
Details of Technical Progress §P41-RROO785-15

1.4.2.3. Core Al Research

1 - Rationale

Artificial Intelligence (Al) methods are particularly appropriate for aiding in the
management and application of knowledge because they apply to information
represented symbolically, as well as numerically, and to reasoning with judgmental
rules as well as logical ones. They have been focused on medical and biological
problems for well over a decade with considerable success. This is because,of all
the computing methods known, Al methods are the only ones that deal explicitly with
symbolic information and problem solving and with knowledge that is heuristic
(experiential) as well as factual.

Expert systems are one important class of applications of Al to complex problems
-- in medicine, science, engineering, and elsewhere. An expert system is one
whose performance level rivals that of an human expert because it has extensive
domain knowledge (usually derived from an human expert); it can reason about its
knowledge to solve difficult problems in the domain; it can explain its line of
reasoning much as an human expert can; and it is flexible enough to incorporate new
knowledge, without reprogramming. Expert Systems draw on the current stock of
ideas in Al, for example, about representing and using knowledge. They are
adequate for capturing problem-solving expertise for many bounded problem areas.
Numerous high-performance, expert systems have resulted from this work in such
diverse fields as analytical chemistry, medical diagnosis, cancer chemotherapy
management, VLSI design, machine fault diagnosis, and molecular biology. Some of
these programs rival human experts in solving problems in particular domains and
some are being adapted for commercial use. Other projects have developed
generalized software tools for representing and utilizing knowledge (e.g., EMYCIN,
UNITS, AGE, MRS, BB1, and GLisp) as well as comprehensive publications such as
the three-volume Handbook of Artificial intelligence and books summarizing lessons
learned in the DENDRAL and MYCIN research projects.

There is considerable power in the current stock of techniques, as exemplified by
the rate of transfer of ideas from the research laboratory to commercial practice.
But we also believe that today's technology needs to be augmented to deal with the
complexity of medical information processing.

Our core research goals, as outlined in the next section, are to analyze the
limitations of current techniques and to investigate the nature of methods for
overcoming them. Long-term success of computer-based aids in medicine and
biology depend on improving the programming methodsavailable for representing and
using domain knowledge. That knowledge is inherently complex: it contains mixtures
of symbolic and numeric facts and relations, many of them uncertain; it contains
knowledge at different levels of abstraction and in seemingly inconsistent
frameworks; and it links examples and exception clauses with rules of thumb as well
as with theoretical principles. Current techniques have been successful only insofar
as they severely limit this complexity. As the applications become more far-
reaching, computer programs will have to deal more effectively with richer
expressions and much more voluminous amounts of knowledge.

Expert systems are being developed that impact nearly every field of human
endeavor: medicine, manufacturing, financial services, diagnosis of machinery,
geology, molecular biology and structural design, to name a few. Each new instance
is a confirmation of the hypothesis that knowledge is power. In each system, expert
level problem-solving performance is obtained by using relatively simple and uniform
reasoning methods which access an extensive body of domain knowledge. The
ability of these systems lies not in their superior reasoning capabilities but in the

E. H. Shortliffe 26



§P41-RROO785-15 Details of Technical Progress

specific concepts, facts, methods, models, etc. that can be brought to bear on the
problem. The knowledge is power hypothesis has received so much confirmation
that we now assert it as the knowledge principle. A corollary to the Knowledge
Principle is that significant improvements in the power of knowledge-based systems
will be derived primarily from the ability to access large amounts of knowledge.

During the past year we have begun to explore the design and use of very large
knowledge bases. In the last twenty years we have learned how to build intelligent
programs that perform at a high level of competence on specialized tasks within
narrowly defined domains. These programs traditionally access small to modest-
sized knowledge bases specialized to the prescribed task. In contrast, we have
started on a long-range research effort that will result in a large, multi-use
knowledge base (LMKB).

We believe construction of a LMKB is an essential step toward resolving two
fundamental problems plaguing the current generation of expert systems. Thefirst is
brittleness: current systems can exhibit only a very narrow range of expert behavior,
and their performance falls off precipitously at the limits of their expertise. The
second problem is over-specialization: a knowledge base constructed to support of
one type of expert task (e.g., diagnosis) cannot be used to support other types of
tasks (e.g., design).

Our hypothesis is that both the problems of brittleness and over-specialization can
be addressed by constructing large, multi-use knowledge bases. A LMKB would
1) encode domain knowledge in greater depth and breadth than required for any
specific task, 2) encode knowledge that cuts across many domains of expertise, and
3) serve as a core repository of knowledge to be accessed by large numbers of
specific applications.

This report documents progress on the basic or core research activities within the
Knowledge Systems Laboratory (KSL), funded in part under the SUMEX resource as
well as by other federal and industrial sources. This work explores a broad range of
basic research ideas in many application settings, all of which contribute in the long
term to improved knowledge based systems in biomedicine.

2 - Highlights of Progress

In the last year, research has progressed on several fundamental issues of Al. As in
the past, our research methodology is experimental; we believe it is most fruitful at
this stage of Al research to raise questions, examine issues, and test hypothesesin
the context of specific problems, such as management of patients with Hodgkin's
disease. Thus, within the KSL we build systems that implement our ideas for
answering (or shedding some light on) fundamental questions; we experiment with
those systems to determine the strengths and limits of the ideas; we redesign and
test more; we attempt to generalize the ideas from the domain of implementation to
other domains; and we publish details of the experiments. Many of these specific
problem domains are medical or biological. In this way we believe the KSL has
made substantial contributions to core research problems of interest not just to the
AIM community but to Al in general.

Progress is reported below under each of the major topics of our work. Citations
are to KSL technical reports listed in the publications section.

27 E. H. Shortliffe



Details of Technical Progress 5P41-RROO785-15

2.1 - Knowledge Representation

How can the knowledge necessary for complex problem solving be represented for
its most effective use in automatic inference processes? Often, the knowledge
obtained from experts is heuristic knowledge, gained from many years of experience.
How can this knowledge, with its inherent vagueness and uncertainty, be represented
and applied?

Work continues in PROTEAN and BB1, with its explicit representation of control
knowledge (see the summary of Blackboard Architectures below). In particular, we
have advanced our methods for representation of geometric problem solving
knowledge in PROTEAN and PEAKS (see PROTEANsection of this report.) We have
developed an application in a new domain of diagnosis and correction of errors in a
linear accelerator beam line, the ABLE project. in this we have explored issues of
representation of diagnosis expertise, and have developed a method that
incorporates a numerical simulator of a model system with an expert system (see
discussion under Knowledge Acquisition and Learning below.) In addition, we
continued research on NEOMYCIN which has a component for using a flexible, rich
representation of control knowledgeto facilitate modeling of problem solving at the
strategic level as well as at the tactical level.

[See KSL technical reports KSL-87-58 and KSL-87-62.]

2.2 - Blackboard Architectures and Control

How can we design flexibie control structures for powerful problem solving
programs? How can we use these structures effectively in many problem domains?
How can we represent processes and reason about their behavior, and perform
intelligent actions under real-time requirements?

We have continued to develop the BB1 blackboard architecture for systems that
reason about -- control, explain, and learn about -- their own actions. In the fast
year, we have significantly extended the system-building support and run-time
capabilities of the BB1 system. These extensions include (a) declarative
representation of large bodies of factual and heuristic knowledge; (b) integration of
multiple reasoning skills in a single system; (c) dynamic control under real-time
constraints. We have also implemented the following application-independent
components: (a) declarative representation for device structure, function, faults, and
repairs; (b) reasoning modules for associative and model-based diagnosis; and (c) an
asynchronous communications interface.

During the past year, we began work on an advisory system, called BB-ICU (see
also the separate collaborative project report on Page 129), to support patient
monitoring in a surgical intensive-care unit (SICU). Briefly, intensive care patients
are critically ill individuals who require life-support devices, such as respirators or
dialysis machines, to perform some of their vital functions. During their stay in the
intensive care unit, patients are monitored closely and gradually weaned from life-
support devices in coordination with their changing physiological status and other
therapeutic interventions.

