
Appendix A: KSL Brochure 5 P41 RR00785-16

managerial posts and conference chairmanships in both the American
Association for Artificial Intelligence (AAAI) and the International Joint
Conference on Artificial Intelligence (IJCAD.

Several KSL faculty and former students have received significant honors. In
1976, Ted Shortliffe received the Association of Computing Machinery Grace
Murray Hopper award. In 1977, Doug Lenat was given the IJCAI Computers
and Thought award, and in 1978, Ed Feigenbaum received the National
Computer ConferenceMost Outstanding Technical Contribution award. In
1979 and 1981, Ted Shortliffe's book Computer-Based Medical Consultation:
MYCIN wasidentified as the most frequently cited work in the IJCAI
proceedings. In 1982, Doug Lenat won the Tioga prize for the best AAAT
conference paper while Mike Genesereth received honorable mention. In
1983, Ted Shortliffe was named a Kaiser Foundation faculty scholar, and
Tom Mitchell received the IJCAI Computers and Thought award. In 1984,
Ed Feigenbaum waselected a fellow ofthe American Association for the
Advancementof Science (AAAS), and he and Ted Shortliffe were elected
fellows of the American College ofMedical Informatics(ACMI). Larry Fagan
was elected a fellow ofACMI in 1985. In 1986, Ed Feigenbaum was elected to
the National Academy of Engineering and in 1987, Ted Shortliffe was elected
to the Institute ofMedicine of the National Academyof Sciences. The
American Association for Medical Systems and Informatics Young
Investigator Award for Research in Medical Knowledge Systems was
presented to Glenn Rennels in 1988 and to Mark Musen in 1989.

KSL Research Environment

Funding—The KSLis supported solely by sponsored research andgift funds.
Wehavehad funding from many sources, including DARPA, NIH/NLM,
ONR, NSF, NASA, and private foundations and industry. Of these, DARPA
and NIH havebeen the most substantial and long-standing sources of
support. All, however, have made complementary contributions to
establishing an effective overall research environmentthat fosters
interchangesat the intellectual and software levels and that provides the
necessary physical computing resources for our work.

Computing Resources—Underthe Symbolic Systems Resources Group,the
KSL develops and operates its own computing resourcestailored to the needs
of its individual research projects. Current computing resources are a
networked mixture of personal workstations, Lisp workstations, and central
host computers and network utility servers, reflecting the evolving hardware
technology available for Al research. Our central host is currently a Sun
4/280 running Sun Unix 4.0 (this is the core of the national SUMEX
biomedical computing resource). It provides a central service for remote
network access, electronic mail storage and routing, large-scalefile storage,
and printer spooling services. Increasingly, computing functions, such as
electronic mail reading and composition, text processing, and information

. retrieval, are being moved to distributed user workstations. Our Lisp
workstations include 34 Texas Instruments Explorers, 2 Symbolics 3600-

E. H. Shortliffe 226

5 P41 RRO0785-16 Appendix A: KSL Brochure

series machines, 3 SUN 3/75 workstations, and 4 NeXT machines. Much of
the routine computing is done with 80 Apple Macintosh II computers, 15 of
which have Texas Instruments microExplorer Lisp co-processor boards.
Networkprinting,file storage, Internet gateway, and terminal interface
services are provided by dedicated machines including a VAX 11/750, a SUN
3/180, and numerousspecial-purpose microprocessor systems. These
facilities are integrated with other computerscience resources at Stanford
through an extensive Ethernet and to external resources through the
ARPANET, TELENET,and the BARRNet (Bay Area Regional Research
Network)link to the NSFNet. Funding for these resources comesprincipally
from DARPAand NIH and hardware vendorgifts.

227 E. H. Shortliffe

5 P41 RROO785-16 Appendix B: Lisp Performance Studies

Appendix B: Lisp Performance Studies

Performance of Two Common Lisp Programs
On Several Systems (Report KSL 89-02)

by Richard Acuff

Abstract

To assist in the evaluation of Lisp platforms for the Stanford University
Knowledge Systems Laboratory, 22 Common Lisp implementations were
benchmarked. Run time and compilation time data on two moderate-sized
application programs are presented, along with data on theeffect of compiler
optimization levels and on the impact of display I/O on run time. Forthese
Lisp benchmarks, several systems did not rank where we expected them
based on speed ratings using other conventional measures. Also, the
rankings of machines by Lisp speed differed for the two programswetested
The data indicate that the performance of Lisp systemsis very application
dependent. Software environmentshould playat least as strong a role in
machineselection as performance benchmarks.

1. Introduction

At Stanford University's Knowledge Systems Laboratory (KSL), a large
amountofsoftware is written in Lisp. Thus, the performanceofLisp systems
is often crucial to the productivity of the lab. In orderto assist us in
understanding the performanceofdifferent Lisp systems, we have
undertaken an informal survey of 22 CommonLisp implementations using
two software packages developed in the KSL. The main goal of this survey
was to understand the execution speed performance of systems that we might
use in the KSL for research and developmentor dissemination of research
results. Secondary goals were to evaluate the effect of compiler optimizer
settings on execution speed and to evaluatethe effect of reducing the amount
of output on execution speed.

