
Section 2.1.2.5 TECHNICAL PROGRESS

instead of being interface procedures of a separate module. The use of nen

compiler directives, and an extended concept of FORWARD procedures, support the

use of compiletime libraries. Small system procedures have been put into a

standard compiletime library which is automatically utilized during the

compilation of any module which invokes one of the procedures.

cmdFile (command file) and logFile (logging file) are non the standard

input and output files used by the compiler and the runtime system where tty

Ci.e., the user's terminal) was previously used. Both are initially opened to

tty. These files are used instead of tty so that the user can "redirect" the

standard input or output stream if desired. This can be done via subcommands at

the start of program execution, or via explicit opens during program execution.

The system procedures ttyRead and ttyWrite still provide direct communication

with tty.

The CHECK and NOCHECK compiler directives have been implemented. CHECK

directs the compiler to henceforth emit code to check certain conditions (such as

array subscripts and NULLPOINTER's) at runtime which cannot be determined at

compiletime. NOCHECK can be used to turn such checking off. These directives

have been in the language Cin a slightly different form), but they had never been

implemented in the code generators.

MAINSAIL has previously guaranteed ASCII character codes. This requires a

translation on machines with other character codes (e.g., the IBM-370 uses

EBCDIC). Our experience shows it is not difficult te write programs

independently of the character codes if certain minimal assumptions are in

effect. For example, the characters A...Z are guaranteed to be in alphabetic

order, but they are not necessarily contiguous. We have also introduced eol

Cend-of-line) in place of the previous ASCII-dependent crif (carriage-return-

line-feed), and eop (end-of-page) in place of the ASCII form-feed. eol and eop

are defined as implementation-dependent string constants. Character

incompatibilities among machines is a difficult problem to deal with, and may

ultimately complicate MAINSAIL's implementation on machines with "deficient"

character sets (e.g., a CDC with a 6-bit character set).

Compiler Design

Tuo steps have been taken with the goal of getting the compiler to execute

in a small address space. First, it has been broken into smaller modules. It

used to consist of about 10 modules, but now consists of about 60. This allows a

more accurate working set of modules to build up in memory since no one module is

so large that it displaces most of those currently resident. However, there is

more overhead involved in initializing so many modules on machines which have

sufficient memory for the entire compiler. The second step has been the size

reduction or elimination of many of the compiler's data structures. Where

possible data is maintained on a file rather than in memory.

To save the space required by the text of string constants, the compiler

error messages have been placed on a file. Calls to error message procedures

specify the location on the file of the appropriate error message. A program has

been written to generate a new compiler error message file by combining the

messages on an existing error message file with any new messages specified as

string constant arguments to error procedures in the compiler modules.

J. Lederberg € &. Feigenbaum 26

TECHNICAL PROGRESS Section 2.1.2.5

The code generators have been modified to output additional information Cin

a separate file) for debugging use during execution. This debugging file is

created only if requested as a subcommand to the compiler. It contains a symbol]

table and a cross reference between the generated code and the source files.

Documentation

A new MAINSAIL manual is nearly complete. The former manual Was an

alphabetically ordered reference manual written primarily for internal use, that

is, for those who were either already familiar with MAINSAIL or who at least knew

SAIL. The new manual is a more readable reorganization and expansion of the

reference manual information, organized by topic (e.g., data types, procedures,

modules), and incorporating numerous examples.

Concurrent with the writing of the manual was the development of a

formatting program to input the manual as written (with encoded section numbers

and index references, no table of contents, etc.) and output a complete, ready-

to-print manual.

An invited paper entitled "The MAINSAIL Project: Developing Tools for

Software Portability" was delivered at the First Annual Symposium on Computer

Application in Medical Care, given in Washington, D.C. in October, 1977. This

has resulted in a number of inquiries from researchers interested in MAINSAIL's

portability.

Emulation Research

The goal of the emulation research is to determine efficient means of

representing MAINSAIL programs for interpretive execution. If the interpreter

can be written in the microcode of the host machine, the resulting emulation

should be more efficient than execution of MAINSAIL translated into a standard

machine code. This approach simplifies compilation, and allows the efficient

monitoring of program execution, so that debugging capabilities and performance

measurements can become an integral part of program execution.

