
4.

APPENDIX C

FILM REPORTS

Art Eisenson and Gary Feldman, "Ellis D. Kropotechev and Zeus, his

Marvelous Time-Sharing System", 16mm black and white with sound,
runs about 15 minutes, March, 1967.

Abstract: This film documents the advantages of time-sharing over
standard batch processing. Through the good offices of

the Zeus time-sharing system on the PDP-1 computer, our

hero, Ellis, is saved from a fate worse than death.
Recommended for mature audiences only.

Gary Feldman, "Butterfinger", 16mm color with sound, runs 8 minutes,
March, 1968.

Abstract: Describes the state of the hand-eye system at the Artificial
Intelligence Project in the fall of 1967. The PDP-6 computer

getting visual information from a television camera and
controlling an electrical-mechanical arm solves simple tasks
involving stacking blocks. The techniques of recognizing
the blocks and their positions as well as controlling the
arm are briefly presented.

Raj Reddy, Dave Espar and Art Eisenson, "Hear Here", lGmm color with
sound, runs about 15 minutes, March, 1969.

Abstract: Describes the state of the speech recognition project as

of Spring, 1969. A discussion of the problems of speech

recognition is followed by two real time demonstrations of
the current system. The first shows the computer learning
to recognize phrases and second show how the hand-eye system
may be controlled by voice commands. Commands as complicated
as "Pick up the small block in the lower lefthand corner,"
are recognized and the tasks required are carried out by the

computer controlled arm.

Gary Feldman and Donald Peiper, "Avoid", lGmm silent,color, runs about
5 minutes, March, 1969.

Abstract: Reports on a computer program written by D. Peiper for his

Ph.D. thesis. The problem is to move the computer controlled
electrical-mechanical arm through a space filled with one or
more known obstacles. The programuses heuristics for finding
a safe path; the film demonstrates the arm as it moves through
various cluttered environments with fairly good success.

¥X2,

* x7

APPENDIX D ABSTRACTS OF

ARTIFICIAL INTELLIGENCE PROJECT MEMOS

1963

J. McCarthy, Predicate Calculus with "undefined" as a Truth-Value,
March

The use of predicate calculus in the matehmatical theory of
computation and the problems involved in interpreting their

values.

J. McCarthy, Situations, Actions, and Causal Laws, July

A formal theory is given concerning situtations, causality and
the possibility and effects of actions is given. The theory is
intended to be used by the Advice Taker, a computer program that
is to decide what to do by reasoning. Some simple examples are
given of descriptions of situations and deductions that certain

goals can be achieved.

F. Safier, "The Mikado" as an Advice Taker Problem, July
The situtation of the Second Act of "The Mikado" is analyzed
from the point of view of Advice Taker formalism. This indi-

cates defects still present in the language.

H. Enea, Clock Function for LISP 1.5, August

This paper describes a clock function for LISP 1.5.

H. Enea and D. Wooldridge, Algebraic Simplification, August
Herein described are proposed and effected changes and addi-

tions to Steve Russell's Mark IV Simplify.

D. Wooldridge, Non-Printing Compiler, August

A short program which redefines parts of the LISP 1.5 compiler

and suppresses compiler printout (at user's option) is
described.

- J. McCarthy, Programs with Common Sense, September

Interesting work is being done in programming computers to solve
probelms which require a high degree of intelligence in humans.
However, certain elementary verbal reasoning processes so simple
that they can be carried out by any non-feeble-minded human have
yet to be simulated by machine programs.
This paper will discuss programs to manipulate in a suitable for-
mal language (most likely a part of the predicate calculus)

* Out of print.

** Out of print. Reprinted as "Programs with Common Sense" in M. Minsky
(Ed.), Semantic Information Processing, MIT Press, Cambridge, 1968.

D-1

1963 (cont. }

lo.

11.

common instrumental statements. The basic program will draw
immediate conclusions from a list of premises. These con-

clusions will be either declarative or imperative sentences.

When an imperative sentence is deduced the program takes a

corresponding action. These actions may include printing

sentences, moving sentences on lists, and reinitiating the

basic deduction process on these lists.

Facilities will be provided for communication with humans

in the system via manual intervention and display devices
connected to the computer.

J. McCarthy, Storage Conventions in LISP 2., September

Storage conventions and a basic set of functions for LISP 2

are proposed. Since the memo was written, a way of supple-

menting the features of this system with the unique storage

of list structure using a hash rule for computing the address
in a separate free storage area for lists has been found.

C. M. Williams, Computing Estimates for the Number of Bisections

of an N x N Checkerboard for N Even, December

This memo gives empirical justification for the assumption

that the number of bisections of an N x N (N even) checker-
A

board is approximately given by the binomial coefficient/ A
2

where 2A is the length of the average bisecting cut.

S. R. Russell, Improvements in LISP Debugging, December

Experience with writing large LISP programs and helping students
learning LISP suggests that spectacular improvements can be made
in this area. These improvements are partly an elimination of

sloppy coding in LISP 1.5, but mostly an elaboration of DEFINE,
the push down list backtrace, and the current tracing facility.

Experience suggests that these improvements would reduce the
number of computer runs to debug a program a third to a half.