There have been a numberofprojects to measure the performanceofLisp
systems. Gabriel's work [Gabriel 1985] is probably the best known, and is the
origin of the so-called "Gabriel Benchmarks", a set of small test programs for
measuring specific aspects of Lisp system performance. The Gabriel
benchmarksare extremely valuable, for people trying to compare Lisp
systems, if used knowledgeably. However, the aspects of a Lisp system
stressed by a particular program are often difficult to determine so thatit is
usually best, where possible, to run that program on the systemsin question
rather than attempting to dissect the program and forecast its performance
analytically. Also, with the advent of numerous implementations of Common
Lisp [Steele 1984], we can now use muchlarger test programs without the
bother and uncertainty of porting between dialects.

In this survey we have focused on execution speed which has long been an
importantcriterion for comparing computer systems. Thefirst comparison of

229 E. H. Shortliffe

Appendix B: Lisp Performance Studies 5 P41 RROO785-16

two systemssolving the same problem (benchmarking) was probably made
shortly after the creation of the second computer, and benchmarkinghas
been a primary differentiator among computer systems ever since. However,
execution speed benchmarks are only one aspect of the performanceof
systems,especially Lisp systems. Issues like programming and user
environments, compatibility with other systems,the ability to handle "large"
problems, and cost (hardware, software, and human) mustalso be considered,
and, given a machinethatis "fast enough", these other issues will almost
alwaysbe the overridingfactor.

Descriptions of the programsused in this evaluation are given in Section 2. A
description of the methodology used in performingthetests is in Section 3,
and information about the Lisp systems tested is in Section 4. Data on the
execution speed of the test programs are presented in Section 5, followed by
compilation speed data and a comparison between compilation speed and
execution speed in Section 6. The effect of choosing various values for the
SPEED and SAFETY options of the OPTIMIZE declaration on the BB1
system are discussed in Section 7. The effect of reducing the screen output of
the SOAR benchmarkis presented in Section 8. Details of the test
procedures and descriptions of the systems tested are in the appendices.

2. Test Software

The software systems used in these tests were SOAR [Laird 1987] and the
BB1 blackboard core [Hayes-Roth 1985 and Hayes-Roth 1988]. These test
programs were chosen primarily because they are implemented in pure
CommonLisp, making them extremely portable!. Both are systemsin daily
use in the KSL but represent two distinct research directions in termsof
program function and structure. These systems wereinitially developed in
environments other than those tested, and no attempt was madeto optimize
their performancefor any of these tests. Neither of these systems is an
intensive user of numeric computation.

A copy ofthe CommonLisp source code used for these tests may be obtained
from the author by sending U.S. Mail to "Richard Acuff, Stanford KSL, 701
Welch Road, Bldg. C, Stanford, CA 94305" or electronic mail to
"acuff@SUMEX-AIM.Stanford.EDU".

There were one or two small portingdifficulties that were traced to problemsin the test

code which hadto be fixed. For instance, many systems allow (!NTERN "NAME"

‘USER) where others require (INTERN “NANE" (FIND-PACKAGE “USER")).
Also we were unable to get SOAR to work in either versions 1.0 or 1.1 of Allegro Common
Lisp for the Mac II due to unexplained software hangsso it is omitted from SOAR-related
charts.

E. H. Shortliffe 230

5 P41 RROO0785-16 Appendix B: Lisp Performance Studies

2.1. SOAR

SOAR is a heuristic-search based general problem solving architecture
developed by Paul Rosenbloom,ef. al. See [Laird 1987] for more information
on the SOAR system.

All test runs of SOAR weredone solving an eight-puzzle problem in one of
three modes: Mode A (simply solve the problem), Mode B (solve the problem
while "chunking" or "learning"), and Mode C (solve the problem after having
"learned" in Mode B).

An "eight puzzle" is a commonchildren's game with 8 tiles, numbered1 to 8,
on a 3 by 8 grid such thata tile adjacent to the empty place can be pushed
into it. "Solving the eight-puzzle problem" consists of producing a series of
tile moves such that, from a given arbitrary starting configuration, the eight
puzzle ends up withall the tiles in numerical order, reading from the upper
left around the puzzle clockwise, with the empty place in the middle.

The version of SOAR used was 4.4.4, dated April 19, 1987. It consists of 1
large LISP sourcefile and 2 small SOAR files containing productionsfor
solving the eight-puzzle problem. The LISP source is 10,661 lines (280,050
characters) of lightly commented code.

2.2. BB1

BB1is a blackboard-based problem solving architecture developed by
Barbara Hayes-Roth. For more information on the BB1 blackboard core, see
[Hayes-Roth 1985]. For further information on BB1, see [Hayes-Roth 1988].
All references to BB1 in this documentrefer only to the "core" blackboard
parts of the system and do not include any otherlayers of the problem solving
architecture or the user interface, as these components are not in pure
CommonLisp. All test runs of BB1 went through three cycles of adding 10
items to the blackboard, accessing those 10 items, and then deleting them.