Statistics gathered from programs written in MAINSAIL have been used to

guide and justify the design of a language representation suitable for emulation.

An interpreter has been developed, and the static and dynamic properties of the

resulting high level MAINSAIL interpretation are now under study. Its properties

will be compared with conventional machine language implementations of MAINSAIL.

The generated code appears to be about a third the size of standard machine code.

It is more difficult to measure execution time differences since the processor

design must be taken into account.

The characteristics of a suitable host processor to support the emulation

are being examined in detail. It appears that a "universal host" (i.e., a

processor not designed with a particular representation in mind) will not be able

to execute a tailor-made representation as fast as a conventional processor can

execute a standard machine language representation. Thus a "poor" representation

on a processor designed to execute that representation seems faster than a "good"

representation on a processor not designed for that representation. For this

reason a microcode and processor organization uhich are oriented toward execution

of the MAINSAIL representation are under design.

27 J. Lederberg & E. Feigenbaum

Section 2.1.2.5 TECHNICAL PROGRESS

ALGORITHMIC LANGUAGE IMPLEMENTATIONS OF MYCIN-LIKE SYSTEMS

Production systems (PS) have been used extensively for knowledge

representations for a number of AI applications such as MYCIN (2). Traditionally

these systems have been implemented in various dialects of LISP. This has been

so partly because LISP contains several "natural" representations for PS's, and

partly because of the unique development and debugging environment offered by

systems like INTERLISP.

Because of its generality and power, however, INTERLISP tends to be a

expensive system to run, requiring a large amount of computational time and a

large address space. While the expense of such a system is justifiable in a

research and development environment, it may not be in more operational

environments where these programs are to be used. One way to overcome this cost

is by designing more economical LISP systems - several groups are working on

this. These systems are typically built around special-purpose "LISP machines".

Over the past year we examined another alternative, converting a MYCIN-like

system into an algorithmic programing language (such as SAIL or MAINSAIL). This

approach may offer advantages in being able to run versions of MYCIN-like systems

on existing laboratory computers. The objectives of this study were to find ways

to trim the resource requirements of the system while preserving as much of the

knowledge representation clarity and modularity of the production system approach

as possible. One of the major hurdles to be overcome is the difference in

program and data representations between LISP and algorithmic languages. Several

different approaches and languages were explored. Some are implementable in

almost any algorithmic language, while others exploit features unique to certain

languages.

The principal design features of MYCIN include (3):

13 A rule based consultation system. The knowledge is represented

as collection of production rules. The consultation is driven by

a goal directed search of the knowledge base.

2) An examination program which nill explain the "line of reasoning"

the system has gone through to produce the current consultation.

3) A question-~answer system to query the system on parts of the

consultation, or to ask general questions of the knowledge base.

4) A method of updating the knowledge base, by adding new rules or

changing or deleting incorrect rules.

The knowledge base for the system is stored as a collection of production

rules in the form of PREMISE~ACTION pairs. The consultation is driven by a goal-

(2) See for example, Davis, R., Buchanan, 8., and Shortliffe, E.,

"Production Rules as a Representation for a Knowledge-Based Consultation

Program," Artificial Intelligence, Vol 8, No 1, February 1977.

(3) see for example, Shortliffe, E.H., "Computer-Based Medical

Consultations: MYCIN," Artificial Intelligence Series 2, Elsevier, New York,

1976.

J. Lederberg € E. Feigenbaum 28

TECHNICAL PROGRESS Section 2.1.2.5

directed search of these rules, i.e. if the PREMISE of a rule depends on the

value of a given parameter and its value is not known, rules which conclude

something about that parameter value are evaluated. The flow of control depends

on an interaction betreen goals stated in the IF clause of one rule, and the THEN

clause in others where this interaction changes as the rule base is changed.

This can be readily achieved in LISP by storing the executable PREMISE-ACTIGON

routines as properties of the various rules and linking them in a list. This

unity betueen program and data is one of the key points in the difference between

a LISP approach and one using an algorithmic languages.