D. Wooldridge Jr., An Algebraic Simplify Program in LISP, December

A program which performs "obvious" (non-controversial)simplifying
transformations on algebraic expressions (written in LISP prefix

notation) is described. Cancellation of inverses and consoli-
dation of sums and products are the basic accomplishments of the
program; however, if the user desires to do so, he may request

the program to perform special tasks, such as collect common

factors from products in sums or expand products. Polynomials

* Qut of print.

1963 (cont. }

are handled by routines which take advantage of the special form
by polynomials; in particular, division (not cancellation) is
always done in terms of polynomials. The program (run on the
IBM 7090) is slightly faster than a human; however, the computer
does not need to check its work by repeating the simplification.
Although the program is usable ~- no bugs are known to exist -
it is by no means a finished project. A rewriting of the simplify

system is anticipated; this will eliminate much of the existing
redundancy and other inefficiency, as well as implement an

identity-recognizing scheme.

D-%

1964

*12. G. Feldman, Documentation of the MacMahon Squares Problem, JanuaryAn exposition of the MacMahon Squares problem together withsome "theoretical" results on the nature of its solutions anda short discussion of an ALCOL program which finds all solu-tions are contained herein.

13. D. Wooldridge, The New LISP System (LISP 1.55), FebruaryThe new LISP system is described. Although differing onlyslightly it is thought to be an improvement on the old system.

We. og. McCarthy, Computer Control of a Machine for ExploringMars,January
Landing a 5000 pound package on Mars that would spend a yearlooking for life and making other measurements has been pro-posed. We believe that this machine should be a stored pro-gram computer with sense and motor Organs and that the machineshould be mobile. We discuss the following points. 1. Ad-vantages of a computer controlled system. 2. What the com-puter should be like. 43. What we can feasibly program themachine to do given the Present state of work on artificialintelligence. 4. A plan for carrying out research in com-puter controlled experiments that will make the Mars machineas effective as possible.

15. M. Finkelstein and F. Safier, Axiomatization and Implementation,June

An example of a typical Advice-Taker axiomatization of a situ-ation is given, and the Situation is Programmed in LISP as anindication of how the Advice-Taker could be expected to react.The situation chosen is the play of a hand of bridge.

16. J. McCarthy, A Tough Nut for Proof Procedures, JulyIt is well known to be impossible to tile with dominoes acheckerboard with two opposite corners deleted. This fact isreadily stated in the first order predicate calculus, but theusual proof which involves a Parity and counting argument doesnot readily translate into predicate calculus. We conjecturethat this problem will be very difficult for programmed proofprocedures,

17. J. McCarthy, Formal Description of the Game of Pang-Ke, JulyThe game of Pang~Ke is formulated in a first-order-logic inorder to provide grist for the Advice-Taker Mill. The memodoes not explain all the terms used.

* Out of print.

1964 (cont.)

*18. J. Hext, An Expression input Routine for LISP, July
The expression input routine is a LISP function, Mathread []

with associated definitions, which reads in expressions such

as (At% - F(X,Y,Z)). Its result is an equivalent $-expression.
The syntax of allowable expressions is given, but (unlike

AIGOL's) it does not define the precedence of the operators:
nor does the program carry out any explicit syntax analysis.
Instead, the program parses the expression according to a set

of numerical precedence values, and reports if it finds any

symbol out of context.

19. J. Hext, Programming Languages and Translation, August

A notation is suggested for defining the syntax of a language
in abstract form, specifying only its semantic constituents.
A simple language is presented in this form and its semantic

definition given in terms of these constituents. Methods are
then developed for translating this language, first into a

LISP format and from there to machine code, and for proving

that the translation is correct.

20. R. Reddy, Source Language Optimization of For-Loops, August

Program execution time can be reduced, by a considerable amount,

by optimizing the 'For-loops' of Algol Programs. By judicious
use of index-registers and by evaluating all the sub-expressions

whose values are not altered within the 'For loop', such opti-

mization can be achieved.

In this project we develop an algorithm to optimize Algol Pro-

grams in List-structure form and generate a new source language
program, which contains the "desired contents in the index
registers" as a part of the For-clause of the For-statement and
additional statements for evaluating the same expressions out-
side the 'For-loop'. This optimization is performed only for
the innermost 'For-loops',
The program is written entirely in LISP. Arrays may have any

number of subscripts. Further array declarations may have
variable dimensions. (Dynamic allocation of storage.)
The program does not try to optimize arithmetic expressions.

(This has already been extensively investigated.)

2l. R. W. Mitchell, LISP 2 Specifications Proposal, August

Specifications for a LISP 2 system are proposed. The source

language is basically ALGOL 60 extended to include list pro-
cessing, input/output and language extension facilities. The
system would be implemented with a source language translator
and optimizer, the output of which could be processed by

either an interpreter or a compiler. The implementation is

* Out of print.

D-5

1964 (cont,)

ee.

23.

2h.

25.

26.

specified for a single address computer with particular reference

to an IBM 7090 where necessary.

Expected efficiency of the system for list processing is signi-
ficantly greater than the LISP 1.5 interpreter and also some-
what better than the LISP 1.5 compiler. For execution of

numeric algorithms the system should be comparable to many
current "algebraic" compilers.
Some familiarity with LISP 1.5, ALGOL and the IBM 7090 is

assumed.

