
Research Proposal Submitted to the National Science Foundation

Proposed Amount $294,476 Proposed Effective Date 6/1/78

_

Proposed Duration 24
(months)

Title MOLGEN: A Computer Science Application to Molecular Genetics

Principal Investigator Edward A. Feigenbaum supmitting
Institution Stanford University

Soc. Sec. No.

Department Computer Science

Institution Branch/C

(if different from submitting institution) en/vanpus:

Address Stanford, California
Addres

’
ess 94305

Branch/Campus

Co-Principal Investigator___Joshua Lederberg Soc.. Sec. »iim

Co-Principal Investigator Soc. Sec. No.

‘

If renewal request previous NSF grant No. MCS 76-11649

Make grant to Stanford University

(name of institution or organization to which grant should be made)

Endorsements:

Principal Investigator(s) Dept. Head Institutional Admin. Offic:

Name Edward A. Feigenbaum

/ . .

Signature EditA, Fljende— Edin4h Fecaebe

7
:

¢

Title Professor and Chairman

Telephone Number

415-497-4079

Date October 27, 1977

October 27, 1977

Table of Contents

Section Page

Subsection

1. Introduction - ee leh elle ll 1

1. 1 Motivations e * e * e e e . a a e e a 4

1.2 Progress To Date . . «1 « © © «© © «© «© «© e 4

1.3 Plans for the Remainder of this Grant Period . . . 12

1.4 An Example of the Genetic Utility of Automated
Experiment Design . . « «© » »© © « «# «© «© JY

2. Research Plans a

2.1 Building and Maintaining the Genetics Knowledge
Base ee le le ee

2.2 Recognizing and Abstracting and Saving
Successful Plans. . .« «© « «© »© «© «© «© « « 22

2.3 Understanding Experimental Discrepancies by
Hypothesis Formation . .« « « «© »© «» «»© «© « 25

2.4 Reasoning by Analogy . . « «© 2 © «© «© «© « « 33

2.5 Performance Evaluation and Improvement of AI
Knowledge-Based Systems > 8 8 @© e© ew eh hehe (C8

3. Significance oe ee ele le le le le ll

3.1 Significance to Computer Science . . . + «+ + « 44

3.2 Significance to the Conduct of Experimental
Science and to Science Policy . . . +6 « « « 46

4. Budget . , . . ° ° e * . . e. @ . e . « 49

5. Resources :

Appendix I

_ GLOSSARY .

Appendix II

EDNA -- The Editor for DNA

‘Appendix III

A Genetic Planning Example

References .

ii

October 27, 1977

50

52

59

63

67

October 27, 1977

1 Introduction

This application addresses the continuation of research on the
applications of artificial intelligence (AI) (1) to exper imental
molecular genetics. It is an extension of a longstanding effort to
cultivate attention to ongoing laboratory research as a domain of
explorations in artificial intelligence. Our major effort in this field
had been in the DENDRAL project, with analytical organic chemistry as
the object discipline. The present effort, "MOLGEN", focuses on a new
object domain, namely molecular genetics. However, for reasons that
will be elaborated, the focus is on programs to suggest experiment-
planning sequences needed to solve a given structure, rather than on
hypotheses about the structures themselves, which characterizes
DENDRAL,

Our primary motivation is to deepen our knowledge of the art
and science of creating programs that reason with symbolic knowledge to
aid human problem solvers. The task domain--molecular genetics--serves
as a rich intellectual and scientific environment in which to develop
and test our ideas.

The major computer science issues we are addressing are:

Present Grant period (June 1976 - June 1978)

(1) Creation of a knowledge representation system with a
knowledge acquisition package. The system, known as
the Units Package, may be used to build a knowledge
base in any suitable domain. It provides an object-
centered approach for storage of both declarative and
procedural information concerning all entities in the
domain. Section 1.2.1

(2) Structured representation of process information,
Procedures which simulate the action of the various
processes in the domain form an integral part of the
knowledge base. Moreover, the representation
framework allows for inspection and acquisition of
those procedures. Section 1.3.3.1.

(3) Creation of program schemata and instances for general
problem solving steps. Domain-independent knowledge
about general problem solving methods also fits into
the knowledge representation structure we have
devised. Section 1.3.3.3.

(1) For definitions of many of the genetic and computer science
terms used throughout this proposal, see Appendix I,

October 27, 1977

(4) Domain Specific Critics. Mechanisms for the
activation of various domain specific strategies when
certain predefined situations occur during the course
of experiment design. Section 1.3.3.4.

(5) Development of a specific planning strategy designed
to provide high-performance for the class of genetic
experiments known as discrimination experiments. The
idea is based on indexing abstracted experimental
designs to the types of structural features for which
they have proven useful. Section 1.3.4.°

Grant Renewal Period (June 1978 - June 1980)

(6) Creating a more comprehensive genetics knowledge base.
Expanding the knowledge base within the area of DNA
Structural manipulation problems. This work will be
done mainly by the Stanford Genetics Department.
Section 2.1.

(7) Abstracting and Saving Plans. Recognizing when newly-
created experiment designs are worth saving and then
generalizing those plans so they are useful for more
than the specific problem environment which caused
their generation. This work will be done in the
Computer Science Departments of both Stanford and UNM.
Section 2.2.

(8) Making use of the process of hypothesis formation to
help debug MOLGEN-produced experiment designs. This
process is especially important in a domain like
molecular genetics where incomplete knowledge about
objects and processes is the rule rather than the
exception. This work will be done in the Stanford
Computer Science Department. Section 2.3.

(9) Experiment planning by analogy. MOLGEN provides an
excellent environment for exploring various types of
analogical reasoning. We integrate problem-solving by
analogy into’ the experiment design system as one of
the possible tools for solving subproblems. This work
will be done in the UNM Computer Science Department.
Section 2.4

(10) Performance evaluation as an integral part of the
knowledge representation and acquisition system. We
view the process of evaluating a system's performance
and suggesting improvements as an AI problem solving
task. The strategies for this evaluation will be

October 27, 1977

stored within the same framework as all other MOLGEN
planning strategies. This work will done in both the
Stanford and UNM Computer Science Departments.

Section 2.5.

We have designed our effort to facilitate generalization to
other domains beyond genetics in future research and applications.

A second motivation behind the proposed research is to develop
tools that can benefit molecular geneticists. We believe there is

substantial. benefit to be derived from programs that act as

"intelligent assistants" to scientists. First of all, the sheer amount
of detailed knowledge a scientist is expected to know makes it likely
that good experiments are being missed. Second, we believe that an
intelligent planning assistant can offer some help in reasoning about
the consequences of combining experimental facts in many possible ways.

A third motivation for applying artificial intelligence
techniques to an experimental science like molecular genetics is to
help us better understand the scientific method. The rigorous detail
required for creating computer programs that assist in the performance
of scientific tasks forces us to explicate concepts and procedures much
more carefully than practicing scientists usually do.

During the current grant period, the basic MOLGEN system will
be completed. (See Section 1.2 for details). This system will have
a modest genetics and problem solving knowledge base, an ability to
design a subclass of genetics experiments and a representation and
acquisition system capable of handling all.of the knowledge used by an
experiment design system. During the renewal period we will expand the
system's expertise and use the system to explore new problem solving
capabilities. (Readers can skip to Section 2 for details of work to
be completed during the renewal period). ‘The basic MOLGEN system will
provide an excellent framework for exploring more sophisticated
experiment design activities and problem solving techniques. We have
found in our analysis of the activity of geneticists that designing
experiments is intimately coupled with forming hypotheses about the
failure of the experiment design in the laboratory, then testing the
hypotheses and, as a result of the tests, gaining new knowledge wtich
effects the design. The new hypothesis formation component . of MOLGEN
will extend problem solving capabilities in this direction. Another
important element in the repertoire of an expert human problem solver
is the ability to form analogies between problems and to use the
analogy to solve new problems. Our exploration of analogical reasoning
within the MOLGEN system will lead to a new problem solving component
integrated with the rest of the design system. New expertise will come
in a direct manner from the expansion of the knowledge base by
geneticists. At the same time we will increase our problem solving
knowledge base by adding a component which monitors the problem solving

October 27, 1977

experience of the system and abstracts new experiment designs for the
design process. The generalization process developed for this monitor
will be used by the analogical reasoning component. Our final
extension to the MOLGEN system is the ability to evaluate its own
performance. This evaluation will aid the development of all of the
other extensions,

ll Motivations

The successful initiation of and perseverance with
interdisciplinary research of this kind can be hindered or aided by
many intangible factors in the local context, as well as by the
personal idiosyncrasies of the participants. We need only point to the
history of the DENDRAL project as evidence of our proven capability,
for whatever reasons, to engage in such research in the Stanford
University environment. It is inevitably true that no one person can
embrace a professional level of critical insight over all the fields
represented, but this has been surmounted by dint of hard work on
mutual communication from all sides. More problematical is the problem
of communicating our findings to a disparate group of disciplinary
experts outside, e.g. to computer scientists and to molecular
geneticists who customarily have had little need of perusing each
other's disciplines. The best solution is to get these parties engaged
not just in reading proposals or publications, but in the actual
manipulation of the working programs -—- particularly with the help of
computer networks that link dispersed sites. Even so, an amount of
technical detail that could well try the patience and skill of the most
tolerant reviewer is unavoidable if we are to offer a concrete, fair
picture of the status of our efforts, especially in the formative
Stages. We trust that, as is often true, the maturation of these
efforts can be accompanied by a simplification in presentation, and
Meanwhile we must appeal to the patience and good will of constructive
critics. The supporting documents attached to this proposal offer a
sample of our working papers and publications. Further documentation
on any aspect of the present system is, of course, available.

1.2 Progress To Date

The following sections describe our progress towards developing
an experiment planning program. The first part discusses a knowledge
management system. Most of our design and programming effort has been
in this area. A. package of programs for the representation and
acquisition of knowledge is discussed and our progress in using it in
creating a genetics knowledge base is also described.

1,2 October 27, 1977

The next section focuses on our examination of genetics
knowledge. It discusses various studies we have made of genetics
experiments and what we have learned from them. A short section
describes some work we did in representing the action of the ligase
enzyme and how this was of benefit to work in Prof. Lederberg's
laboratory.

1.2.1 Knowledge Base Research

The success of MOLGEN as an experiment planner will depend on
the quality of its knowledge base. Therefore, much of the research
effort to date has been in the design and implementation of a knowledge
representation and acquisition system. All of the information relevant
to the planning process will be an explicit part of the knowledge base.
The motivation for this aspect of the design is the necessity to expand
the program capabilities in a modular fashion and to explain the
rationale behind the program's planning behavior. We need to represent
concepts (e.g. enzyme), instances (e.g. EcoRI), relationships among
concepts, and relationships among instances. In addition, we need to
represent processes. Two recent papers [42] [3] have delineated
problems which arise in interpreting a knowledge base when the
semantics of the representation are not clearly specified. We have
purposely limited the expressive power of our representations to enable
us to clearly define their semantics.

The result of this work is the Unit Package. Although this
package has been designed in the context of our genetics application,
the package does not contain any genetics knowledge. At this time one
other group within the Stanford Heuristic Programming Project, the AGE
group, is using the package.

Our knowledge base design has been reported in the literature
[24]. Other documents relating to its use are included in the
appendices. Also included is a sample session illustrating the
acquisition of a DNA structure and a current summary of part of the
knowledge base dealing with enzymes. Section 1.2.1.1, Section
1.2.1.2, and Section 1.2.1.3 describe the implemented portions
of the representation package. Section 1.3.1 discusses some of the
further developments for the knowledge base that are planned for the
rest of the current grant period.

1.2.1.1 The Unit Package: Background and Relation to Other
Research

Design of the representation package (termed the Unit Package)
was started in November 1976 although most of the programming has been
done since March 1977. The design of the Unit Package profited from

1.2 October 27, 1977

the experience of other efforts e.g. KRL-O [1], SMALLTALK [20], and
the work at the MIT AI Lab on frames [27] [21]. One important
difference in perspective between the Unit Package research and many
other efforts is that it is at once a knowledge acquisition system and
a knowledge representation system. The knowledge acquisition system is
in the same spirit as Davis' work on TEIRESIAS [7] where schemata were
used to guide the acquisition of knowledge. Another distinguishing
feature of the Unit Package is that it is also used to represent and
acquire process information, that is, action and strategy knowledge
(see Section 1.3.3.1). The package performs many other knowledge
Management tasks for the system.

The basic element of our representation is an entity called a
unit. Units are either "prototypes" or "instances". Prototypes are
used to represent Woods' intensions [41], Brachman's concepts [3].
That is, a prototype defines a class, that is, the knowledge expected
for a particular concept in terms of slots with the appropriate fields
(e.g, role, value/specification, default). (2) Individuals are defined
as instances of prototypes. Subclasses can be formed with a special
link called generalization/specialization. Concepts can only have one
generalization and instances only one prototype. Other relationships
among units can be expressed by the value/specification of a slot or by
creating an explicit relation unit.

The knowledge acquisition system is used to acquire both
prototypes and instances. This system is being used by system builders
to create the bootstrap network described in the next section and by
Jerry Feitelson, our genetics research assistant, for defining and
instantiating knowledge about several families of enzymes. (See
Appendix II and the supporting documentation for examples of
knowledge acquisition.)

Other knowledge base management chores include automatic
bookkeeping and knowledge integration. The bookkeeping chores simply
keep a record of all pertinent information about the creation or
modification of a unit.

1.2.1.2 The Bootstrap Knowledge Base and Object-centered
Perspective

One important aspect of the design of the system is that the
knowledge base contains knowledge about its own data representations.
We have provided what we term a "bootstrap knowledge base." It contains
domain independent knowledge about commonly used data types. When

(2) The slots in a prototype are similar to Brachman's DATTR
links. A limited version of Brachman's MODALITY link is implemented,
MODALITY specifies the necessity of the specific DATTR in instances.

1.2 , October 27, 1977

using our knowledge base in a new domain, an artificial intelligence
researcher would probably start with the bootstrap knowledge base and
then proceed to create units for the specific knowledge of his task
area. Both the AGE and genetics knowledge bases have been started in
this manner.

. The bootstrap knowledge base serves to illustrate our approach
to extensibility. Most of the bootstrap knowledge base is made up of
the procedures which capture the knowledge in the system about
primitive datatypes. To add a new datatype to our system, one needs to
provide the knowledge base with procedures for some basic Operations -~
such as editing and printing. Actually, the same approach is used in
the unit package for defining a new datatype as is used for defining a
new enzyme. The process of defining new datatypes requires, however,
an understanding of Interlisp because the primitive processes in the
system are grounded in that lenguage. New datatypes must be defined
together with their basic operations and entered into the knowledge
base,

The approach used for attaching the basic operations to the
primitive data types is very similar to SMALLTALK [20] and KRL-0 {l].
As far as the knowledge base is concerned, in order to edit a DNA
structure, one sends the DNA unit an edit message. Another way of
Saying this is that the procedure for editing a DNA structure is
attached to the DNA unit. Thus, indexing of the "edit procedure" is
via the "DNA object" so that this is an application of the object-
centered viewpoint introduced in the languages mentioned above. This
Organization makes it easy to add new datatypes to the knowledge base.

An object-centered viewpoint is used in our system for other
applications as well. An example of this is the "inspector" idea
discussed in Section 1.3.3.4 which illustrates the Significance of
object~centered indexing during planning. In that example, particular
knowledge about related planning situations is associated with the
genetic object -- "pH", Generally only operations basic to primitive
data types are represented in LISP code. Other process information is
expressed as units. Instances of process units can also be associated
with objects.

