. Many researchers in program synthesis (such as [9]) have

used a "program schema" to represent a prototypical program. The
schema is then instantiated by the synthesis system to produce a
concrete program. A program schema consists of a generalized program
with abstract predicate, function and constant symbols, input/output
specifications, and restrictions on possible instantiations of the
abstract symbols.

This notion of a program schema (we will use the expression
"process schema" synonymously) can be implemented within the current
unit representation. The abstract predicate , function, and constant
symbols are slot names. The restrictions on possible instantiations
are specified in the value/ specification field. The abstract function
symbols may be restricted to be either system primitive functions or
instantiations of other program schemata. I/O variables and
relationships among them can also be specified via the slot mechanism
and the "relation" units. Within a rule unit there is a_ special slot
which contains the generalized procedure. Thus, a program schema can
in fact be developed in a modular fashion: first create the simpler, or
primitive schemata; then decide on the constant, predicate, and
function symbols needed (i.e. the named component parts in a process
description); then create the generalized procedure using these symbols
as the named components.

Implementation details of rule units are currently being
examined. While in synthesis programs, the system creates the

13

1.3 October 27, 1977

instantiation from program segments, in the current design of MOLGEN,
the user creates the instantiation. The acquisition system must be
able to check instantiations to make certain that the restrictions and
I/O specifications have been met.

The use of process schemata and their representation as units
has implications for planning also. The visibility of process
components in slots is important so that other processes can examine
and select them according to the values in the slots. General problems
of such indexing methods and comparisons of systems which use these
methods can be found in the literature [8] [36].

In many cases it is appropriate to associate the process
elements of the system with definitions of the objects. This ☜object-
centered" viewpoint has been expounded [1] and implemented as
"attached procedures". Several different applications for attached
procedures in MOLGEN are given [24]. These attached procedures can be
system primitives or instances of process prototypes.

1.3.3.2 Representation of States and the Planning Network

Any system for doing problem solving needs to be able to work
with representations of domain worlds (often termed "world states") and
representations of problem solving states. An example of a world state
in MOLGEN is a sample which might contain a variety of hypothesized DNA
Structures, enzymes, and other reagents. An example of a problem
solving state is a sequence of laboratory steps and world states which
represent several steps of an experiment. We find it convenient to
consider a problem solving state as having levels of detail, with
different kinds of problem solving information on the different levels.
A description of our approach using such levels is given in [36],
section V.3.

Two main ideas have influenced our design. First, the world
states and planning states are fairly complicated structures. It is
necessary for a planning program to communicate with its users ebout
its current planning state. In particular, it must be able to display
its progress in an easily understandable form and it must be able to
integrate suggestions from the user to alter its course. Rather than
create separate programs for doing this, we have decided to represent
the planning and world state knowledge using units in the knowledge
base,

The second idea is that the process of problem solving can be
expressed adequately by a small number of basic operations. These
operations are used repeatedly in the course of solving a complicated
problem. This is discussed in the next section.

14

1.3 October 27, 1977

1.3.3.3 An Eclectic Perspective onProblem Solving -- The AI
Toolbox

When we study the solution to a problem in an unfamiliar
domain, the first reaction is to be overwhelmed by the new detail and
terminology. When one has mastered the terminology, the problem
solving process can be viewed in better perspective. To be sure, many
solutions remain brilliant and surprising. The majority of the
solutions are easy to follow and we may recognize the solution process
in the mind of the problem solver, Here he is sketching out some
goals; now he is selecting an operator; now he is refining a step; now
he has factored out a subproblem.