R. Russell, Kalah - The Game and the Program, September
A description of Kalah and the Kalah program, including sub-
routine descriptions and operating instructions.

R. Russell, Improvements to the Kalah Program, September

Recent improvements to the Kalah program are listed, and a pro-

posal for speeding up the program by a factor of three is

discussed.

J. McCarthy, A Formal Description of a Subset of Algol, September

We describe Microalgol, a trivial subset of Algol, by means of
an interpreter. The notions of abstract syntax and of "state
of the computation" permit a compact description of both syntax

and semantics. We advocate an extension of this technique as

a general way of describing programming language.

R. Mansfield, A Formal System of Computation, September

We discuss a tentative axiomatization for a formal system of
computation and within this system we prove certain proposi-

tions about the convergence of recursive definitions proposed
by J. McCarthy.

R. Reddy, Experiments on Automatic Speech Recognition by a Digital

Computer, October

Speech sounds have in the past been investigated with the aid

of spectrographs, vo-coders and other analog devices. With
the availability of digital computers with improved i-o devices
such as Cathode Ray tubes and analog digital converters, it has
recently become practicable to employ this powerful tool in the
analysis of speech sounds.
Some papers have appeared in the recent literature reporting

the use of computers in the determination of the fundamental

frequency and for vowel recognition. This paper discusses the

details and results of a preliminary investigation conducted
at Stanford. It includes various aspects of speech sounds

such as waveforms of vowels and consonants; determination of a

fundamental of the wave; Fourier (spectral) analysis of the
sound waves formant determination, simple vowel recognition

D-6

1964 (cont.)

algorithm and synthesis of sounds. All were obtained by the
use of a digital computer.

27.

26.

29.

30.

1965

J. McCarthy, A Proof-Checker for Predicate Calculus, March

A program that checks proofs in J. A. Robinson's formulation

of predicate calculus has been programmed in LISP 1.5. The

program is available in CTSS at Project MAC and is also avail-
able as a card deck. The program is used for class exercises
at Stanford.

. McCarthy, Problems in the Theory of Computation, March

The purpose of this paper is to identify and discuss a number

of theoretical problems whose solutions seem feasible and

likely to advance the practical art of computation. The

problems that will be discussed include the following:
1. Semantics of programming languages. What do the strings

of symbols representing computer programs, statements, declara-
tions, labels, etc., denote? How can the semantics of preogram-

ming languages be described formally?
2. Data spaces. What are the spaces of data on which com-

puter programs act and how are they built up from simpler

spaces?

43. How can time dependent and simultaneous processes be

described?

4. Speed of computation. What can be said about how much
computation is required to carry out certain processes?

5. Storage of information. How can information be stored

so that items identical or similar to a given item can be
retrieved?

6. Syntax directed computation. What is the appropriate

domain for computations described by productions or other data

format recognizers?

7. What are the appropriate formalisms for writing proofs

that computer programs are equivalent?
8. In view of Godel's theorem that tells us that any formal
theory of computation must be incomplete, what is a reasonable

formal system that will enable us to prove that programs ter-
minate in practical cases?

C. M. Williams, Isolation of Important Features of a Multi-
toned Picture, January

A roughly successful attempt is made to reduce a multi-toned
picture to a two-toned (line drawing) representation capable
of being recognized by a human being.

E. Feigenbaum and R. W. Watson, An Initial Problem Statement for
a Machine Induction Research Project, April

A brief description is given of a research project presently

getting under way. This project will study induction by machine,

using organic chemistry as a task area. Topics for graduate

student research related to the problem is listed.

D-8

1965_(cont.)

31.

32,

33-

*3D«

A
N
J

J. McCarthy, Plans for the Stanford Artificial Intelligence Pro-
ject, April

The following is an excerpt from a proposal to ARPA and gives

some of the project plans for the near future.

H. Ratchford, The 138 Analog Digital Converter, May

A discussion of the programming and hardware characteristics of
the analog to digital converter on the PDP-1 is given; several

sample programs are also presented.

B. Huberman, The Advice Taker and GPS, June

Using the formalism of the Newell-Shaw-Simon General Problem
Solver to solve problems expressed in McCarthy's Advice Taker
formalism is discussed. Some revisions of the formalism of

can and cause described in AI Memo No. 2 are proposed.

P. Carah, A Television Camera Interface for the PDP-1, June

This paper is a discussion of several methods for the connection

of a television camera to the PDP-1 computer. Three of these

methods are discussed in detail and have in common that only a
36 bit portion of any horizontal scanning line may be read and
this information is read directly into the working registers of

the computer. The fourth involves a data channel to read in-

formation directly into the core memory of the computer, and
is mentioned only in passing. The major concepts and some of

the details of these methods are due to Marvin Minsky.

F. Safier, Simple Simon, June

SIMPLE SIMON is a program which solves the problem of finding

an object satisfying a predicate from a list of facts. It
operates by backware chaining. The rules of procedure and

heuristics are discussed and the structure of the program is

out lined.

J. Painter, Utilization of a TV Camera on the PDP-1, September

A description of the programming required to utilize the TV

camera connected to the PDP-1 and of the initial collection
of programs.