The version of BB1 used was 1.2. The LISP source usedconsists of 10 files
ranging from 36 lines (814 characters) to 3,396 lines (107,528 characters) of
lightly commented code, with a total of 8,722 lines (295,199 characters) of
code.

3. Methodology

All the tests were performedin as near to a "normal" working environment as
could be achieved. Wetried to duplicate the working conditions that a
researcher would likely have both in hardware and software. Where possible
weselected test machines configured with the amount of memory, amount
andtype ofdisk, type of display, etc. that a typical developer would purchase
and use. We ran the software in a way that a developer using the system
would probably use it. Thus, if it was normal to run with garbage collection
enabled, under a window system, within an editor, or in a multi-
programming environment, then that was done. For instance, Sun machines
were tested under SunView with a couple ofperfmeters running. The HP

231 E. H.Shortliffe

Appendix B: Lisp Performance Studies 5 P41 RRO0785-16

machine wastested while running in GnuEmacs on X.10. MIT-style Lisp
machines were run with all networking and other backgroundprocessing on,
andnospecial process priority. No expert tuning or system configuration was
done beyond what the tester could do by reading over the user
documentation. All systems were tested in single-user mode, whichis the
way those tested are normally used for Lisp work.

Wefeel that although this methodology results in less repeatable andless
explainable results, it gives a good approximation to what the end userwill
experience. Where time allowed, multiple runs were made to ensure accurate
readings. Unfortunately the collection of the raw data (i.e. arranging for
machine access and makingthe timed runs) proved to be an extremely time
consumingprocess, taking a day or more for someofthe systems, so the
information in this report was collected over a long period of time (October,
1987 to January 1989) and someofthe data may be dated by now.

The procedures used for runningthe tests are fully described in Appendix B.
The TIME macro wasusedto collect timing information. Most times were
recorded to the nearest second. When reported by the TIME macro, some
extra information, usually relating to paging, memory management, "kernel"
time,etc., were recorded, but are not analyzed here. If several runs were
made,only the best numberis reported herein for the sakeof brevity.
Whereverpossible, source files were stored on local disks (for the Sun 3/75
systemsthefiles were on a Sun 3/180 NFSserver on the same subnet).

4, Systems Under Test

The systems that we tested were chosen based on their availability to the
testers as well as their suspected usefulness in future KSL programming
efforts. All of the systems tested were workstations, as we were not able to
obtain access to mainframe systems. It is also the case that workstations,
with their bit-mapped displays and dedicated processors, currently provide
the best Lisp development environments, in our opinion, and thus were more
interesting to us. .

A mnemoniccode is used for each of the 22 systems. Usually the codeis the
modelofthe machine except where there is more than oneLisp for a machine
(as in the case of the Sun 3/75) in which casea letter is prefixed to indicate
the Lisp being used. Table 1 gives a mapping between codes and machine
types. See Appendix A for detailed descriptions of system configurations.

5. Execution Speed

Most of the tables and charts in this report refer to elapsed-times (wall-clock
time) in seconds. Most of the tables and charts have the system types
ordered according to what seemsto be the most interesting comparison. We
have attempted to group systemsofallegedly comparable performance
(according to our perception formed from talking to vendor representatives,
talking to other users, reading reports,etc.)

E. H. Shortliffe 232

5 P41 RRO0785-16

Code
3/260
3/60
386
386T
4/260
4/280
DEC-II
DEC-III
E-3/75

EXP1
EXP2
EXP2+
F-4/280

HP
K-3/75
L-3/75
Mac2

Maci
mxX
RT

Sym
XCL

TestDate
Summer 1988
Summer 1988
Spring 1988
Spring 1988

Summer 1988
Winter 1988

Fall 1987
Fall 1987
Fall 1987

November 1988
November 1988
November 1988
January 1989

Fall 1987
Fall 1987

Summer 1988
Spring 1988

December 1988
November 1988

Spring 1988
Winter 1988
Winter 1988

Appendix B: Lisp Performance Studies

System
Sun 3/260 with Lucid Lisp}
Sun 3/60 with Lucid Lisp
Compaq 386 with Lucid Lisp
Compaq 386 portable with Lucid Lisp
Sun 4/260 with Lucid Lisp
Sun 4/280 with Lucid Lisp
DEC MicroVax II with VaxLisp
DEC MicroVax ITI with VaxLisp
Sun 3/75 with Franz Extended Common
Lisp
Texas Instruments ExplorerI
Texas Instruments Explorer IT
Texas Instruments Explorer I] Plus
Sun 4/280 with Franz Allegro Common
Lisp
Hewlett Packard 9000/350
Sun 3/75 with Kyoto Common Lisp
Sun 3/75 with Lucid Lisp
Apple Macintosh II with Allegro
CommonLisp
Symbolics Maclvory
Texas Instruments microExplorer
IBM RT/APC with Lucid Lisp
Symbolics 3645
Xerox 1186.