We began by visiting the SICU at the Palo Alto VAMC to observe monitoring
procedures and operations. We worked with Dr. Adam Seiver to enumerate and
characterize component intensive-care monitoring tasks and to delineate the space
of relevant knowledge. We developed an ontology and representation scheme for
important categories of knowledge (e.g., anatomy, physiology, pathology, therapy)
and assessed our approach by implementing a small amount of knowledge in each
category. We then enumerated key architectural requirements for BB-ICU and
identified those not met in existing Al architectures.

E. H. Shortliffe 28



5P41-RROO785-15 Details of Technical Progress

During the fall of 1987, we elaborated our initial ideas in the context of more
focused design and implementation activities. Exploiting and extending our BB1
architecture [KSL-84-16, KSL-88-22], we developed: (a) an asynchronous I/O
subsystem to provide integrated and asynchronous perception, action, and cognition;
(6) an intelligent I/O mediator to translate, interpret, and filter low-level data on
behalf of the application system; and (c) an I/O manager to coordinate the
mediator's activities with an application system's dynamic attentional focus. Working
within our BB* knowledge representation environment [KSL 86-38], we implemented
representations of the anatomy, physiology, and pathology of the respiratory system
as instances of corresponding elements of a generic flow system. We developed
reasoning components for continuous data interpretation and associative diagnosis of
observed symptoms. We also developed reasoning components that instantiate
generic models, such as the flow system model, to explain the causal relations
underlying associative diagnoses or to hypothesize plausible diagnoses in the
absence of associative knowledge. We demonstrated the application of the
reasoning components and respiratory knowledge to interpret, diagnose, and explain
respiratory data of the sort continuously monitored in the intensive-care unit. BB-ICU
Demo-1 comprises independently implemented versions of each of these system
components. BB-ICU Demo-2, which we completed in April, integrates these system
components.

Some of this work is reported in recent technical reports [KSL 87-31, KSL 87-67,
KSL 88-20, KSL 88-22). Other reports are in preparation. In addition, we have
given talks describing this work at: .the Carnegie-Mellon University Symposium on
Architectures for Intelligence, Boeing Computer Services in Seattle, Wa., Advanced
Decision Systems in Mountain View, Ca, and the DARPA Planning Workshop in
Austin, Tx.

2.3 - Advanced Architectures

Many applications, such as process. planning and_ control, maintenance,
troubleshooting, environmental control, and crisis management require knowledge-
based systems that can cope with large amounts of data and that produce responses
in real-time. The current hardware and software architectures for knowledge-based
systems cannot support such requirements. The most promising approach for
achieving orders of magnitude improvement in the quantitative performance of
knowledge-based systems is by exploiting concurrency on multiprocessor systems.
Based on near-term projections for integrated circuit technologies, it is clear that
highly parallel! multiprocessor computers consisting of 100's to 1000's of processors
and realizing a variety of concurrent architectures can be built. The major issue is
whether such computers can be effectively used to enhance the performance of
knowledge-based systems. Since 1985, the Knowledge Systems Laboratory at
Stanford University has been investigating this issue.

The goals and technical approach of this project, largely supported by DARPA under
the Strategic Computing Program, have been discussed in previous annual reports.
To summarize briefly, we seek to achieve two to three orders of magnitude speedup
in the execution of knowledge-based systems, by identifying and exploiting sources
of concurrency at all levels of system design: the application level, the problem
solving framework level, the programming language level and the hardware systems
architecture level. Due to the inherent complexity of the task and the lack of
theoretical foundations for parallel computation with ill-structured problems, we have
taken an empirical approach. During the first phase of the project, which was
concluded in July 1987, we made specific choices at each of the system levels,i.e.
taken a "vertical slice" through the design space, and have conducted several
experiments to investigate the effects of a wide variety of parameters on
performance.

29 E. H. Shortliffe



Details of Technical Progress 5P41-RROO785-15

Our research methodologyis:

e Select specific knowledge-based system applications, primarily signal
understanding applications.

e Encode these applications following various proposed concurrent
software models.

« Evaluate the qualitative and quantitative performance of the applications
running on simulated multiprocessor machines with respect to varying
hardware parameters, for example, number of processors and
communication protocols, and varying software organizations, for
example, degree of control centralization.

In the following discussion, we present the major components of our project, and for
each component we describe its current status.

2.3.1 - SIMPLE/CARE Multiprocessor Simulation System

Simulation of systems at an architectural level can offer an effective way to study
critical design choices if (1) the performance of the simulatoris adequate to examine
designs executing significant code bodies -- not just toy problems or small
application fragments, (2) the details of the simulation include the critical details of
the design, (3) the view of the design presented by the simulator instrumentation
leads to useful insights on potential problems with the design, and (4) there is
enough flexibility in the simulation system so that the asking of unplanned questions
is not suppressed by the weight of the mechanics involved in making changes either
in the design or its measurement.

SIMPLE/CARE is a simulation system which satisfies these requirements. It forms
the foundation for our empirical investigations of software architectures and hardware
system architectures for concurrent knowledge-based systems. SIMPLE is a CAD
(Computer Aided Design) system for hierarchical, multiple level specification of
computer architectures and includes an associated mixed-mode, event-based
simulator. CARE is a parameterized, multiprocessor array emulation specified in
SIMPLE's specification languages and running on SIMPLE☂s simulator. Our simulation
system is in use by several research groups at Stanford, and it has been ported to
several external sites including NASA Ames Research Center. A tutorial was held in
January, attended by representatives from the DoD, NASA and Boeing, which
described the CARE/SIMPLE system, as well as the LAMINA programming interface
(see below). The attendees received instruction in use of the system for making
measurements of the performance of various simulated multiprocessor applications.

The SIMPLE/CARE system is currently implemented in ZetaLisp and executes on
Texas Instrument Explorer and Symbolics 3600-class Lisp workstations. We have
recently started a reimplementation of the system in Common Lisp. One of our
proposed objectives during the coming year is to complete this reimplementation. A
Common Lisp version of SIMPLE/CARE will make it portable to a wide variety of
computer systems including Sun and MicroVAX workstations. This development will
necessarily be an ongoing task as Common Lisp standards, in particular, window
standards, evolve and as the inevitable commercial reinterpretations of standards
emerge.

The SIMPLE design specification system has design operators for automatically
generating array type multiprocessor architectures from a "unit cell" specification.
There is considerable interest, both at Stanford and elsewhere, in using the system

E. H. Shortliffe 30



5P41-RROO785-15 Details of Technical Progress

to specify and simulate other types of multiprocessor architectures. A second
proposed objective is to augment SIMPLE's design operators with recursive
operators for the generation of architectures using, for example, hierarchical busses
or recursive interconnection nets such as Omeganets.

2.3.2 - LAMINA Programming Interface

LAMINA provides extensions to Lisp for studying expressed concurrency in functional
programming, object oriented, and shared variable models of concurrent computation.
The implementation of the support for all three computational models is based on the
common notion of a stream, a data type which can be used to express pipelined
operations by representing the promise of a (potentially infinite) sequence of values.
LAMINA also provides system support for the management of software pipelines and
dynamic structure creation, relocation, and reclamation in a multiprocessor, multi-
address-space system.

Algorithms and applications written in LAMINA may be run on the SIMPLE/CARE
simulation system in order to study their execution on alternative multiprocessor
architectures.

The development of LAMINA wasessentially completed during the past year, and the
software is now reasonable stable. In order to make LAMINA available in the
community, we intend to port it to Common Lisp. We also expect that the
application research will motivate various extensions to the LAMINA programming
interface.

2.3.3 - Poligon Problem Solving Framework

Poligon [KSL 86-19, KSL 88-04] is a framework for the development of Blackboard-
like applications on a (simulated) multiprocessor. It consists of:

e A compiler, which compiles a high-level description of the Blackboard's

structure and the Knowledge to be applied by the system, to run ona
distributed memory multiprocessor.

e A run-time system which provides a debugging and testing environment
for Poligon programs as well as run-time support.

