
Draft Lisp Environment Spec 5P41-RRO0785-15

Appendix C

Lisp Environment Specification

KSL Lisp Environment Requirements

xkk D RA F T kkk

Richard Acuff

Knowledge Systems Laboratory

Computer Science Department, Stanford University

May 11, 1988

251 E. H. Shortliffe

5P41-RRO00785-15 Dratt Lisp Environment Spec

Ve URPOCUCTION oooeeec ecceesssssssesseeeeeusecesesceacesersuassutesuesauesrssesectasciiesesersertecenseees 1

2. Program Development Tools & Environment............0..ccccccceccccecceesceeeccecccsscenseceess3
2.1. EQItONeeecceseeseeeceeesseessesesaeceseceeecenscsscsasseseecatecsuecasesseseacsserseeees3
2.2. D@DUQGEM o.oo. ee eecceecceeecesceseessecesccessecscecesuessssasecacevatesstesceseaseseceteceueees4
2.3. INSPECTION... eee cccscceesseeeseeesesesecessecesescessess siseessaseeerseessesecsseecesseesenerens 5
2.4. Software Management Tools.........0...cccceccceceseececseerecceceesssesessessceseessvesees 6
2.5. Performance Monitoring and AnalySis..........0.00..ccccccccsssccsesecesesseseesees6
2.6. Lisp LiSteMe? oo...eeccc cecsseceesceeseeeceesesssecssesecacecsacsesececsaueresuecsseess 7

3. Languages and Utilities2.eccceccseecescessessecesscesecsesessessecensecraccasenssessaeeues 7
B.1. WINGOWING 000...cece cescceeeeceeeceeesececescesssecuussussavenaesraceesaaaessssesauasensecees7
3.2. Multiple Processes ooo... ccccccesccceseceeecccssecescscvsccecsaccsacsesssessaueecaeccrasccecs 10
3.3. COMMON LISP... ceeccsesssecsseessessscssecssseseesecsessseseasesscessessusssscsaccsscasones 11
3.4. COMPpPIALION.0.eeeceseescesseesseesecousesscassesccaeceaeeacesecsussancasessessecsssesess 12
B.S. INPUVOUTDUL. 00...eee ccccceceeeecceeeeeseseseeseascstsacecescasersasseesseesstueeentarerss 13
B.6. Utilitiesocccccsceesececsesessecesssusescensesesaesaaeseassesuusesnaeessesens 13
3.7. Interface TOOMKit.ccccccccseeceeesesesesesscseecceesesseeseecaesesaceaseceaeenteasens 14
3.8. Help System...cccccscccccssecseescsccseessssscecsseeessesenscsusssaseassesueseeeseeuseenss14
3.9. Status Information...eeccccc cess cesesesceesecceceecssessacesucscsecesecacecees 14
B.10. PYIMTHIAQ.0.eee ee ceecceseeeccensceesesseessessseccesscessacesecenecesesessessueecstaeeeces 15
S.11. Pretty Printing...cccecceesceececseesscsecssneeesecseceeeseassecsescaeensueesss 15

4. Lower Level ISSUCS............cceeccecssseesseeseeseeeeeeeeeeees Gedseeeeseeteeedeeeeeeeseestecseastesscecsserce15
4.1. AdGreSS Space... ecccceeeeeeessseseeecseeessossesseecssesscevcesinerseessecauesanseneecss15
4.2. Memory Management..............ccccccsccesseceecssecsssessscesscccsacersacecaecerensaeeess16
4.3. Dedicated Versus Shared Systems........ccccccececssecccescessceccessscsscecaseeeees 17
4.4. Hardware Capabilities0.0...ecceeceeeecaceceeseceseecsscessescsueessseeees17
4.5. Overall System Integration in the KSL.o..... ceceeecccescescceceesesecsesseees 17

5. ACKNOWIEAGEMENR..0..see ceeceeeceecesseeeseeseceecessecostessesasecseueseensvcessussessnaeeaaeceuseseess 18

E. H. Shortliffe 252

5P41-RR00785-15 Draft Lisp Environment Spec

1. Introduction

The Knowledge Systems Laboratory (KSL) is an artificial intelligence research
laboratory at Stanford University that has been developing systems andtools in Lisp
environments for more than 20 years. These systems have been implemented in the
InterLisp, MACLisp, ZetaLisp, and more recently, CommonLisp dialects predominantly.
Beginning in the early 1980's, our work moved from mainframe Lisp environments to
workstation environments for many reasons, principally involving powerful tools for
system development and debugging and graphicalinterfaces. Commercial versions of
these tools, that evolved over many years in the Xerox D-Machine, Symbolics 36xx,
LMI, and Tl Explorer systems, have become an indispensible part of our work
environment. Newer Lisp systems for workstations not specifically developed for Lisp
have lacked many important features of these environments. This document attempts to
summarize the key features of the Lisp machine environments that would be neededin
"stock" machine implementations in order to make them attractive in a development
setting.