Table 1: Mapping between codes and system types

It is worth noting that on almostall of the systems tested, virtual memory
paging was a negligible part of the overall run time for the tests. Nor was it a
very significant factor during compilation. In general, we do not expect this
to be true for most production systems. Indeed, we would not be surprisedif
paging time were a major componentof overall run time for most systems.

5.1. BB1

The data for the run times of the BB1? tests are given in Table 2. Figure 1
showsthe data graphically.

1 The Lucid and Franz Extended CommonLisp products tested are versions prior to multi-
programmingwithin the Lisp andprior to the inclusion of generation-based scavenging
garbagecollection in those systems. The Allegro CommonLisp was not tested with
multiprogramming enabled.

discussed in Section 7.

233

These timesare for default settings of the SPEED and SAFETY optimization qualities

E. H. Shortliffe

Appendix B: Lisp Performance Studies

o
O

Exp2

Exp2+

4/260

4/280

F-4/280

386

386T

mx

Mact

sym

3/260

RT

DEC-III

Exp |

3/60

L-3/75

E-3/75

K-3/75

HP

DEC-II

Mac2

5 P41 RRO0O785-16

Code Time
RT 75

DEC-HI 63
Expl 87
3/60 73

L-3/75 ~ 90
B-3/75 211
K-3/75 96
HP 115

DEC-II 207
XCL 559
Mac2 254

Table 2: Run times for BB1

120 180 240

1 4.

{ |
Note: XCL has been left out to improve readability

Figure |: BBt Run (sec)

Systems that are marketed as comparable generally cameout close to each
other with the following notable exceptions:

- There was a significant difference between the 4/280 and the 4/260. Even
though the 4/260 had more memory,similar disk, more tuning effort, and
was tried with several later versions of Lisp it was consistently slower
than the 4/280 tested earlier. We are at a loss to explain this discrepancy.

E. H. Shortliffe 234

5 P41 RRO0785-16 Appendix B: Lisp Performance Studies

It is also worth noting that, except for VaxLisp, Lucid Lisp seemed the
most difficult to tailor to a particular machine when it was beinginstalled.

« The DEC machines seem to be poor at running Lisp even though they are
usually thought of as competitive when running FORTRAN orC.

¢ The microExplorer (mX) did better than expected probably becauseits
- weak point, paging, was not stressed bythis test.

¢ The mucholder Franz Lisp (E-3/75) did relatively poorly compared to
Lucid Lisp on the 3/75, but the newer version on the Sun 4 did well
relative to the somewhatolder Lucid lisp on the Sun 4.

- XCL wasover twice as slow as the nearest competitor.

¢ For unknownreasons the Symbolics machines were slower than expected.
The Maclvory was a bit over 4 times slower than the microFxplorer and
the 3645 was slower than the ExplorerI.

5.2. SOAR

The data for the SOAR runtests are given in Table 3 and presented
graphically in Figure2. Thefigures are for the sum of the A, B, and C
modes},

Once again most systemsfit where expected with the following notes:

¢ The Lucid Sun 4's are somewhat faster than the TI ExplorerII for the
SOAR test whereas the opposite was true for the BB1 test.

« XCL and DEC-II were over twice as slow as the nearest other system.

Code Run Time Code Run Time
Exp2 94 RT 177
Exp2+ 62 DEC-III 454
4/260 58 Expl 369
4/280 82 3/60 187
-4/280 120 L-3/75 278
386 126 E-3/75 484
386T 151 K-3/75 697
mxX 154 HP 219
Maci 339 DEC-II 1851
Sym 193 XCL 1519
3/260 154 Mac2 No data (see

footnote 1)

Table 3: Aggregate Run Times for SOAR

1 The A and C modefigures are for the "no trace" configuration as described in Section 8.

235 E. H. Shortliffe

Appendix B: Lisp Performance Studies 5 P41 RROO785-16

0 60 120 180 §=240 300 360 4200 480 540 600 660 720

Exp2

Exp2+

4/260

 Note: DEC-11, Mac2, and XCL have

been left out to improve readability

4/280

F-4/280

386

386T

mx
Maci

sym

3/260

RT

DEC-I!I

Exp!

3/60
L-3/75

E-3/75

K-3/75

HP
Figure 2; Sum of SOAR run times (sec)

5.3. Normalized Run Times

A given machine,call it A, may have run the SOAR testfaster than another
machine, B, while B wasfaster for BB1. Figure 3 depicts this difference. For
both BB1 and SOAR therun times have been normalized by dividing the run
time by the averageofthe run timesfor all the machines, leaving out DEC-II,
Mac2, and XCLto improvereadability.

Lucid Lisp seemed to perform relatively better with SOAR than with BB1 in
all cases, while VaxLisp and, to a muchlesser extent, the dedicated Lisp
machines, seemedto do better with BB1.