K. Korsvold, An On Line Algebraic Simplification Program, November
We describe an on-line program for algebraic simplification. The
program is written in LISP 1.5 for the Q-32 computer at System

Development Corporation in Santa Monica, California. The pro-

gram has in its entirety been written and debugged from a tele-
type station at Stanford University.

* Out of print.

D-9

1965 (cont.)

K. Korsvold, Appendix B, to A.I. 37

This appendix contains the program written in m-expressions.

The four functions ADDK, TIMESKL, *GSD and *RFD are not in-
cluded since they are written in LAP.

1966

38. D. Waterman, A Filter for a Machine Induction System, January

This report contains current ideas about the Machine Induction

Research Project, and attempts to more clearly define some of

the problems involved. In particular, the on-line data acquisi-

tion problem, the filter, and the inductive inference problem

associated with the filter are discussed in detail.

39. K. Pingle, A Program to Find Objects in a Picture, January

A program is described which traces around objects in a pic-

ture, using the picture scanner attached to the PDP-1 computer,

and fits curves to the edges. .

40. J. McCarthy and J. Painter, Correctness of a Compiler for Arith-
metic Expressions, April

This is a preprint of a paper given at the Symposium of Mathe-

matical Aspects of Computer Science of the American Mathematical

Society held April 7 and 8, 1966. It contains a proof of the
correctness of a compiler for arithmetic expressions.

x41. P. Abrams and D. Rode, A Proposal for a Proof-Checker for Certain

Axiomatic Systems, May

A proposed design for a proof-checker to operate on many axio-

matic domains is presented. Included are descriptions of the

organization and operation of the program to be written for

the PDP-6.

42. K. Pingle, A Proposal for a Visual Input Routine, June

Some comments are made on the characteristics believed desirable

in the next eye for the Stanford Artificial Intelligence Pro-
ject and a proposal is given for a program to input scenes

using the eye.

43. R. Reddy, An Approach to Computer Speech Recognition by Direct
Analysis of the Speech Wave, September

A system for obtaining a phonemic transcription from a connected

speech sample entered into the computer by a microphone and an

analog-to-digital converter is described. A feature-extraction
program divides the speech utterance into segments approximately

corresponding to phonemes, determine pitch periods of those

segments where pitch analysis is appropriate, and computes a

list of parameters for each segment. A classification program

assigns a phoneme-group label (vowel-like segment, fricative-
like segment, etc.) to each segment, determines whether a seg-

ment should be classified as a phoneme or whether it represents

a phoneme boundary between two phonemes, and then assigns a

phoneme label to each segment that is not rejected as being a
phoneme boundary. About 40 utterances of one to two seconds

* Out of print.

D-11

1966 (cont.

duration were analyzed using the above programs on an intercon-

nected IBM 7090 - PDPl system. Correct identification of many

vowel and consonantal phonemes was achieved for a single
speaker. The time for analysis of each utterance was about 40
times real time. The results were encouraging and point to a
new direction in speech research.

by. J. Painter, Semantic Correctness of a Compiler for an Algol-like
Language, Revised March, 1967
This is a semantic proof of the correctness of a compiler. The

abstract syntax and semantic definition are given for the lan-
guage Mickey, an extension of Micor-algol. The abstract syntax
and semantics are given for a hypothetical one-register single-
address computer with 14 operations. A compiler, using recur-

sive descent, is defined. Formal definitions are also given
for state vector, a and c functions, and correctness of a com-

piler. Using these definitions, the compiler is proven correct.

45. D. Kaplan, Some Completeness Results in the Mathematics Theory of

Computation, October

A formal theory is described which incorporates the "assignment"
function a(i, k, &) and the "contents" function c(i, &). The
axioms of the theory are shown to comprise a complete and con-
sistent set.

46. S. Persson, Some Sequence Extrapolating Programs: A Study of
Representation and Modeling in Inquiring Systems, September.

The purpose of this thesis is to investigate the feasibility
of designing mecahnized inquiring-systems for finding suitable
representations of problems, i.e., to perform the "creative"
task of finding analogies. Because at present a general solu-

tion to this problem does not seem to be within reach, the

feasibility of mechanizing a particular representational in-

quirer is chosen as a reasonable first step towards an increased

understanding of the general problem. It is indicated that by
actually designing, programming and running a representational
inquirer as a program for a digital computer, a severe test of
its consistency and potential for future extensions can be

performed.

*L7 B.Buchanan, Logics of Scientific Discovery, December.

The concept of a logic of discovery is discussed from a philo-
sophical point of view. Early chapters discuss the concept of

discovery itself, some arguments which have been advanced
against logics*¢of discover, notably by N. R. Hanson, and

*Qut of print. Available through University Microfilms, 400 N. Zeeb

Road, P.O. Box 1446, Ann Arbor, Michigan 48106.

1966 (cont.

S. E. Toulmin. While a logic of discovery is generally under-
stood to be an algorithm for formulating hypotheses, other con-
cepts have been suggested. Chapters V and VI explore two of
these: (A) a set of criteria by which a hypotheses could be
judged reasonable, and (B) a set of rational (but not neces-
sarily effective) methods for formulating hypotheses.

48.

hg.

50.

51.