1.2.1.3 Considerations of Human Engineering

Because we expect our knowledge base to be maintained by
geneticists, it has been important to carefully consider the
interaction expected between a geneticist user and our Unit Package.
This effort has resulted in the crafting of a package which is
particularly easy to use. This ease is verified by the acceptance of
our system by both geneticists and users on the AGE project,

1.2 October 27, 1977

One part of human engineering has already been mentioned above.
The system automatically records who has entered or modified any of the
information in the knowledge base. It provides summaries of what is in
the knowledge base and can indicate which areas of the knowledge base
have been changed recently. (See the attached supporting documentation
for a summary of a recent version of the genetics knowledge base.)

Another example of this human engineering is the "User Profile"
maintained in the unit editor. A user's profile contains such
information as whether he is a programmer; whether he’ prefers verbose
printouts, whether he likes to be informed when thesystem does things
automatically for him (i.e. that he has not requested). This
information helps the system to tailor its interaction with a user. In
addition, terminal communication is handled via very general routines
which check for type ahead and allow help information to be provided to
the user at any point in the dialog. The result of this is that an
experienced user can have very brief interactions with very little
prompting from the system. An inexperienced user will be prompted at
each step of the dialog and may type "?" at any time to get an
explanation or example of what the program expects. (See the User's
Guide to Units in the attached supporting documentation.)

Many of the human engineering parts of the system take
advantage of the facilities of InterLisp. For example, when a
programmer is changing some procedures in the knowledge base, he need
not explicitly request that the changed functions be recompiled. This
part of the updating is performed automatically at the end of a
session.

Our final example of human engineering illustrates the fuzzy
borderline between the technical problems of making the system easy to
use and some more complicated issues of knowledge base management.
Recognizing the importance of experimentation in representing
knowledge, one of the facilities of the unit system is to merge
knowledge bases. This makes it easy to update various knowledge bases
when changes are made -- for example when the bootstrap knowledge base
is updated. Part of the transfer protocol includes the facility for
one unit to imply a requirement for another. For example, suppose that
the bootstrap knowledge base has just been updated so that it has
knowledge about the representation of an important data structure - say
"trees", If this is useful in representing knowledge in the AGE
system, they need only request to transfer the "tree unit" from the
bootstrap knowledge base. Any other units essential to complete the
knowledge about "tree representation or tree operations" will be
transferred automatically at the same time.

The more difficult aspect of merging knowledge bases concerns
how the system can determine which units should be transferred when a
particular unit is transferred. Restated -- how can the system find

1.2 October 27, 1977

all of the relevant knowledge about a unit? Our approach to this
involves a method of inserting knowledge about relevance into the
knowledge base itself,

Considerations like those in the previous paragraph are simple
enough from the implementation point of view and are described in the
appendices. They are representative of the effort we have taken to
make the units package easy for a geneticist (or a programmer) to use.

1.2.2 Studying the Process of Experiment Design in Molecular
Genetics

Considerable effort was given during the first fifteen months
of the MOLGEN grant to the study of the process of designing
experiments. Attempts were made to determine subsets of the domain
which would provide realistic target areas for automated experiment
design and to collect the strategies and domain knowledge used by
experts for those subsets. Detailed descriptions of the results of
this investigation are given in the appendices.

The work included four major efforts:

1. Designing as many rational experimental plans as
possible for an experimental problem from Prof.
Lederberg's laboratory, the determination of the
presence of poly-A sequences in DNA. (See attached
supporting documents: "The Embedded Sequence Problem")

2. Collecting "skeletal" or abstracted plans for a wide
variety of structural elucidation problems. These
plans are meant to capture the re-usable aspects of an
experimental plan for use in planning other
experiments. They are an essential component of an
approach to planning described in Section 1.3,

3. Analyzing in detail the logic and development of a
single experiment performed in Prof. lLederberg's
laboratory. This study considers both the knowledge
which led to the successful experimental design, and
also the process of hypothesis formation to account
for experimental failures. (See attached supporting
documents for a copy of [14])

4. Analyzing a collection of experiments suggested by
several geneticists as good examples of logically
produced experimental designs in order to extract the
knowledge needed for MOLGEN to design the experiments.

1.2 , October 27, 1977

Our design of the system has been strongly influenced by these
studies. Rather than give detailed results in the body of this
proposal, we present a summary of these influences.

1. We will concentrate our initial efforts on experiment
planning to the subfield of restriction enzyme
experiments and then expand to applications to plasmid
and sequencing experiments.

2. We will represent genetic objects so that they may be
viewed from a variety of different perspectives. Our
studies showed that different perspectives led to
different experimental algorithms. (See [40] for a
Similar finding in program synthesis.)

3. While we are restricting the range of objects and
processes as indicated in (1), we must represent many
different types of knowledge about each object. Even
in a single experiment, a great diversity of knowledge
was needed to design the experiment [14].

4, The planning system will be one component of an
eventual genetics expert. The experimental design
process is much more event-driven than anticipated.
The eventual expert system will need a hypothesis
formation component and techniques to exploit
serendipity. For example, results of a particular
transformation may indicate interesting sidelights
which could be investigated in the context of the
current experiment.

1.2.2.1 Simulating the Process of Enzymatic Ligation

An attempt was made early in the first year of the current
grant to simulate the action of enzymatic ligation on DNA structures.
There were several motivations behind this effort. We wished to test
our newly developed DNA structural representation and to learn
something about representing the processes that modify those
structures. Also, we were presented with an interesting problem where
we could be of actual use to a laboratory geneticist (Dr. S. D.
Ehrlich).

The experiment. in question was one in which sticky ended DNA of
uniform length was reacted with ligase to ‘join together ends. Each
ligation could either join two different DNA structures or could
circularize a single structure, In the former case the new structure
would still have two sticky ends and the total number of structures in
the sample (concentration) would be reduced by one. In the latter case

10

1.2 . October 27, 1977

the number of structures would remain the same, but one structure would
be "inactivated" for further ligation. The problem was to predict what
the total sample population would look like after some portion of the
original monomeric structures had disappeared. That is, what percent
of the total structures would be monomeric circles, dimers, dimeric
Circles, and so on. These percentages would be compared with
laboratory results in order to determine how many different ends types
were present in the sample. (The more different end types, the greater
the ratio of circles to linear and shorter structures to longer
structures).

The simulation we developed was based ona kinetic theory of
ligation [11]. The simulation results correlated remarkably well with
the actual laboratory experiment when a model with two different end
types was chosen, This gave additional support to Dr. Ehrlich's
conclusion that indeed two different structure types had been present.
The program was then used for the related experiment of maximizing
inserts of a small gene into a plasmid. The idea was to cut the
plasmid with the same restriction enzyme that had produced the sticky-
ended gene, join the two, and then recircularize the structure to
produce a recombinant plasmid. The problem is that many other
structures, monomeric circles, long linear concatemers, etc., can
occur. The problem was to determine optimum starting concentrations of
the two structures and the length of time to carry out the ligating
process to maximize the desired product. The suggested values given by
the simulation program were of considerable assistance in carrying out
the laboratory operation.

The major significance of this work for future MOLGEN
development (besides giving a working geneticist assistance and
encouraging his ccoperation in communicating problem-solving knowledge
to us) was that this was our first attempt to capture the knowledge
needed to simulate a genetic process. We made no effort to consider
environmental side effects like temperature and pH, but the results
were still quite encouraging. The major problems we discovered were
twofold and related. First, the simulation program was hard to expand
to other problems. Adding other relevant information, for example
stereochemical effects, or about new processes such as cutting
structures, would involve considerable additional programming. Second,
all of the knowledge was hidden in the simulation program (written in
SAIL). The program could offer no explanation of its predicted
results, nor could the user make interactive changes to its guiding
theory. These results led to our decision to make all knowledge, not
just knowledge about static genetic objects, explicit in our knowledge
base. A discussion of how this is being accomplished is given in
Section 1.2.1 and Section 1.3.3.

li

1.3 October 27, 1977

1.3 Plans for the Remainder of this Grant Period

1.3.1 Continuing Knowledge Base Management Research

Our progress in developing a knowledge representation system
for MOLGEN has been discussed above. Our continuing effort during the
grant period is divided into (1) filling ina knowledge base with
entries specific to a specialized subset of molecular genetics, and (2)
expanding our representational capabilities to include knowledge about
the process of experiment design.

1.3.2 A Genetics Knowledge Base for Restriction Enzyme
Experiments

The Units package described above will be used to acquire and
store the knowledge needed to plan experiments. The initial knowledge
base will be limited to the facts and heuristics necessary to reason
about restriction enzyme experiments. This will include:

1. Units for basic concepts like DNA structure, enzymes,
and samples.

2. Units for each individual restriction enzyme.

3. Units for laboratory techniques which make use of
restriction enzymes.

4, Procedures which describe the action of restriction
enzymes on DNA,

After the restriction enzyme knowledge has been debugged,
knowledge about the fields of plasmid technology and
sequencing DNA will be added.

1.3.3 Knowledge About Processes and Planning

The basic planning work in MOLGEN will be divided into two
Major efforts. General domain-independent planning Strategies will be
developed within the units knowledge representation system as part of
the process of making an "AI toolbox." At the same time, work will
proceed on a specific strategy tailored to provide high-performance for
discrimination experiments in molecular genetics. The specific
approach for discrimination experiments is discussed below after the
discussion of our general approach to process representation and
planning.

12

1.3 , oo October 27, 1977

1.3.3.1 Representation of Processes

Extending the Unit Package to accommodate the representation of
processes is the important next step in the development of the
knowledge base system. We view both simulation (of a laboratory
technique) and planning operations (e.g. selection of a subgoal) as
processes. Our approach to the representation of processes has
previously been discussed [24] [36]; the main ideas are reviewed below.

We want to provide a facility that makes process description
and debugging as easy as possible. For example, the system will
provide an appropriate set of primitive operations for the operations
on DNA models. The geneticists and the computer scientists will create
prototypes for laboratory steps. Geneticists will then use these
prototypes as guides during the acquisition of knowledge about
particular laboratory tools. The same prototype/instance system will
be used to represent planning operations.

Many of the processes we want to represent can be grouped into
classes such that there is a prototypical action for each class. That
is, the individual processes (e.g. action of EcoRI) can be viewed as
instantiations of a process concept (e.g. action of restriction
enzymes) just as individual objects are the extensions of object
concepts. Many researchers in program synthesis (such as [9]) have

used a "program schema" to represent a prototypical program. The
schema is then instantiated by the synthesis system to produce a
concrete program. A program schema consists of a generalized program
with abstract predicate, function and constant symbols, input/output
specifications, and restrictions on possible instantiations of the
abstract symbols.

This notion of a program schema (we will use the expression
"process schema" synonymously) can be implemented within the current
unit representation. The abstract predicate , function, and constant
symbols are slot names. The restrictions on possible instantiations
are specified in the value/ specification field. The abstract function
symbols may be restricted to be either system primitive functions or
instantiations of other program schemata. I/O variables and
relationships among them can also be specified via the slot mechanism
and the "relation" units. Within a rule unit there is a_ special slot
which contains the generalized procedure. Thus, a program schema can
in fact be developed in a modular fashion: first create the simpler, or
primitive schemata; then decide on the constant, predicate, and
function symbols needed (i.e. the named component parts in a process
description); then create the generalized procedure using these symbols
as the named components.

Implementation details of rule units are currently being
examined. While in synthesis programs, the system creates the

13

1.3 October 27, 1977

instantiation from program segments, in the current design of MOLGEN,
the user creates the instantiation. The acquisition system must be
able to check instantiations to make certain that the restrictions and
I/O specifications have been met.

The use of process schemata and their representation as units
has implications for planning also. The visibility of process
components in slots is important so that other processes can examine
and select them according to the values in the slots. General problems
of such indexing methods and comparisons of systems which use these
methods can be found in the literature [8] [36].

In many cases it is appropriate to associate the process
elements of the system with definitions of the objects. This “object-
centered" viewpoint has been expounded [1] and implemented as
"attached procedures". Several different applications for attached
procedures in MOLGEN are given [24]. These attached procedures can be
system primitives or instances of process prototypes.

1.3.3.2 Representation of States and the Planning Network

Any system for doing problem solving needs to be able to work
with representations of domain worlds (often termed "world states") and
representations of problem solving states. An example of a world state
in MOLGEN is a sample which might contain a variety of hypothesized DNA
Structures, enzymes, and other reagents. An example of a problem
solving state is a sequence of laboratory steps and world states which
represent several steps of an experiment. We find it convenient to
consider a problem solving state as having levels of detail, with
different kinds of problem solving information on the different levels.
A description of our approach using such levels is given in [36],
section V.3.

Two main ideas have influenced our design. First, the world
states and planning states are fairly complicated structures. It is
necessary for a planning program to communicate with its users ebout
its current planning state. In particular, it must be able to display
its progress in an easily understandable form and it must be able to
integrate suggestions from the user to alter its course. Rather than
create separate programs for doing this, we have decided to represent
the planning and world state knowledge using units in the knowledge
base,

The second idea is that the process of problem solving can be
expressed adequately by a small number of basic operations. These
operations are used repeatedly in the course of solving a complicated
problem. This is discussed in the next section.

14

1.3 October 27, 1977

1.3.3.3 An Eclectic Perspective onProblem Solving -- The AI
Toolbox

When we study the solution to a problem in an unfamiliar
domain, the first reaction is to be overwhelmed by the new detail and
terminology. When one has mastered the terminology, the problem
solving process can be viewed in better perspective. To be sure, many
solutions remain brilliant and surprising. The majority of the
solutions are easy to follow and we may recognize the solution process
in the mind of the problem solver, Here he is sketching out some
goals; now he is selecting an operator; now he is refining a step; now
he has factored out a subproblem.

We believe that the process of problem solving can be modelled
by a small number of standard operations. These operations include
such things as (1) Sketching out planning islands; (2) Proposing
subproblems; (3) Testing for mismatch of goal statés; (4) Focusing
attention on part of the problem; (5) Assigning time sequence to steps;
(6) Selecting among competing choices for a given step; and (7)
Splitting a problem into cases. Although these have been recognized as
basic components of strategy, no existing system has integrated this
breadth of strategy knowledge into a knowledge base. Dershowitz and
Manna [9] have suggested the use of program schemata to represent
general problem solving techniques such as Divide and Conquer. These
program schemata are instantiated by the program synthesis system to
obtain concrete programs. In our system the geneticist and/or
programmer will create the instantiation. A major component of this
research will be in the construction of such program schemata and
instantiations. The package created will be termed the “AI toolbox",
The creation of a library of schemata has been suggested by Gerhart
[19]. The package will be built and tested in the context of a small
number of genetic experiments. Computer science experiments with the
package will include a measure of its performance and utility for
expressing appropriate strategy for experiments.

Of course, having a number of basic tools does not guarantee
that a program will use them correctly. Competence in problem solving
in the domain requires that the expert system know where and when to
apply the standard methods. Two factors are of importance here. (1)
Some tools govern the use of other tools. For example, "Focus
processes" will determine where to concentrate effort in a problem and
indirectly control the selection of strategies. (2) The specific
knowledge for using a tool is precisely the -type of information which
is left unspecified in the prototype and which must be supplied when
concrete instances are acquired for the knowledge base.

The AI toolbox is discussed further in [36] in section V.4.

15

1.3 , October 27, 1977

1.3.3.4 Simplifying Process Specifications by Removing
Exceptions

Planning can be plagued by exceptional cases. If high level
planning processes are burdened with the detail of the special cases,
they can become cumbersome to update and debug. We are developing an
object-centered approach, termed inspectors, for distributing the
information about special cases throughout the knowledge base. This
should help keep the planning processes clear and concise and also
provide localized packets of information about the exceptions.