There are several overall points to be emphasized about this write-up:

1) These requirements represent a snapshotof the tools and technology available
on today's machines. Al has historically and will continue to ride the crest of
the wave of new computing technologies for the forseeable future, which
enable ever more complex systems. Thus, these are not static requirements
and we expect to be able to take advantage of the future improvements in
hardware, graphics, and software as they are generated by computer science
research and industry.

2) It has been hard to describe concisely many aspects of the Lisp environments
becausethey involve visual interactions and the "feel" of the way systems are
organized and interconnected. The write-up assumes a general familiarity
and experience with the Lisp environments Xerox, Symbolics, TI Explorer
systems.

3) We have tried to sort out the key features of current systems that are
important to our research work. Except where explicitly stated, everything
in this document describes this "core" of functionality. Some items are
clearly more important than others, but ail represent needs that really guide
our decisions about which new systemscan be broadly used in the KSL.

4) The discussion is organized according to a "layered" view of Lisp
environments shown in Figure 1, beginning with the upper levels. This
organization is a conceptual framework within which to describe the various
parts of the environment but may not correspond in full detail to the way
system modules are actually organized. While most of the discussion focuses
on the higher layers in this diagram, unavoidably some issues involving
lower level or more general issues such as address space, system speed, and
graphics facilities have to be mentioned.

5S) While this description is based on what we know,use, and understand today,
we have attempted to allow for innovation by describing the functionality that
we require in a fairly abstract way wherever possible, rather than
specifying, for example, the "Symbolics XYZ feature". This may result in

253 E. H. Shortliffe

Draft Lisp Environment Spec 5P41-RR00785-15

some ambiguities that will need to be addressed by appropriate discussion and
iteration.

6) We have two overriding goals in adopting future computing environments
(which may seem to be or actually are in some conflict). We want the most
powerful development environments we can get to facilitate the building of
complex Al programs. But at the same time, we want to be able to share
(import and export) research results and tools with colleagues in other labs
and so must maximize the portability of code among systems. Webelieve that
these goals can be approached jointly by the establishment and careful
adherence to standards where possible, while continuing systems development
where necessary.

7) Because of the evolving nature of these research environments, no vendor's
system can ever be "finished". While we expect reasonably professional
standards of robustnessandreliability in the systems we use, we also expect
to have special needs and to work closely with the vendors of products we use
to adapt, extend, and debug the environment and tools. Our experience has
been that in order to do this effectively, it is essential that we have broad
accessto system source codes.

Program [Editor Debugger
g Software gg Performance] LispDevelopment

♥ Management Tools Listener
Tools & System Inspector
Environment y

Windows thea: Help and Ul
Languages _| Networks Utilities Substrate

and Utilities X.11

CLOS Common Lisp Conditions| Processes

Lower Level _ Host Machine hardware and software
issues

Figure 1

2. Program Development Tools & Environment

The quality of the development tools and environment is what has been the primary
Strength of Lisp machines, allowing rapid design, implementation, and debugging of
complex programs. We believe the key to good developmenttools is integration, both in

E. H. Shortliffe 254

5P41-RRO0785-15 Draft Lisp Environment Spec

terms of consistency of interface, and in the ability to move seamlessly from tool to tool,
carrying along appropriate data and state information. These qualities must be manifest
in any KSL research computing system.

2.1. Editor

The hands of the development environment is the editor. There has been a great deal
of experimentation with various styles of editing, most significantly text-based, as in
Zmacs on the Tt Explorer and Symbolics machines, versus structure-based, as in Xerox
Lisp. We are inclined to believe that an editor rooted in a text-based approach but
having understanding of the structural content of code being edited is the best approach
as it allows full base-level generality for dealing with all kinds of text but. if well
implemented, can be specialized for various types of editing. Given this, we feel the
editor in the Lisp systems should have the following features:

+ since it is commonto build tools that utilize editing it is important to have a
complete programatic interface to the editor

* able to use Emacs-like commands for hands-on-keyboard control as in Zmacs

+ also uses pointer for moving editing focus, selection, some command
selection, etc.

+ fully extensible in Lisp

* uses the pretty printer described above to allow code reformatting (eg. for
narrower/wider windows)

+ minimally includes some sourcelibraries to be used as examples

* supports keyboard macros

+ integrated with Lisp such that edit definition, incremental compilation,
documentation string viewing, argument list viewing, macro expansion,
evaluation, etc. are available easily from the editing environment

+ knowslisp syntax such that users can manipulate Lisp expressions (eg. move
forward on s-expression, select an s-expression, etc.)

« has a complete edit definition facility such that the source of a DEFSTRUCT,
DEFUN, DEFCLASS,or otherdefinition of symbol will be automatically loaded
if available without the need for explicit cross referencing

* allows user-defined modes for non-Lisp

+ if text can be selected and operated on the selected text should be highlighted
as in region marking in Zmacs on the T! Explorer

+ if the matching grouping character is visible when the editing focus is on a
grouping character, it should be indicated; a "grouping character" is a
parentheses, curly brace, square brace, angle bracket, double quote, or other
user-specified character; a "match" is found when a symmetric characteris
found in a syntactically legal place (ie. not in a different context than the
focus character, such as in a commentorliteral string when the focus

255 E. H. Shortliffe

Draft

2.2.