We believe that the process of problem solving can be modelled
by a small number of standard operations. These operations include
such things as (1) Sketching out planning islands; (2) Proposing
subproblems; (3) Testing for mismatch of goal statés; (4) Focusing
attention on part of the problem; (5) Assigning time sequence to steps;
(6) Selecting among competing choices for a given step; and (7)
Splitting a problem into cases. Although these have been recognized as
basic components of strategy, no existing system has integrated this
breadth of strategy knowledge into a knowledge base. Dershowitz and
Manna [9] have suggested the use of program schemata to represent
general problem solving techniques such as Divide and Conquer. These
program schemata are instantiated by the program synthesis system to
obtain concrete programs. In our system the geneticist and/or
programmer will create the instantiation. A major component of this
research will be in the construction of such program schemata and
instantiations. The package created will be termed the ☜AI toolbox",
The creation of a library of schemata has been suggested by Gerhart
[19]. The package will be built and tested in the context of a small
number of genetic experiments. Computer science experiments with the
package will include a measure of its performance and utility for
expressing appropriate strategy for experiments.

Of course, having a number of basic tools does not guarantee
that a program will use them correctly. Competence in problem solving
in the domain requires that the expert system know where and when to
apply the standard methods. Two factors are of importance here. (1)
Some tools govern the use of other tools. For example, "Focus
processes" will determine where to concentrate effort in a problem and
indirectly control the selection of strategies. (2) The specific
knowledge for using a tool is precisely the -type of information which
is left unspecified in the prototype and which must be supplied when
concrete instances are acquired for the knowledge base.

The AI toolbox is discussed further in [36] in section V.4.

15

1.3 , October 27, 1977

1.3.3.4 Simplifying Process Specifications by Removing
Exceptions

Planning can be plagued by exceptional cases. If high level
planning processes are burdened with the detail of the special cases,
they can become cumbersome to update and debug. We are developing an
object-centered approach, termed inspectors, for distributing the
information about special cases throughout the knowledge base. This
should help keep the planning processes clear and concise and also
provide localized packets of information about the exceptions.

The basic ideas of this process of removing exceptions can be
illustrated by an example of a ☜selection process" in designing an
experiment. The operation of selecting among available laboratory
steps is a recurring operation during experiment design. The following
bear on this process:

l. The experimental goals -- e.g. to extract a section of
a molecule.

2. World State specification -- a description of the
laboratory sample, e.g. DNA structures.

3. The selection criteria -- e.g. availability,
sensitivity, or functionality of the laboratory
technique.

4. Verification criteria -- test for deciding after a
simulation of the selected laboratory step whether the
essential goals have been satisfied.

5. Failure instructions -- what to do if the chosen
laboratory technique does not satisfy the goals.

6. Laboratory step specifications -- a list of the
potentially applicable laboratory tools and their
descriptions.

Our approach to managing the information about a selection
process is first to identify the general information and then to
consider the alternatives for placing information about the special
cases, For example, section V.4.4 of [36] considers the selection of
an enzyme to make cuts around a region in a DNA molecule so that it may
be extracted. The general information in this case is that the main
determinants of selection are enzyme availability and information about
where it will make ☁cuts. Special case information includes
modifications on this basic idea according to unusual variations in the
structure of the molecule -- e.g. ☜AT-rich regions", ☜hairpin loops",
etc. It also includes information specific to the laboratory steps
being selected -- e.g. nuclease contamination in an enzyme.

16

1.3 October 27, 1977

Interactions between goals often arise in the special cases
(3). When action was taken to satisfy the preconditions of the enzyme
(in this case, pH was changed), a side effect resulting from
interaction with an unusual molecular feature interfered with the
action of the enzyme. Specific advice about failures of this kind can
be associated with the "pH inspector" -- To avoid conflicts of this
kind an enzyme should be used at a suboptimal pH. Inspectors may be
viewed as domain specific versions of planning critics as developed by
Sussman [37] and Sacerdoti [32].

Generally there are many tradeoffs involved in deciding where
to locate the information about special cases. The example above and
the tradeoffs are described in detail in section V.4.4 of [36].