There are many possible explanations for these variations, but trying to
analyze each of them was well beyond the scopeof this study. The reasons
are mostlikely a result of differences among implementations in the
efficiency of various operations, some of which are used by SOAR but not by
BB1 andvice versa. For instance, SOAR might make heavy use of hashing

E. H. Shortliffe 236

5 P41 RRO0785-16 Appendix B: Lisp Performance Studies

0.00 0.50 1.00 1.50 2.00 2.50 3.00

1 | ! l
T T t

Exp2 |[RRpaeaare Note: DEC-II, Mac2, and XCL have

been left out to improve readability
Exp2+ [BRRSAEn

4/260 [Rare Average (normal) system performance

4/280 (aeaeeeee

F-4/280 [ar

386 .
BB) Run Time

3e6eT RS ae 1
SOAR Run Times

mx

Maci

sym

3/260

RT

DEC-IIt

Exp1

3/60

L-3/75

E-3/75
 K-3/75

HP

Figure 3: Normalized Run Times (time/average_time)

while BB1 makes heavy useoflist primitives, or one system might include a
large number of SETQ operations while the other might be more applicative
in nature. The developers of SOAR and BB1 donot currently have
information on the aspects of the Lisp systems stressed by their software.

6. Compilation Speed

Developers and researchers must worry about how fast their programs
compile as well as how fast they run. SOAR and BB1 compilation times are
given in Table 4 and Figure 4.

Figures 5 compares run time with compile time. Theratio of compilation
time to run time is shown. A system with a high rating spendsrelatively
more time compiling than running. The absolute value of these numbers
have little meaning. They are only useful for comparing systems.

237 E. H.Shortliffe

Appendix B: Lisp Performance Studies 5 P41 RRO0785-16

Code SOAR BB1i Code SOAR BBI1
Exp2 132 89 RT 574 586
Exp2+ 78 76 DEC-III 423 633
4/260 307 324 Exp1 520 327
4/280 523 482 3/60 569 551
F-4/280 535 264 L-3/75 1040 919
386 386 355 E-3/75 450 444
386T 479 416 K-38/75 1365 1234
mX 152 186 HP 237 235
Maci 906 950 DEC-IT 1227 =61774
Sym 252 257 XCL 1800 1927
3/260 687 540 Mac2 0 349

Table 4: Compilation Times

0 180 360 340 720 900 1080 1260 1440 1620 1800 1980

Exo2 [ER

Exp2+

4/260

4/280 Fim

F-4/280 ae

386

386T

mx

Maci

 4 1/2 hour
BBI Compile Time

J j
SOAR Compile Time

sym

3/260

RT

DEC-I1!

Expl

3/60

L-3/75 EB RTReeeaE

E-3/75 [eee

K-3775 EEREgnaaner

HPeee

IOOU oases esen cre cpecatec ete ote ope ete ete efe ete stecete ele ete ete ce ete ete ete ele ete etecaters

GUM oss ce ose ase ose tue ede sue eye ese ese cde ene enn ce tue ene ede ote cup oot ede ese ge ce nt net tie de ae ct ge te gr nn is ae a

Macz2

 (see footnote 1)

Figure 4: Comptiation Time (sec)

As one might expect, the specially microprogrammed Lisp machines had
relatively fast compilers. Some machineswith run times slower than
predicted spent relatively less time compiling. For example, the VaxLisp
compiler wasrelatively fast, but generated very slow code. The Lucid
compiler seemed to take a long time but generated fast code. The Allegro

E. H. Shortliffe 238

5 P41 RRO0785-16 Appendix B: Lisp Performance Studies

(see footnote 1°

Figure 5: Relative Performance of Compiler

(Compile_Time/Run_T ime)

CommonLisp for the MacII tooklittle time but still somehow generated
impressively fast code for BB1.

7. Effect of OPTIMIZE Settings on BB1

The OPTIMIZE declaration is a way of controlling the behavior of a Common
Lisp compiler. Two of the most significant qualities thus controlled are
SPEED and SAFETY. Eachofthese can be set to an integer from 0 to 3. A
high setting for SPEED tells the compiler that fast running codeis desired,
which typically enables various optimizations. The CommonLisp
specification doesn't require any optimizations or even that they necessarily
be controlled by this setting, but many current implementations switch on
optimizers such as deadcode eliminators, tail and mutual recursion
eliminators, fancy register allocators, and facilities to take advantage of type
declarations. The SAFETY quality is somewhat less well understood. It has
little to do with the "safety" of the program since a correct CommonLisp
program isstill required to run correctly if SAFETY is low, but it has an
impact on the debuggability of the program. A high SPEED and low SAFETY
may allow, for instance, disabling number-of-arguments checking to allow

239 E. H. Shortliffe

Appendix B: Lisp Performance Studies 5 P41 RRO0785-16

faster function calls on some architectures, or type checking on system
functions (such as CAR or SETQ) might be disabled. Kyoto Common Lisp
(KCL) goes so far as to "hardwire" function calls such that if FOO calls BAR
and FOOis compiled then if BAR is later redefined and FOOisn't, FOO will
continueto call the old version ofBAR, thereby destroying much of the
flexibility of the Lisp.

Wechose4 settings of SPEED and SAFETYto study:

1. The default setting that the Lisp system has whenitis initialized. This is
what most people use.

2. SPEED 3, SAFETY 0 (written (3, 0) below) which should generate the
fastest code.

3. SPEED 0, SAFETY (written (0, 3) below) which should generate slow
but very debuggable code, since the compiler should have done very few,if
any, optimizations.