Both the compiler and the run-time system are thoroughly integrated with the
program development environment of Ti Lisp machines, the machine on which the
execution of Poligon programs are simulated.

Serial Blackboard Systems are implemented with the Nodes being represented as
records on the Blackboard. The Knowledge is encoded in Knowledge Sources.
These are typically compiled into procedures which are invoked by the Blackboard
System's kernel. There is some form of scheduler for the Knowledge, which invokes
one Knowledge Source after another. The Blackboard and the Knowledge Base both
share the same address space, though they are functionally distinct. Knowledge
Sources are "invoked" (executed) as a result of changes in the Blackboard placing
that change event in a queue used by the scheduler. The scheduler repeatedly
picks a Knowledge Source which is interested in the type of event at the end of the
queue.

Experiments with Poligon are by no means complete, but we have learned a number
of lessons thus far. Some of these lessons are enumerated below.

31 E. H. Shortliffe



Details of Technical Progress 5P41-RROO785-15

elt is very hard to write any program which implements either a
framework, such as Poligon or an application such as those which have
been mounted on Poligon. This is due largely to asynchronous side
effects. A system with better formal properties would be less error
prone in this respect but might well make muchlessefficient use of the
hardware. Thesedifficulties could also be caused byan insufficiency of
mechanisms to control coherencyin Poligon.

«In order to produce a reliable program it is necessary to write code
which makes no assumptions about anything that any other part of the
system might be doing. Failure to do so results in brittle systems.

« In order to achieve a coherent solution it was found to be necessary to
develop a number of programming methodologies. For example, the
creation of blackboard Nodes is tricky. Because each elementis likely
to represent some real-world object, it is important either to provide a
mechanism for resolving the conflict caused by multiple asynchronous
requests to create an element that represents the same thing or to
provide a mechanism for managing the creation of Nodes. Poligon opts
for the latter approach.

2.3.4 - CAGE Problem Solving Framework

CAGE [KSL 86-41, KSL 88-02] is a framework for building and executing
applications as a concurrent blackboard system. CAGE is based on the AGE [KSL
80-29] serial blackboard framework. It includes mechanisms for the concurrent
execution of knowledge sources, rules and parts of rules. The CAGE user has
complete control over which of these mechanisms are used. CAGE is designed to
execute on a shared-memory, multiprocessor system with tens to hundreds of
processors. It is implemented using Qlisp, a concurrent dialect of Lisp designed for
multiprocessors with a single, shared address space. CAGE currently executes on a
shared-memory variant of CARE simulated using the SIMPLE simulation system.

Weare nearing completion of a series of end-to-end experiments for evaluating the
utility and performance of the CAGE concurrent blackboard framework. During the
coming year we intend to complete these experiments and disseminate the results.

2.3.5 - CAGE, Poligon and LAMINA Comparative Experiments

During the past two years we have been developing application software and
machine architecture models to support a series of end-to-end experiments
comparing various concurrent programming systems for knowledge-based
applications. The goals of these experiments are to:

¢ Obtain quantitative comparisons of the performance of the programming
systems.

¢ Gain insights into how different concurrent programming models lead to
different (or similar) application decomposition and organization.

« Force the refinement of the concurrent programming systems so as to
better support application development.

« Gain insights into the ease or difficulty of writing application code in
each of the programming systems.

E. H. Shortliffe 32



5P41-RROO785-15 Details of Technica! Progress

The common application for these experiments is Elint [KSL 86-69], a real-time,
knowledge-based system for integrating pre-processed, passively acquired radar
emissions from aircraft. This Elint application has been implemented in three
different concurrent programming systems: LAMINA, Poligon and CAGE.

Each of the implemented applications are executed and evaluated using various input
data sets and varying numbers of processors.

Application code written in either LAMINA or Poligon compiles to code which
executes on the CARE architecture. CAGE, however, is targeted toward a single
address space, shared variable multiprocessor architecture. CAGE is implemented in

QLisp, a concurrent Lisp for shared variable multiprocessors. To support CAGE we
had to develop a multiprocessor ☜blackboard machine" variant of CARE. This
blackboard machine models a shared variable architecture and includes the
mechanisms and instruments necessary to manage and study memory contention.
The architecture implements the blackboard and the control data structures in global,
shared memory. It directly supports the CAGE system and application code written
in QLisp.

During the past year we have:

e Completed the implementation of the the Elint application in each of the
three concurrent programming systems.

« Completed the development of the blackboard machine variant of CARE.

e Developed an experiment plan for the comparative studies.

« Developed a new measure of speedup as a function of the numberof

processors in a multiprocessor system. This measure is useful for
evaluating system performance of real time applications and is based on
the concept of maximum sustainable input data rate.

« Completed the first set of experiments for each of the three
programming systems.

2.3.6 - The AIRTRAC Application

AIRTRAC [KSL 86-20] is the primary application driving our development of
concurrent knowledge-based system programming methodologies. Also, it is one of
the basic applications used for our multiprocessor architecture performance
experiments. AIRTRAC is a knowledge-based signal interpretation and information
fusion system. The system attempts: to identify, track, and predict the future
behavior of aircraft. In particular, it attempts to recognize aircraft which might be
engaged in covert activity, for example, smuggling. The inputs to AIRTRAC are
periodic radar tracking system reports, a priori, filed flight plans for some aircraft,
and occasional intelligence reports about suspected covert activity.

AIRTRAC is designed to be sufficiently complex and realistic to adequately test
various ideas about concurrent problem solving on multiprocessor machine
architectures. The AIRTRAC application involves continuous input data streams,
typical of real-time signal interpretation problems. Such problems often require a
level of computational power two to three orders of magnitude beyond what is
currently available. Moreover, the application uses data-driven, expectation-driven
and model-driven styles of reasoning. These reasoning styles encompass a wide
range of paradigmsin artificial intelligence.

33 E. H. Shortliffe



Details of Technica! Progress 5P41-RROO785-15

The AIRTRAC Data Association Module and associated experiments were completed
as of summer, 1987 [KSL 87-34]. The experiments were performed using the
SIMPLE/CARE multiprocessor simulation system. They demonstrated that almost
linear speedup as a function of the number of processors can be achieved (at least
up to 100 processors) for a periodic data-driven knowledge-based system such as
the Data Association Module.

During the past year, the design and knowledge acquisition for the Path Association
Module was completed. Over one half of the LAMINA code for this module has been
implemented and debugged.

The completed AIRTRAC application will provide an end-to-end example of a
concurrent, knowledge-based signal interpretation system. It will demonstrate the
benefits and costs of implementing and executing such systems on multiprocessor
architectures. Also, the application is sufficiently complex that it will serve as
important test case for evaluating multiprocessor architectures for knowledge-based
systems and "tuning" the engineering parameters for such systems.

2.4 - Knowledge Acquisition and Machine Learning

Our research in machine learning has focused on several distinct problem domains
including medical (NEOMYCIN/HERACLES), physics (ABLE), and biochemical
(PROTEAN)in addition to domain-independent investigations. We also are motivated
by the need for effective tools for knowledge acquisition and maintenance of
knowledge bases (IMPULSE and STROBE for FRM, BBEDIT, KSEDIT with BB1).

2.4.1 - Learning by Chunking

Chunking is a learning mechanism that acquires rules from goal-based experience.
SOAR is a general problem-solving architecture with a rule-based memory that can
use the learning capabilities of chunking for the acquisition and use of macro-
operators. Rosenbloom et al. are investigating chunking in SOAR and find that
chunking obtains extra scope and generality from its intimate connection with the
sophisticated problem solver (SOAR) and the memory organization of the production
system. Another emphasis in SOAR is Explanation-Based Learning, a powerful
technique that generalizes concepts learned from examples. In this past year, SOAR

has demonstrated acquisition of diagnostic problem solving knowledge (similar to that
in NEOMYCIN), learning from multiple examples and from analogy, and learning
attribute-value information to acquire features of a single object incrementally,
reusing known objects as values of attributes. The work on SOAR is continuing
under Dr. Paul Rosenbloom at ISI in Los Angeles.