1.3.3.5 Further Aspects of Knowledge Base Management

One further area of work in knowledge base management that we
will be pursuing is in developing a number of modest aids for a user
for keeping track of a growing and evolving knowledge base. As
discussed previously, we have already developed some facilities for
automatic documentation of the knowledge base. We will be designing
aids for a user in tracking down unexpected conflicts. For example, if
two geneticists sharing a knowledge base have a somewhat different view
of some aspect of the domain, one may make changes effecting the
other's area. In the☂ event of a failure, it would be useful in many
occasions to get a summary of recent changes to the knowledge base.
When achange is contemplated to the definition of some class of
enzymes, it would be a simple matter to locate all of the rules which
mention those enzymes. These rather simple aids are expected to be
useful when fairly extensive changes to the knowledge base are
contemplated because they will assist the user in being thorough about
making his changes,

1.3.4 A Method for Designing Discrimination Experiments

One of the applications of the genetics knowledge base will be
the building of a high performance system for designing a variety of
discrimination/analysis' type experiments. The goal in these
experiments is to learn something about a given sample. of DNA
structures. For example, are any poly A regions present, or do the
structures carry tetracycline resistance? The basic method used for
the experiment design system will be means-ends analysis combined with
hierarchical planning as follows:

(3) See Section III.2.5 of [36] for a discussion of recent
techniques for handling interactions between goals.

17

1.3 October 27, 1977

1. A model structure containing the hypothesized
featur(s) will be compared with a structure
representing generalized DNA of the same type in order
to ascertain exact differences.

2. These differences will be ordered and one selected as
a basis for initial planning.

3. An experimental☂ strategy, ranging from very specific
(e.g. if a bubble is present then denature and use EM)
to very general (e.g. label the feature and then look
for the label) will be selected from a library of such
"skeletal plans," using the difference selected.

4. The skeletal plan will be adapted to the specific
problem environment, with hierarchical planning
proceeding as deeply or shallowly as is desired by the
system user. ,

5. The completed design will be tested in a forward
direction for completeness and consistency by an
evaluation system.

6. If a successful design cannot be found from the
feature selected in (2), then either a new feature
will be selected from the difference list, ora
generalization selected from a tree of structural
features will be used. For example, if the selected
feature was the. exact base sequence ATTGC, a
generalization might be made to ☁known base sequence,"

The following major components are needed for this exper iment
design method:

1. A problem analysis preprocessor which recognizes key
features in the nucleic acid structures, nicks, gaps,
hairpins and the like, and then compares these
Structural features to find major differences between
candidates in a discrimination experiment. This
program will organize features into a hierarchy of
importance for experiment design using a rule-based
system for analysis and classification.

2. A tree structure for ordering structural features and
providing links between features and the classes to
which they belong. The links will point. upward as
generality links to a more general class or downward
as specificity links to amore specific one. The
highest links will be to the complete class of

18

1.3 SO, October 27, 1977

structural features, the lowest ones to individual
specific features, Intermediate levels will consist
of important subclasses, e.g. "poly base sequences☝
which would point downward to "poly A," "poly T,"
"poly G," and "poly C," and upward to "AT/GC ratio",
which would itself point upward to known base
sequences." This tree will provide entry into genetic
strategies classified by the features to which they
specifically pertain. Failure to find knowledge about
what to do with a specific feature will cause the
system to search for knowledge about the subclass of
features immediately above the specific feature in the
tree,

3. A cohesive system for hierarchical planning in the
domain of molecular genetics--selecting strategies as
described above and refining them downward to specific
laboratory tools. This of course involves the usual
need for error recovery and backtracking facilities.

4. A system for evaluating completed designs at any level
of generality to be sure the plan asa whole "fits"
togethers, i.e. a forward-working system for plan
evaluation.

These components will be integrated into the basic MOLGEN
representations framework of the Units system described above. The
rules describing the problem analysis preprocessor will be individual
units, aS will the descriptions of structural features which combine to
form the tree structure of the feature hierarchy. Individual dynamic
planning states will be represented as units within the MOLGEN system.

After the experiment design system becomes operational for
discrimination/analysis type experiments, we intend to adapt it to
experiment-planning for synthesis experiments where the goal is to
produce some desired DNA structure from available starting materials.