Lisp Environment Spec 5P41-RRO00785-15

character is in code), thus requiring that the editor have "understanding" of
the syntax being used

allows multi-fonting and font shift stripping (eg., writes #2\a to files)

has the ability to automatically place code into different fonts depending on
context

if the editor allows code with unbalanced parentheses to be entered,it should
be possible to check the code for unbalanced parentheses, and such a check
should be done when the codeis saved in a file (eg. x-X Find Unbalanced
Parentheses in Tl and Symbolics' Zmacs)

can be instantiated multiple times (multi-window and multi-process)

completion of commandsandfile names

hooks for buffer switching, buffer creation, mode changes

per buffer/window editory control variable bindings

ZetaLisp style attribute lists or some other mechanism fortelling the editor
what packages,fonts, base, etc. are used with data

Debugger

The interactive debugger is also a critical part of the Lisp environment. In many
ways, it can be viewed as an extension of the inspector. It should have the following
features:

"Terminal" based and window based versions for times when the window
system fails

ability to force entry to debugger from keyboard, or abort execution of
running program

ability to see and modify arguments and locals of active stack frames and
closures, as well as evaluating expressions in the lexical context of stack
frames running compiled code

ability to peruse the stack easily and quickly

ability to return from or restart an arbitrary stack frame

able to have multiple concurrent instantiations

must be robust in the face of errors that occur during the operation of the
debugger (eg. can't print some datum)

arglists and docstrings must be around and accessible

fast startup

E. H. Shortliffe 256

5P41-RR00785-15 Draft Lisp Environment Spec

One of the most difficult aspects of debugging is understanding where in a program
the error is occurring. To- assist with this, we require a good disassembler and some
level of source code debugging. The disassembler must be able to give information about
operations being performed including namesof variables, indication of arguments being
set up and functions being called, and current execution location.

The source code debugger should indicate either the current source form being
executed in a given stack frame or the most recently exited form, and allow entering the
editor on that source code. It is acceptable to have to compile code with a special flag on
or with special declarations in effect in order to achieve source code debugging, and a
moderate (approximately twofold at the most) performance penalty in code compiled
with source code debugging in effect is acceptable. We have implemented such a system
at the KSL by storing the program location counter (PC) before and after the execution
of each form and using this to index back to the source code. It is not required that the
source code debugger (SCD) work with all optimizations, but it should be possible to
disable those optimizers to use the SCD andstill run effectively.

2.3. Inspector

The backbone of the development environment is the Inspector. This tool must be
quite flexible and user customizable. Given a datum the Inspector should display it in a
window in such a way as to make the structure and contents quickly apparent to the user.
For instance, a DEFSTRUCTstructure might be displayed with a column with field names
on the left and values on the right. It should further be possible to ask for alternative
perspectives so that the user could view a list as a simple list of items, an ALIST, or a
PLIST, and similarly for structures. The mouse should be used to traverse data
structures by further inspecting. The display should not bestrictly tabular to admit to
nested data, graphs, etc.. The Inspector should also have the following attributes:

« there should be a well-defined protocol to allow instances to display
themselves and have non-standard mousesensitivity in the inspector

* able to work with all CL types, CLOS objects, compiled code, stack groups, and
other objects that can be found in the system.

* startup quickly

+ format only what is visible so that users don't have to wait for formatting of
large data structures of which they wish to view only a small part

- allow fields to be modified easily

- handle circular data structures, preferably using the Common Lisp #1=(a b
#1#) notation; (a b ...) is not acceptable.

* use multiple windows (one per datum) with a separate history window

* support concise and verbose modes so that, for instance, an instance being
viewed as part of another structure could display itself briefly, but be more
detailed when being viewed directly

2.4. Software Management Tools

An often neglected component of the development environmentis a tool to manage
software systems, keeping track of versions, patches, compilation and load dependencies,

257 E. H. Shortliffe

Draft Lisp Environment Spec SP41-RRO0785-15

etc. This has frequently been handled in the past with simple command procedures and
the file system. These primitive mechanisms fail to handle many cases that are
becoming more and more important such as version checkpointing and multiple
programmers, as well as needing version numbers in the host file system to support
backup versions. We have explicitly not required version numbers on files, but only
under the condition that the usefulness of the version numbers is addressed in the
software management system (SMS). The SMS should havethe following features:

+ in the SMS, even more than usual, quick response and non-intrusive function
are critical so that users aren't tempted to circumvent the system, thus
ruining its integrity

+ allow multiple versions of objects to be kept for both backup and for release
cycling

« allow for patches to "released" systems

+ allow partial or complete recompilation of systems, automatically taking care
of dependencies

+ allow transitive dependencies so that if system A depends on system B and
system C depends on system A, manipulations of C cause both A and B to be
affected appropriately

+ support team programming via object or module "check out" (ie. only one
programmeris able to write a module, and ideally audit trails are kept); the
the smaller the module size, the less chance for two programmers requiring
write access to a module at the sametime

« can beeitherfile or object based

2.5. Performance Monitoring and Analysis

An important aspect of writing software is the ability to find out where programs are
spending their time so that tuning work can be applied appropriately to sluggish
programs. Thus we require the following performance measurementfacilities:

* stack sampling wherein a record of what functions are active on the stack is
recorded at small intervals

+ function entry counting

* accurate meters; microsecond precision desired

2.6. Lisp Listener

There must be a "listener" or "top-level" which is how the user interacts with the
read-eval-print loop of Lisp. Along with the terminal: oriented listener there should be
a window based implementation (ideally based on the system editor) with the following
features:

+ a history mechanism allowing access to past typein and results (in at least a
text form)

+ editing ability, including using the pointer

E. H. Shortliffe 258

5P41-RR00785-15 Draft Lisp Environment Spec

3. Languages and Utilities

3.1. Windowing

Currently, the best way for a computer to present information to an interactive user
seems to be via digital images presented on CRT displays. The display is divided into
sub-displays called "windows" allowing various pieces of information to be presented at
once. The programmatic and user interfaces to this mechanism is called the "window
system".

It is very difficult to fully specify a window system complete, flexible, and efficient
enough to be what everybody needs and will need. Therefore, the most important aspect
of the desired window system is that it be able to evolve as more is learned about user
interface and data presentation. Therefore the window system must be well layered and
modular to support incremental mutation and experimentation.

In particular, we expect to see tools on top of an application toolbox, on top of window
system primitives, on top of a window transport protocol (such as CLX with X.11), with
the inter-layer communication passing through well-defined CLOS protocols such that
new layers can be implemented with a minimum of trouble. In particular, we also
expect to routinely use remote windowing capabilities, so it's very important that the
windowing protocol be a standardized one accessible from many machines, such as X.11.
Standards in otherlayers should be used as they become available and appropriate.

The layering approach also allow flexibility in display devices, and if well
implemented, would allow easy redirection of output to a "display" device that happensto
be a printer to give high-resolution hard copy, such as seen in Xerox Lisp's ImageOp
facility, as well as color displays, higher or lower resolution displays, files, etc.

We expect people to be developing tools under at least two different windowing
paradigms, including the "messy desk" metaphor which is characterized by many small
(relative to the display size) windows each of which is an application or piece thereof,
like a desk with many papers onit, and the "display swapping" metaphor in which there
are a few applications, each of which typically takes the whole screen when active,
though the individual applications usually have smaller "panes" in the display-tilling
"frame", and the user swaps which application is on the display via some keystroke
sequence. There are arguments for both styles, and we would like our next generation
system to support both styles to the extent possible. Generally, we feel the "messy desk"
approach is the more general of the two, and the more soughtafter, and so should receive
the most attention.

With that general framework, here are some specific requirements for the window
system (Note: the "as in" comments below are intended to give examples of current
systems with the type of functionality we wish to describe, and are not indendedasstrict
specification of how the functionality should be implemented):

* since we can't predict the needs of our programmers in this time of rapidly
changing userinterface technology, we have to insist on access to the source
code for at least the higher levels of the window system, and that the inter-
layer protocols be well documented andflexible

+ while we expect almost all interactions to be window-based, it will be
necessary at times to access the Lisp from a non-windowing system or
terminal so we need terminal-like interfacing to be available on at least a

259 E. H. Shortliffe

Draft Lisp Environment Spec SP41-RR00785-15

rudimentary basis making it possible, for instance, to check on a long-
running program from a remote location over a crudelink

+ provide programmer specifiable on-screen mini-doc about available mouse
actions, and usethis facility in system tools

+ there must be a way to reestablish connections to the window system from
remote hosts without restarting Lisp so that if, say, a network connection
fails the user can reconnect and reattach to the Lisp session if the operating
system hasn't killed it

+ horizontal and vertical scrolling based on customizable redisplay (wherein
the user programs howtofill in the newly exposed window area) such as in
Symbolics Lisp

+ hierarchical (nested) window structuring as in TI Explorer Lisp

+ high tolerance for "logical" errors, so that minor operational errors, such as
incorrectly reshaping a window, don't cause the window system to crash

* non-restrictive parameters such the maximum number of windows, depth of
the window hierarchy, size of a window,etc.

+ possible to write to non-exposed windowsas in the Apple Macintosh

* a window title mechanism (with option of attaching mouse handlers to titles)
as in Tl Explorer Lisp

+ customizable scroll bars (eg. size, location, color, pattern, pop-up, mouse-
capturing, mouse-click actions, extra "buttons", etc.)

+ constraint frames that allow automatic configuration of inferior windows
when the superior is altered as in T! Explorer Lisp

+ fast opening windows, with no more than fraction of a second delayfor typical
windowsin typical circumstances

« scrolling and character drawing rate of at least 1,500 char/sec in a full-
screen window

* operations that work in color and B/W

* optional color

* use n-dimensional abstract positions (not X and Y coordinates), even if the
window system only uses 2-d points in order to allow for future display
devices that may well be able to deal in 3-d

* documented font formats so users may define new fonts

+ ability to use any font, any time without using a "font map☝ (requiring
separate operations to ensure proper baseline calculations is ok)

E. H. Shortliffe 260

5P41-RR00785-15 Draft Lisp Environment Spec

* customizable, titled pop-up menu styles with 2 standard styles: roll-out (the
menu stays in place with no buttons down until an item is selected or the
mouse is moved away from the menu as in TI Explorer Lisp) and button-up
(the menu stays up while a mouse button is held down, selecting the item the
mouse is over when the button is released or none if the mouseis outside the
menu as in Xerox Lisp); "pull down" menus should be implementable

+ a "snapshot" facility to allow a section of the screen image to be recorded in
another window for later viewing, printing, or saving on a file in a published
raster format

+ ability to shrink application windows into smaller icons as in Xerox Lisp

+ customizable event distribution (mouse clicks, etc.)