2.4.2 - Inductive Rule Learning

In previous reports, we discussed the work of Buchanan, et al. on incremental
learning process from examples with the rule-learning system RL (described in the
1986 SUMEX report). This work has continued, and has been applied to the domain
of linear accelerator physics (see below). Results from the RL research indicate that
intelligent selection of instances based upon knowledge of the state of the evolving
theory results in a faster convergence of an evolving theory toward the target
concept, requiring many fewer cases for learning.

In the paper Simulation-Assisted Inductive Learning, to be presented at the 1988
AAAI conference in Minnesota, Buchanan, Clearwater, et al. describe the work done
as a collaborative effort between the Rule Learner project and the Automated Beam

E. H. Shortliffe 34



5P41-RROO785-15 Details of Technical Progress

Line Experiment project. The focus of this work is to show how RL can be usedin
a real-world domain with sparse data by working with a simulator which numerically
models the domain. The domain is the classification and location of faults in a
particle accelerator. This study demonstrates the effectiveness of RL even in this
noisy, numerical domain. Some problems in generating the best examples from
which to learn rules and how to learn the best rules from a given set of examples
are explored. In addition, methods of weighing the evidence when several rules fire
are being investigated.

2.4.3 - Learning Apprentice

In addition, we continued several investigations of methods for bui!ding knowledge
bases for knowledge-based programs. Knowledge engineering remains the
"standard" method of building a knowledge base for commercial systems, so we
have investigated ways of making that more efficient. Technical reports KSL 87-58

and KSL 87-62 describe some of the results, pertaining mostly to the principles of
starting with a sound problem solving strategy and of exploratory programming.
Reports KSL 87-60 and KSL 87-67 describe work on learning apprentice methods.

In last year's SUMEX report, we reported results on the ODYSSEUS apprenticeship
learning program, described by Wilkins in KSL 86-63, which is designed to refine

and debug knowledge bases for the HERACLES expert system shell. ODYSSEUS
analyzes the behavior of a human specialist using two underlying domain theories, a

strategy theory for the problem solving method (heuristic classification), and an
inductive theory based on past problem solving sessions. ODYSSEUS improves the
knowledge base for the expert system shell, identifying bugs in the system's
knowledge in the process of following the line-of-reasoning of an expert, serving as
a knowledge acquisition subsystem. The system can also be used as part of an
intelligent tutor, identifying problems in a novice's understanding and serving as
student modeler for tutoring systems.

Wilkins, et al. illustrate that an explicit representation of the problem solving method
and underlying theories of the problem domain provide a powerful basis for
automating learning for expert system shells [KSL 86-62]. In the last year we
began the creation of a case library from medical records for the NEOMYCIN domain.
This library is essential for apprenticeship learning in ODYSSEUS in three ways.

First, experiments have shown that the existing knowledge bases are too
impoverished to follow the reasoning of an expert, and a case library will allow an

induction system to automatically expand the domain knowledge to overcome this
limitation. Second, when the learning system fails to explain an action of a student
or expert correctly, the critic component of the system generates thousands of
conjectures. To filter these requires a case library. Finally, the case library will
allow us to demonstrate that apprenticeship learning can improve the performance of
an expert system.

2.5 - Pragmatic Approaches to Reasoning Under Uncertainty

The goal of this project is to investigate pragmatic approaches to computer-based
probabilistic reasoning systems. In the past, artificial intelligence researchers have
often avoided probability theory for reasoning with uncertainty because of the
perception that the application of probability is invariably associated with a
commitment to intractable algorithms and an inordinate amount of knowledge
acquisition time. The development of efficient probability inference and assessment
techniques will allow investigators to apply a theoretically justified theory of belief

entailment to complex problems. Specifically, this project seeks to (1) develop

35 E. H. Shortliffe



Details of Technical Progress 5P41-RROO785-15

techniques for using knowledge about problem-solving tradeoffs to dynamicaliy
optimize the value of computer performance to the user, (2) construct efficient
algorithms for probabilistic reasoning, and (3) investigate pragmatic techniques for
the elicitation of knowledge from experts.

2.5.1 - Reasoning about inference tradeoffs

Research on reasoning tradeoffs has focused on the time vs. quality -of-result
tradeoff in several domains. Additionally, tradeoffs arising with the representation of
knowledge and explanation of inference within a probabilistic framework have been
identified [KSL 88-13] The growing perspective of this research is that problems
traditionally ascribed to knowledge representation, inference, and explanation in
probability-based reasoning systems have been encountered because ofinsufficient
attention given to tradeoffs under bounded or varying resources available for
engineering, computation, or cognition [KSL 88-13,87-28].

Notable research on inference tradeoffs during this past year has been the
implementation of a prototype strategic reasoner for the analysis of tradeoffs.
Fundamental issues of control under varying resource limitations were explored with
simple sorting algorithms [KSL 88-3]. Some of this work will be reported in an
article appearing in the AAAI conference this summer. Other work on inference
tradeoffs has focused on applying a similar computational architecture to control the
selection of alternative belief-network inference strategies [KSL 87-64].

Work has been carried out on the implementation and characterization of useful
classes of probabilistic approximation algorithms that contain explicit tradeoffs. There
has been special interest in the development of flexible strategies for reasoning
under uncertainty with varying resource limitations. Recent work along these lines
has focused on the development of modified versions of a probabilistic inference
technique developed by Pearl [KSL 88-27]. The new approach allows. the
performance of the algorithm to be ☜gracefully degraded" under resource limitations,
through pruning the consideration of terms in accordance with their expected effect
on the final answer. Preliminary empirical analysis of the time/accuracy tradeoff for
this algorithm has been carried out on a multiply-connected belief network.

2.5.2 - Efficient probabilistic inference algorithms

During the past year, two of our primary goals have been to implement several
known probabilistic inference algorithms and begin to test their efficiency. In
particular, we have implemented Pearl's algorithm for multiply-connected belief
networks and in the process we have gained important insights into the nature of the
algorithm [KSL 88-27]. These insights have allowed us to make design choices that
yield an efficient implementation the algorithm. In particular, we have designed and
developed a fast method for finding and using a cutset of nodes for inference in
networks that contain complex loops. We also are working to improve the efficiency
of updating belief networks that do not contain loops; our current algorithm is able to
update a_ singly-connected network of propositional variables at a rate of
approximately 50 nodes per second on a MacintoshII in Turbo Pascal.

Our implementation of the Pearl algorithm has been successfully tested using a set
of benchmarks of varying complexity that we have developed. These benchmarks
soon will be used to test comparatively the computational time complexity of several
additional inference algorithms. We also have begun a coilaboration with a
researchers at the University of Aalborg in Denmark who are leading an effort in
Europe to develop expert systems based on belief networks. We have already

E. H. Shortliffe 36



5P41-RROO785-15 Details of Technical Progress

shared some of our benchmarks with them. In the coming months we anticipate
increased collaboration that will include comparison of benchmark timing results and
the exchange of algorithms.

The Pearl algorithm that we have implemented will serve as one type of exact
algorithm. In addition, we are currently implementing a probabilistic inference
algorithm by Lauritzen and Spiegelhalter. The Pearl and Lauritzen/Spiegelhalter
algorithms will be our initial set of exact algorithms. We also plan to study
approximation and heuristic techniques for probabilistic inference. This is particularly
important in light of our proof that exact probabilistic inference using belief networks
is NP-hard [KSL 87-27]. We previously implemented a stochastic algorithm and will
use this as our initial approximation algorithm. An neural-network algorithm will be
used as an initial heuristic algorithm. We anticipate that by the end of the summer
we can begin to compare these algorithms on sets of theoretical and real inference
problems. These tests will provide important information for designing new algorithms
in the coming year.