1967

D. Kaplan, Correctness of a Compiler for Algol-like Programs, July

A compiling algorithm is given which maps a class of Algol-like
programs into a class of machine language programs. The semantics,
L.e., the effect of execution, of each class if specified, and

recursion induction used to prove that program semantics is pre-

served under the mapping defined by the compiling algorithm.

G. Sutherland, DENDRAL - A Computer Program for Generating and

Filtering Chemical Structures, February

A computer program has been written which can generate all the
structural isomers of a chemical composition. The generated
structures are inspected for forbidden substructures in order

to eliminate structures which are chemically impossible from
the output. In addition, the program contains heuristics for

determining the most plausible structures, for utilizing sup-
plementary data, and for interrogating the on-line user as to
desired options and procedures. The program incorporates a

memory so that past experiences are utilized in later work.

A. Hearn, Reduce Users☂ Manual, February
REDUCE is a program designed for general algebraic computations
of interest to physicists and engineers. Its capabilities in-
clude:

1) expansion and ordering of rational functions of polynomials,
symbolic differentiation,
Substitutions in a wide variety of forms,
reduction of quotients of polynomials by cancellation of
common factors,

calculation of symbolic determinants,
calculations of interest to high energy physicists includ-
ing spin 1/2 and spin 1 algebra.

The program is written completely in the language LISP 1.5 and
may therefore be run with little modification on any computer

possessing a LISP 1.5 compiler or interpreter.

F
w

fo
~
~
e

~
~
e
e

O
N
W
I

L. Earnest, Choosing an Eye for a Computer, April

In order for a computer to operate efficiently in an unstruc-

tured environment, it must have one or more manipulators (e.g.,
arms and hands) and a spatial sensor analogous to the human eye.
Alternative sensor systems are compared here in their perfor-

mance on certain simple tasks. Techniques for determining

color, texture, and depth of surface elements are examined.

Sensing elements considered include the photomultiplier, image

dissector, image orthicon, vidicon, and SEC camera tube. Per-

formance measures strongly favor a mew (and undemonstrated)

configuration that may be termed a laser jumping spot system.

D-14

1967 (cont.)

5a.

22

5a

DD 6

A. L. Samuel, Some Studies in Machine Learning Using the Game of
Checkers II - Recent Progress, June

A new signature table technique is described together with an
improved book learning procedure which is thought to be much
superior to the linear polynomial method described earlier.
Full use is made of the so called "alpha-beta" pruning and
several forms of forward pruning to restrict the spread of the
move tree and to permit the program to look ahead to a much
greater depth than it otherwise could do. While still unable
to outplay checker masters, the program's playing ability has
been greatly improved. Some of these newer techniques should
be applicable to problems of economic importance.

B. Weiher, The PDP-6 Proof Checker, June
A description if given for the use of a proof checker for pro-
positional calculus. An example of its use as well as the M
and S expressions for the proof checker are also included.

J. Lederberg and E. A. Feigenbaum, Mechanization of Inductive
Inference in Organic Chemistry, August

A computer program for formulating hypotheses in the area of
organic chemistry is described from two standpoints: artificial
intelligence and organic chemistry. The Dendral Algorithm for
uniquely representing and ordering chemical structures defines
the hypothesis-space; but heuristic search through the space
is necessary because of its size. Both the algorithm and the
heuristics are described explicitly but without reference to
the LISP code in which these mechanisms are programmed. Within
the program some use has been made of man-machine interaction,
pattern recognition, learning, and tree-pruning heuristics as
well as chemical heuristics which allow the program to focus
its attention on a subproblem to rank the hypotheses in order
of plausibility. The current performance of the program is
illustrated with selected examples of actual output showing
both its algorithmic and heuristic aspects. In addition some
of the more important planned modifications are discussed.

J. Feldman, First Thoughts of Grammatical Inference, August.
A number of issues relating to the problem of inferring a gram-
mar are discussed. A strategy for grammatical inference is

presented and its weaknesses and possible improvements are dis-

cussed. This is a working paper and should not be reproduced,

quoted or believed without the author's permission.

1967 (cont.)

56. W. Wichman, Use of Optical Feedback in the Computer Control of an

ats

58.

Arm, August.

This paper reports an experimental investigation of the appli-
cation of visual feedback to a simple computer-controller block-

stacking task. The system uses a vidicon camera to examine a
table top containing two cubical blocks, generating a data struc-

ture which is analyzed to determine the position of one block.
An electric arm picks up the block and removes it from the scene,
then after the program locates the second block, places the
first on top of the second. Finally, the alignment of the stack
is improved by analysis of the relative position error as seen
by the camera. Positions are determined throughout by perspec-

tive transformation of edges detected from a single viewpoint,

using a support hypothesis to supply sufficient information on

depth. The Appendices document a portion of the hardware used

in the project.

A. C. Hearn, Reduce, A User-Oriented Interactive System for Alge-

braic Simplification, October

This paper describes in outline the structure and use of REDUCE,

a program designed for large-scale algebraic computations of
interest to applied mathematicians, physicists and engineers.