The basic ideas of this process of removing exceptions can be
illustrated by an example of a “selection process" in designing an
experiment. The operation of selecting among available laboratory
steps is a recurring operation during experiment design. The following
bear on this process:

l. The experimental goals -- e.g. to extract a section of
a molecule.

2. World State specification -- a description of the
laboratory sample, e.g. DNA structures.

3. The selection criteria -- e.g. availability,
sensitivity, or functionality of the laboratory
technique.

4. Verification criteria -- test for deciding after a
simulation of the selected laboratory step whether the
essential goals have been satisfied.

5. Failure instructions -- what to do if the chosen
laboratory technique does not satisfy the goals.

6. Laboratory step specifications -- a list of the
potentially applicable laboratory tools and their
descriptions.

Our approach to managing the information about a selection
process is first to identify the general information and then to
consider the alternatives for placing information about the special
cases, For example, section V.4.4 of [36] considers the selection of
an enzyme to make cuts around a region in a DNA molecule so that it may
be extracted. The general information in this case is that the main
determinants of selection are enzyme availability and information about
where it will make ‘cuts. Special case information includes
modifications on this basic idea according to unusual variations in the
structure of the molecule -- e.g. “AT-rich regions", “hairpin loops",
etc. It also includes information specific to the laboratory steps
being selected -- e.g. nuclease contamination in an enzyme.

16

1.3 October 27, 1977

Interactions between goals often arise in the special cases
(3). When action was taken to satisfy the preconditions of the enzyme
(in this case, pH was changed), a side effect resulting from
interaction with an unusual molecular feature interfered with the
action of the enzyme. Specific advice about failures of this kind can
be associated with the "pH inspector" -- To avoid conflicts of this
kind an enzyme should be used at a suboptimal pH. Inspectors may be
viewed as domain specific versions of planning critics as developed by
Sussman [37] and Sacerdoti [32].

Generally there are many tradeoffs involved in deciding where
to locate the information about special cases. The example above and
the tradeoffs are described in detail in section V.4.4 of [36].

1.3.3.5 Further Aspects of Knowledge Base Management

One further area of work in knowledge base management that we
will be pursuing is in developing a number of modest aids for a user
for keeping track of a growing and evolving knowledge base. As
discussed previously, we have already developed some facilities for
automatic documentation of the knowledge base. We will be designing
aids for a user in tracking down unexpected conflicts. For example, if
two geneticists sharing a knowledge base have a somewhat different view
of some aspect of the domain, one may make changes effecting the
other's area. In the’ event of a failure, it would be useful in many
occasions to get a summary of recent changes to the knowledge base.
When achange is contemplated to the definition of some class of
enzymes, it would be a simple matter to locate all of the rules which
mention those enzymes. These rather simple aids are expected to be
useful when fairly extensive changes to the knowledge base are
contemplated because they will assist the user in being thorough about
making his changes,

1.3.4 A Method for Designing Discrimination Experiments

One of the applications of the genetics knowledge base will be
the building of a high performance system for designing a variety of
discrimination/analysis' type experiments. The goal in these
experiments is to learn something about a given sample. of DNA
structures. For example, are any poly A regions present, or do the
structures carry tetracycline resistance? The basic method used for
the experiment design system will be means-ends analysis combined with
hierarchical planning as follows:

(3) See Section III.2.5 of [36] for a discussion of recent
techniques for handling interactions between goals.

17

1.3 October 27, 1977

1. A model structure containing the hypothesized
featur(s) will be compared with a structure
representing generalized DNA of the same type in order
to ascertain exact differences.

2. These differences will be ordered and one selected as
a basis for initial planning.

3. An experimental’ strategy, ranging from very specific
(e.g. if a bubble is present then denature and use EM)
to very general (e.g. label the feature and then look
for the label) will be selected from a library of such
"skeletal plans," using the difference selected.

4. The skeletal plan will be adapted to the specific
problem environment, with hierarchical planning
proceeding as deeply or shallowly as is desired by the
system user. ,

5. The completed design will be tested in a forward
direction for completeness and consistency by an
evaluation system.

6. If a successful design cannot be found from the
feature selected in (2), then either a new feature
will be selected from the difference list, ora
generalization selected from a tree of structural
features will be used. For example, if the selected
feature was the. exact base sequence ATTGC, a
generalization might be made to ‘known base sequence,"

The following major components are needed for this exper iment
design method:

1. A problem analysis preprocessor which recognizes key
features in the nucleic acid structures, nicks, gaps,
hairpins and the like, and then compares these
Structural features to find major differences between
candidates in a discrimination experiment. This
program will organize features into a hierarchy of
importance for experiment design using a rule-based
system for analysis and classification.

2. A tree structure for ordering structural features and
providing links between features and the classes to
which they belong. The links will point. upward as
generality links to a more general class or downward
as specificity links to amore specific one. The
highest links will be to the complete class of

18

1.3 SO, October 27, 1977

structural features, the lowest ones to individual
specific features, Intermediate levels will consist
of important subclasses, e.g. "poly base sequences”
which would point downward to "poly A," "poly T,"
"poly G," and "poly C," and upward to "AT/GC ratio",
which would itself point upward to known base
sequences." This tree will provide entry into genetic
strategies classified by the features to which they
specifically pertain. Failure to find knowledge about
what to do with a specific feature will cause the
system to search for knowledge about the subclass of
features immediately above the specific feature in the
tree,

3. A cohesive system for hierarchical planning in the
domain of molecular genetics--selecting strategies as
described above and refining them downward to specific
laboratory tools. This of course involves the usual
need for error recovery and backtracking facilities.

4. A system for evaluating completed designs at any level
of generality to be sure the plan asa whole "fits"
togethers, i.e. a forward-working system for plan
evaluation.

These components will be integrated into the basic MOLGEN
representations framework of the Units system described above. The
rules describing the problem analysis preprocessor will be individual
units, aS will the descriptions of structural features which combine to
form the tree structure of the feature hierarchy. Individual dynamic
planning states will be represented as units within the MOLGEN system.

After the experiment design system becomes operational for
discrimination/analysis type experiments, we intend to adapt it to
experiment-planning for synthesis experiments where the goal is to
produce some desired DNA structure from available starting materials.

1.4 An Example of the Genetic Utility o£ Automated
Experiment Design

A good way to illustrate the potential utility of computer
assistance in experiment design is to show how some recently published
work from another laboratory might have been represented in a MOLGEN
formulation, albeit human intelligence was the instrument. The work in
question achieved the cloning of the gene for rat insulin ina
bacterial plasmid vector [38]. The major goal of the experiment was
the transfer of a gene coding for insulin from the rat to the common

19

1.4 October 27, 1977

intestinal bacterium, E. coli. An important subtask of the experiment
was: given samples of two different linear DNA structures with "sticky"
ends, produce acircular structure containing one molecule of each.
The difficulty of this problem lies in the number of competing
processes. Both structures can self-circularize, and many different
linear and circular monomers can be produced. See Appendix III for
further details.

Previous attempts to cope with the problem were based the
kinetic theory of ligation [11]. Using a model of the process based on
concentration and molecular weight of the structures, one varied
various experimental parameters to maximize the amount of the desired
product. The new idea of the article was based on a different
strategy--try to eliminate competing processes. This led to a method
for modifying the sticky ends of the two structures so that they could
no longer self-circularize. The particular method chosen was a simple
biochemical step. The solution was retrospectively self-evident, but
in fact, it was missed by many geneticists who had previously examined
the problem (or related others). An intelligent experiment design
system with the above mentioned heuristic probably would not have
overlooked the solution.

2 Research Plans

The bulk of this application comprises details of research
strategies for the first two years of the renewal period. It is of
course more difficult to forecast over longer periods; indeed there is
every likelihood that unforeseen difficulties and opportunities will
intervene to offer changes of perspective. However, enough progress
may have been made to enable us to move from the initial stepping
stones, and our current plan for years 3 and 4 is as follows:

We will by then have invested substantial effort (mainly
through the cooperation of investigators with direct support for
molecular genetics research) in building and maintaining the knowledge
base in the specified domain. We believe that this investment should
be exploited before substantial further efforts are made to expand the
domain ~~ e.g. in more biological aspects of genetics -- although a few
easy opportunities will surely present themselves. Instead our
emphasis will be on the evolution of MOLGEN to a hypothesis-oriented
system (like DENDRAL). Typical questions at that level would be: from
the data given, what are plausible hypotheses for the structure of a
sample of DNA; as well as, what experimental steps should be pursued to
verify the hypothesis. Intermediate steps have already been mentioned:
the elaboration of hypotheses in the course of debugging, and the
extension of MOLGEN from a sharp binary discrimination (between two

20

October 27, 1977

stated alternatives) to a corroborative mode (a given hypothesis versus
all plausible alternatives).

This effort will require a good deal of work on the planning
components and on rules of plausible induction, and relatively little
on the knowledge base of molecular genetics per se. For that reason it
should have the greater value for extensions to other domains.

2.1 Building and Maintaining the Genetics Knowledge Base

One important building block for MOLGEN's success is the
creation and updating of a base of knowledge about genetics, This
provides both a useful reference source for the user planning his own
experiments, anda body of core data on which automated experiment
planning strategies can be tested and evaluated.

The knowledge acquisition and representation ideas have been
delineated in detail previously. This section describes advantages of
the resources available here to support this work,

The strength of the Stanford community of biologists,
biochemists, and geneticists offers a unique opportunity for
collaboration in building a substantial body of knowledge about on-
going research projects. Many of these projects may prove to be
suitable sub-domains for initial development of the knowledge base, and
may provide test domains for work on problems of knowledge acquisition
and knowledge base management. They offer the added advantages of
insuring that this work is solidly grounded in real-world experiments. .

Updating and checking the knowledge base with respect to the
information obtained from our collaborators will be the responsibility
of the graduate student and post-doctoral fellow in genetics. On
oppornunistic occasions they will also experimentally validate those
experiment plans generated by the system which are relevant to current
work in the lab. This has already been done in the case of ligation
kinetics, where theoretical predictions of plasmid self-circularization
were compared to electron-microscopic empirical tests (Section
1.2.2.1).

One useful side-effect of this process that we anticipate is
that the process of formalizing knowledge about the domain may help to
organize what is currently an informal body of knowledge, and in doing
so may even uncover gaps in our current store of knowledge ahout the
field.

21

2.2 October 27, 1977

2.2 Recognizing and Abstracting and Saving Successful Plans

As noted above, our efforts to create an experiment-design
system center around the concept of a large knowledge base containing
task-specific information. One approach to augmenting this knowledge
base is via interactive knowledge acquisition as discussed in Section
1.2.1.3. A second form of knowledge-base improvement is based on
giving the system the ability to save successful experiment designs it
has generated. This involves two major functions: recognizing when a
plan is worth saving, and abstracting a plan so that it is applicable
to a wider range of problems than just the specific one which prompted
its creation.

For example, consider the design MOLGEN might produce for the
problem of ligating two genes. An initial attempt would be made to
produce "sticky" ends by cutting both genes with a single restriction
enzyme. Suppose, however, that no restriction enzyme which satisfied
this criteria could be found. One possible solution would be to cut
the DNA near one gene with restriction enzyme A, and near the other
with a different restriction enzyme B, then join the two segments by
means of a small piece of artificially created DNA which had been cut
on one end by A and the other by B. This general idea -- the concept
of a “molecular adapter" [35] -- is very useful for problems of this
sort. While recognizing and abstracting the relevant ideas from the
specific experiment design above is difficult, the ability to do this
would be an important form of knowledge base augmentation.

Automating the function of recognizing when a plan should be
saved will rely on several interrelated factors:

1. Was the plana "good" one, i.e. does it solve a problem
with reasonable efficiency, cost, safety, etc.? This measure of
"goodness" will be difficult for the system to judge alone. The system
will rank alternate plans according to its heuristics which involve
these factors, but an absolute measure of plan quality will be a very
difficult measure. Until the knowledge base includes adequate metrics
for the "goodness" of plans in a variety of subfields, we imagine this
judgment will be mostly up to the user.

2. If the plan solves a problem for which other plans already
exist in the knowledge base, is the plana significant improvement?
Making this judgment involves use of the same "goodness" metrics
discussed above as well as an analysis of why the new plan was not
simply a copy of the old. If the only difference between the two plans
is that the new one takes account of some detail of the environment for
a specific problem, then it probably isn't worth saving. Again, we
imagine this judgment will, at least initially, be mostly up to the

user,

22

nan

2.2 October 27, 1977

3. is the cost of saving the plan less than the cost of
regenerating it each time the same problem arises? Empirical criteria
applicable to making the tradeoff decision might include CPU time spent
in generating the plan, and, if the plan evolved directly froma
previously saved one, the number of differences between the two plans.
Another important measure is some judgment about how often the plan
will be useful in the future. The more generally useful a plan, the
more important it is to keep it around.

4. Can the plan be abstracted to more general purposes? In
the example given above, this would involve recognizing that the
concept of a "molecular adapter" would be useful any time the goal was
to join two pieces of DNA which did not have convenient restriction
sites in conmon,

The problem of abstracting a plan that has been selected for
saving has been considered before, in the robot planning domain, in the
work on MACROPS in the STRIPS system [15]. STRIPS generalized
successful plans in the following manner. Plans had variables which
were bound to objects in the robot world. The idea was to "unbind"
these variables as much as possible, with certain constraints imposed
by the nature of the particular plan. For example, if one step of a
plan told the robot to go to a block and the next step said pick up a
block, the block in these two steps must be the same one. Initial
references to specific doors, blocks, rooms, etc. were generalized to

“any door," "any block," “any room,", etc., but took into account

constraints of the sort noted above.

We will begin by employing much the same generalization
process. For the example plan given above, the specific restriction
enzymes could be generalized to any two distinct restriction enzymes,
and the two genes to any two DNA sequences lacking a common restriction
site. This generalization process should be a natural consequence of
the hierarchical nature of our knowledge base. The taxonomical
classification of DNA structural features discussed above (Section
1,3.4) could be used to generalize plan utility~--e.g. if a plan solves
a problem for nicks, maybe it can be generalized to solving that
problem for the immediately more general parent of nicks, DNA
excisions. A plan which was useful for recognizing a specific base
sequence might be generalized to one which was useful for all "known
base sequences." The generalization of variables within a plan will be
done by moving up generality links (see Section 1.2.1.1) in the
knowleige base. A particular exonuclease .could be parameterized to
mean any exonuclease--the parent of al] specific exonucleases in the
knowledge base.

One difficulty lies in knowing how far it is possible to go up
the generality links in the knowledge base before losing plan utility.
A specific enzyme could be unbound to refer to "any enzyme," but that

23

2.2 October 27, 1977

would yield a plan which said "pick any enzyme", and would probably be
far too general. The problem lies in detecting the important (i.e.
important to this particular plan) features of each object used in the
plan, and trying to retain those features while generalizing out all
“irrelevant details." In the plan discussed above, the important
feature of the chosen restriction enzymes is that they cut at specific
Sites, not that they were derived from some particular organism or that
they operate optimally ata certain temperature. Note that such
information (the degree of relevance of the features) will be available
from the hierarchical planning phase, since it will have been used to
choose among competing laboratory "tools". In this case, for example,
restriction enzymes were chosen because they cut at specific sites.
So, in unbinding the notion of a particular restriction enzyme, if the
knowledge of the importance of specificity is maintained, progress up
the generality links will end at “restriction enzyme."

2.2.1 A Casebook of Unsolved Problems

A related area of investigation -- recognizing novel
combinations of laboratory techniques -- is based on the observation
that new tools are continuously being developed. Sometimes a
particularly useful combination of tools is available. for quite some
time before it is recognized as such, as inthe use of alkaline
phosphatase to inhibit self-ligation mentioned in Section 1.4.