Several other researchers in the Medical Computer Science Group are currently

using our inference algorithms to develop expert systems based on belief networks.
Systems that presently are being developed include 1) an intelligent anesthesia
monitor, 2) a diagnostic system for the Intensive Care Unit, and 3) a system that
assists in evaluating the statistical validity of a clinical drug trial report. These
applications have given us practical feedback about the level of inference
performance that is necessary in real domains. Although these applications are still
in the early stages of development, they suggest that improved inference efficiency
will be a critical issue in producing practical expert systems that are based on belief
networks.

During the past year we have developed a general knowledge engineering
environment called KNET (Knowledge NETwork) on a Macintosh Il in MPW Pascal
[see Chavez article]. KNET is a flexible graphical interface system for entering a
belief network [see Lehmann article] and running cases using a belief network. It
provides a general software system foundation from which to experiment with
different methods for pragmatic probabilistic reasoning. For example, a key feature
is that KNET provides a modular environment in which different inference techniques
can be tested. We recently were able quickly to install Pearl's inference algorithm
into KNET. We soon plan to have several other inference algorithms running in
KNET.

Although the emphasis in the early stages of this work has been on developing an
initial set of algorithms, we have also designed several new techniques. One
technique uses dynamic programming to solve efficiently a large class of complex
probabilistic inference problems. We have not yet implemented and tested this
algorithm. However, it appears that for some types of complex belief network

topologies this algorithm will be very fast relative to current techniques. Another
method that was recently developed in our group allows any belief network algorithm
to be used to solve decision problems (i.e., influence diagram problems) [KSL
88-28]. This general method significantly broadens the scope of application of our
work on belief network algorithms. Of particular interest, it allows currently available
exact, approximation, and heuristic belief network algorithms to be easily adapted to
solve decision making problems.

37 E. H. Shortliffe



Details of Technical Progress 5P41-RRO0785-15

2.5.3 - Probability assessment

During the past year, the majority of the research outlined for the reasoning-by-two
assessment method, now called similarity networks, was completed. We began by
implementing the similarity network approach in Turbo Pascal on the Macintosh I.
We then evaluated the knowledge assessment tool by using the program to build a
small component of the Pathfinder knowledge base, a module that helps a novice
pathologist classify spherical structures seen in a lymph-node tissue section. Using
the program, our expert was quickly able to identify the morphologic features
relevant to the classification task and was able to specify the dependencies among
these features.

Upon using the program for probability assessment, it became clear that a
generalization of the similarity network would be useful for reducing the numberof
assessments required. In particular, it became clear that arbitrary sets of hypotheses
should be allowed to be clustered together and labeled as ☜similar.☝ A pen and
pencil approach to eliciting probabilities in this manner was developed and used to
assess the probabilities required for the entire lymph-node pathology domain. In
assessing the probabilities, it was assumed that all observations are conditionally
independent on each hypothesis. The approach was quite successful as it reduced
the number of probability assessments required of the expert by a factor of
approximately twenty (from 30,000 assessments to roughly 1,500).

Finally, the performance of the knowledge base constructed in this manner was
evaluated [KSL 88-38]. In doing so, a new evaluation metric based in decision-
theory was developed. The results of the evaluation demonstrated that the
performance of the knowledge base was close to that of the expert. However, the
results also showed that there is still room for improving the knowledge base
through the representation of dependencies among features.

2.5.4 - Collaborations

During the past year we have continued to maintain contact with a number of
Stanford faculty who are interested in the research goals of this grant. We have
also collaborated with visitors from outside of Stanford. In particular, Prof. Max
Henrion visited our group during the Autumn quarter. We continue to communicate
frequently with him about our common research interests. We also have benefited
from visits by Dr. David Spiegelnalter (a statistician from the Medical Research
Council in England), Dr. Stig Andersen (a computer scientist from Aalborg University
in Denmark), and Prof. Ross Shachter (a Stanford faculty member on sabbatical at
Duke University).

Most of the members of our group were able to attend the recent conference on
Influence Diagrams in Berkeley. We have submitted several papers to the AAAI
Uncertainty Workshop this year and most of us plan to attend this workshop in
August.

E. H. Shortliffe 38



5P41-RROO785-15 Details of Technical Progress

ill.A.2.4. Core System Development

1 - Introduction

In this section we describe progress on our core system development and work
toward a distributed AIM community. in last year's report, we discussed the
motivations and plans for our core system development work along four dimensions:
1) the motivation for the shift of the SUMEX-AIM community from a_ central
mainframe-based computing resource model to a largely distributed workstation-
based model; 2) the prospects for workstation technology and vendor support for a
diverse distributed AIM community; 3) the projected core SUMEX-AIM systems tasks
needed to complement vendor developments to realize distributed community
operation; and 4) the integration, dissemination, and management of the shift of the
AIM community from a centralized to a more distributed operation, including the
remaining central resource functions. These were expandedstill further at a site
visit neld in August 1987 in response to our request to the National Advisory
Research Resources Council to restore the final 2 years of our grant award.
Following a special study section review and reconsideration by the Council, our
plan and the full S-year grant award were approved. The review group's concluding
recommendations included the following guidelines:

"Consistent with its charter as a national resource, SUMEX should focus its
systems activities on producing a distributed medical research environment
that can be easily reproduced at other sites. It should also continue to play
the important role it plays today as a repository of systems information and
expertise for the medical Al research community, as well as the larger
computer science community. However, it should avoid trying to beall things
to all people and should focus its attention on a small number of standardized
hardware and software configurations. A strong effort should be made to
acquire information about related systerns activities at other sites and to avoid
duplication of effort. These guidelines should be used to establish priorities
among the proposed set of system activities and to apply effort
appropriately.☝

The review committee's recommendation was very muchin line with our own goals
to more sharply focus our development resources and much of our effort over the
past year has been devoted to that end. Since our 1980 renewal proposal in which
our move to distributed workstation technologies began, we had taken on the
development and support of a wide array of systems including mainframes (DEC
2060 and 2020), network servers (2 DEC VAX 11/750 UNIX file servers, a SUN
3/180 UNIX file server, a Xerox file server, 7 network laser printers, Ethernet
gateways and TIP☂s, and ARPANET and TELENET wide-area access systems), and
workstations (50 Xerox D-machines, 20 TI Explorers, 6 Symbolics machines, 5
Hewlett-Packard 9836 workstations, and 3 SUN 3/75 workstations). Whereas we
cannot drop support for these systems irresponsibly, we resolved to pick a much
more limited environment on which to focus our long-term systems development
efforts and to phase out support for the other systems as quickly as possible.

In summary, we have chosen Apple Macintosh li workstations as the general
computing environment for researchers and staff, Tl Explorer Lisp machines (including
the microExplorer Macintosh coprocessor) as the near-term high-performance Lisp
research environment, and a SUN-4 as the central system network server (wide- and
local-area network interfaces,file services, printing services, etc.).

39 E. H. Shortliffe



Details of Technical Progress 5P41-RROO785-15

2 - Distributed System Evaluation and Selection

2.1 - Design Goals

In planning for AIM community computing needs for the next few years to replace
and upgrade the powerful and easy-to-use general computing tools and network
services of the 2060, several goals were identified:

e The work environment should be modern and combine graphics, pointing, and

traditional keyboard modalities of interaction, as it is expected to be the
primary work environment for some years to come.

» The system should support the most powerful Al research and Lisp

development environment available today, possibly involving special-purpose
hardware.

e The system should support small-to-medium-size Al and Lisp-based research
work without requiring special hardware.

e The cost per person should be low enough as to permit putting a machine on
or near every desk and to consider the system as a potential Al delivery
environment.

«The system should integrate well into a heterogeneous computing
environment typical of AIM research work.

e The system should be capable of editing, organizing, and printing large
documents, such as theses and books.

e The system should be capable of generating and editing state-of the art
graphics.

e The design should be incrementally extendable and augmentable as new
hardware and software technologies appear and as the number of users
fluctuates.