4. SPEED 3, SAFETY 2 (written (3, 2) below) which should generate
optimized code while retaining "sanity checks".

The BB1 system usedin these tests has very few declarations and doeslittle
numerical work. Both of these attributes seem common among most
CommonLisp programs weuse.

Code Default (3.0) (0.3) (3,2)
27 25Exp2 27 25

Exp2+ 17 17 18 18
4/260 56 46 47 46
4/280 34 34 48 34
F-4/280 56 56 56 54
386 AT 47 52 47
386T 54 54 60 54
mX = 33 34 34 30
Maci 129 129 130 130
Sym 111 109 110 111
3/260 62 62 69 62
RT 75 76 77 75
DEC-III 63 60 71 70
Expl 87 87 90 83
3/60 73 72 76 72
L-3/75 90 90 127 90
E-3/75 211 215 206 206
K-3/75 96 165 147 88
HP 115 113 141 118
DEC-IE 207 206 231 236
XCL 559 543 559 556
Mac2 254 258 261 259

Table 5: BB1 Run Timesfor Various OPTIMIZE Settings

E. H. Shortliffe 240

5 P41 RROO785-16 Appendix B: Lisp Performance Studies

Table 5 and Figure 6 give the results for running BB1 with the four
OPTIMIZEsettings. Figure 7 shows the compilation timesfor the various
OPTIMIZEsettings.

0 30 100 150 200 250

J 1

Exp2 Note: XCL has been left out
to improve readability

Exp2+

4/260

4/280

F-4/280

386

386T

mx
Maci

Sym B® perauit
O «3,0)

Mi 00,3)

(3, 2)

3/260

 RT

DEC-III

Exp!

3/60

L-3/75

E-3/75

K-3/75

HP
DEC-II
Mac2

Figure 6: BBI runs with various OPTIMIZE settings (sec)

241 E. H. Shortliffe

Appendix B: Lisp Performance Studies 5 P41 RR00785-16

QO 500 1000 1300 2000 2500 3000

Exp2

Exp2+

4/260

4/280

F-4/280

386

386T

mx

Maci

 EB ceraut

OF 03,0)

0,3

(3, 2)

sym

3/260

RT
DEC~II!

Exp]

3/60

L-3/75

E-3/75
K-3/75 el

HP —

DEC-I

Mac2
Figure 7; BB1 compilation times with various OP TIMIZE

Settings (sec)

' These charts reveal somewhat surprising results. In several cases, SPEED 3,
SAFETY 0 did not give the best results! Lucid Lisp did consistently better
when SPEED washigher than SAFETY,as did the HP 9000, and VaxLisp.
KCL wasdefinitely behaving strangely with SPEED 0, SAFETY 3 coming out

E. H.Shortliffe 242

5 P41 RRO0785-16 Appendix B: Lisp Performance Studies

a goodbit faster than SPEED 3, SAFETY 0, with both of those much slower
than "default" or SPEED 3, SAFETY 2.

Figure 8 depicts the speedup factor between the slowest time and thefastest
time for the BB1 tests with various OPTIMIZEsettings.

1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00

Exp2

Exp2+

4/260

4/280

F-4/280

386

386T

mx

Maci

sym

3/260

RT

DEC-IH

Exp!

3/60

L-3/75

E-3/75

K-3/75

HP

DEC-11

Mac2

XCL

Figure 8: BB! Speedup Factors Due to OPTIMZE Setting:

8. Effect of Output Reduction on SOAR

The eight-puzzle benchmark for SOAR wasoriginally written when SOAR
ran primarily on slower machines than those tested here. Thus it tends to
generate a lot of output relative to the amount of computation for some of the
modes. For some systems,particularly those with large bit-mapped displays
and full-screen windows, this output can be very expensive. To understand
the extent of this effect we tested SOAR in the A mode and in the C mode
both with full output, and with greatly reduced output (no trace). Table 6
with Figures 9 and 10 show results of these runs. Figure 11 depicts the
amount of speedup(ratio of run times) realized by SOAR with reduced
output.

243 E. H. Shortliffe

Appendix B: Lisp Performance Studies 5 P41 RR00785-16

Mode A Mode B

Code Full Reduced Full Reduced
Exp2 33 18 18 16
Exp2+ 23 11 13 11
4/260 23 13 11 9
4/280 35 15 14 11
F-4/280 36 36 20 19
386 41 27 21 19
386T 52 31 26 23
mxX 50 27 29 27
Maci 165 65 63 44
Sym 55 40 34 32
3/260 49 33 23 22
RT 61 36 32 28