The capabilities of the system include:
1) expansion, ordering and reduction of rational functions of

polynomials,
2) symbolic differentiation,
3) substitutions for variables and expressions appearing in

other expressions,

4) simplification of symbolic determinants and matrix expressions,

5) tensor and non-commutative algebraic calculations of interest

to high energy physicists.
In addition to the operations of addition, subtraction, multi-
plication, division, numerical exponentiation and differen-

tiation, it is possible for the user to add new operators and

define rules for their simplification. Derivations of these

operators may also be defined.
The program is written complete in the language of LISP 1.5 and
is organized so as to minimize the effort required in transfer-

ring from one LISP system to another.
Some particular problems which have arisen in using REDUCE in

a time-sharing environment are also discussed.

M. D. Callero, An Adaptive Command and Control System Utilizing

Heuristic Learning Processes, December

The objectives of the research reported here are to develop an

automated decision process for real time allocation of defense

missiles to attacking ballistic missiles in general war and to
demonstrate the effectiveness of applying heuristic learning

to seek optimality in the process. The approach is to model

and simulate a missile defense environment and generate a

D-16

1967 (cont.)

decision procedure featuring a self-modifying, heuristic decision
function which improves its performance with experience. The

goal of the decision process that chooses between the feasible

allocations is to minimize the total effect of the attack,

measured in cumulative loss of target value. The goal is pur-
sued indirectly by considering the more general problem of
maintaining a strong defense posture, the ability of the defense

system to protect the targets from both current and future loss.
Using a simulation and analysis, a set of calculable features
are determined which effectively reflect the marginal deterio-
ration of defense posture for each allocation in a time inter-

val. A decision function, a linear polynomial of the features,

is evaluated for each feasible allocation and the allocation
having the smallestvalue is selected. A heuristic learning
process is incorporated in the model to evaluate the perfor-

mance of the decision process and adjust the decision function

coefficients to encourage correct comparison of alternative

allocations. Simulated attacks presenting typical defense
situations were cycled against the decision procedure with
the result that the decision function coefficients converged
under the learning process and the decision process become in-

creasingly effective.

1968
59. D. M. Kaplan, A Formal Theory Concerning the Equivalence of

Algorithms, May
Axioms and rules of inference are given for the derivation of
equivalence for algorithms. The theory is shown to be complete
for certain subclasses of algorithms, and several applications

of the theory are illustrated. This paper was originally pre-
sented at the Mathematical Theory of Computation Conference,
IBM Yorktown Heights, November 27-30, 1967.

60. D. M. Kaplan, The Formal Theoretic Analysis of Strong Equivalence

for Elemental Programs, June
The syntax and semantics is given for elemental programs, and

the strong equivalence of these simple ALGOL-like flowcharts

is shown to be undecidable. A formal theory is introduced for
deriving statements of strong equivalence, and the complete-

ness of this theory is obtained for various sub-cases. Several

applications of the theory are discussed. Using a regular ex-
pression representation for elemental programs and an unorthodox

semantics for these expressions, several strong equivalence
detecting procedures are developed. This work was completed in

essentially its present form March, 1968.

61. T. Ito, Notes of Theory of Computation and Pattern Recognition,

May
This is a collection of some of the author's raw working notes
during the period December 1965 - October 1967 besides the intro-
duction. They have been privately or internally distributed for

some time. Portions of this work have been accepted for publi-

cation; others are being developed for submission to journals.

Some aspects and ideas have been referred to and used, sometimes

without explicit references, and others are developed by other

researchers and the author. Hence we have decided to publish

this material as Computer Science Technical Report, although

the author is planning to submit all of these works to some
journals, adding several new results (not mentioned in this
report), improving notations, definitions and style of presen-

tation in some parts and reformulating completely in other parts.

The author appreciates it very much of the researchers who use
or refer to the results and ideas of this report communicate

with him. The publication of this report was encouraged by Prof.

George E. Forsythe and Prof. John McCarthy.

62. 8B. Buchanan and G. Sutherland, HEURISTIC DENDRAL: A Program for
Generating Explanatory Hypotheses in Organic Chemistry, July

A computer program has been written which can formulate hypo-

theses from a given set of scientific data. The data consist

D-18

1

63.

64.

65.

8 cont.

of the mass spectrum and the empirical formula of an organic
chemical compound. The hypotheses which were produced describe
molecular structures which are plausible explanations of the
data. The hypotheses are generated systematically within the
program's theory of chemical stability and within limiting con-
straints which are inferred from the data by heuristic rules.
The program excludes hypotheses inconsistent with the data and
lists its candidate explanatory hypotheses in order of decreas-
ing plausibility. The computer program is heuristic in that it
searches for plausible hypotheses in a small subset of the
total hypothesis space according to heuristic rules learned
from chemists.

D. M. Kaplan, Regular Expressions and the Equivalence of Programs,
July

The strong equivalence of ALGOL-like programs is, in general, an
undecidable property. Several mechanical procedures are dis-
cussed which nevertheless are useful in the detection of strong
equivalence. These methods depend on a regular expression repre-
sentatation of programs. An unorthodox semantics for these ex-
pressions is introduced which appreciably adds to the ability to
detect strong equivalence. Several other methods of extending
this ability are also discussed.

Z. Manna, Formalization of Properties of Programs, July

Given a program, an algorithm will be described for construct-
ing an expression, such that the program is valid (i.e., ter-
minates and yields the right answer) if and only if the expres-
sion is inconsistent. Similar result for the equivalence pro-
blem of programs is given. These results suggest a new approach
for proving the validity and the equivalence of programs.