Considerations in Non-LISP Approaches to MYCIN

MYCIN can be viewed as a very complex "IF THEN" clause, but this ignores

the flexibility and modularity of knowledge representation of a PS. At the very

least, the programming language should have the capability of creating LISP-like

data structures, such as trees and lists. If we examine the nature of the rule

interpretation, we can see that it is recursive in nature, so the language should

also support recursive procedures. Many modern languages such as SAIL, PASCAL

and MAINSAIL have these features.

The main problem is to represent the rules in such a way that they can be

executed or interpreted in some sense, but can also be woven into the data base

so that they may be fetched, examined, and modified when needed. We need to

unify the control store and the data store in a way similar to that of LISP. We

have looked at two approaches: one in which the rules are represented strictly as

data, and interpreted as needed, and one in which the rules are represented as

procedures.

Rule Interpretation Approach

In this approach the production rules are represented strictly as data, and

procedures written to interpret the data structure. This is equivalent to

writing a small, special purpose LISP interpreter. Any language which fills the

requirements outlined above can be used to write the interpreter. The general

procedures needed for this approach are:

1) A procedure to insure that atoms are unique

2) Procedures to read and write the data structures.

3) A procedure for each of the LISP functions to be executed, e.g.,

logical operations.

4) A procedure equivalent to LISP's EVAL, which will examine a list

and invoke the correct procedures to interpret it.

This scheme has many of the advantages of the LISP version. It is easy to

add new rules toa the system that use only the currently defined functions. The

hope would be that this interpreter would be smaller and faster than equivalent

more general LISP machinery. Some disadvantages are that if a nen function is

needed, the EVAL section of the program must be rewritten and recompiled. The

effort involved on this can be minimized by proper modularization, however.

29 J. Lederberg & E. Feigenbaum

Section 2.1.2.5 TECHNICAL PROGRESS

Procedural Approaches

In these approaches we generate procedures which perform the following

functions for each rule in the knowledge base:

1) Execute the PREMISE of the rule, and return a value indicating

whether or not the PREMISE is true. In addition there must be a

mechanism for marking which clause of the premise failed, if any.

2) Execute the ACTION of the rule.

3) Return a list of the parameters appearing in the PREMISE of the

rule Calso marking which clause they occur in).

4) Return the parameter Cor list of parameters) referenced in the

ACTION of the rule.

5) Print an English version of the rule.

These procedures can be generated automatically either translating LISP

rules from MYCIN or translating an English input. In this way, we have replaced

the interpretation of the rules as data structures with procedures that return

truth values and carry out the actions. Besides the procedures, there is also a

data structure which represents the interconnection of the rules. This approach

could be faster than the interpreter for rules since we effectively have

interpreted the rules once and for all at compile time.

Case Statement Procedures

In this implementation, a procedure is constructed for each of the

functions mentioned above. The procedure takes an integer representing the rule

number, and executes the proper subsection for that rule. For example, we might

have:

BOOLEAN PROCEDURE premise € INTEGER ruleNo);

CASE ruleNo OF

BEGIN

[1] < PREMISE of RULEOO1 >

[2] < PREMISE of RULECQ2 >

END;

By marking a parallel data structure, we can trace which rules and khich clauses

of which rules have been executed.

A disadvantage to this method is the relative inflexibility of the rule

base once it has been written. This can be alleviated to some degree by proper

modultarization.

J. Lederberg € £. Feigenbaum 30

TECHNICAL PROGRESS Section 2.1.2.5

MAINSAIL Implementation

This approach exptoits some of the unique features of MAINSAIL. A MAINSAIL

program is broken up into a number of MODULE's, which communicate with each other

by means of interface fields. Each rule is represented as a different module,

each with the same interface field definition. The interface field represents

the values and procedures outlined above. The rule modules are stored in

libraries for execution as needed. The fact that the data section of a module

may be assigned to a pointer variable gives us the ability to unite the control

store and the data store.