1.4 An Example of the Genetic Utility o£ Automated
Experiment Design

A good way to illustrate the potential utility of computer
assistance in experiment design is to show how some recently published
work from another laboratory might have been represented in a MOLGEN
formulation, albeit human intelligence was the instrument. The work in
question achieved the cloning of the gene for rat insulin ina
bacterial plasmid vector [38]. The major goal of the experiment was
the transfer of a gene coding for insulin from the rat to the common

19

1.4 October 27, 1977

intestinal bacterium, E. coli. An important subtask of the experiment
was: given samples of two different linear DNA structures with "sticky"
ends, produce acircular structure containing one molecule of each.
The difficulty of this problem lies in the number of competing
processes. Both structures can self-circularize, and many different
linear and circular monomers can be produced. See Appendix III for
further details.

Previous attempts to cope with the problem were based the
kinetic theory of ligation [11]. Using a model of the process based on
concentration and molecular weight of the structures, one varied
various experimental parameters to maximize the amount of the desired
product. The new idea of the article was based on a different
strategy--try to eliminate competing processes. This led to a method
for modifying the sticky ends of the two structures so that they could
no longer self-circularize. The particular method chosen was a simple
biochemical step. The solution was retrospectively self-evident, but
in fact, it was missed by many geneticists who had previously examined
the problem (or related others). An intelligent experiment design
system with the above mentioned heuristic probably would not have
overlooked the solution.

2 Research Plans

The bulk of this application comprises details of research
strategies for the first two years of the renewal period. It is of
course more difficult to forecast over longer periods; indeed there is
every likelihood that unforeseen difficulties and opportunities will
intervene to offer changes of perspective. However, enough progress
may have been made to enable us to move from the initial stepping
stones, and our current plan for years 3 and 4 is as follows:

We will by then have invested substantial effort (mainly
through the cooperation of investigators with direct support for
molecular genetics research) in building and maintaining the knowledge
base in the specified domain. We believe that this investment should
be exploited before substantial further efforts are made to expand the
domain ~~ e.g. in more biological aspects of genetics -- although a few
easy opportunities will surely present themselves. Instead our
emphasis will be on the evolution of MOLGEN to a hypothesis-oriented
system (like DENDRAL). Typical questions at that level would be: from
the data given, what are plausible hypotheses for the structure of a
sample of DNA; as well as, what experimental steps should be pursued to
verify the hypothesis. Intermediate steps have already been mentioned:
the elaboration of hypotheses in the course of debugging, and the
extension of MOLGEN from a sharp binary discrimination (between two

20

October 27, 1977

stated alternatives) to a corroborative mode (a given hypothesis versus
all plausible alternatives).

This effort will require a good deal of work on the planning
components and on rules of plausible induction, and relatively little
on the knowledge base of molecular genetics per se. For that reason it
should have the greater value for extensions to other domains.

2.1 Building and Maintaining the Genetics Knowledge Base

One important building block for MOLGEN's success is the
creation and updating of a base of knowledge about genetics, This
provides both a useful reference source for the user planning his own
experiments, anda body of core data on which automated experiment
planning strategies can be tested and evaluated.

The knowledge acquisition and representation ideas have been
delineated in detail previously. This section describes advantages of
the resources available here to support this work,

The strength of the Stanford community of biologists,
biochemists, and geneticists offers a unique opportunity for
collaboration in building a substantial body of knowledge about on-
going research projects. Many of these projects may prove to be
suitable sub-domains for initial development of the knowledge base, and
may provide test domains for work on problems of knowledge acquisition
and knowledge base management. They offer the added advantages of
insuring that this work is solidly grounded in real-world experiments. .

Updating and checking the knowledge base with respect to the
information obtained from our collaborators will be the responsibility
of the graduate student and post-doctoral fellow in genetics. On
oppornunistic occasions they will also experimentally validate those
experiment plans generated by the system which are relevant to current
work in the lab. This has already been done in the case of ligation
kinetics, where theoretical predictions of plasmid self-circularization
were compared to electron-microscopic empirical tests (Section
1.2.2.1).

One useful side-effect of this process that we anticipate is
that the process of formalizing knowledge about the domain may help to
organize what is currently an informal body of knowledge, and in doing
so may even uncover gaps in our current store of knowledge ahout the
field.