B. Huberman, A Program to Play Chess End Games, August
A program to play chess end games is described. The model used
in the program is very close to the model assumed in chess books.
Embedded in the model are two predicates, better and worse, which
contain the heuristics of play, different for each end game.
The definitions of better and worse were obtained by programmer
translation from the chess books.
The program model is shown to be a good one for chess and games
by the success achieved for three end games. Also the model
enables us to prove that the program can reach checkmate from

any starting position. Insights about translation from book
problem solving methods into computer program heuristics are
discussed; they are obtained by comparing the chess book methods
with the definitions of better and worse, and by considering the
difficulty encountered by the programmer when doing the translation.

D-19

1

66.

67.

68.

69.

8

J.

cont.

Feldman and P. Rovner, An Algol-Based Associative Language,

August
A high-level programming language for large complex relational
structures has been designed and implemented. The underlying
relational data structure has been implemented using a hash-
coding technique. The discussion includes a comparison with

other work and examples of applications of the language. A

version of this paper will appear in the communications of the

ACM,

E. Feigenbaum, Artificial Intelligence: Themes in the Second

Decade, August
In this survey of artificial Intelligence research, the sub-
stantive focus is heuristic programming, problem solving, and

closely associated learning models. The focus in time is the
period 1963-1968. Brief tours are made over a variety of topics:
generality, integrated robots, game playing, theorem proving,
semantic information processing, etc.

One program, which employs the heuristic search paradigm to

generate explanatory hypotheses in the analysis of mass spectra
of organic molecules, is described in some detail. The problem
of representation for problem solving systems is discussed.
Various centers of excellence in the artificial intelligence
research area are mentioned. A bibliography of 76 references

is given.

Z. Manna and A Pnueli, The Validity Problem of the 91-Function,

August

J.

Several methods for proving the weak and strong validity of
algorithms are presented.
For proving the weak validity (i.e., correctness) we use satis-
fiability methods, while for proving the strong validity (i.e.,

termination and correctness) we use unsatisfiability methods.
Two types of algorithms are discussed: recursively defined
functions and programs.

Among the methods we include known methods due to Floyd, Manna,
and McCarthy. All the methods will be introduced quite infor-
mally by means of an example (the 91-function).

McCarthy, Project Technical Report, September.

Recent work of Stanford Artificial Intelligence ☁Project is sum-
marized in several areas:

Scientific Hypothesis Formation

Symbolic Computation
Hand-Eye Systems

Computer Recognition of Speech

Board Games

Other Projects

D-20

19668 (cont.

70. <A. C. Hearn, The Problem of Substitution, December

One of the most significant features of programs designed for

non-numeric calculation is that the size of expressions mani-

pulated, and hence the amount of storage necessary, changes con-
tinually during the execution of the program. It is therefore
usually not possible for the user to know ahead of time just
how much output his program will produce, or whether the cal-

culation will in fact fail because of lack of available com-
puter memory. The key to keeping both the size of intermediate

expressions and output under control often lies in the manner

in which substitutions for variables and expressions declared

by the programmer are implemented by the system. In this
paper various methods which have been developed to perform

these substitutions in the author's own system REDUCE are dis-
cussed. A brief description of the REDUCE system is also given.

71. P. Vicens, Preprocessing for Speech Analysis, October

This paper describes a procedure, and its hardware implementation,

for the extraction of significant parameters of speech. The pro-

cess involves division of the speech spectrum into convenient

frequency bands, and calculation of amplitude and zero-crossing
parameters in each of these bands every 10 ms. In the software
implementation, a smooth function divides the speech spectrum

into two frequency bands (above and below 1000 Hz). In the hard-
ware implementation, the spectrum is divided into three bands

using bandpass filters (150-900 Hz, 900-2200 Hz, 2200-5000 Hz).
Details of the design and implementation of the hardware device
are given.

72. D. L. Pieper, The Kinematics of Manupulators Under Computer Control,

October

The kinematics of manipulators is studied. A model is presented

which allows for the systematic description of new and existing
manipulators.
Six degree-of-freedom manipulators are studied. Several solu-
tions to the problem of finding the manipulator configuration
leading to a specified position and orientation are presented.

Numerical as well as explicit solutions are given. The problem

of positioning a multi-link digital arm is also discussed.
Given the solution to the position problem, as a set of heuris-

tics is developed for moving a six degree-of-freedom manipulator
from an initial position to a final position through a space

containing obstacles. This results in a computer program shown
to be able to direct a manipulator around obstacles.

1968 (cont.

74. John McCarthy, Some Pilosophical Problems from the Standpoint of

Artificial Intelligence, November
A computer program capable of acting intelligently in the world
must have a general representation of the world in terms of which
its inputs are interpreted. Designing such a program requires
commitments about what knowledge is and how it is obtained. Thus
some of the major traditional problems of philosophy arise in

artificial intelligence.
More specifically, we want a computer program that decides what

to do by inferring in a formal language that a certain strategy
will achieve its assigned goal. This requires formalizing con-

cepts of causality, ability, and knowledge. Such formalisms are
also considered in philosophical logic.