One approach for doing this is to keep on file a casebook of
important or unsolved genetic problems. Periodically as new laboratory
techniques and planning strategies are added to the knowledge base, we
will run the planning program on the test cases.

The process which we would like to model is embodied in the
situation where a scientist, after hearing of a new laboratory
technique, recognizes a laboratory problem for which the technique
could be profitably applied. Thus, the first step of the process is to
select a problem (from the casebook) after being presented with a new
technique. Then the existing planning methods in the system would be
applied on the problem again with the new laboratory technique encoded
in the knowledge base. The next phase is deciding whether a new
solution using the new technique offers any advantage over previous
solutions. This would make use of the work described in Section 2.2
for abstracting and evaluating plans.

In summary, this process will make use of other developments in
the MOLGEN project for applying newly discovered techniques and for
evaluating the plans produced. These methods will be applied to form a
discovery process by augmenting them with a casebook of experiments and
a selection process for picking experiments.

24

2.3 October 27, 1977

2.3 Understanding Exper imental Discrepancies by Hypothesis
Formation

Plans for molecular genetics experiments have something in
common with computer programs, summer vacation trips, and almost any
kind of plan devised -- they don't always work. Although published
reports about experiments usually say little about the techniques which
failed, our analysis of the actual development of experiments has shown
us that debugging is an essential and anbegral part of successful
laboratory experimentation [14].

Pioneering work in the debugging of computer programs [37] used
a process of program development and correction using a knowledge base
about bugs, Sussman has advocated creating a rough version of a
program on a first pass followed by local corrections by a gallery of
critics. In Sussman's work, the ignoring of detail during the first
pass is a source of power for the approach. In experiment debugging,
we find an additional reason for attending to details during a second
pass ~—- the knowledge necessary for deciding which of the details are
in difficulty is not available at the time the experiment is designed.
For example, many assumptions about the input samples are made when the
experiment is designed and the validity of these assumptions cannot
practically be tested until the experiment is performed.

Section 2.3.1 describes several distinct sources of error in
experiment design. Section 2.3.4 describes a number of research
issues,

2.3.1 Sources of Bugs

The complexity of most laboratory techniques is such that there
are many ways for an experiment to go awry. The following diagram will
be used to categorize the sources of bugs.

25

2.3 October 27, 1977

Real Laboratory
Step Parameters

V

Measured -> | Laboratory Step | -> Measured <--
Input. no Output |
State State |

|
|
|

Laboratory Model -- MOLGEN Simulated Laboratory Compare

|
Planned Step Parameters |

| |
V |

Hypothesised ser Computed <--
Input -> | Laboratory Step | —-> (Expected)
SEACC ntrereerent Output

State

In this diagram, we assume that a complete plan for a
laboratory experiment has been developed. In this diagram, we will
focus ona single step in the experiment. The upper part of the
diagram corresponds to the step as carried out in the laboratory -~
illustrating that a laboratory sample undergoes processing in a
laboratory step resulting in a changed sample. Measurements are made
on both the input and output samples. (4)

The lower part of the diagram corresponds to a model of the
laboratory process. This may be either an informal model in the
experimenter's thoughts or a formal model in the MOLGEN knowledge base.
The model transforms a hypothesized version of the sample using a
process model of the laboratory step to yield a model of the expected
results of the laboratory step.

If at some point in an experiment the measurements predicted by
the model fail to correspond to actual measurements in’ the laboratory,
a "bug" has been encountered in the experiment. Referring back to the
diagram, the source of the bug may be any of the following:

l. The hypothesized input sample may be inaccurate.

2. The planned parameters for the laboratory step might
be not correspond to the actual parameters used.

(4) Measurements are examples of laboratory steps, subject to the
same descriptions and errors as other laboratory steps. This diagram
has been simplified by leaving implicit the measurement step.

26

2.3 October 27, 1977

3. The process model for the laboratory step could be
inaccurate. This inaccuracy could be in either the
laboratory step shown explicitly or in one of the
implicit measurement steps.

4, The error may be traceable to any of the above sources
in any of the previous steps in the experiment.

2.3.2 Knowledge about Debugging

A Molgen debugging system must be able to generate and test
hypotheses about bugs from any of the sources mentioned above.

The first source of bugs mentioned above -- an inaccurate
hypothesis about an input state -- is a common source of difficulty in
experiments. Knowledge about DNA structures, a major part of an input
state inmost experiments, is almost never complete. For example,
there is a danger of minor damage to DNA structures in almost any
laboratory step so that nicks, gaps, and various forms of erosion tend
to appear in these structures in the course of an experiment. Whereas
experiment planning derives much of its power by ignoring such details,
experiment debugging is likely to derive its power by scrupulous
attention to these possibilities when problems arise. A discrepancy in
the parameters of a laboratory step is similar in principle toa
discrepancy in the input state. There are always many possible sources
of error here: Was the pipette sterile? Were there nuclease
contaminants? Was the pH controlled properly in the buffer? If a
simple error of this kind can explain the discrepancy in the
experiment, there is probably little need to lock farther.

A more difficult source of error occurs when the model of the
laboratory process is inaccurate or incomplete. Since most of the
debugging which we have observed involves the other sources of bugs, we
expect to put most of our effort there. We have, however, some modest

ideas uSing analogical reasoning for extending and correcting process
models. Suppose that we suspect that knowledge about enzyme A is
incomplete, and suppose also that we know that enzyme A is similar to
enzyme B (a well-understood enzyme). If the operation of enzyme B
depends on the concentration of a magnesium ion and the model for
enzyme A does not mention this ion, a reasonable question in the face
of a failure in using enzyme A might be whether the model for enzyme A
is deficient in this aspect. While very simple, this approach may
prove to be adequate to provide useful hints.

2.3.3 A Debugging Example

This section gives an example of debugging a step in a genetics

27

2.3 October 27, 1977

exper iment. (5) The example illustrates two models of genetic
laboratory steps and shows the generation and testing of two hypotheses
about abug. After the fairly lengthly example of debugging which
follows, the research issues involved in this approach are presented in
Section 2.3.4.

2.3.3.1 Generating Debugging Hypotheses

As stated above, experiment design must usually be done with
incomplete knowledge. In this example, the sample consisted of uniform
DNA molecules from a bacteriophage. A laboratory step was proposed to
cut the DNA molecules into smaller segments so that a desired gene
(Thy) would be located on a smaller segment for later manipulation. A
restriction enzyme (EcoRI) was chosen on the basis of availability in
the laboratory to perform the cutting. It was not known (a) whether
the Thy gene had a restriction site for EcoRI (i.e. whether the enzyme
would cut the gene) or (b) what the size would be of the segment

carrying the Thy gene. It was essential for later steps in the
experiment that the Thy gene be located intact on an appropriately
Sized segment of DNA.

To test whether the Thy gene was functional after cutting the
DNA with the enzyme, a checkpoint was used involving "transformation".
Transformation is a process by which bacteria can incorporate DNA from
their growth medium. In this case, conditions were established so that
the bacteria could survive only if they were transformed by a
functional Thy gene. The bacterium used in the transformation test was
Thy- B. subtilis. Lacking the ability to synthesize thymidine itself,

this bacteriumcan normally grow only if the medium supplies the
thymidine. During transformation, if bacteria can incorporate a piece
of the digested DNA carrying the Thy gene, the “transformed" Be
subtilis will be able to grow on a medium lacking thymidine.

The uncut bacteriophage DNA is capable of transforming B.
subtilis in this manner, and it was assumed that the cut DNA would
function similarly. The unexpected observation (bug) was that although
the cut DNA was indeed capable of transforming the B. subtilis, it did
so with a greatly impaired efficiency. A fix waS needed or the
subsequent experimental steps could not be performed.

At this point, two hypotheses were suggested to explain the low
efficiency.

1. The EcoRI enzyme cut the gene -- damaging its
transforming ability.

(5) The example is from the beginning of the experiment described
in [14].

28

Ldeesedl

2.3 October 27, 1977

2.. Transforming activity decreases if the DNA segments
are too small.

The first hypothesis derives from fact that a gene which has
been modified will function with an impaired efficiency. In this
scenario, if the B. subtilis has been transformed with a damaged Thy
gene, it will still growona thymidine deficient medium, but not as
effectively. The Thy gene could be damaged if it has an EcoRI site.

The second hypothesis was suggested from the fact that the
length of DNA fragments (and other structural features) are known to

influence the transformation process (6). In this scenario, if the
segment containing the Thy gene is too short, some part of the
transformation mechanism would operate less effectively and the gene
would fail to be incorporated.

Both of these hypotheses may be derived. by analysis of the
process models for digestion (7) and transformation. These models are
given below,

(6) See [28] for a detailed discussion of transformation.

(7) “Digestion” is a technical term referring to the cutting
action of an enzyme.

29

2.3 October 27, 1977

Partial Models for Digestion and Transformation

(Digestion Model)
EKREKRERER KEK REERRRRKRRRRERERERERERERRRERAKRERERREEREKREREKK

Sufficient Enzyme Concentration --> no \

| yes
| |

Sufficient Reaction Time? —> no \I
| yes |
| | oo

(Complete Digestion) (Partial Digestion)

| |.
| |

Cut DNA at EVERY Cut DNA at SOME of

restriction site the restriction sites

| |
|-----< nano/
| .

Break DNA into 2 segments at the affected sites.
(Each segment terminated with characteristic sequence.)

|
|

Has a gene been cut ? --> yes \
| no |
| gene disabled
|
|--< <
|

KEEEREKKEKKRKREERERREEREERERERKERERREREREREERKREREREKERRR

+
b
F
F

O
b

Oe
O
e
H
O
O

e
b
F
b
O
O
O
O
O
O
O

30

2.3 October 27, 1977

(Transformation Model)
KEKKEKREKRIKER ERIKERRIKEREIERRAEEREREKRREAEKERRAEREKREKRKKREKKKRERE

DNA pieces toc small? --> Yes (decrease efficiency)

| no |
| < < |
|

DNA circular? --> no (Linear pieces subject to
| yes exonuclease degradation.)

| (decrease efficiency)

| |
|
|

|
Medium contains All
essential nutrients ? -—--> Yes (Grow)

{ no

|
(Some nutrients are missing.)

Is there a gene to synthesize
the missing nutrient? -—> yes -------- \

{| no |
| |
| Is the gene
| intact?
| no | | yes
| | |

(No Grow) (Growth (Grow)

| impaired)

+
e
e
F
e

Oe
H
F
H
O

OH
O
O

O
O
O
O
O
O
H

H
H
O
H

H
O
O
F
O
O
O
O

KEKEEKKEREEKERERRERERERERREEEREREKERERERERRRRRREEREREREKEREEK

2.3.3.2 Testing the Debugging Hypotheses

Once a hypothesis’ has been offered to explain a discrepancy in
an experiment, it is often possible to propose a measurement which can
validate it. If the hypothesized change to the model of the input
state is adequate to account for the discrepancy in the output state,
that is suggestive that the source of the bug has been found. Other
times, a hypothesis about molecular damage may Serve to suggest an
alteration in the experiment or a way to fix the damage.

Tf more than one hypothesis for the cause of failure is found,
it is necessary to determine which of the bugs is the most likely. In

31

2.3 ; October 27, 1977

this exper iment the following knowledge was used in discounting the
first hypothesized bug:

Test for restriction site:

If a gene can be: shown to be functional at all
after its DNA has been completely digested by a
restriction enzyme, the enzyme probably does not
cut the gene. ,

Test for Completeness of Digestion:

If no change is observed in the restriction
pattern (in electrophoresis) for DNA after a ten-
fold increase in digestion time and enzyme
concentration, the DNA may be assumed to be

digested to completion. (8)

The completeness of digestion was demonstrated in the manner
suggested, indicating that, Since there was a measurable amount of
transformation activity, the difficulty lay in the size of the
fragments after Eco RI digestion.

Attention now goes to the process of finding a fix for the
problem. This phase of the debugging process is essentially an
application of the experiment planning part of MOLGEN. In the current
experiment, methods were sought which would allow the DNA to be
cleaved, but in such a manner that the segment containing the Thygene
would be left on a larger fragment. ‘Two possibilities were considered
for this -- selection of an alternate restriction enzyme and a
“partial" digestion in place of a complete digestion by EcoRI. The
models which were used for generating the bug hypotheses may also be
used to generate the alternative of partial digestion. In particular
we can derive from the models that (1) the average piece will be larger
if digestion is partial] instead of complete, and (2) this may enhance
the transformation step.

2.3.4 Research issues

The approach to debugging illustrated above relies on the use

(8) Although this rule was cited in this form in [12], some
exceptions to it are generally recognized. In the first place, there
are inherent resolution limits which prevent some changes in
restriction patterns from being observable in electrophoresis.
Secondly, sometimes restriction sites can be covered by trace proteins.

32

2.3 October 27, 1977

of checkpoints in an experiment. The judicious selection of
checkpoints is an important aspect of experiments and illustrates that
some of the interplay between experiment designing and debugging can be
anticipated. The checkpoint above indicated that no further steps
should be taken in the experiment until the check (transforming
capability) was passed. Experiment design involves the use of other
kinds of checkpoints -- e.g. "controls" which serve as checks on
experimental artifacts. Selection and placement of checkpoints in
experiments depends on many things -- e.g. the time and expense and
sensitivity of the check. We anticipate that the development of the
debugging system will lead to a number of additions to the experiment
design system for handling the selection and placement of checkpoints.

The example and discussion above have illustrated some major
research issues involving the generation and testing of potential bugs.
One issue 1s how should the list of possible "bugs" be pruned when it
is too large to test experimentally. Several sources of bugs have been
illustrated above. A means must be found for focusing attention, i.e.
determining which are the most plausible sources of error.
Representation of the debugging process will probably involve
considerable expansion of the knowledge base. In addition, the models
for debugging seem to involve use of more detailed knowledge than is
available for experiment planning -- implying some extensions to our
modeling of genetic objects and processes as well. .

Finally, one research issue lies in the source and organization
of the models, such as those for digestion and transformation,
illustrated above. Initially, these will be hand-crafted entities
whose contents will be dictated by the range of experiment bugs
encountered. Eventually, however, we hope to be able to exploit the
commonalities arising in several models, to develop a more basic
encoding of the information. For example, both digestion and ligation
could be characterized as instances of “chemical reactions". Stored
with this concept would be an indication that "degree of completeness"
was a relevant parameter in describing its outcome. This eliminates
the necessity of encoding such information redundantly, and provides a
more intuitively appealing organization.

2.4 Reasoning by Analogy

At the end of the current grant period, MOLGEN will bea
working planning system. The knowledge base will include a library of
process schema expressing problem solving technigues and domain
operations, and a library of skeletal plans expressing general
solutions to particular problems. The planning system will have
techniques for hierarchical problem solving. This system provides an
excellent environment for exploring various types of analogical
reasoning.

33

2.4 October 27, 1977

There is a long intellectual tradition in philosophy of use and

analysis of the concept of analogy. The tradition begins as early as

Plato and Aristotle, In fact, some of the most famous and memorable

passages in Plato's Dialogues hinge upon a brilliant and imaginative

use of analogies. We have in mind especially the famous image of man

in the caves able to observe only shadow as an analogy to the problem

of perceiving the true character of eternal forms.

During the long and technical phase of philosophy identified

with the Middle Ages, the concept of analogy achieved a central

importance as part of the extensive discussions: of analyzing and

knowing the properties of God. The conceptual difficulty was the

recognition that it is not necessarily cognitively possible for human

beings, themselves, to know the unbounded powers, knowledge, etc., of

the deity. Consequently there developed a long tradition of attempting

to argue by analogy from known properties of humans to what should be

the properties of an omniscient and omnipotent deity. This conceptual

literature on analogy is still a vigorous one, and publications can be

found as recent as the last decade.