* user-extensible pop-up windows used for entering data ("dialog box") such
as seen on the Apple Macintosh dialog boxes or the TI Explorer Choose
Variable Values menus.

+ allow CLOS instances to display themselves, allowing graphical menu items,
etc.

+ there must be rich set offacilities for running user specified code when the
pointing device enters or exits a region, and when a region is "touched" by the
pointing device; these ☜active regions" must:

° be able to be non-rectangular, though they may be constrained to be
rectilinear and congruent to the X and Y axis of the window system

°

have built in ways to work in scrolling windows

9° have built in ways to be highlighted via boxing, inverting, and color
washing on color displays when the pointer is inside the region

+ the ability to channel mouse events and keystrokes through streams

* a modular way to add items to menusin tools

+ the mechanism for redisplaying windows that are being uncovered or moved
should be flexible and programmable so that, for instance, windows need not
have a data structure that stores the pixels associated with the window when
they are not visible, a technique that can be expensive when there are many
large windows or manybits per pixel

+ mechanism for synchronizing keyboard and mouse so switching windows
works smoothly

* have available variable width fonts

The following items are features which would be very useful, but are not required:

* optional larger or multiple displays as in the MacintoshII

261 E. H. Shortliffe

Draft Lisp Environment Spec 5P41-RRO00785-15

+ have available primitive drawing operations that are very low overhead
(non-consing and fast)

- coordinate transforms

+ allow access to low level color/frame buffer control for some applications

« kerning (changing the position a character is drawn in when it is next to
certain other characters) of certain character combinations or at least
pseudo-kerning (offsetting certain characters in a font by a small amount to
improve the aesthetics of the resulting text

3.2. Multiple Processes

A critical part of any powerful software development environment is the ability to
run multiple tasks simultaneously. In Lisp it is particularly important that one have
access to multi-tasking within the single address space of the running Lisp environment
so that cooperating agents can freely access shared data. These "processes" should have
the following properties:

* inexpensive in terms of system resources and time to create/use
(lightweight) (to assist this, it's advisable that a process not have things like
an '/O window until it's needed)

* processes should be preemptable and should be scheduled undera priority and
quantum based scheme

+ locks and events should be available to control synchronization of cooperating
agents so that, for instance, a data-producer could signal an event that would
re-activate a consumer process

+ the scheduler should maintain queues rather than typically calling a "are you
runnable" routine to avoid high overhead when there are many processes and
events should be used to move processes onto run queues

* a complete set of operations to control processes (eg. [unlarrest, kill,
change priority/quantum, inspection of statistics/top-level functions/etc.,
and interrupt)

* the keyboard attaches to processes, not windows

+ the notion of a stack or stack group should be separate from the actual process

* processes should be CLOSobjects

It is conspicuous that unless process switching is a very, very low overhead
operation, of the order of 2-4 function calls, the scheduler shouldn't run in it's own
stack, but run on the last running processs' stack so that undue overhead isn't
introduced.

It is desirable to have but potentially difficult to implement a system wherein when
one process waits for an event like I/O or a page fault other processes are able to
continue. We would very muchlike this feature, but do not requireit.

3.3. Common Lisp

E. H. Shortliffe 262

5P41-RR00785-15 Draft Lisp Environment Spec

Lisp is the computing language of choice in the KSLandis likely to remain so due to
i's utility in the type of programming required for the KSL's research, as well as the
tremendous amount.of available experience in building strong computing environments
in Lisp and the strong commitment already in place.

Wefeelit is critical that the Lisp be Common Lisp, as described in Guy Steele's
"Common Lisp the Language" today, and as specified by ANSI's X3J13 in the future.

It is essential that with the Lisp there is a strong object oriented programming
system. In particular, the Common Lisp Object System {ref} (CLOS) should be fully
supported, being well integrated with the Lisp support environment, and used where
appropriate in system software. The CLOSspecification has not yet been completed, but
major parts ofit are essentially complete and have been accepted by X3J13 and so, given
the critical role of the object system, we feel that even an implementation of the partial
specification is important, along with further implementation as the specification
matures.

Similarly, we require a condition handling system, and in particular the Common
Lisp Condition System {ref}, under conditions similar to CLOS. The condition system
should also provide a mechanism to catch and abort "trivial" errors committed during
top-level typein such as unbound variables and undefined functions and a mechanism
allowing searching for functions or symbols in other packages when they are undefined
(package DWIM).