21

2.2 October 27, 1977

2.2 Recognizing and Abstracting and Saving Successful Plans

As noted above, our efforts to create an experiment-design
system center around the concept of a large knowledge base containing
task-specific information. One approach to augmenting this knowledge
base is via interactive knowledge acquisition as discussed in Section
1.2.1.3. A second form of knowledge-base improvement is based on
giving the system the ability to save successful experiment designs it
has generated. This involves two major functions: recognizing when a
plan is worth saving, and abstracting a plan so that it is applicable
to a wider range of problems than just the specific one which prompted
its creation.

For example, consider the design MOLGEN might produce for the
problem of ligating two genes. An initial attempt would be made to
produce "sticky" ends by cutting both genes with a single restriction
enzyme. Suppose, however, that no restriction enzyme which satisfied
this criteria could be found. One possible solution would be to cut
the DNA near one gene with restriction enzyme A, and near the other
with a different restriction enzyme B, then join the two segments by
means of a small piece of artificially created DNA which had been cut
on one end by A and the other by B. This general idea -- the concept
of a ☜molecular adapter" [35] -- is very useful for problems of this
sort. While recognizing and abstracting the relevant ideas from the
specific experiment design above is difficult, the ability to do this
would be an important form of knowledge base augmentation.

Automating the function of recognizing when a plan should be
saved will rely on several interrelated factors:

1. Was the plana "good" one, i.e. does it solve a problem
with reasonable efficiency, cost, safety, etc.? This measure of
"goodness" will be difficult for the system to judge alone. The system
will rank alternate plans according to its heuristics which involve
these factors, but an absolute measure of plan quality will be a very
difficult measure. Until the knowledge base includes adequate metrics
for the "goodness" of plans in a variety of subfields, we imagine this
judgment will be mostly up to the user.

2. If the plan solves a problem for which other plans already
exist in the knowledge base, is the plana significant improvement?
Making this judgment involves use of the same "goodness" metrics
discussed above as well as an analysis of why the new plan was not
simply a copy of the old. If the only difference between the two plans
is that the new one takes account of some detail of the environment for
a specific problem, then it probably isn't worth saving. Again, we
imagine this judgment will, at least initially, be mostly up to the

user,

22

nan

2.2 October 27, 1977

3. is the cost of saving the plan less than the cost of
regenerating it each time the same problem arises? Empirical criteria
applicable to making the tradeoff decision might include CPU time spent
in generating the plan, and, if the plan evolved directly froma
previously saved one, the number of differences between the two plans.
Another important measure is some judgment about how often the plan
will be useful in the future. The more generally useful a plan, the
more important it is to keep it around.

4. Can the plan be abstracted to more general purposes? In
the example given above, this would involve recognizing that the
concept of a "molecular adapter" would be useful any time the goal was
to join two pieces of DNA which did not have convenient restriction
sites in conmon,

The problem of abstracting a plan that has been selected for
saving has been considered before, in the robot planning domain, in the
work on MACROPS in the STRIPS system [15]. STRIPS generalized
successful plans in the following manner. Plans had variables which
were bound to objects in the robot world. The idea was to "unbind"
these variables as much as possible, with certain constraints imposed
by the nature of the particular plan. For example, if one step of a
plan told the robot to go to a block and the next step said pick up a
block, the block in these two steps must be the same one. Initial
references to specific doors, blocks, rooms, etc. were generalized to

☜any door," "any block," ☜any room,", etc., but took into account

constraints of the sort noted above.

We will begin by employing much the same generalization
process. For the example plan given above, the specific restriction
enzymes could be generalized to any two distinct restriction enzymes,
and the two genes to any two DNA sequences lacking a common restriction
site. This generalization process should be a natural consequence of
the hierarchical nature of our knowledge base. The taxonomical
classification of DNA structural features discussed above (Section
1,3.4) could be used to generalize plan utility~--e.g. if a plan solves
a problem for nicks, maybe it can be generalized to solving that
problem for the immediately more general parent of nicks, DNA
excisions. A plan which was useful for recognizing a specific base
sequence might be generalized to one which was useful for all "known
base sequences." The generalization of variables within a plan will be
done by moving up generality links (see Section 1.2.1.1) in the
knowleige base. A particular exonuclease .could be parameterized to
mean any exonuclease--the parent of al] specific exonucleases in the
knowledge base.