DEC-HI 95 76 95 92
Exp1 90 63 75 71
3/60 66 38 34 3l

L-3/75 82 67 45 41
E-3/75 124 ~109 81 80
K-3/75 186 136 120 111
HP 61 51 52 52

DEC-II 351 283 390 401
XCL 473 390 243 232

Table 6: SOAR Run Timeswith Full and Reduced Output

0 60 120 180

| t }
Note; DEC-!1, XCL, and Mac2 nave

been left off to improve readability

Exp2 2

Exp2+ [iRRES

4/260 ee

4/280 Saeed

F-4/280 |e 1
386 [eee Reduced Output

386) (ees

MX Serer

AFAORDMMIM - sce ote te ets see cel ate ets aseaee Ges ate sta uns ats

Sym ee ee

ee

eeee

3/260

RT (ee

DEC-||| -EREeEs

Exp | —-xaeae

3/60 ;

K-3/75 FRRRBReESeeSeeeenereeeeeeeeeeeeeee

HP

Full Output

Figure 9: SOAR A Mode (sec)

E. H. Shortliffe 244

5 P41 RROO785-16

Exp2

Exp2+

4/260

4/280

F-4/280

336eee

386T

mx

Maci

sym

3/260

RT

DEC-II

Expl

3/60

L-3/75

E-3/75

K-3/75

HP

Exp2

Exp2+

4/260

4/280

F-4/280

386 Fees

386T

mx

Maci

sym

3/260

RT

DEC-H

Exp!

3/60

L-3/75

E-3/75

K-3/75

HP

DEC-H

XCL

60

Appendix B: Lisp Performance Studies

70 80 90 100 110 120

4 1. 1. 1

tput

T t t T

Note: DEC-I, XCL, and Mac2 have

deen left off to improve readapilit

Figure 10: SOAR C Mode (sec)

2.00 2.20 2.40 2.60

Note: No results for Mac2 (see footnote 1)

I I 1
Figure 11; SOAR Speedup Due to Reduced Output

245 E. H. Shortliffe

Appendix B: Lisp Performance Studies 5 P41 RROO785-16

Three factors seemed to influence the speedup with reduced output:

- A fast processor, since the amount of time spent computing versus doing
V/O would be reduced, causing a reduction in I/O time to be more
significant.

- Alarger screen or window sinceit is expensive to scroll a large area.

- Alarge-overhead I/O system such as the MaclIvory's Dynamic Windows.

9. Future Work

Obvious areas in which this work might be extended include:

- Updating the results to reflect more recent versions of the Common Lisp
systems;

- Adding more test systems, especially mainframes;

« Benchmarking other programs besides SOAR and BB1;

- Evaluating the effect of declarations on run times;

- Adding measurementsof storage management overhead;

- Collecting more data on J/O overhead;

¢ Understanding better why platforms vary in performance from application
to application and Lisp implementation to Lisp implementation.

10. Conclusions

Two moderate-sized applications, SOAR and BB1, were benchmarked on 22
CommonLisp systemsto help in the evaluation of different Common Lisp
systems. The run and compile times for these benchmarks were presented
and discussed. A large variation was observed between the rankingof
systems when running the SOAR test versus the ranking when running the
BB1test. This leads us to conclude that while these experimental results and
ones like them can be used to class machinestogether roughly, it is
impossible to use such a set ofbenchmarksto decide in advance how a given
application will perform on a given system. There is no substitute for
actually running the program on the systemsin question.

Figure 12 shows the average of the normalized! run timesfor the test
programs with the systems ranked in order. On the basis of this data, the
systems tested may be rankedasfollows:

1 The data were normalized by dividing each by the average oftheresultsfor all the tested
implementations.

E. H. Shortliffe 246

5 P41 RR00785-16 Appendix B: Lisp Performance Studies

Very Fast (< 0.50 anr -- averaged normalized run time): TI Explorer IT Plus
(Exp2+), TI Explorer IT (Exp2), and Sun 4 with Lucid Lisp (4/280 and
4/260)

Fast (> 0.50 anr, < 1.00 anr): TI microExplorer (mX), Compaq 386 (386), Sun
4 with Franz Lisp (F-4/280), Compaq 386 portable (886T), Sun 3/260
(3/260), IBM RT/APC (RT), and Sun 3/60

Medium (> 1.00 anr, < 1.50 anr): Symbolics 3645 (Sym), Sun 3/75 with Lucid
Lisp (L-3/75), HP 9000/350 (HP), TI Explorer I (Exp1), and DEC MicroVax
III (DEC-IID

Slow (> 1.50 anr, < 2.50 anr): Symbolics Maclvory (Maci), Sun 3/75 with
Kyoto CommonLisp (K-3/75), and Sun 3/75 with oldFranz Extended
CommonLisp (E-3/75)

Very Slow (> 2.50 anr): Apple Macintosh II with Allegro Lisp (Mac2), DEC
MicroVax IT (DEC-II), and Xerox 1186 (XCL),

E-3/75

K-3/75

Maci

DEC-III

Exp)

HP

L-3/75

sym

3/60

: RT

3/260

386T

F-4/280

386

mx

4/260

4/280

Exp2

Exp2+

Note: Mac2, XCL, and DEC-II, with

scores of 3.36,5.37, and 6.98, nave

been left off to improve readability T T T T

0.00 0.25 0.50 0.75 1.00 1.25 1.50 75 2.00 2.25 2.50

Figure 12: Averaged Normalized Run Times

Weweresurprised at the high speed of the small 386 machines,and at the
slownessofthe still early Maclvory, the DEC machines, and the Xerox
machine.