There are two possible methods of evaluating the rules. The first is to

create instances of all the rules, and save the pointers to the correct MODULE as

part of the data structure. The second is to create an instance of a rule only

when it is necessary to evaluate that particular rule, and to dispose of the rule

when it is no longer needed. The first method is much faster than the second,

since at the time of the consultation the code for all rules is in core. The

second method is extremely core efficient, however, since only a few rules will

be active at any given time. This method is particularly suited for a small

machine environment.

One of the advantages of this MAINSAIL approach is that there is no linking

step in compiling modules as in other algorithmic languages (e.g., SAIL). Thus

rule modules may be changed at will without relinking the entire system. The

cost for the flexibility MAINSAIL offers is the overhead of intermodule calls in

a dynamic memory environment - modules do not always load at the same address.

SAIL/ZLEAP Implementation

The LEAP package of SAIL offers yet another approach (4). Among the LEAP

facilities are procedures which "assign" an ITEM (the basic element of LEAP) with

a SAIL procedure and "apply" executes the procedure associated with an ITEM.

Since ITEM's are part of the data store, and can be manipulated in data

structures, this allows the needed interactions of control store and data store.

The strategy in SAIL is to associate an ITEM with each of the basic

procedures for each rule. These ITEM's are stored so they can be retrieved when

the appropriate rule is invoked. There are several points where special care

must be taken. The program to modify the knowledge base must update several

files in this implementation; 1) a header file which contains the declaration of

all ITEM's used in the system, 2) an initialization procedure which creates all

the triples, performs all the assigns, etc. needed, and 3) the actual code for

the rule. :

The advantages of the SAIL version is a somewhat more direct mapping of the

data to a single procedure representing a rule. Adding a rule will be more

cumbersome. The new rule can be stored in a file by itself, and required in the

initialization module as a REQUIRE'd LOAD!IMODULE. Thus only the new rule and the

tnitialization need to be recompiled but the whole system must be relinked.

(4) LEAP is a facility added to SAIL for the associative storage, retrieval,

and manipulation of abjects. See Feldman, J.A. and Rovner, P.D., "An ALGOL-Based

Associative Language," CACM 12, 8, August 1969.

31 J. Lederberg & E. Feigenbaum

Section 2.1.2.5 TECHNICAL PROGRESS

Summary of Preliminary Results

A highly stripped down, seven rule "MYCIN" system has been successfully

emulated using each of these approaches. These systems merely indicated the

workability of each approach but the system was not complex enough to draw any

quantitative conclusions about relative efficiency. Each of the methods has its

advantages and disadvantages. SAIL, like LISP, requires a large core image and

currently runs only on PDOP-10 systems. The MAINSAIL version seems nell] suited to

a smal] machine environment through the high modularization and dynamic memory

management. By use of a virtual data structure, the rule interpretation approach

could be made to run in a smaller core image as well.

It must be noted that no implementation of MYCIN in an algorithmic language

will maintain the full flexibility of the INTERLISP version for rule changes,

control structure experimentation, and debugging. One must be willing to trade

the flexibility of a development system requiring large resources for a more

fixed production oriented system with substantially smaller demands.

2.1.2.6 USER SOFTWARE AND INTRA-COMNMUNITY COMMUNICATION

We have continued to assemble and maintain a broad range of utilities and

user support software. These include operational aids, statistics packages, DEC-

supplied programs, improvements to the TOPS-10 emulator, text editors, text

search programs, file space management programs, graphics support, a batch

program execution monitor, text formatting and justification assistance, and

magnetic tape conversion aids. Over the past year we have made changes and

updates to more than 60 programs in this stable. While many of these changes

were maintenance bug fixes, major improvements were made to SPELL, MACRO, BACKUP,

DIABLO, tape service programs, VIEW, and the user spooler interface. In addition

we have brought up a number of new programs including PASCAL (DECUS), ENACS (a

display oriented editor from MIT - installed by McMahon at SRI), overtoad control

information programs, MACLISP (MIT), and FAIL. Changes are in progress to the

bulletin board system to allow string searches in the "subject" and "body" of

bulletins to find information of interest and to allow general wild card

specifications within strings.