« The design should be simple enough as to refocus our systems work on a
smaller number of machines and cost-effective enough as to be replicable at
smaller AIM sites that wish to benefit from our experience.

« The design should permit easy data sharing and exchange with collaborators
at other sites and within Stanford University.

In addition to user-related computing tools, other heavily-used network services
traditionally provided by the shared 2060, must be replaced. These include wide-
area network access (ARPANET and TELENET), electronic mail (transmission/routing,
reception, and user access), community bboards, file service, and print spooling.

2.2 - Evaluation Results

We examined many potential configurations before deciding on the solution involving

Mac il's, microExplorer's, and the SUN-4 . Many of the considerations were
technical in terms of the tools and services provided by the systems and many had
to do with user preferences for interface style and environment.

Timesharing machines were eliminated for their lack of modern interactive
productivity tools. (The many reasons for the trend from timesharing to workstations

E. H. Shortliffe 40



5P41-RROO785-15 Details of Technical Progress

have been discussed in previous annual reports. The pressures behind this trend
have grown stronger with time.)

Xerox lisp machines were eliminated by virtue of their uniqueness and the
questionable future of the hardware product line. Stand-alone TI (and other similar)
Lisp machines were eliminated by virtue of their uniqueness and high cost and lack
of general computing tools for mail, document preparation, etc.

Sun workstations were eliminated by virtue of their relatively higher cost and
engineering orientation and their dependence on the UNIX user interface which
received almost uniformly negative comment in a KSL user questionnaire about
computing environment preferences.

IBM PC's were eliminated because of current limitations in their primitive operating

system, window system, and interface style, when compared with the Macintosh.

Of course, this kind of evaluation is very complex and the above reflects only a
summary of key issues. There are many reasons for or against any of the above
machines not fully enumerated here. In the end, we chose the Apple Macintosh II
primarily because of the following considerations:

e the Mac has a powerful, intuitive, and consistently applied icon-based user
interface that facilitates wide use and effectiveness.

« The Mac Il is a powerful machine (Motorola 68020-based) with an open

architecture that provides long-term configuration flexibility (e.g., for color,
coprocessing units like the microExplorer, memory, i/o devices, etc.).

e The Macintosh is popular and is used by a growing number of our

collaborators. Many members of the AIM community specifically endorsed the
Macintosh as their machine of choice and many already have Macintoshes at
home.

« Apple gives educational institutions a substantial discount. This and the low

price of third-party disks meant we could put a Mac on almost every desk.

« There is a large variety of third-party hardware and software available.
Competition and volume mean lowerprices; especially when compared to Sun
or DEC third-party offerings.

« Texas Instruments announced the microExplorer, a board-level product which
gives the user a custom VLSI lisp machine inside his Mac, for a fraction of
the cost of Ti's stand-alone Explorer workstation product.

To replace the network service functions of the SUMEX-AIM 2060, we chose a Sun
4/280 system. We investigated competitive systems, for example, the DEC VAX and
Pyramid Technology 9000 series product line. Configurations are available from 3.5
to 25 MIPS and with individual |/O channel speeds up to 11 MBytes/Sec. However,
we decided that the SUN-4 was morecosteffective, had more popularity at Stanford
and at other universities, and offered outstanding research network service software.
This configuration is at the beginning of its product cycle and can be expected to
serve for many years to come.

The SUN 4/280 approach was made even moreattractive by the opportunity to have
it equipped with state-of-the-art 900 megabyte disks. This option was presented to
us after a review of second-source disks indicated that SUN's then offered Fujitsu
Double Eagle units (575 megabytes) were not the optimum in cost-effectiveness.

41 E. H. Shortliffe



Details of Technical Progress 5P41-RROO785-15

2.3 - Configuration

The working plan we eventually settled on called for a Sun 4/280, 69 MacintoshII
workstations, 10 TI microExplorer upgrades, 7 Kinetics FastPath gateways, and a
combination of upgrade packages yielding 2 20 page/minute PostScript laser
printers.

The. Sun 4/280 is configured with 32 megabytes of memory and 1.8 gigabytes of
disk space. By choosing this package we were able to purchase the system for
40% off list price. An ARPANETinterface for the Sun serveris available and will be
purchased in the near future. This will make the new server more readily available
to AIM users outside Stanford. This server is currently up and undergoing test and
configuration.

By a special arrangement, we purchased 66 Macintosh Il computers directly from
Apple, each with 1 MB of memory (no disk, no display). At this writing, almost all of
the the Macintoshes have been installed. Three units have proven defective and are
being repaired under warranty.

A package of 10 microExplorer upgrades was ordered from Texas instruments. They
arrived during the preparation of this report and will be installed shortly. (The
features of the microExplorer are described in the Explorers section of this report.)

10 100 MB disks were purchased from Rodime and installed in the Macintoshes
receiving the microExplorer upgrades. (A large paging disk is required by the
microExplorer's use of virtual memory.) The balance of the Macintoshes were
outfitted with 20 MB disks, also purchased from Rodime. The choice of Rodime
disks was suggested by their low price (30% less than Apple's higher-education
discount price) and long warranty (12 months). All disks have been installed and so
far none have failed. Small disks were deemed sufficient, as users are encouraged
to keep their files on the Sun file server (using the AppleShare filing protocol) for
reasons of data backup and security.

Our experience with large displays on other workstations suggested that we wanted
the largest displays the market could offer at a reasonable price. We chose 33
Moniterm 19☝ displays and 33 Moniterm 24" displays, which we were able to obtain
in a package at 40% off list price. Our experience with other third-party Macintosh
displays told us that a resolution of no greater than 72 dots/inch is easiest on the
eyes. Both of the models we purchased conform to this resolution.

Also from our previous experience with Macintoshes, we knew that many applications
require more than 1 MB of memory. In ourinitial purchase, we specified 12 4 MB
memory upgrades. These were installed in 12 Macintoshes used primarily by staff
and student developers of Mac software. The original 1 MB of memory was
removed from each of these machines and added to 12 other machines, making a
total of 2 MB in each of those machines. (10 of the 12 were the microExplorers.)
We have already concluded that our memory demands require that we do the same
with the remaining 1 MB Mac's. Apple's memory orders are now backlogged 5
months, so we have ordered from National Semiconductor instead.

To network the majority of the Macintoshes in the near term, we chose the Farallon
PhoneNet system which enabled us to reuse terminal wiring we had previously
installed in all offices and student areas. In addition to this reason, we chose
PhoneNet over Apple's LocalTalk wiring system because PhoneNet permits nets 3-4
times larger (by reason of different shielding and impedance characteristics).

To connect the PhoneNet networks to the SUMEX-AIM Ethernet, we choseto install
7 Kinetics FastPath gateways. The FastPath is a commercial spin off resulting from

E. H. Shortliffe 42



5P41-RROO785-15 Details of Technical Progress

the SUMEX work on the SEAGATE gateway. Owing to an earlier royalty payment
agreement with Kinetics, we were able to procure the FastPath gateways at no cost.
The number of gateways was chosen primarily because of the limited throughput
characteristics of PhoneNet (230.4 Kb), but also to provide for hardware redundancy.

To provide printing services for this number of Macintoshes, it was necessary to
procure additional PostScript printers. Although Apple offers a substantial discount
on its LaserWriter products to its higher-education customers, the 8 page per minute
maximum speed (typically less) was deemed too low for our demand printing needs.
(Other complaints about the design of the LaserWriter concerned the small paper
tray and toner capacity.) As noted in the Printing Services section of this report, we
obtained a no-cost PostScript upgrade for our 20 page per minute Imagen 3320
Printer in consideration of our having beta tested the upgrade product. Our
experience with the basic 3320 product over the past year has been positive. Our
positive reaction to the PostScript upgrade convinced us that duplicating the
configuration in our other offices was a good idea. We were able to do this by
upgrading an Imagen 12/300 to a 3320 PostScript product at a 30% discount. The
3320 is appealing mostly for its print quality, speed, and minimal maintenance
requirements. It holds a ream of paper and can print on 11" x 17☝ paper.