Another stream of thought that has given a good deal of

attention to the concept of analogy is the philosophical analysis of

the problem of induction. A distinguished and diverse set of

philosophers, including Hume, Kant, and John Stuart Mill, have all had

important things to say about reasoning by analogy.

The development of an analogy requires the specification of the

analogous concepts and a description of the manner in which the

concepts are analogous. Once enough of a description is given to

establish the analogy, the description is extended to derive new

attributes of one of the concepts. Unfortunately, philosophers and

psychologists have not given precise descriptions of the process of

analogical reasoning. Precision is necessary in order to use

analogical reasoning as a component of a computer problem solving

system. Polya began a new approach to analogy in his book, Induction

and Analogy in Mathematics. His examples and informal discussions have

served as a useful starting place for recent computer science

investigations. The computer science work of Evans [13], Kling [23],

and Brown [4] are major contributions to the effort of defining

analogy precisely . .

The aspects of analogical reasoning we intend to explore within

the context of MOLGEN include:

(1) Given a new problem specification and a set of

problem specifications how can a problem analogous to

the new problem be selected from the set.

(2) Given a problem specification and an analogous

34

2.4 October 27, 1977

problem specification for which there is a known
solution, how can the analogy be used to solve the new
problem,

(3) What representations of problems and solutions ere
facilitative for analogical reasoning (that is, for
solving problems 1 and 2)?

(4) Problems 1, 2, and 3 viewed from the planning
environment: given a planning situation and a library
of planning processes, find and instantiate an
analogous schema from the library to build a planning
process applicable to the given situation.

(5) Integrate problem solving by analogy into the
planning system as one of the possible tools for
solving subproblems.

We will briefly discuss each of these aspects of analogical
reasoning. Our purpose in this research is two-fold. Foremost, we
want to analyze some of the current approaches to analogical reasoning
in the context of a major problem solving system. Secondly, we want to
add an analogical reasoning component to the production version of
MOLGEN, hopefully extending the problem solving ability of the system.

2.4.1 Forming Analogies

Finding a problem analogous to a given problem could require an
explosively large search. A purely syntactic approach to analogy
formation which attempts to map the objects, concepts, functions and
relations of one problem specification into another only reduces the
search significantly if the problems are identical up to a set of
substitutions. Even then, there may be a large number of mappings to
test in order to discover the analogy. For this reason, we believe a
knowledge of the semantics of the domain is essential to the
establishment of analogies and their subsequent use in problem solving.
This implies identifying the functional relationship of the concepts of
the problem specification to the problem as a whole. These functional
relationships must be preserved by any analogy mapping created. Brown
{4] gives a systematic method for creating an analogy map based on
syntax including the ability to map meary relations to mt+k-ary
relations for small k. A beginning attempt at identifying functional
relationships has been made for genetic features in the context of
binary discrimination problem specifications in Section 1.3.4. In this
case, the implied functional relationship is that the identified

feature is the only key concept in the problem. The analogy is either
an identity or a generalization map on the feature.

35

2.4 October 27, 1977

This work will involve the creation of techniques for
recognizing functional relationships and using them to restrict the
search for an analogy map. It should be noted that this process of
discovering an analogous problem does not require any specific
technique for using the analogy to solve the original problem.
However, a measure of how "good" an analogy is will be necessary.

2.4.2 Using Analogy to Solve Problems

Once two problems are claimed to be analogous, the way we use
this information to solve the original problem depends on the nature of
the analogy and the representation used to store the solution to the
known problem. If the analogy map is an isomorphism such that the two
problem solutions are identical up to a set of substitutions, then we
can apply the analogy map to the solution of the stored problem to
obtain a solution to the original problem. The map must be extended to
include any concepts, functions, relations occuring in the solutions
that did not occur in the problem description. More commonly, we will
not obtain a correct solution by simply applying an extension of the
analogy map to the stored solution. For example, the analogy may
indicate that the problems have identical general plans, that they
require the same change of representation or the same type of reasoning
(see [23] for a general discussion of types of analogies). In all of
these cases, the result of applying and extending the analogy map to
the stored solution may not give a correct solution to the new problem.
In the context of a general problem solving system there are several
approaches to explore. The first approach uses the analogy to
constrain the general problem solver. That is, instead of creating a
solution by applying the analogy map, the analogy is used to limit the
choice of representations and transformations which the problem solver
can use. Another approach would set up new subproblems to be solved as
the analogy is extended to the stored solution. If the subproblems can
be solved, the result of applying the analogy map to the stored
solution along with solutions to the subproblems gives an accurate
solution to the original problem. A third approach is one suggested by
Manna [9]. The analogy map is used -to transform the stored solution
into the incorrect new solution. Now the process is one of modifying
and debugging the solution to satisfy the problem specification. (See
[37] for a discussion of debugging techniques.)

Research problems include: Classification of the types of
analogies for which each approach is best: A strategy for determining
when to attempt the solution of a subproblem through analogy rather
than the other problem solving techniques of the system; A comparative
evaluation within the framework of a single system of the interactions
between representations and the approaches listed above for obtaining
correct solutions from the analogy. The next section describes several
possible representations,

36

2.4 . October 27, 1977

2.4.3 Representation of Solutions

Several different representations have been used in research on
program synthesis by analogy including: program schemata [9]; concrete
programs with input/output specification with/without a list of the
transformations which produced the concrete program (unpublished report
by R.Moll, University of Massachusetts and J. Ulrich, U. of New
Mexico); concrete programs with associated intentional plans and
justifications [4]. In this section we briefly indicate that the
MOLGEN knowledge can be modified to represent solutions in similar
manners.

2.4.3.1 Program Schemata

'We have already indicated the relationship between program
schemata and process schemata in Section 1.3.3.1. The program schema
is a generalized version of the solution to the programming problem.
We can also create generalized versions of the solutions to experiment
design problems. ,

The MOLGEN knowledge base has many plans which are almost
schemata, namely the skeletal plans of Section 1.3.4. and the right
hand sides of refinement rules. Also, Section 2.2 proposes techniques
for the identification of new skeletal plans and their addition to the
knowledge base.

These plans can be extended to become program schema. We first
will associate with each plan an input/output problem specification.
We generate intermediate world state descriptions by running the plan
on the input world state. A generalization process, starting with the
I/O specifications and proceding to include each world state in the
plan will create world state descriptions in terms of abstrect symbols
with restrictions on the substitutions allowed for the abstract
symbols. This process will generate preconditions which restrict the
refinement and specification of the generalized transformations
specified by the original plan.

Representing stored solutions as program schemata could have
two advantages. First, the myriad of details present in a primitive
description of an experiment procedure are suppressed. Our intuition
is that these details are dependent on the specific transformations
used in the procedure and thus would interfere with the creation of the
analogous solution. Second, the analogous solution could be verified
at the abstract level of the program schema. The general problem
solving system could refine the schema using the restrictions generated
in forming the analogy. Thus analogy would be used to guide the
problem solver quickly to a workable plan without having to consider
details,

37

2.4 October 27, 1977

2.4.3.2 Solutions as Concrete Programs

There are many systems which create analogies from a concrete
program with I/O specifications. We are not building a library of such
experiment procedures in the present grant period. However such a
library will be created in the renewal period for studying analogical
reasoning. After completion of a planning run, the user can specify
that the experiment procedure created is to be saved. Saving the
planning transformations which created the solution is simple since the
system keeps such a record in the planning network. ‘Thus both
representations can easily be used, .

As explained above, it is our intuition that the detail of the
primitive procedures (concrete programs) will interfere with the
analogy formation. However, this intuition will be tested.

A different use of the analogy is intended when the planning
transformations are stored with the solution. Now to create the
analogous solution, one applies the transformations (modified by the
analogy map where necessary) to the original problem specification.
Again, the resulting solution may not be correct and thus may need a
modification/debug cycle.

2.4.3.3 Programs/Intentional Plans/Justifications

Brown [4] has suggested that solutions (programs) should have
three components: the ccde, an intentional plan, and a justification,
There are transformations which create code from plan, justification
from plan and so on. Each component is important in his analogy
system. We will develop a verification, or justification, language for
experiment procedures. At the present time MOLGEN does not include the
use of intentional information in the description of a rule, However,
the names of the generalized transformations have been serving this
purpose. We suggest the intentional information be made an explicit
part of the transformation's representation. This is particularly
important in planning processes. It is not always possible to deduce
the process intention from the process itself. For example, a planning
process might check for two conditions which the process creator knew
were indicative of a certain situation. If the situation itself were
never mentioned in the process, the intention of the process creator
could not always be deduced from the process, The experiment procedure
representing the final product of the planning process could be
annotated to indicate the planning program's intentions in creating the
steps of the plan. lf one considers the hierarchy of abstract
transformations created during the planning process as a net indicating
various levels of generalized transformations, then each level of the
net specifies an intentional plan for the following level. Initially
we will concentrate on creating intentional plans for primitive and

38

2.4 October 27, 1977

generalized transformations and program schemata. Then we will extend
the concept to include all process units.

2.4.4 Creating Context Dependent Planning Processes

So far, we have been limiting the analogical reasonirg to
finding and using analogies between problem specifications. However,
many of the same ideas can be applied to the design of a component
which examines the planning state and the current goals, selects a
planning process schema whose input/output specifications are analogous
to the present planning context and creates an instantiation of the
schema, The major contribution of this work would be the
identification of the functional relationships among the planning
concepts represented in the planning state. In fact, this search for
analogous planning contexts turns one of the problem solving techniques
back on the problem solving process itself and allows the system to
modify its process knowledge base dynamically. We view this asa
difficult problem which awaits the further specification of the
planning state representation for more detailed approaches,

2.4.5 Integration of Analogical Reasoning and MOLGEN

We have indicated above that if our analysis of diverse methods
of analogical reasoning shows one to be advantageous in the MOLGEN
context, we would add this technique as a component of the production
system. This involves the creation of process units describing
application criteria for the analogy package. The analogy packages
themselves will be designed within the framework of the current MOLGEN
representation paradigm and thus will be compatible with the rest of
the system. As with other general AI problem solving techniques, the
iain difficulty will be in accurately specifying the appropriate
contexts for application. There will be some adjustment if the
successful representation method is a variant of one currently in use.
However, the extensions we have mentioned are additions to the
information represented rather than major modifications of the
representation itself.

2.5 | Performance Evaluation and Improvement of AI Knowledge-
Based Systems

Overview: Performance Evaluation as an AI Problem Solving Task

The objective of this part of the proposed research is to
investigate methods of automating the process of measuring, evaluating,
and improving MOLGEN's performance.

39

2.5 . October 27, 1977

The work is motivated by the belief that, for AI systems that
attempt to solve real world problems effectively, it is just as
important to have a representation of how knowledge is used during
problem solving, as it is to have representations of how that knowledge
is organized. For example, inefficiencies in testing rules, excessive
backtracking, too frequent or infrequent access of specific items in
the knowledge base, adequate but consistently suboptimal answers to
problems, may all be symptoms of a mismatch between the user's
conception of the domain and the structure of the domain required for
the efficient solution of problems under consideration. Performance
evaluation tools can be used to detect these performance problems and,
used properly, can give the user a clearer understanding of the domain.
Guided by its measurements of performance, the system may be able to
agsist the user in proposing and testing changes to reflect this
understanding. A sophisticated system would use its own performance
statistics to propose changes that would better reflect current usage.

The work is also motivated by the conviction that performance
knowledge is essential for conveying a program's scope and limitations
to a user, who can then use the program more intelligently. Thus, a
second motivation is to increase.the user's knowledge of the system's
capabilities. Experiencewith Rhowledge based systems has shown that
one of the biggest investments of time and effort made by a starting
user is in finding out the scope and limitations of the program.
Buchanan and Smith [5] has an excellent discussion of this problem in
the use of the CONGEN program [6]. CONGEN is a sophisticated
generator of chemical structures under user-provided constraints.
Users of CONGEN have found that manual assistance is insufficient to
acquaint them with the sorts of constraints which the program can
accept. In trying to make the system easier for the expert to use, it
is also important where possible to give the user some idea of how much
of the problem has been solved, how much remains to be done, and where
the system has been spending most of its effort. CONGEN and SECS [40]

let the user see current problem status by means of special user
commands or dynamic displays of the proplem solving graph. While not
all of these measurements will be meaningful for every type of problem
solving, giving the user at minimum a description of what the system is
working most on will greatly increase understanding of how it attacks
problems of different kinds. Thus, abasic goal of incorporating
performance evaluation tools into ATI problem solvers should be to
provide descriptions of the distribution of system effort -- what
information was accessed, what rules were invoked.

2.5.1 Creating a Knowledge Base for Performance Diagnosis
and Correction

We take the point of view in this research that evaluating a
system's performance and suggesting improvements is itself an AI

40

2.5 October 27, 1977

problem solving task. The diagnosis of system performance problems can
be viewed aS a problem of hypothesis formation and verification.
Elementary actions of the system can be viewed as "Signals" that must
be interpreted and summarized to form patterns of behavior, or system
"symptoms", Correction will be based on user definitions of what
changes should be made in the system following the detection of

specific symptoms,

An important part of the research will be to formulate
knowledge about measurement, evaluation, and improvement in terms of
rules, The rules in this "performance evaluation" knowledge base will
perform a variety of functions. They will:

1, interpret elementary system events as hypotheses about
system behavior.

2. initiate and focus additional measurements on the
basis of proposed hypotheses about behavior.

3. suggest modifications in the organization of the
system's knowledge base or in its operators and
strategies as a consequence of aé_ sufficiently
confirmed diagnosis.

A sophisticated system should help the user define different
Sets of these rules for different system performance goals. That is,
the user should be able to specify what behavior to measure and what
modifications to make depending upon the importance which he assigns to
varicus criteria of system performance. ‘These criteria include
efficiency, quality of answer, plausibility of processing sequence, and
clarity of the knowledge base. As in medicine, there would be no
explicit definition of "normal" system behavior. Instead, the user's
assignment of performance priorities would effectively define “healthy”
system behavior, by designating the circumstances under which
modifications should be made (in other words, by defining “unhealthy”
behavior).

The effects of a performance evaluation "meta system" acting
upon a problem solving "object system" should be visible in several
ways. The object system-should work more efficiently, and on a wider
range of problems, getting improved answers. The user should get
feedback about how the system works, where it spends most of its
effort, and how each new rule or object affects system performance.
The guidance by the system of acquisition of new rules and objects from
the user should reflect its experience with how existing rules and
objects affect performance. Perhaps most important, the user should
become better informed about the connections among various sources of
knowledge in his own domain, at least for the set of problems
confronted by the problem solving system. ~

Al

2.5 October 27, 1977

This investigation will primarily be concerned with how well

the knowledge base of an AI problem solving system is organized and

used. The emphasis will be on such factors as accessing and grouping

information about domain objects, and retrieving, testing, and invoking

domain rules, There are, of course, other important determinants of

system performance, such as the selection of the best internal

representation for a data structure, or the selection of the most

efficient method of searching a data file. However, the main concern

here is to assist users in organizing domain knowledge for effective

problem solving in conjunction with the AI system. Therefore, we will

concentrate on the aspects of the system that might be modifiable

directly by the domain expert.

Proposed Research Steps

The specific steps of the research will be:

1. Identify the elementary events of rule based problem
solving systems which may affect performance.

2. Establish simple measurement techniques for detecting

these events.

3. Develop interpretations of these events as higher
level hypotheses about system behavior.

4, Formulate these interpretations as rules which map
events into descriptions of behavior.

5. Formulate inverse mappings: rules that initiate
additional measurements on the basis of behavior
hypotheses suggested by existing data. Establish
measurement methods as needed.