The first part of the paper begins with a philosophical point of

view that seems to arise naturally once we take seriously the
idea of actually making an intelligent machine. We go on to the
notions of metaphysically and epistemologically adequate repre-
sentations of the world and then to an explanation of can,

causes, and knows, in terms fa representation of the world by

a system of interacting automata. A proposed resolution of the

problem of freewill in a deterministic universe and of counter-

factual conditional setences is presented.

The second part is mainly concerned with formalisms within
which it can be proved that a strategy will achieve a goal.
Concepts of situation, fluent, future operator, action, strategy,
result of a strategy and knowledge are formalized. A method is
given of constructing a sentence of first order logic which will
be true in all models of certain axioms if and only if a certain

strategy will achieve a certain goal.

The formalism of this paper represents an advance over (McCarthy

1963) and (Green 1968) in that it permits proof of the correct-
ness of strategies that contain loops and strategies that in-

volve the acquisition of knowledge, and it is also somewhat more
concise.

The third part discusses open problem in extending the formalism

of Part II.

The fourth part is a review of work in philosophical logic in

relation to problems of artificial intelligence and discussion
of previous efforts to program "general intelligence" from the
point of view of this paper. This paper is based on a talk

given to the 4th Machine Intelligence Workshop held at Edinburgh,

August 12-21, 1968, and is a preprint of a paper to be published

in 'Machine Intelligence }' (Edinburgh University Press, 1969).

1968 (cont'd.)

#7

7D-

76.

D. Waterman, Machine Learningof Heuristics,
The research reported here is concerned with devising machine-
learning techniques which can be applied to the problem of
automating the learning of heuristics.

R.C. Schank, A Notion of Linguistic Concept: A Prelude to Mechanical
Translation

The conceptual dependency framework has been used as an auto-
matic parser for natural language. Since the parser gives as
output a conceptual network capable of expressing meaning in
language-free terms it is possible to regard this as an inter-
lingua. If an interlingua is actually available how might
this interlingua be used in translation? The primary problem
that one encounters is the definition of just what these con-
cepts in the network are. A concept is defined as an abstrac-
tion in terms of percepts and the frequency of connection of
other concepts. This definition is used to facilitate the
understanding of some of the problems in paraphrasing and
translation. The motivation for this abstract definition of
linguistic concept is discussed in the context of its pro-
posed use.

DESCRIPTORS: Computational Linguistics, Concepts Research,
Computer Understanding.

R.C. Schank, A Conceptual Parser for Natural Language,
This paper describes an operable automatic parser for natural
language. The parser is not concerned with producing the syn-
tactic structure of an input sentence. Instead, it is a con-

ceptual parser, concerned with determining the underlying
meaning of the input. The output of the parser is a network
of concepts explicating the conceptual relationships in a piece
of discourse. The structure of this network is language-free;
thus, sentences in different languages or paraphrases within

the same language will parse into the same network. The theory
behind this representation is outlined in this paper and the
parsing algorithm is explained in some detail.
DESCRIPTORS: Computational Linguistics, Concepts, Linguistic
Research, Computer Understanding.

*Out of print.

D-23

1969
77. J.D. Becker, The Modeling of Simple Analogic and Inductive Pro-

78.

79-6

cesses in a Semantic Memory System, January

In this paper we present a general data structure for a seman-

tic memory, which is distinguished in that a notion of con-

sequence (temporal, causal, logical, or behavioral, depending

on interpretation) is a primitive of the data representation.

The same item of data may at one time serve as a logical impli-
cation, and at another time as a "pattern/action" rule for
behavior.
We give a definition of "analogy" between items of semantic
information. Using the notions of consequence and analogy,

we construct an inductive process in which general laws are
formulated and verified on the basis of observations of indi-

vidual cases. We illustrate in detail the atainment of the

rule "Firemen wear red suspenders" by this process.
Finally, we discuss the relationship between analogy and
induction, and their use in modeling aspects of "perception"
and "understanding".

D. R. Reddy, On the Use of Environmental, Syntactic, and Proba-

listic Constraints in Vision_and Speech, January

In this paper we consider both vision and speech in the hope

that a unified treatment, illustrating the similarities, would

lead to a better appreciation of the problems, and possibly

programs which use the same superstructure. We postulate a

general perceptual system and illustrate how various existing

systems either avoid cr ignore some of the difficult problems
that must be considered by a general perceptual system. The
purpose of this paper is to point out some of the unsolved

problems, and to suggest some heuristics that reflect environ-

mental, syntactic, and probabilistic constraints useful in

visual and speech perception by machine. To make effective

use of these heuristics, a program must provide for

1. An external representation of heuristics for ease of

man-machine communication

2. An internal representation of heuristics for effective

use by machine

3. A mechanism for the selection of appropriate heuristics

for use in a given situation.

Machine perception of vision and speech, thus, provides a

problem domain for testing the adequacy of the models of

representation (McCarthy and Hayes), planning and heuristic

selection (Minsky, Newell and Simon), and generalization
learning (Samuel); a domain in which (perceptual) tasks
are performed by people easily and without effort.

D. R. Reddy and R. B. Neely, Contextual Analysis of Phonemes of

English, January

It is now well known that the acoustic characteristics of a

D2).