The system must also support the following:

- Large FIXNUMs(at least 24 bits)

+ IEEE Floating Point Numbers {what's the IEEE spec name?}

3.4. Compilation

Mondern Lisp systems almost always "compile" the Lisp source code into
instructions more suited to the architecture of the machine in use. As execution speeds
increase and the size of problems being tackled increasesit's important that compilation
time not introduce painful delays into the development loop, ruining the quick edit-
compile-run cycle characteristic of Lisp. The compilation delay for "small" code units
(approximately 10 to 50 lines of code not involving heavy macro expansion), should be
negligible, while mechanisms should be available for larger "batch" compilations as part
of the software management system.

It is acceptable to have mutiple ways to execute the same source code, such as an
interpreter, a compiler that executes quickly but produces slower code, and a compiler
that executes slowly but produces faster code. However, it is absolutely essential that
all of these have indistinguishable semantics.

The following features should be present with compilation:

+ Compilation of individual top-level forms (incremental compilation)

«+ Complete compilation of all forms, including closures and other lexical
functions

- Ability to cause code to be compiled in-line via the use of declarations

263 E. H. Shortliffe

Draft Lisp Environment Spec 5P41-RRO0785-15

+ Ability to do unboxed floating point operations if appropriate declarations are
present

+ Documentation on built-in compiler optimizers

» The ability for the user to define new compiler optimizers

* Optimization of tail recursive cails

+ Automatic compilation of "encapsulation" code such as ADVISE or TRACE
(described elsewhere) so that at the time of the encapsulation the associated
code is compiled

To achieve further portability, we would like to see cross compilation or multi-
targeting capability, though this is not strictly required.

3.5. Input/Output

Moving data into and out of Lisp is something that is done quite a bit during the
normal operation of the machine, so I/O performance must be on par with the rest of the
system. In particular, loading compiled files (FASLOAD), reading sourcefiles into the
editor, loading source files (READ), file probes (OPEN and FILE-WRITE-DATE)
(typically done in the software management system) must be quick. As a guideline, we
would expect read/write speeds into and out of the Lisp world of close to 40 kilobytes
(kB) per second to a network file server, or 150 kB/sec to a local disk, as seen on the
Explorer Il. Additionally, the system should support a large numberof simultaneously
open files (certainly 30 or more), as well as multiple streams (input and output) to the
samefile. Access to remote files should be transparent to the Lisp user (ie. no special
"copy to the local system" step should be needed to access data available via filing
protocols including at least NFS.)

3.6. Utilities

There are a number of environmentalutilities needed to use the system effectively,
including:

* away to save a lisp image for later reuse, as in TI's DISK-SAVE and Xerox's
SYSOUT

* a mechanism for "advising"; wrapping code around entry points to affect the
behavior of code as in Tl Explorer Lisp's ADVISE

* routines for accessing network facilities (TCP, etc.)

*- a WITH-TIMEOUTroutine that would allow execution of some code to be
aborted if it does not complete within the alloted time

+ trace, including internals (FOO-in-BAR, LABELS, FLET, closures)

- a facility for searching the world for symbols (APROPOS)

* ways to determine what functions call another function or use a particular
special variable, as well as to determine what functions are called by a (and
specials used by) a particular function

E. H. Shortliffe 264

5P41-RR00785-15 Draft Lisp Environment Spec

+ routines for laying out and drawing hierarchies and graphs where the nodes
and edges can be instances that draw themselves and define their own mouse
sensitivity

+ a foreign language interface on machines which support non-Lisp languages

* remote procedure call (Sun RPC)

+ stream interfaces to various facilities such as networks, windows, and
printers

* a single stepper, probably only on interpreted code

+ file properties including write-date, author, security status, locking, and
properties native to the operating system; ideally the user would be able to
define and use arbitrary file properties

- ability to restart Lisp in the same address space, allowing oneto reinitialize
windows, processes,etc. without losing edits and other work

+ routines for manipulating time values

* a mechanism for reconstituting structure definitions (DEFSTRUCT)

3.7. Interface Toolkit

While there is a good deal of disagreement about what userinterfaces should looklike
it is generally accepted that consistency within a system is worth working for when
other considerations aren't overriding. Thus, to encourage overall consistency, we
require that the higher level programming tools be built on a single interface subtrate
such that they have consistent use of menus, typein, display format, etc., and that this
tool be available to the user. An examplesof this type of tool is TI's Universal Command
Loop.

3.8. Help System

Important to the overall usability of the system is good "novice" support in the form
of some combination of on-line help (eg. general help files), on-line tutorials (eg. the
Machintosh Guided Tour), context sensitive help (including menus of commonly used
commands and completion) (eg. TI's Suggestions Menus), on-line documentation (eg.
doc strings in functions and variables), primer documentation, and informative error
messages. The help system should be consistent, used in all the system tools, and useable
in user written programs.