6. Identify what changes might be made to improve various
kinds of performance.

7. Investigate how to use top level descriptions of
behavior to suggest system modifications, and
formulate these as modification rules.

It is hoped that these steps will have visible positive effects
on system performance and user knowledgability. In addition, it is
hoped that this research opens the way to: (1) expressing desired
system performance in the form of sets of modification rules, and (2)
using past evaluations to estimate the impact of new knowledge and to
guide the acquisition process.

Performance Criteria

42

2.5 . October 27, 1977

The whole point of measucing what the system is doing is to
improve it with respect to established performance criteria. A major
aim of the research is to make it easy for a user to express different
criteria and as a result to get different sets of responses to object
system symotoms. Here are some examples of performance criteria and
how they might differ in the changes they recommend.

1. Get an adequate answer with a minimum of effort, The
most important factor is efficiency.

2. Get the best answer and don't overlook any
possibilities. This is a conservative system.

3. Keep the knowledge base as simple as possible. One
motivation would be the ease of understanding how the
system gets its answers.

4, Follow a sensible line of processing. Perhaps it is
most important that the solution method resemble the
designer's idea of how a human solves the problem.

Each of these criteria dominates the Gesign of at least one
major AI problem solving program. The eventual aim of this line of
research should be to understand the behavior of AI problem solvers
well enough so that, with system help, a user could specify precise
performance criteria which the system would translate automatically
into a set of measurement and correction rules. Short of this, it will
still be helpful to give the user part of these capabilities. The user
should be able to write correction rules, he should be given feedback
on their effects, and he should be able to designate alternative sets
of correction rules to correspond to different performance goals.

However much of the process of creating therapies is automated,
the practical product of establishing criteria will be a set of rules
giving correction recommendations for detected symptoms. Two brief
examples will illustrate the differences in recommended changes when
different criteria are in force:

1. An operator fails to achieve its desired effect fairly
often, The choice is whether to add a check for the
upsetting condition or to rely on backtracking. If
the performance criterion is "“etficiency”, the
recommendation might be to add the check. If the
criterion is "simplest adequate knowledge base", where
"simplest" includes fewest operator preconditions, the
recommendation might be to leave the operator as is.

2. The criterion of "sensible order of processing" might
emphasize pursuing a Single search path as long as its

43

2.5 October 27, 1977

heuristic rating is above some minimum. By contrast,
a “best answer" criterion might demand that the most
promising node be expanded at each step. Operator
selection strategies would surely be modified
differently to meet these two criteria.

3 Significance

3.1 Significance to Computer Science

The proposed research brings together many themes of recent
artificial intelligence work. The task area of molecular genetics is
richer and more complex than other tasks in which these themes were
originally developed. Therefore, we view MOLGEN as research on
extensions of currently known methods as well as on integration and
application of those methods.

In the Introduction we listed several of the specific issues we
believe are critical for developing reasening programs that aid
scientists. We mention only in passing the fundamental issues of
representing, managing, and acquiring knowledge for a reasoning program
because we take these to be inescapable in AI research. While we have
no radical discoveries in these areas, we have tried to state clearly
in the proposal how we approach these “knowledge engineering" issues.

3.1.1 Reasoning by Abstraction

The most highly developed program to exploit severa] levels of
abstraction in its reasoning [32] works in simple domains with few
facts and relations. This pioneering work will be refined and extended
by the work on MOLGEN so that reasoning in complex domains can be
guided by scientific knowledge at many levels,

The basic knowledge with which MCLGEN solves problems has been
organized from the start in a hierarchy that reflects successively more
detailed descriptions of objects and operators. The proposed work on
diagnosing failure in designs for experiments operates on the premise
that one major cause of failure is using general knowledge when more
detailed specifications are required. On the other hand, the programs
that plan the experiments gain their power from omitting details.

We also propose to use the abstraction hierarchy to improve the
knowledge base in light of experience. Again, the general descriptions

44

3.1 October 27, 1977

of successful experiments will be the ones MOLGEN will be able to apply
to new problems, and the ones of most interest to researchers.

3,1.2 Strategy Knowledge

As the knowledge base of facts and inference rules increases in
a program, it is necessary to find efficient means of reducing the
amount of computation at every reasoning step. The most sophisticated
AI technique for controlling a reasoning program is to encode and use
strategy knowledge to guide the program into the most useful facts and
rules, without considering the others.

The Teiresias system [7], developed at Stanford, demonstrates
the power of encoding strategy knowledae in rules and using it to guide
the invocation of domain specific knowledge. In MOLGEN, the need for
strategies to guide the processes of designing experiments and
diagnosing failures will be acute due to the amount of potentially
relevant information at each step.

3.1.3 Integration of Diverse Sources of Knowledge

Reasoning about complex preblems requires integrating
information from more than one source. Problem solving is not neatly
compartmentalized into independent packages of relevant material. ©
the contrary, expert problem solvers know how to use information from
many sources about many different aspects of the problem.

The HEARSAY programs for speech understanding are among the
best known examples of bringing multiple "experts" into a common
problem solving process [22]. There, each expert contributes what it
can to a current best hypothesis with little communication among the
experts themselves.

In nearly every aspect of the MOLGEN program, there are several
ways of viewing problems, each with its sources of information and
problem solving procedures. We are therefore looking for general
mechanisms that enable different experts to cooperate on problems of
various kinds. For example, both the experiment planning and the
debugging systems have to call on experts with knowledge of different
instruments and experimental procedures. The experts may not have a
common vocabulary, yet they must be able to contribute to the problem
solving at different levels of abstraction and about different parts of
the problem,

45

3.1 a October 27, 1977

3.1.4 Interaction between Search and Simulation

Heuristic search requires strong evaluation functions to judge
the plausibility of branches leading to complete hypotheses, However,
in molecular biology many of the answers about plausibility of
alternatives are not known a priori, but can only be known by
experiment. Since laboratory experiments are typically very expensive,
MOLGEN includes simulation models that can predict the time-course of
an arbitrary experiment and thus can give some measure of the
plausibility of that experimental procedure.

Several items mentioned above, including planning experiments,
debugging and reasoning by analogy, will need to exploit the program's
ability to simulate some aspects of experiments it is reasoning about.
Complete simulations, of course, are also expensive, so we need to
resolve issues about control of the simulation depending on the kinds
of answers sought by the heuristic program.

3.1.5 Reformulating Available Methods

Each time our research group (9) has built another large AI
program, we have learned more about how to do it better and faster next
time. For example, the production rule interpreter in Heuristic
DENDRAL (for special-purpose rules) became the general rule interpreter
of MYCIN. One of the significant products of MOLGEN research will be
the sets of ideas and programs for encoding and manipulating large
amounts of knowledge about a scientific discipline. We have
transferred some parts of the MOLGEN Units package to another project
interested in building a knowledge base about AI methods and
techniques. Making the tools used here available for use in new
programs is an important aspect of our work, end is generally important
for cumulation of knowledge in the AI field, In order to do this we
must reformulate the methods so they are more generally applicable and
more readily combined in diverse ways.

3.2 Significance to the Conduct of Experimental Science and
to Science Policy

The exposition of a balanced view of the potentials of ATI for
practical applications in science faces many hazards. Enthusiasts make
unlimited claims whose eventual realization is hard to disprove --
except that it is hard to say how long is ‘eventual'. It would be
difficult (though increasingly possible) to justify the investment in

(9): The MOLGEN project is part of a larger group known as the
Heuristic Programming Project.

3,2 October 27, 1977

particular projects in terms of their utility for the object
discipline; we believe, for example, that the DENDRAL project had to be
assessed as a pathfinder, rather than for its specific utility to mass
spectrometrists working today. The art has progressed to the point
where MOLGEN may be expected to be at the margin -- that is to be the
agency of concrete discoveries within a decade, advances that will
compete in value with those achieved from comparable investments in
existing tools in the biochemical laboratory. In suggesting new forms
of working assistance, we do not imply that the creative imagination of
scientists will be mimicked or displaced by AI programs over a broad
domain of fact and insight: certainly not within our own immediate
ambitions. However, we have intentionally chosen an experimental
field, part of which is characterized by combinatorially elaborate
contingency trees, some rigor of inference, and a fairly limited frame
of relevant world-knowledge. These are precisely the conditions where
programs can be expected to be of some help to human intellect, which
thrives on the converse. A reexamination of the process of Science may
also be important to bolster and defend basic science at a policy
level. The very justification for basic research is under critical,
often even hostile scrutiny. Many quarters are asking such questions
as "How much of the science progress of the past 30 years can be
attributed to advances in knowledge connected with federally-supported
research?" “Are our institutional arrangements and patterns of funding
really the most appropriate for the most efficient 'transfer of
technology' from the basic laboratory to useful applications?" Less
often raised by external critics is, "To what extent does the present
system support the most fundamental innovations within science itself;
or does it inevitably focus overwhelming support on the most obvious,
transparent questions and discourage more revolutionary kinds of
inguiry?” Many of our colleagues reply to these attacks with well-
intentioned promises and manifest good faith. Nevertheless, it is easy
to show that many short-term advances have arisen from the most
pragmatic kinds of investigation: empirical screening for antibiotics
or antidiuretics has undoubtedly generated more life-saving therapeutic
products than the most sophisticated molecular biology, up to the
present moment, Indeed, salt-water, intelligently administered, has
been one of the great life-savers of the recent era! It would be
tragic to undermine the enormous long range potential of basic insight
without a deeper analysis of the process by which knowledge and insight
move from basic science into applied problems; and we just might find
some ways to improve the system without wrecking it!

It would be premature to claim that computer programs per se
will soon be delegated the major responsibility for "systematic
identification of relevant knowledge", although they can already play a
very helpful role in assisting human intelligence to correlate
bibliographic data, and in other ways. However, the very process of
implementing an “applied philosophy of science", which is the principal
fore-work of developing a domain for the application of knowledge-based

47

3.2 October 27, 1977

AI, is exactly the kind of formal systematization needed for
constructive efforts to facilitate technology transfer.

Although our substantive efforts are mostly concerned with the
"micro-problems" of scientific inference, there may be more important
treasures in a macro-perspective on the integration of scientific
specialties. Improved systematization of scientific knowledge, should
be an important side effect. of these investigations in knowledge-
engineering; and this may lead in turn to the recognition of remedial
rents in the overall fabric. For example, it is dismaying to reflect
on the delay of 35 years, from Beadle and -Tatum's discovery of
nutritional mutants in Neurospora, before similar ideas were applied to
the biochemistry of human heart disease -- our most serious health
problem by far. Is there no way to accelerate the benefits of such
fundamental research? We will not get analytically persuasive or
policywise sound determinations of such questions without more
attention to the underlying process of scientific inquiry than
unselfconscious scientists are wont to indulge.

These ideological implications of an ‘applied philosophy of
science’ are complemented by some of the practical technologies of AI
work. Our own research is greatly facilitated by access to the SUMEX-
AIM system. This comprises not only a computational facility, but a
national community of mutually interested investigators bound by
effective computer-data communications. The development of formal
representations of experimental science adds to the effectiveness with
which the scientific community can enter into informed criticism of
other's work, at the level of strategies of discovery and proof as well
as in the exchange of laboratory data.

48

3.2 October 27, 1977

4 Budget.
Budget to National Science Foundation

MOLGEN: A Computer Science Application to Molecular Genetics
Professors Edward A. Feigenbaum and Joshua Lederberg, Principal Investigators

June 1, 1978 - May 31, 1980

Total Budget

6-1-78/5-31-79 6-1-69/5-51-80 6-1-78/5-31.-80

Salaries and. Wages

Senior Personnel

idward A. fcigenbaun, Co-Principal Investigator

5% time Academic Year; 1 month Summer
FRE: 1.45 months 5,095. 5ug, 10,542.

Joshua Lederberg, Co-Principal Investigator

5% time, Calendar Year; FYE: .45 months iy 6 gb

Bruce G. Buchanan, Adjunct Professor .

25% time, Calendar Year; FIN: 3.00 months 8, 68h. 9,291. 17,975.

Other Staff

fark Stefik:

Student Research Assistant
100% time, Summer Quarter; FTE: 3.00 months 2,862.

Ph.D. Research Associate

75% time, effective 9-1-78
Year One FTE; 6.75 months 11,250.
Year Two FTE: 9.00 months 15, 84h, 29,956.

Peter Friedland:

Student Research Assistant
100% time, Sumer Quarter; FIE: 3.00 months 2, 862.

Ph.D. Research Associate ‘
100% time, effective 9-1-78
Year One FIE: 9.00 months 15,000.
Year Two FTE: 12.00 months 21,125. 48, 987.

Student Research Assistant, Computer Science,
to be named

50% time, Academic Year
100% time, Sumer Quarter
FTE: 7.50 months , 75587. 7, 038. 15,225.

Post-Doctoral Scholar, Genetics,

to be named

100% time, Calendar Year
FTE: 12.00 months 14, 630. 15,508. 30,138.

Secretarial Assistance

20% time, Calendar Year
FTE; 2.10 months 2,095. 2,2h5. he3h0.

Subtotal, Salaries $ 69, 863. $ 77,300. $ 147,165.

49

Staff Benefits

19.0% 9-1-77/8-31-78
20.3% 9-1-78/8-31-79
21.6% 9-1-79/8-51-80

Permanent Equipment
Computer Terminal, Datamedia,
including modem.

Expendable Supplies and Equipment

Travel
Domestic: professional meetings and

trips to collaborate in New Mexico

Publications Costs

Computer Costs - All services provided
by SUMEX computer facility

Other Costs
Communications (telephones)

Subtotal, Direct Costs

Indirect Costs,

Excluding Permanent Equipment - 58%

Total Budget

Total Budget
6-1-78/5-31-79 6-1-79/5-31-80 6-1-78/5-31-80

1,000.

700.

720.

89,975-

50,542.

$ 140,517.

49a

16, hue.

1,000.

1,000.

800.

900.

97, hho.

56,517.

$ 153,959.

50, 39h.

2,835.

1,875.

2,000.

1,500.

p

i, 650.

187, 417.

107,059.

BUDGET NOTES

1. Staff salaries

Mark Stefik and Peter Friedland, currently Computer Science Ph.D.
thesis students, have been working with the MOLGEN project since its

inception. They have invested very heavily in personal time and

effort, and the MOLGEN project has invested resources, to bring them

to the point of being highly informed "bridge" scientists between

Computer Science and Genetics. A high return on this investment, from

both the scientific and economic viewpoints, will be obtained by

retaining these young scientists for two more years as post-doctoral

researchers. Each is expected to complete his Pn.D. thesis in

August,1978, and will tnerefore be paid at pre-doctoral Salary rates
for the summer of 1978, Thereafter, or upon completion of the Pn.D.,
they will be paid at "new Ph.D." salaries, i.e. approximately what a

new assistant professor would be paid (annualized). Stefik is
budgeted at 75% effort under the assumption that other support can be
found for the remaining 25% of his time. Thus, he will be on the
project 100%, but paid only 75% from this budget.

2. Permanent equipment

We are requesting one more terminal of the "standard" type that is
used for 1200 baud access to SUMEX, i.e. the Datamedia. MOLGEN is a
compute-intensive project. In the continuation period, we anticipate
that the chief bottleneck to effective computer use will not be
computer access or cycles but terminal access. The SUMEX facility
does not supply terminals to individual projects, but expects each
project to supply its own needs. MOLGEN has two terminals now, but
one more will be needed as the project expands in effort, scope, and
Size. This need is modest considering the fact that all other
computer support is supplied to the project at no charge.

3. Phone charges

These include not only charges for ordinary project business (small
part) but also charges for phone line communication to the computer
(large part).

4, Travel

Funds for domestic travel are needed to support travel to occasional
professional conferences in Computer Science, particularly the annual
conference of the SUMEX-AIM community (the conference supports some

of this; individual projects pick up the remainder); and to support
travel to collaborate with Professor Martin and her group at the
University of New Mexico.