One difficulty lies in knowing how far it is possible to go up
the generality links in the knowledge base before losing plan utility.
A specific enzyme could be unbound to refer to "any enzyme," but that

23

2.2 October 27, 1977

would yield a plan which said "pick any enzyme", and would probably be
far too general. The problem lies in detecting the important (i.e.
important to this particular plan) features of each object used in the
plan, and trying to retain those features while generalizing out all
☜irrelevant details." In the plan discussed above, the important
feature of the chosen restriction enzymes is that they cut at specific
Sites, not that they were derived from some particular organism or that
they operate optimally ata certain temperature. Note that such
information (the degree of relevance of the features) will be available
from the hierarchical planning phase, since it will have been used to
choose among competing laboratory "tools". In this case, for example,
restriction enzymes were chosen because they cut at specific sites.
So, in unbinding the notion of a particular restriction enzyme, if the
knowledge of the importance of specificity is maintained, progress up
the generality links will end at ☜restriction enzyme."

2.2.1 A Casebook of Unsolved Problems

A related area of investigation -- recognizing novel
combinations of laboratory techniques -- is based on the observation
that new tools are continuously being developed. Sometimes a
particularly useful combination of tools is available. for quite some
time before it is recognized as such, as inthe use of alkaline
phosphatase to inhibit self-ligation mentioned in Section 1.4.

One approach for doing this is to keep on file a casebook of
important or unsolved genetic problems. Periodically as new laboratory
techniques and planning strategies are added to the knowledge base, we
will run the planning program on the test cases.

The process which we would like to model is embodied in the
situation where a scientist, after hearing of a new laboratory
technique, recognizes a laboratory problem for which the technique
could be profitably applied. Thus, the first step of the process is to
select a problem (from the casebook) after being presented with a new
technique. Then the existing planning methods in the system would be
applied on the problem again with the new laboratory technique encoded
in the knowledge base. The next phase is deciding whether a new
solution using the new technique offers any advantage over previous
solutions. This would make use of the work described in Section 2.2
for abstracting and evaluating plans.

In summary, this process will make use of other developments in
the MOLGEN project for applying newly discovered techniques and for
evaluating the plans produced. These methods will be applied to form a
discovery process by augmenting them with a casebook of experiments and
a selection process for picking experiments.

24

2.3 October 27, 1977

2.3 Understanding Exper imental Discrepancies by Hypothesis
Formation

Plans for molecular genetics experiments have something in
common with computer programs, summer vacation trips, and almost any
kind of plan devised -- they don't always work. Although published
reports about experiments usually say little about the techniques which
failed, our analysis of the actual development of experiments has shown
us that debugging is an essential and anbegral part of successful
laboratory experimentation [14].

Pioneering work in the debugging of computer programs [37] used
a process of program development and correction using a knowledge base
about bugs, Sussman has advocated creating a rough version of a
program on a first pass followed by local corrections by a gallery of
critics. In Sussman's work, the ignoring of detail during the first
pass is a source of power for the approach. In experiment debugging,
we find an additional reason for attending to details during a second
pass ~♥- the knowledge necessary for deciding which of the details are
in difficulty is not available at the time the experiment is designed.
For example, many assumptions about the input samples are made when the
experiment is designed and the validity of these assumptions cannot
practically be tested until the experiment is performed.

Section 2.3.1 describes several distinct sources of error in
experiment design. Section 2.3.4 describes a number of research
issues,

2.3.1 Sources of Bugs

The complexity of most laboratory techniques is such that there
are many ways for an experiment to go awry. The following diagram will
be used to categorize the sources of bugs.

25