3.9. Status Information

It's important for the user, and especially, the programmer to get good information
about the current operational status of the machine. The Tl and Symbolics WHO-LINE
and Sun's Perfmeters are examples of this sort of facility. We feel that some information
about the following should be includabie on the screen at all times:

* gc activity

* cpu used by lisp

265 E. H. Shortliffe

Draft Lisp Environment Spec $5P41-RRO0785-15

* paging

* consing

+ system load

* current package

* status of process owning the keyboard

* what process owns the keyboard

* lisp file activity

3.10. Printing

While the capabilities of the system being specified will encourage a paperless
office, hardcopy printing is still an important part of our activities for debugging,
passing along information, and keeping records. The printing system should:

* use generic operations as in Xerox Lisp (see window system discussion)

+ allow users to add new printer types/drivers

* support at least PostScript initially

* allow printing of unformatted files, formatted files, and window images

3.11. Pretty Printing

The ability of the system to format output, especially in a window based
environment, is important to the user's ability to understand the data being displayed.
Thus, a "pretty printing" facility must be included with the following features:

* user customizable

+ has a protocol to interact with instances so that they can make formatting
decisions

+ interprets arg lists for macros and formats accordingly so that, for instance,
&BODYarguments get formatted as code

+ works with intermediate data structures so that entire expressions need not
be printed for efficiency with scrolling windows, especially in the inspector

» can format user-defined mouse sensitive data

4. Lower Level Issues

4.1. Address Space

As the size of problems being addressed increases so does the need for address space
in Lisp systems. It is difficult to quantify address space requirements as they are
affected by other facets of the system including effectiveness of the memory management
system and the space required by data strucutures, but we can say that we need the

E. H. Shortliffe 266

5P41-RRO00785-15 Draft Lisp Environment Spec

potential for a very large address space, such that the address spaceis typically limited
by how much diskit☂s feasible to have rather than the numberof bits used in addresses.
Good examples of today's systems are the Symbolics 3600 {number} or the Tl Explorer
with Extended Address Spaces {number}. Note that systems that migrate unused objects
out of the primary address space should allow a primary address space of at least 100
megabytes. We expect this requirement to expand in the future.

Conditions should be signalled when address space gets to a user-definable minimum,
with default handlers that will notify the user of the low address space condition.

A parallel to address space is stack size. Recursive or other deeply nested programs
must work without modification and so we require that the execution stack be expandable
at run time as with the Tl Explorer and Symbolics systems, or very, very large.
Minimally the stack should be large enough to run 5,000 function call levels with an
average of 4 arguments and 4 locals per level in the most stack-hungry execution mode
{usually interpreted).

4.2. Memory Management

A frequent thorn in the side of Lisp programmersis the reclamation of allocated but
no longer used memory, or garbage collection (GC). Therefore, we require that:

+ in general, GC take no more than 10%total overhead, with less being very
desirable

* no programmer/user intervention be required in normal operation

+ the amountof time that the machine is made unavailable to the useris limited
to a few secondsat a time either by time limiting the amount of work done at
once or by using a concurrent system, with either solution implying a
dynamic algorithm

+ the working set not be unduly expanded by GC operation to avoid thrashing

- there be controls available to the programmer to tune the GC to a particular
program, or to inhibit it at times for real-time program segments or for
timing

« there befinalization code associated with some objects like CLOS instances for
cases like the need to release resources that aren't resident in the Lisp
address space

In addition to the automatic memory managementsoftware there should betools that
allow a programmer explicit control over storage allocation with notions similar to
"area☂s for new allocation which can be declared exempt from GC or to be deallocated in
bulk. Also allocation aids such as RESOURCEstructures should be provided.

4.3. Dedicated Versus Shared Systems

Timesharing, as opposed to having a processor dedicated to a single user, is
acceptable in principle, though it is important that it be well done in the sense that
users not step on each others☂ toes by doing simple things like running programs. In
particular the scheduler and paging algorithms should be such that if the system is
claimed to support N users, all N users should simultaneously see the kind of minimum
responsiveness and performance we require.

267 E. H. Shortliffe

Draft Lisp Environment Spec 5P41-RRO0785-15

4.4. Hardware Capabilities

The display should be able show approximately 70 lines of monochrometext with
130 columns each and still be read comfortably, such as the approximately 1024 x
768, 72 dot/inch black and white displays found on Tl Explorers and Symbolics 3600
class machines, with a strong desire for being able to display two 80 character wide
windowsside by side, as Sun workstations with hi-resolution displays and Xerox 1186's
with 19" displays. The display must be stable and crisp, which means it should
probably be non-interlaced. It must also be possible to get a video output for
demonstrating software to large audiences.

The data input mechanism should support a rate at least equal to that found in
accomplished touch typists (approximately 70 words per minute), such as a keyboard
with 2 key or morerollover, as well as a fast pointing device equipped with at least two,
and preferably three kinds of "touches", such as a 3 button mouse, a way of
programming idioms into short cut sequences, such as programmable function keys on a
keyboard, and a way of sending non-text commands which would mean at least two
(Control and Meta) modifier keys on a keyboard.