49b

October 27, 1977

5 Resources
Professors Edward Feigenbaum, Bruce Buchanan and Nancy Martin

(New Mexico) will direct the computer science research of the MOLGEN
continuation project. The principal project staff members at Stanford
will be Peter Friedland and Mark Stefik. Both will complete their
Ph.D. theses on MOLGEN early in the continuation period, and both have
agreed to stay on for the MOLGEN continuation. An additional computer
science student will be taken on, hopefully leading to another MOLGEN
project Ph.D. thesis.

Molecular genetics knowledge, expertise, insights, techniques,
and experimental heuristics will be provided by the researchers in
Professor Joshua Lederberg's laboratory at Stanford, including graduate
student Jerry Feitelson and a post-doctoral research fellow to replace
Dr. S. D. Ehrlich. Professor Lederberg himself will provide
substantial amounts of time on a regular basis for directing the
project from the genetics viewpoint.

Offices for the MOLGEN project will be provided within the
Stanford Heuristic Programming Project so as to foster interaction and
exchange of ideas with workers on similar projects. Active projects
within the Heuristic Programming Project include:

1) DENDRAL, a knowledge-based system for the analysis of
organic compounds from spectrometric data.

2) META-DENDRAL, a system for inducing rules of mass
spectrometry and n.m.rc. Spectroscopy from instrument data.

3) MYCIN, a system for the diagnosis and treatment of
infectious disease. Approximately thirty workers including faculty,
research associates, and graduate students are involved among the
projects. All of these projects are active in the design of
intelligent systems for specific domains of science and medicine
providing sources of problems and insight concerning complex reasoning
processes, There has been considerable synergy among the various
projects.

4) PUFF, a MYCIN-like system for diagnosis of pulmonary
function disorders.

5) CRYSALIS, a system for inferring the structure of proteins
from electron density maps derived from x-ray crystallographic data.

6) VM, a heuristic process control system for assisting
physicians in the management of a breathing-assistance machine in the
intensive care units of hospitals.

50

October 27, 1977

7) AGE, an attempt to build: a software package of AI
techniques and methods for problem solving and hypothesis formation;
and its associated user-interface.

The superb computing facilities of the NIH-supported SUMEX-AIM
timesharing facility will be available at no charge to this project.
The SUMEX-AIM facility, with Prof. Lederberg as principal investigator,
is a national resource for the application of artificial intelligence
techniques to problems in biology and medicine. Resources to be
provided will include all CPU-time and storage required. Those
involved at Stanford will be operating through hard-wired or dial-up
equipment to the SUMEX PDP-10, while those at the University of New
Mexico will access the system through either the ARPA network or
TYMNET.

The SUMEX-AIM facility is a powerful interactive computing
system open to a national community. Interlisp and other high level
languages are available and supported by a large system staff. Many
convenient text editors for developing programs are provided. The
TENEX operating system supports flexible file handling and
sophisticated storage management for a highly interactive computing
environment.

October 27, 1977

Appendix I

GLOSSARY

AGE Stanford project ("Attempt to GEneralize") to
build a general package of AI methods.

AI Artificial Intelligence

AI "toolbox" A set of AI concepts embodied in programs that are
general enough to be used to construct problem
solving programs in many different domains.

alkaline phosphatase An enzyme that removes terminal phosphates
from nucleic acids, and whose optimum pH is
alkaline.

AT-rich DNA DNA containing a high proportion of Adenine +
Thymine base pairs. Because of the Watson-Crick
base pairing rules, A/T=1 and G/c=l, but
(A+T) /(G4C) ratios can can vary widely between DNA
of different species and even different regions of
the same DNA molecule.

B. subtilis A common soil bacterium often used in genetic
experiments.

bacteriophage Viruses that multiply in bacteria.

base sequence A string of nucleotides in a nucleic acid.

bottom-up process A program that puts together inferences from
data without the benefit of global expectations
and goals.

CONGEN Constrained Generator of molecular structures for
DENDRAL,

dalton A unit of mass equal to that of a single hydrogen
atom.

data-driven procedure bottom-up process

demon a procedure in a_ program that is triggered by an
event, aS opposed to being executed in the
"normal" execution of a sequential program.

52

October 27, 1977

denaturation The loss of the native configuration of a
macromolecule resulting, for example, from heat
treatment, extreme pH changes, chemical treatment,
or other denaturing agents. It is usually
accompanied by the separation of strands (in DNA)
and the loss of biological activity.

DENDRAL Heuristic program for generating and testing
organic molecular structures/as candidate
explanations of empirical data.

digestion With reference to enzymes, implies the cleaving of
chemical bonds in the target molecule. For
example, exonucleases "erode" or remove terminal
nucleotides, restriction enzymes cut at the
internal recognition sequences.

dimer A concatenated DNA structure consisting of two
identical constituents.

discrimination experiment A series of experimental steps
designed to conclude whether structures are
identical or not.

DNA Deoxyribonucleic acid. A polymer of
deoxyribonucleotides (see nucleotide definition).
Can exist as double or single strands. The
genetic material of all cells and the central
molecule in molecular genetics.

domain-specific critic A procedure which applies specific

EcoRI

EDNA

electron

genetics knowledge to problem solving, as opposed
to general problem-solving knowledge.

A restriction enzyme isolated from a strain of Ee
coli that cleaves DNA at site-specific regions
along the molecule. Its recognition site is 5'-
GAATTC-3',

The DNA-structure-editor for MOLGEN.

microscopy Abbreviated EM. A high-resolution
technique for visualizing material that uses beams
of electrons instead of light rays. Resolutions
of about 10°-7 cm are posible with biological
materials,

electrophoresis An experimental technique used to
separate, purify, and measure the molecular weight

53

October 27, 1977

of molecules having an electric charge in
solution.

endonuclease An enzyme that cuts DNA backbone chains
internally.

enzyme Protein molecule capable of catalyzing a specific

chemical reaction.

E. coli A common intestinal bacterium: the most intensively
studied organism except for man.

event-driven procedure demon

exonuclease An enzyme that digests DNA from the ends of
strands.

experiment planning An activity characterized by the
production of a sequence of experimental steps to
achieve a goal.

focus rules Focus of attention procedures. Items of knowledge
that guide a program to the most relevant parts of
the problem or the most useful subroutines.

gaps An internal feature of double-stranded DNA which
is aregion of unpaired nucleotides due to the
excision of a string on one strand.

HEARSAY AI program written at Carnegie-Mellon University
to understand spoken English. Integrates
inferences made by multiple experts.

hierarchical planning AI techniques refined by Sacerdoti which
uses a hierarchy of descriptions to plan an
efficient problem solution procedure,

inspector Domain-specific critic

INTERLISP A powerful extension of the LISP programming
language.

KRL-0 A programming language (knowledge representation
language) developed at Stanford and Xerox, Palo
Alto Research Center.

ligase ’ An enzyme capable of covalently joining parts of,
or entire DNA molecules together.

ligation The enzymatic joining together of DNA molecules.

54

linear DNA

meta~rules

October 27, 1977

Double stranded DNA that is not covalently closed
at its termini.

Rules for a program that mentions domain-specific
rules, i.e, to prune or reorder the set of rules
relevant for problem solving in specific contexts.

molecular adapter A chemically synthesized segment of DNA

MOLGEN

monomer

MYCIN

nicks

nuclease

nucleotide

pH

phosphodiester

that is utilized to join together DNA molecules
which do not have complementary termini for
ligation.

Computer program for reasoning in molecular
genetics. Main subject of this proposal.

A single DNA molecule (or nucleotide) that has not
undergone polymerization (viz. a unit character
capable of assembly into a string).

Medical diagnosis and therapy recommendation
program developed at Stanford.

A local interruption in the phosphodiester
backbone of DNA. No genetic information is
missing due to this structural anomaly.

An enzyme which breaks chemical bonds in the DNA
phosphodiester backbone. Consists of
endonucleases and exonucleases.

The building blocks of DNA consisting of a purine
(Adenine or Guanine) or a pyrimidine (Thymine or
Cytosine) linked to a deoxyribose sugar with a
phosphate group also linked to adjacent sugar.
Adjacent nucleotides are linked together through a
phosphate group and a hydroxyl group on the sugar
component (see phosphodiester).

The negative logarithm of the effective hydrogen
ion concentration or hydrogen ion activity in gram
equivalents per liter. Used in expressing both
acidity and alkalinity on a scale whose values run
from 0 to 14; 7 representing neutrality, less than
7 increasing acidity, >7 increasing alkalinity.
DNA exists in native form between pH values of 5
and 12, .

The chemical link between adjacent
nucleotides. The following diagram of its
structure was drawn using CONGEN [6]:

plan schema

October 27, 1977

. /
. Oo oO
\ \/
0 O P
\/ /\\
P o 8600

//\ /
Oo O- CH2
\
c-C
/ |

CH
\
Cc-C
/

BASE

A sketch of a procedure describing the plan for an
experiment in abstract, general terms.

planning islands Partial solutions toa problem found bya

planning rules

plasmid

poly-A region

poly-c

poly-G

poly-T

planning program. "Stepping stones" to a complete
solution.

Procedures or items of knowledge that aida
program in constructing a problem solving plan.

Extrachromosomal DNA molecules which are double
stranded, circular, and supercoiled. They range
in size from about 5*10°6 daltons to near 10°78.
Small plasmids can exist in many (more than 50)
copies per cell while large ones are maintained at
one or two. They are often used as vectors for
amplifying and transferring DNA from one organism
to another.

(sequence) A homopolymeric sequence of
adenine nucleotides. Implies a poly-T region on
the complementary strand.

Homopolymeric cytidine nucleotides.

Homopolymeric guanine mucleotides.

Homopolymeric thymine nucleoties.

56

October 27, 1977

polymerase . Enzymes that are catalysts for nucleic acid chain
growth,

pre-conditions Premise clauses of conditional sentences that
must be satisfied before the consequent actions
are taken.

production rules Conditional sentences used to encode
inferential knowledge for a program.

prototype . The type of unit created for representing
information about general concepts. Features are
defined by slots associated wih the prototype.

restriction enzyme Site-specific endonucleases used
frequently in molecular genetic manipulations.
Allow previously impossible experiments to be
performed due to their ability to cleave DNA at
reproducible locations allowing rearrangements
within and between molecules.

RNA Ribonucleic acid. Typically single stranded, is a
polymer of ribonucleotides connected by
phosphodiester bonds.

schema/rule schema/program schema An abstract, generalized
representation of a concept or program. In

MOLGEN, program schemata (or rule schemata) are
represented as Units with slots defined for
important features.

SECS Chemical synthesis plarning program developed by
. Prof, Todd Wipke (U.C. Santa Cruz).

self-circularization Ligation of the ends of the same DNA
resulting in a circular, covalently closed
molecule.

self-ligation Ligation of a DNA molecule to itself, resulting in
in a circular molecule. Catalyzed by ligase.

sequencing experiment A technique to determine the order of
nucleotides in a strand of. DNA,

slots Pre-defined features of objects for which values
are sought.

SMALLTALK Display~oriented programming language developed at
Xerox, Palo Alto Research Center. |

57

sticky ends

STRIPS

SUMEX-AIM

Teiresias

TENE

Thy gene

October 27, 1977

A condition of partial single-strandedness at the
termini of DNA molecules, allowing base pairing in
that region. Restriction enzymes often leave
sticky ends, greatly facilitating the
rearrangements of DNA,

Robot plnning program developed at SRI.

NIH-sponsored computer resource for applications
of artificial intelligence in medicine.

AI program that acquires inference rules for MYCIN
and guides MYCIN reasoning.

Operating system for the DEC KI-10 system running
at the SUMEX-AIM facility.

A gene coding for the enzyme, thymidylate
synthetase. This enzyme is crucial in enabling a
bacterium possessing it to produce thymidine, a
constituent of DNA,

top-down process A program that works from general principles,

Units

vector

world states

3'~end/ 5'-end

testing data against expectations and goals, often
working by dividing complex problems into simpler
ones.

Basic element of representation in MOLGEN. Units
are organized in a hierarchy to facilitate the
representation of class-subclass and prototype-
instance relationships. Units are used for
representing processes as well as concepts.

A self-propagating DNA molecule that can be used
to link DNA sequences of interest. Vectors can be
one of several replicating plasmid or
bacteriophage DNAs.

Representation of the state of an experiment at
any given time. The “world" for the program is
the limited set of objects and operations relevant
to a specific experiment.

Related to the direction of the phosphodiester
bonds in the backbone of DNA molecules. Each

Strand thus has one 3' end and one 5' end.

58

October 27, 1977

Appendix IT
EDNA -- The Editor for DNA

The following is an actual session with the MOLGEN knowledge
acquisition system recorded from SUMEX. Comments preceded by a
semicolon have been inserted to clarify some aspects of the dialog.

@ue :UE is the name of the Unit
;Editor. Here it is being called

(Version 4-OCT-77 08:56:16) sfrom TENEX

Welcome to the MOLGEN Unit Editor. Type ? anytime for assistance.
The symbol : indicates that the editor is waiting for your input.
Two characters are enough for command recognition. You may type ahead
responses for a command.

Name of Network: jerry ;Jerry is the name of an
yexisting Knowledge Base on
:file.

:create testl root specialization 7A new unit TESTI is created.
Give a value for the DESCR slot ;UE asks for documentation,
Text Editor
te: Test unit to demonstrate the DNA structure editor
te: done :User indicates he is done

swith documentation.
Do you want to see what slots have already been filled? yes

DESCR: (U) from ROOT <DESCR>

Test unit to demonstrate the DNA structure editor
MODIFIER: (U) from ROOT <MODIFIER> STEFIK

CREATOR: (U) from ROOT <CREATOR> STEFIK

MODIFIED: (U) from ROOT <MODIFIED> 6-OCT-77 10:22:03

CREATED: (U) from ROOT <CREATED> 6-OCT-77 10:22:03

*Note that the system has

rautomatically recorded the
zauthor, date and time of the
snew unit.

You can now create new slots or edit old ones. When through type DONE
EDIT: create substrate
Datatype: dna ;DNA is a datatype.
Role: r :"Role” controls transmission

sof the value in the
ssubstrate slot if we make

59

Is it a dynamic slot? n
DNA Editor

Copy or Create anew? create
Segment Type: ?

October 27, 1977

pspecializations of TESTI.

;Since the datatype is DNA,
;we get the DNA editor.

7A "2" may always be typed to
tell the system to clarify
swhat it expects for a
;response.

Choose one of the following Segment Types.

Type Description
LE Length Segment. Indicates number of nucleotides in a region.
BA Base Segment. Indicates actual Base Sequence.
SI Cut Site for enzyme.
Segment Type: length
Length: ? sAnother "?"™

Indicate number of nucleotides as in the following examples:

You Type Meaning

5 5 nucleotides

100 200
1K 1.3K
R 1K 1.3K
Length: 2.5k

edna: print

DNA Printer (Version 19-SEP-77)
1L
(2500)

edna: insert 1 3' bases attacg
edna: print

1 234567
(2500) AT TACG

edna: mirror 4 to 7

edna: print

1 234 5
(2500) ATT A A

N

Q
~

60

Between 100 and 200 nucleotides.

Between 1000 and 1300 nucleotides. (K=1000) No Spaces!
Same aS above except RNA instead of DNA. ,

;The initial segment is now
;Sspecified. We may now issue
yany legal EDNA command.

;EDNA presents its structures
;pictorially. Segments are
rreferenced by number.

:"Mirror" means to add a
sparallel DNA strand.