Dedicated Lisp machines compile relatively faster than conventional
machines,and, generally, conventional machine systems that took more time
to compile produced faster code, as one would expect.

247 E. H. Shortliffe

Appendix B: Lisp Performance Studies 5 P41 RROO785-16

While the experiment to measuretheeffect of different settings of the
OPTIMZEdeclaration was interesting, with such a small sample no real
conclusion about the effect of various OPTIMIZEsettings can be drawn.
Howeverthe indications are that, in the absence of other declarations(e.g..
for TYPE), only relatively small gains are available. It is probably best to
experiment with various settings to see which gets the best speed for a given
program.

Reducing the amountof output that a program generates can have a large
effect on the run time of the program, especially when moving the program to
a faster machine. This indicates that it is worth taking some timeto consider
the nature of the I/O system and interaction needed by a program when
designing a user interface for a fast-running program.

These results must be used very carefully since they represent only one piece
of information about the performanceofthe very complex systems tested. We
have measured only execution speed, but many aspectsof the softwarewill
impact the development of programs such that in a given amountof time a
program mightbe written for one machinethat runs faster and perhaps with
fewer errors than a program written in the same amountoftime on another
machine that ranks faster in these tests due to superior support given to the
programmerduring development. Do not underestimate the powerofthe
programming environment.

11. Acknowledgements

This work would have been completely impossible without the assistance of
many people and companies. Mike KramerofTexas Instruments Inc.
supplied the Explorer II Plus processor board. Eric Warner and Michael
Borke of Sun Microsystems Inc. supplied access to the Sun 4 systems and the
Sun 3/260 and 3/60 systems. Franz Inc. supplied a test version of Extended
Common Lisp. Marty Hollander ofFranz Inc. supplied a version of Allegro
CommonLisp for the Sun 4. Jeff Harvey of Digital Equipment Corp.
arranged access to the MicroVax systems. Susan Rosenbaum and Eric
Gilbert of Lucid Inc. supplied access to the Compaq machines and the IBM
RT. Bruce Hamilton of Hewlett Packard Inc. arranged access to the HP 9000.
Manythankstoall of them.

12. References

[Gabriel 1985] Gabriel, R. P. Performance and Evaluation of Lisp
Programs, M.I.T. Press, Cambridge, Massachusetts, 1985.

[Hayes-Roth 1985] Hayes-Roth, B. A Blackboard Architecture for Control, in
Artificial Intelligence Journal, Volume 26, pp. 251-321, July 1985.

[Hayes-Roth 1988] Hayes-Roth, B., and Hewett, M. BB1: An
Implementation ofthe Blackboard Control Architecture, in Blackboard
Systems,edited by Robert Engelmore and Tony Morgan, Addison-Wesley,
1988, pp. 297-313.

E. H. Shortliffe 248

5 P41 RRO0785-16 Appendix B: Lisp Performance Studies

(Laird 1987] Laird, J. E., Newell, A., and Rosenbloom, P.S. Soar: An
Architecture for General Intelligence, in Artificial Intelligence Volume33,
Number1, pp. 1-64, 1987.

[Steele 1984] Steele, G. L. Jr. Common Lisp the Language,Digital Press.
1984

249 E. H. Shortliffe

Appendix B: Lisp Performance Studies 5 P41 RR00785-16

Appendix A -- System Descriptions

This appendix contains detailed descriptions of the systems used in these
measurements. In the descriptions, "Code" refers to a short name used to
indicate the systems undertest. Usually it is the model of the machine
except where there is more than one Lisp for a machine(as in the case of the
Sun 3/75) in which case a letter is prefixed to indicate the Lisp being used.
"Timing Template" indicates how the information reported by the TIME
macro wasrecorded. "Elapsed" indicates the total elapsed time, "run"
indicates CPU time used, "gc" indicates time spent in garbagecollection,
"user" and "system" distinguish between user mode and kernel modetime,
and "paging" indicates time waiting for virtual memory disk operations.Code:

Code: 3/260
Computer Type: Sun 3/260
Operating System: Sun OS 3.4
Lisp: Lucid 2.0
Disk Configuration: 280MB
Swapping Size: 60MB
Memory Configuration: 8MB
Display Configuration: Color in mono mode
Other Configuration:
Special Comments: used :EXPAND 130 :GROWTH-RATE 130
Timing Template: elapsed (user-run + system-run)
Date-of-test: Summer 1988

Code: 3/60
Computer Type: Sun 3/60
Operating System: Sun OS3.4
Lisp: Lucid 2.1
Disk Configuration: SCSI 141MB
Swapping Size: unknown
Memory Configuration: 24MB
Display Configuration: Hi Res Color in mono mode
Other Configuration:
Special Comments:
Timing Template: elapsed (user-run + system-run)
Date-of-test: Summer 1988

E. H.Shortliffe 250