4.5. Overall System Integration in the KSL

Any new computing systems in the KSL must be able to fit in to the existing
environment and interact with pre-existing systems to facilitate sharing data, moving
users from system to system, and system administration. Incoming systems should have
the following properties to integrate well into the KSL environment:

+ good networking including filing (Sun IP/UDP/NFS and IP/TCP/FTP
minimally), virtual terminal service (IP/TCP/TELNET), remote procedure
call (Sun IP/UDP/RPC), and nameservice (IP/UDP/DOMAIN)

* provisions for file backup, possibly via NFS

+ a large limit, if any, on file names, with 40 characters per field minimum

- if the system is a workstation, the user must be able to reboot from the
console and beable to run first-order diagnostics to determine in most cases
what major componentis responsible for any failure

+ the element of the system that sits in offices should have minimal power
requirements, thus requiring no additional air conditioning capacity, and
should not generate distracting noise; if the system is a workstation unit, it is
probably necessary to remote the processor from the display to achieve this
requirement and we would need at least 500 feet of potential separation to
reach from our office spaces to our machine room spaces; for example, we
consider the TI Explorer too noisy and hot to have the system unit in most
offices, and consider most Apple Macintosh II's to be just under the acceptable
noise level

5S. Acknowledgement

The summary presented here is the result of extensive discussions among the
following group: Bruce Delagi, Christopher Lane, James Rice, Thomas Rindfleisch, and
Eric Schoen.

E. H. Shortliffe 268

5P41-RROO785-15 AIM Management Committee Membership

Appendix D

AIM Management Committee Membership

Following are the current membership lists of the various SUMEX-AIM management
committees:

AIM Executive Committee:

SHORTLIFFE, Edward H., M.D., Ph.D. (Chairman)
Principal Investigator - SUMEX
Medical School Office Building, Rm. X271
Stanford University Medical Center
Stanford, California 94305
(415) 723-6970

FEIGENBAUM, Edward A., Ph.D.
Co-Principal Investigator - SUMEX
Heuristic Programming Project
Department of Computer Science
701 Welch Road, Building C
Stanford University
Stanford, California 94305
(415) 723-4879

KULIKOWSKI, Casimir, Ph.D.
Department of Computer Science
Rutgers University

New Brunswick, New Jersey 08803
(201) 932-2006

LEDERBERG,Joshua, Ph.D.
President

The Rockefeller University
1230 York Avenue
New York, New York 10021

(212) 570-8080, 570-8000

LINDBERG, Donald A.B., M.D. (Past Adv Group Chrmn)
Director, National Library of Medicine
8600 Rockville Pike
Bethesda, Maryland 20814
(301)496-6221

MYERS, Jack D., M.D.
School of Medicine
Scaife Hall, 1291
University of Pittsburgh
Pittsburgh, Pennsylvania 15261
(412) 648-9933

273 E. H. Shortliffe

AIM Management Committee Membership 5P41-RR0O0785-15

AIM Advisory Group:

MYERS, Jack D., M.D. (Chairman)
School of Medicine
Scaife Hall, 1291
University of Pittsburgh
Pittsburgh, Pennsylvania 15261
(412) 648-9933

AMAREL, Saul, Ph.D.
Department of Computer Science
Rutgers University
New Brunswick, New Jersey 08903
(201) 932-3546

COULTER, Charles L., Ph.D. (Exec. Secretary)
Bldg 31, Room 5B41
Biomedical Research Technology Program
National Institutes of Health
9000 Rockville Pike
Bethesda, Maryland 20892
(301) 496-5411

FEIGENBAUM, Edward A., Ph.D. (Ex-officio)
Co-Principal Investigator - SUMEX
Heuristic Programming Project
Department of Computer Science
701 Welch Road, Building C
Stanford University
Palo Alto, California 94305
(415) 723-4879

KULIKOWSKI, Casimir, Ph.D.
Department of Computer Science
Hill Center Busch Campus
Rutgers University
New Brunswick, New Jersey 08903
(201) 932-2006

LEDERBERG, Joshua, Ph.D.

President

The Rockefeller University
1230 York Avenue
New York, New York 10021
(212) 570-8080, 570-8000

LINDBERG, Donald A.B., M.D.
Director, National Library of Medicine
Building 38, Rm. 2E-17B
8600 Rockville Pike
Bethesda, Maryland 20814
(301) 496-6221

E. H. Shortliffe 274

5P41-RROO785-15 AIM Management Committee Membership

MINSKY, Marvin, Ph.D.

Artificial Intelligence Laboratory

Massachusetts Institute of Technology
545 Technology Square
Cambridge, Massachusetts 02139
(617) 2538-5864

MOHLER,William C., M.D.
Associate Director
Division of Computer Research and Technology
National Institutes of Health
Building 12A, Room 3033
9000 Rockville Pike
Bethesda, Maryland 20892
(301) 496-1168

PAUKER, Stephen G., M.D.

Department of Medicine - Cardiology
Tufts New England Medical Center Hospital
171 Harrison Avenue
Boston, Massachusetts 02111
(617) 956-5910.

SHORTLIFFE, Edward H., M.D., Ph.D. (Ex-officio)
Principal Investigator - SUMEX
Medical School Office Building, Rm. X271
Stanford University Medical Center
Stanford, California 94305
(415) 723-6979

SIMON, Herbert A., Ph.D.
Department of Psychology
Baker Hall, 339
Carnegie-Mellon University
Schenley Park
Pittsburgh, Pennsylvania 15213
(412) 578-2787, 578-2000

275 E. H. Shortliffe