7EDNA knows about

<CREATED>

<DNA> (Renumbering 11)

October 27, 1977

;complementary bases.

sBreak a bond. A Break

;command can specify 5', 3',
7or H bonds.

:Segment 11 is depressed
sto indicate the broken bond.

7A similar notation is used
;to indicate Hairpin loops.

;EDNA can "undo" any of its
structure changing commands

;User is finished editing
sthis structure. He returns to

sthe slot editor.

<DESCR>

<MODIFIER> STEFIK
<CREATOR> STEFIK
<MODIFIED> 6-OCT-77 10:22:09

6~-OCT-77 10:22:03

A T GC

11109 8

edna: break 4h

edna: print

1 2345 67
(2500) ATTA CG

/——

~-T GC
A 1098
il

edna: connect 7 3' 8

edna: print

1 2345 67
(2500) ATTA C G8

|
/---~--|

—--T GC
A 109 8
11

edna: undo

CONNECT undone.

edna: done

EDIT: print all
DESCR: (U) from ROOT
Test unit to demonstrate the DNA structure editor

MODIFIER: (U) from ROOT

CREATOR: (U) from ROOT
MODIFIED: (U) from ROOT

CREATED: (U) from ROOT

SUBSTRATE: (R) *Top*

1 2345 67
(2500) ATTA CG

\—

——~7T GC
A 1098

61

EDIT: done

:done

Save JERRY? no

Bye

62

October 27, 1977

;User is done with this unit.
;User is done with this
sknowledge base.
7He doesn't save his changes
rbecause this was just a
;demonstration.

October 27, 1977

Appendix III

A Genetic Planning Example

This section is intended to extend the range of genetic
examples for which MOLGEN is envisioned being applied. In particular,
the recent cloning of the rat insulin gene in E. coli [38] has been
achieved using a simple additional step to the usual experimental
protocol, It is asserted that the genesis of this efficiency—improving
step can be found in the relatively simple application of knowledge
about enzyme properties and DNA ligation kinetics.

The basic experimental outline is seen below, modified from
[38]. It closely follows the 'classical' recombinant DNA methodology,
with a few additional steps. The one we wish to focus on most closely
in this discussion is the application of Alkaline Phosphatase to the
plasmid vector after cutting of the plasmid by the restriction enzyme
HindIII,

---~-----(T)y 5!
:
| Alkaline Digestion

|

- 3!

|
w----——== (T)y 5!

| Reverse transcriptase

63

{ Sl Nuclease

Tomer(AZ 38 pwn

manennn= (T)Z 5!

|
| T4 DNA Ligase
| +
| 5' CCAAGCTTGG 3!
| 3' GGPICGAACC 5!

|

October 27, 1977

plasmid

HindIII site
--//--

/ -/f--- \
II Hl
1] {|
HI |
|| L|
\/

| HindIIt
| restriction

. | enzyme

5' CCAAGCTTGG---~~--—- (A) zCCAAGCTTGG 3! 5' paAGcTT-----—A 3!

3' GGTICGAACC-—--~—--—- (T) zGGTTCGAACC 5! 3" A-----TICGAp 5'

| |
| HindIII restriction enzyme | ALKALINE
| | PHOSPHATASE

5' pAGCTTGG--------- (A) 2CCA 3! 5' ohAGCTT-—--A 3!
3’ ACC--------- (T) zGGTICGAp 5! 3' A-—---TICGAoh 5!'

| |
\ |
\ /
\ /

\ 7s
\/

| T4 DNA Ligase

| *

~-AAGCTTGG-------—= (A) zCCAAGCTT——
/ --TICGAACC—--~----- (A) zGGPICGAA-- \
|| 7 cDNA l |
{| I
[| ||
li plasmid DNA lI

\ /

64

October 27, 1977

The following steps were carried out. First, insulin messenger
RNA was purified from B cells in the rat pancreas. This was reverse
transcribed into a hybrid DNA/RNA structure by the use of avian
myeloblastosis virus (AMV) reverse transcriptase and the RNA

selectively degraded by raising the pH. A double-stranded DNA form was
synthesized by incubating this with deoxynuclecside triphosphates and
the AMV reverse transcriptase (a DNA polymerase could have been used).
The hairpin at the end of the molecules and any non~base paired regions
were removed with the single-strand specific nuclease Sl.

The resulting molecular structure is termed. cDNA, or copy DNA,

because it should contain the precise genetic information contained in
the gene coding for the insulin messenger RNA. ‘This is the in-vitro
synthesized segment that is to be cloned in bacterial recipients for
amplification and analysis.

A recently developed technigue for ligating chemically
synthesized restriction site linkers (adapters) [35] to cDNA was used
in order to produce cDNA molecules with cohesive termini after
digestion with a restriction endonuclease enzyme. Ligating the
resulting cDNA to plasmid DNA cut with the identical restriction enzyme
would create a recombinant plasmid which could then be cloned ina
suitable bacterial host. Specifically, a decamer linker containing a
Site for HindIII was covalently joined to the ends of the cDNA with T4
DNA ligase, and then cleaved with HindIII; pMB9, a 3.5 million dalton

plasmid conferring tetracycline resistance with a single site for
HindIII, was also cut with the same endonuclease,

Tne usual procedure would he to now straightforwardly ligate
these two molecules together creating the desired recombinant molecule.
Kinetic theory [11] suggests that in order to insure ligation of most
of the cDNA molecules to plasmid DNA, it is necessary to add a molar
excess Of plasmid DNA. However this would result in the majority of
the plasmids simply self-circularizing without an insert of cDNA, and
thus most the transformed cells would contain only pMB9 and not the
desired recombinant plasmids. Here is where the novel step of removing
terminal phosphates on the plasmid was generated.

Several sources of knowledge need be brought to bear in order
to understand the basis. of this new optimization step. Firstly, we
need to know that alkaline phosphatase removes 5' terminal phosphates
from the HindIII endonuclease-generated ends of the plasmid. Secondly,
knowledge about the requirenent of the T4 ligase for a phosphate end
configuration allows us to infer that rewoving the phosphate ends
prevents self-Ligation of the plasmid DNA,

Thirdly, the kinetic theory of ligation [1]] combined with a
rule that says, "In a process that involves two or more competing
components, you can optimize one process by inhibiting the other (s)",

65

October 27, 1977

should tell us that circle formation is now dependent on the insertion
of a DNA fragment containing 5'-phosphorylated termini: the cDNA,
Finally, since transformation is directly linked to the DNA source, the

one step inference is: "Only recombinant plasmids will transform the

recipient bacteria”.

A side effect that needs to be dealt with is the fact that the
recombinant plasmids generated after phosphatase and ligase treatments
will have two nicks, represented as asterisks in the figure, and that
this has no known effect on transformation efficiency.

The application of alkaline phosphatese to remove terminal
phosphates from a restriction enzyme-cleaved vector (e.g. plasmid) to
eliminate self-ligation is a novelty that “should" have been obvious to
any investigator working in this field. In fact, three or four years
passed before Ullrich et. al. utilized it. One can only speculate as
to the reasons why. However two related responses arise in this
context, First, there are a very large number of DNA reagents
available to the investigator (enzymes, chemical and separative
technigues) so the number of possible combinations are vast. Secondly,
especially with a well focused goal such as the Jigation optimization
step discussed above, people tend to think along relatively stereotyped
paths, e.g. previously ceveloped protocols. A computer system, such as
MOLGEN, with a complex knowledge base and a good? set of heuristic
rules, will be likely to uncover novel applications of well known
tools, precisely along the lines of the example just presented.

66

October 27, 1977

should tell us that circle formation is now dependent on the insertion
of a DNA fragment containing 5'-phosphorylated termini: the cDNA,
Finally, since transformation is directly linked to the DNA source, the
one step inference is: "Only recombinant plasmids will transform the
recipient bacteria".

A side effect that needs to be dealt with is the fact that the
recombinant plasmids generated after phosphatase and ligase treatments
will have two nicks, represented as asterisks in the figure, and that
this has no known effect on transformation efficiency.

The application of alkaline phosphatesé to remove terminal
phosphates from a_ restriction enzyme~-cleaved vector (e.g. plasmid) to
eliminate self-ligation is a novelty that "should" have been obvious to
any investigator working in this field. In fact, three or four years
passed before Ullrich et. al. utilized it. One can only speculate as
to the reasons why. However two related responses arise in this
context. First, there are a very large number of DNA reagents
available to the investigator (enzymes, chemical and separative
technigues) so the number of possible combinations are vast. Secondly,
especially with a well focused goal such as the ligation optimization
step discussed above, people tend to think along relatively stereotyped
paths, e.g. previously developed protocols. A computer system, such as
MOLGEN, with a complex knowledge base and a good set of heuristic
rules, will be likely to uncover novel applications of well know
tools, precisely along the lines of the example just presented.

66

October 27, 1977

References

Bobrow D.G. and Winograd T., Experience with KRL-0: One Cycle of
a Knowledge Representation Language, 5IJCAI:213-222 (1977)

Bobrow D.G. and Winograd T., An Overview of KRL, a Knowledge
Representation Language, Cognitive Science 1 (1977)

Brachman R.J., What's in a Concept: Structural Foundations
for Semantic Networks, BBN Report No. 3433 (1976)

Brown R., Use of Analogy To Achieve New Expertise, Artificial
Intelligence Laboratory, MIT, AI-TR-403 (1977)

Buchanan, B.G. and Dennis Smith, "Computer Assisted Chemical
Reasoning", in Proceedings of the III International Conference
on Computers in Chemical Research, Education and Technology,
Plenum Publishing, pp. 388-408 (1977)

Carhart, R.E., Smith, D., Brown, H., and Djerallis,
C., Applications of artificial intelligence for chemical
inference. XVII. An approach to computer-assisted elucidation
of molecular structure J. Am. Chem. Soc. 97:5755-5762 (1975).

Davis R., Applications of Meta Level Knowledge to
the Construction, Maintenance and Use of Large Knowledge Bases,
Stanford Computer Science Department Report No. STAN-CS~76-552
(1977)

Davis R., Generalized Procedure Calling and Content-Directed
Invocation, SIGPLAN Notices, 12:45-54 (1977)

Dershowitz N. and Manna Z., The Evolution of Programs: A System
for Automatic Program Modification, Stanford
University Artificial Intelligence Laboratory (1976)

67

10,

ll.

12,

13.

14,

15.

16.

17.

18.

19,

October 27, 1977

Dijkstra E.W., Notes on Structured Programming, in Dahl,0O.,
Dijkstra, E.W. and Hoare, C.A.R. in Structured
Programming, Academic Press (1972)

Dugaiczyk, A., Boyer, H. and Goodman, H., Ligation of EcoR1l
Endonuclease- generated DNA Fragments into Linear and Circular
Structures, J. Mol. Bio. 96:171-184 (1975)

Ehrlich §.D., Bursztyn-Pettegrew H., Stroynowski I. and Lederberg
J., Expression of the thymidylate synthetase gene of
the Bacillus subtilis bacteriophage Phi-3-T in Escherichia
coli, Proceedings of the National Academy of Sciences USA,
73:4145-4149 (1976)

Evans 7.G., A Program for the Solution of Geometric
Analogy Intelligence Test Questions, in First Order
Mathematical Logic, Margaris, A., Blaisdell Publishing Company,
Waltham, Mass. (1967)

Feitelson J.S. and Stefik M.J., A Case Study of the Reasoning in
a Genetics Experiment, Heuristic Programming Project Working
Paper 77-18, Computer Science Department, Stanford University
(1977)

Fikes R.E. and Nilsson N.J., Learning and Executing Generalized
Robot. Plans, Artificial Intelligence, 3:251~288 (1972)

Fikes R.E. and Nilsson N.Jd., STRIPS: A New Approach to
Applications of Theorem Proving to Problem Solving, Artificial
Intelligence 2:189-208 (1971)

Feigenbaum E.A., The Art of Artificial Intelligence: I, Themes
and Case Studies of Knowledge Engineering, 5IJCAI:1014-1029
(1977)

Gerhart S.L., What Goes Down Should Also Come Up: Some Issues
about Abstraction, 5th Texas Conference on Computing
Systems (1976)

Gerhart S. L., Knowledge About Programs: A Model and Case Study,
Proc. of Intl. Conf. on Reliable Software, Los Angeles (1975)

68

20.

21.

22,

23.

24,

25.

27.

28.

29.

30.

31.

October 27, 1977

Goldberg A. and Kay A., SMALLTALK-72 Instruction Manual, Xerox

Corporation (1976)

Goldstein I.P. and Roberts R.B., NUDGE, A Knowledge-based
Scheduling Program, 5IJCAI: 257-263 (1977)

Hayes-Roth F, and Lesser V.R., Focus of Attention in the Hearsay-
II Speech Understanding System, 5IJCAI:27-35 (1977)

Kling R.E,, Reasoning By Analogy With Applications To Heuristic
Problem Solving: A Case Study, Stanford Computer Science
Department Report No. CS-216 (1971)

Martin N., Friedland P., King J. amd Stefik M., Knowledge Base
Management for Experiment Planning in Molecular Genetics,
5IJCAT: 882-887 (1977)

McDermott D., Vocabularies for Problem Solver State
Descriptions, SIJCAI:229-234 (1977)

Miller M.L. and Goldstein I.P., Structured Planning and
Debugging, SIJCAI:773-779 (1977)

Minsky M.A., A Framework for Representing Knowledge, in Winston P
(ed) The Psychology of Computer Vision, New York: McGraw-Hill
-(1975)

Notani, N.K. and Setlow, J.K., Mechanism of Bacterial
Tranformation and Transduction, in Progress in Nucleic Acid
Research and Molecular Biology 14:39-100 (1974)

Platt J.R., Strong Inference, Science 146:347 (1964)

Rieger C. and Grinberg M., The Declarative Representation and
Procedural Simulation of Causality in Physical Mechanisms,
DIJCAI: 250-256 (1977)

Roberts, R.J, CRC Critical Reviews of Biochemistry 4 :123-164
(1976)

69

32.

33.

34,

35.

36.

37.

38.

39.

40,

4l.

October 27, 1977

Sacerdoti E.D,.,. The Nonlinear Nature of Plans, 4IJCAI,:206-214
(1975)

Sacerdoti E.D., Planning in a Hierachy of Abstraction
Spaces, 3IJCAI: 412-422 (1973)

Schaffner K., Logic of Discovery and Justification in
Regulatory Genetics, Stud. Hist. Phil. Sci. 4:349-385 (1974)

Scheller R.H., Dickerson R.E., Boyer H.W., Riggs A.D. and Itakura
K., Chemical Synthesis of Restriction Enzyme Recognition
Sites Useful for Cloning, Science 196:177-180 (1977)

Stefik M.J. end Martin N., A Review of Knowledge Based Problem
Solving as A Basis for a Genetics Experiment Designing System,
Stanford Computer Science Department. Report No. STAN-CS-77-596
(1977)

Sussman G.J., The Virtuous Nature of Bugs, Proceedings of the

AISB Summer Conference (1974)

Ullrich A., Shine J., Chirgwin J., Pictet R., Tischer E., Rutter
W.J., and Goodman H.M., Rat Insulin Genes: Construction of

Plasmids Containing the Coding Sequences, Science 196:1313-1319
(1977)

Walker D.E., Paxton W.H., Grosz B.J., Hendrix G.G., Robinson
A.E., Robinson J.J., Slocum J., Procedures for Integrating
Knowledge in a Speech Understanding System, 5IJCAI:36-42 (1977)

Wipke W.T., Computer-Assisted Three Dimensional
Synthetic Analysis, in Computer Representation and Manipulation
of Chemical Information, Wipke W.T. et.al. (eds.) John Wiley
(1974)

Woods B., What's in a Link?, in Bobrow and Collins
(eds.) Representation and Understanding (1975)

70