2.4 - More Details about the Transition Plan

Having selected the Macintosh and microExplorer systems for our work, many
additional decisions remained to select, configure, and integrate the routine
computing environments for our users. The following summarizes this work.

Text Processing - Editing

There are many criteria for a system text editor including:

« Easy to learn

¢ Available from various contexts so that similar techniques can be used in
editing mail, reports, and code.

« Powerful manipulation facilities allowing structures such as words, lines,
paragraphs, pages, expressions, code blocks, etc. to be selected,
moved, copied, reformatted, transposed, etc.

e Interchange ability allowing at least plain text to be imported from other
systems and exported back to them.

e Extensibility in the form of keystroke macros and, ideally, customization
libraries allowing us to write packages that make the editor "understand"
a new kind of document structure.

Most of the commercially available Macintosh editors are targeted to desk-top
publishing and so are fairly easy to use, but have manipulation facilities only for
words, lines, paragraphs, sections, and pages. They are sadly lacking in

understanding of other types of document structures such as programming languages
or electronic messages. These editors typically offer interchange of "plain text"
ASCll-only documents. They uniformly offer negligible extensibility.

Of the systems we've looked at, MicroSoft Word has proven most useful of those
currently on the market, so we are using it in the meantime. Early demonstrations
and tests of FullWrite Professional (marketed by Ashton-Tate) indicate that it may be

43 E. H. Shortliffe



Details of Technical Progress 5P41-RROO785-15

superior to Word but its) commercial release is just taking place. The non-
commercial GnuEmacs might offer a complimentary solution as it is an outgrowth of

the Emacs editor widely used in the AIM community. It offers familiarity and
powerful extensibility, but it does not offer the easy-to-use interface and multi-font
display expected on the Macintosh, and having two different editors would
complicate matters.

in the coming year we plan to:

e Track new editor programs, seeking one that better meets our criteria

« Talk with editor vendors to encourage the addition of the desired
features

e Further investigate GnuEmacs for the Macintosh Il

Text Processing - Aids

Most of the commercial text processing (TP) packages that we've looked at have
built-in spelling checkers, sorting, hyphenation, formsfilling, etc.

Text Processing - Graphics

MacDraw, MacPaint, and the other Macintosh drawing programs offer state-of-the-art
TP graphics capabilities. Pictures from these programs can almost always be
integrated into a document being prepared with one of the commercial TP systems.

Text Processing - Formatting

Most of the commercial TP systems are ☜What You See Is What You Get
(WYSIWYG) editors, giving an on-screen representation of the final document during

editing. The formatting quality and style control is quite good in the better systems,
but we have found that some documentsstill require the extremely precise control
offered by TeX and so are also using it, with it's "compile the manuscript with
embedded commands☝ Style interface.

Text Processing - Bibliographic References

Another major shortcoming of the TP systems is the lack of automatic bibliographic
reference generation and formatting. in writing scientific papers it is important to
cite relevant work, and we have found it extremely useful to be able to extract the
significant information from a large bibliographic database by placing a reference key
where the citation should appear in the text. We are pursuing TP vendors in the
hopes that they will implement this facility as well as investigating development of an
auxiliary program to handle bibliography generation.

Printing

Macintosh printing is fairly well developed in that most programs utilize the system-
defined routines to print. We have installed PostScript on Imagen printers as well as
Apple LaserWriters and are in the process of bringing up a spooling system on the
file server.

E. H. Shortliffe 44



5P41-RROO785-15 Details of Technical Progress

Help Facilities

Most programs have built-in help on the Macintosh, as well as reasonably consistent
interfaces, but this is not enough. Wefind that users are still confused so we are
undertaking to produce short introductory documents to help users get started, and
to point them in the right direction. We will investigate using HyperCard to organize
this data.

System Information

As the system configuration has gelled we have begun thinking more and more about
tools and protocols for getting information about the status of the overall system to
the users and maintainers. We will need to address network loading, user location,
resource usage (file space, printing, computing cycles), and status information for
individual elements of the distributed computing environment. We also need access
to personnel information, bulletin boards, and other shared databases.

Interpersonal Communication

See the section on electronic mail development

Systems Building Tools

We are developing expertise in the Macintosh Programmer's Workbench (MPW)
environment, including with C and PASCAL, and HyperCard. We are also tracking
Allegro CommonLisp, and Neuron Data's NExpert.

Filing

Weplan to stay with the strategy of a few centrally located file servers, but the
local disks on the Mac's complicate the system. The foremost concern is data
backup. We have sketched out a design that would automatically copy new versions
of documents (files) created on the Macintosh to a reliable file server (i.e., one that
is backed up to tape). This backup program will allow for exclusion of some files
(e.g., temporary files) and will make an effort to not have multiple copies of the
same file on the server.

Also of significance to users who keep files on the Mac rather than a file server is
the resultant inaccessibility from other computers. The proposed backup scheme
would alleviate this problem as well. A full UNIX-based file backup and archival
system is under consideration for the servers.

3 - R&D Task Plan -- Update and Progress

In the presentation to the site visit review team and Council, we layed out a detailed
plan for our developments (see Figure 1). The following summarizes our pruning and
reprioritization of those goals, based on the Council review, and progress this past
year. In general, wherever we showed parallel developments to maintain capabilities
among Xerox, Symbolics, Tl, and other workstations, we have restricted our efforts to
the Mac and Explorer environments, in accord with the Council recommendation for a
focus of effort. While we continue to stay abreast of new workstation hardware and
software, we have concentrated our system development work in the following areas
for the Mac/Explorer environments. Progress in some areas has beenlimited by the
reductions in systems manpowernecessitated by NIH cuts in our award funding.

45 E. H. Shortliffe



Details of Technical Progress 5P41-RROO785-15

3.1 - Remote Workstation Access

¢ TIP TCP-IP support: We now have TCP-IP software running in our
EtherTIPs.

« Workstation TCP-IP access: Each vendor has supplied the requisite
software.

¢ TELENET X.25/TCP-IP Ethernet Gateway: The DEVELCON gateway has
been installed and is used by the SUMEX-AIM community for TELENET
access to the DEC 2060.

e TELENET TELNET access (TCP-IP): The DEVELCON gateway is a bi-
directional protocol translating gateway between X.25 and TCP-IP, and
thus,fulfills this requirement.

3.2 - Remote Virtual Graphics

» X CommonLisp client & server: A Common Lisp X (CLX) client has been
released for Tl Explorers, SUN Workstations, and Symbolics. An alpha
release of a CLX server is expected from TI this Summer. Since Xerox
is moving its lisp environment to SUN workstations, and CLX runs on
SUNs, we are not going to port CLX to Xerox D-machines. X runs under
Apple UNIX (AUX) on MAC il's but is not implemented for the Apple
Operating System (This latter operating system has its own graphics
protocol, MacWorkstation, which we are experimenting with).

e Common Window Application standard/implementation: We have not been
able to give adequate attention to this item because of staff and
budgetary constraints. It is worth noting that the Common Lisp User
Environment (CLUE) is a window system defined on top of CLX and is
currently in use in the KSL.

» Develop/Extend Virtual Graphics applications: Very little progress has
been made in this area because of staff and budgetary constraints. We
intend to emphasize the development of virtual graphics applications
beginning this summer.

3.3 - Distributed Mail System

« InterLisp mail reader/composer: This software is completed, and is now
part of the Lyric TCP-full-sysout. No further Xerox work is planned.

e Redesign IMAP protocol (IMAP-2): This has been completed.

e 2060 IMAP-2 Server: This has been completed.

e UNIX IMAP-2 Server: This has been completed, and is currently being
alpha tested.

« Common Lisp mail reader/composer: The TI version should be completed
and in initial testing by the end of June 1988. No work is planned on a
Symbolics version. There are similarly no plans to translate the Xerox
interLisp client into Xerox Common Lisp given Xerox's plans to move to
SUN's, and the existence of InterLisp within the Xerox environment for
the foreseeable future.

E. H. Shortliffe 46



5P41-RROO785-15 Details of Technical Progress

« Update Common Lisp IMAP-2 Clients: This is completed.

e UNIX mail client/reader/composer: This project is on the backburner
because of staff limitations, and the small number of SUN clients in use
at SUMEX-AIM (a Macintosh-ll client is underway for the Apple operating
system rather than AUX, since the former is the primary OS in use at
SUMEX-AIM). We have imported a UNIX version of the 2060 mail
reader/composercalled MM-C which was written at Columbia University.
It is not a distributed mail system in that the reader/composer and mail
file are assumed to reside on the same machine. The MM-C system will
be used to provide national community and home mail services on the
SUN-4 until further versions of the IMAP-2 clients are available.

e Enhance reader/composer tools: The reader/composer tools have
undergone significant continual development since their release to our
local user community. For example: message filtering was introduced
earlier this year and one can nowfilter on free text searches; subject,
from, to, cc and bec text searches; new recent and old messages; On,
before or since a given date; messages that are Seen/Unseen,
Flagged/Unflagged, Answered/Unanswered, Deleted/Undeleted; and
message keyword searches.

3.4 - General Computing Environment

e Lisp and Al shell environments: Common Lisp now runs on Xerox systems
using the Lyric sysout, and Lucid Common Lisp is on our SUN
workstations. The Macintosh-il supports Coral Common Lisp. Finally,
with the advent of the microExplorer co-processor on the Macintosh Il,
the entire Explorer Common Lisp environment is available on Macintosh
I's configured with this board and an Ethernet interface.

In addition, we have made considerable progress in analyzing the
performance of Lisp systems on various kinds of hardware, with an eye
toward guiding our work on future Lisp systems and the trade-off
between specially microprogrammed Lisp machines and implementations
on standard workstations. We have also defined the requirements for a
powerful Lisp programming environment based on the key features of the
Xerox, Symbolics, and Ti environments that we use routinely in our Al
research work.

e Distributed File Support: The Xerox Common Lisp RPC/NFS
implementation has been completed, and Xerox has a strong interest in
acquiring this software from us and including and supporting an
enhanced version as part of their standard system release. We would in

turn receive all improvements to the code. Both Tl and Symbolics have
released an RPC/NFS implementation. Because of budgetary andstaff
limitations this year, we have be unable to make any progress on
Network management, backup, and archiving tools. This area has been
given a high priority and we will begin to work on it this summer.

¢ Distributed information access: We have installed SUN UNIFY (a powerful

relational data base system) on our SUNfile server and implemented a
Common Lisp remote procedure call/SQL query interface for Lisp
machines to experiment with remote data base access. We have also
been experimenting with the Apple HyperCard system for organizing and
disseminating information in a distributed community.

47 E. H. Shortliffe



Details of Technical Progress 5P41-RROO785-15

¢ Operations management tools: We have madelittle progress in this area
during this report period.

3.5 - Phasing of the transition to a distributed AIM community

Experiments in the Stanford/AIM community: Each new piece of hardware or
software has-been tested initially by a selected subset of the Stanford/AIM
community, e.g., members of the systems staff who are willing to put up with
problematic software in the alpha test phase. It has then been beta-tested by a
larger subset of the same community, and then released to any interested member of
the community as a whole. A typical example is the Xerox IMAP Client, MM-D. After
several months of alpha testing by two or three members of our systems staff, the
software was distributed to other KSL research staff members for beta testing and
suggestions for improvement. Finally, it became a part of the standard Xerox Lyric
system used by the Stanford Knowledge Systems Laboratory.

4 - Remote Workstation Access, Virtual Graphics, and Windows

4.1 - Remote Access

As we move towards a distributed workstation computing environment for Al research
in the SUMEX-AIM community (and move away from the centralized, shared DEC
2060), a number of technical obstacles must be overcome. One of the most
important is to eliminate the need for the user display to be situated close to the
workstation computing engine. This is important in order to allow users to work on
workstations over networks from any location -- at work, at home, or across the
country. The first step has been getting reliable terminal access operational on all
workstations. All workstations now have TCP/IP based terminal servers, and TCP/IP
is being installed in the SUMEX network terminal concentrators. This allows primitive
(non-graphical) access to the workstation's abilities. A more comprehensive access
will be provided through our remote graphics work.

4.2 - Virtual Graphics

In order to link the output of workstation displays across networks,it is necessary to
capture and encode the many graphics operations involved so that they can be sent
over a relatively low-speed network connection with the same interactive facility as
if one had the display connected through the dedicated high-speed {30 Mhz) native
vendor display/workstation connection. A mechanism for doing this is called a
remote graphics protocol.

As reported last year, we selected the MIT Project Athena X window system [4] as
the remote graphics protocol standard for our work, and noted that X is a very
complete protoco! that has been developed over the past several years at MIT'. We
also reported that an X client? for Texas Instruments Explorers was being written
here at SUMEX-AIM, and that TI in conjunction with MIT was developing a server

The X protocol was completely redefined last year. Its most recent version, X.11, is assumedin all of
the discussion that follows.

2The client software runs on the Lisp machine and sends the graphics protocol commands to the
remote user display system. The dual of the client is the X server software which runs on the user
display system andtranslates the X protocol sent by a client Lisp machine into real graphics pictures and
mouse actions.

E. H. Shortliffe 48



5P41-RRO0785-15 Details of Technical Progress

Key to symbols: Developmentactivity

System beta testing/impravementa
[[] ☁System dissemination/update/support

Vv Vendor-supplied system

8/86 8/87 8/88 8/89 8/90 3/91

Remote workstation access
TIP iP-TCP support (serial access)

Workstation IP-TCP TELNET access

Symbolics, Tl, SUN

Xerox

TELENET X.25/IP-TCP Ethernet gateway

TELENET TELNET access(IP-TCP)

Upgrade to 1SO protocol stds

Workstation services

Network servers

TELENET X.25/1SO gateway

Remote Virtual graphics
Evaluate/select remote .vindow protocol

Commontisp client & server

Tl Explorer client

Tl Explorer server

Symbolics

Merox

UNIX client & server

SUN

Macintosh-Il

Other machines(to be announced)

VG over low bandwidth connections

Convert to ISO transport protocols

Common window application std/implement

Develop/extend VG applications (personal

links, new display primitives,intelligent
compression,etc.)

Distributed mail system
IMAPdesign and definition (IMAP-1)

Prototype 2060 IMAP-1 server

InterLisp IMAP-1 client

InterLisp mail reader/composer 
8/86 8/37 3/38 8/89 890 3/91

Figure 1: Core System Development Schedule

49 E. H. Shortliffe



Details of Technical Progress 5P41-RROO785-15

8/86 3/87 8/88 8/89 8/90 3/91

Distributed mail system (cont.)

Commonisp IMAP-1 client

Tl Explorer

Symbolics

Xerox

Common.isp mail reader/composer

Ti Explorer

Symbolics SESE

Xerox

Redesign IMAPprotocol (IMAP-2)

2060 IMAP-2 server

UNIX IMAP-2 server

Update CommonLisp IMAP-2 clients

UNIX mail client/reader/compaser

SUN

Macintosh-l RE

Other machines (to be announced)

Convert to ISO transport protocols

Enhance reader/composertools (message

filtering and organization, multi-media

messages, discussion grouptools,etc.)

Distributed processing
Evaluate/select interprocess comm. protacal

CammonLisp IPC

Implementexperimental services RT

Distributed resource manager

Userinterface to distributed services

Refine and expand services available

General computing environment
Lisp and Al shell environments

Xerox Commonltisp

SUN CommonLisp environment

Macintosh-ll Lisp and environment Other systems/machines(to be annour ced

Text processing tools QV

3/86 8/87 B53 8/89 3/90 3/91

Figure 1: Core System Development Schedule, Continued

E. H. Shortliffe 50