2.1.2.7 DOCUMENTATION AND EDUCATION

We have spent considerable effort to develop, maintain, and facilitate

access to our documentation so as to accurately reflect available software. The

HELP and Bulletin Board systems have been important in this effort. As

subsystems are updated, we generally publish a bulletin or small document

describing the changes. As more and more changes occur, it becomes harder and

harder for users to track down all of the change pointers. We are in the process

of reviewing the existing documentation system again for compatibility with the

programs now on Tine and to integrate changes into the main documents. This will

also be done with a view toward developing better tools for maintaining up~-to-

date documentation.

J. Lederberg & E. Feigenbaum 32

TECHNICAL PROGRESS Section 2.1.2.8

2.1.2.8 SOFTWARE COMPATIBILITY AND SHARING

At SUMEX-AIM we firmly believe in importing rather than reinventing

software where possible. As noted above, a number of the packages we have

brought up are from outside groups. Many avenues exist for sharing between the

system staff, various user projects, other facilities, and vendors. The advent

of fast and convenient communication facilities coupling communities of computer

facilities has made possible effective intergroup cooperation and decentralized

maintenance of software packages. The TENEX sites on the ARPANET have been a

good model for this kind of exchange based on a functional division of labor and

expertise. The other major advantage is that as a by-product of the constant

communication about particular software, personal connections between staff

members of the various sites develop. These connections serve to pass general

information about software tools and to encourage the exchange of ideas among the

sites. Certain common problems are now regularly discussed on a multi-site

level. We continue to draw significant amounts of system software from other

ARPANET sites, reciprocating with our own local developments. Interactions have

included mutual backup support, hardware configuration experience, operating

system enhancements, utility or language software, and user project

collaborations. We have been able to import many new pieces of software and

improvements to existing ones in this way. Examples of imported software include

the message manipulation program MSG, TENEX SAIL, TENEX SOS, INTERLISP, the

RECORD program, ARPANET host tables, and many others. Reciprocally, we have

exported our contributions such as the drum page migration system, KI~-10 page

table efficiency improvements, GTJFN enhancements, PUB macro files, the bulletin

board system, MAINSAIL, SPELL, SNDOMSG enhancements, cur BATCH monitor, and

improved SA-16 softuare.

33 J. Lederberg €& E. Feigenbaum

Section 2.1.3 RESOURCE MANAGEMENT

2.1.3 RESOURCE MANAGEMENT

2.1.3.1 ORGANIZATION

The SUMEX-AIM resource is administered within the Genetics Department of

the Stanford University Medical School. Its mission, locally and nationally,

entails both the recruitment of appropriate research projects interested in

medical AI applications and the catalysis of interactions among these groups and

the broader medical community. User projects are separately funded and

autonomous in their management. They are selected for access to SUMEX on the

basis of their scientific and medical merits as well as their commitment to the

community goals of SUMEX. Currently active projects span a braad range of

application areas such as clinical diagnostic consultation, molecular

biochemistry, belief systems modeling, mental function modeling, and instrument

data interpretation (descriptions of the individual collaborative projects are in

Section 4 beginning on page 61).

Early this year it was announced that Professor Lederberg had been named

president of Rockefeller University. Whereas the SUMEX staff at Stanford will

miss the face-to-face contacts of his involvement in SUMEX-AIM, his relocation

may even broaden and strengthen the biomedical research base that will be

represented in our AI applications. Professor Lederberg has expressed a strong,

continuing commitment to medical AI applications and to SUMEX. The network and

message facilities provide a mechanism to continue his close participation in

this research and AIM Executive Committee activities.

The depth of the Stanford multi-disciplinary support of SUMEX-AIM has been

a key asset in being able to bridge this management transition. Professor Edward

Feigenbaum, who is chairman of the Stanford Computer Science Department and has

long been the co-principal investigator of SUMEX-AIM, will take over as PI.

Professor Stanley Cohen, who has been PI of the MYCIN project and on the Stanford

SUMEX advisory committee, will provide the biomedical ties and coordination with

the Stanford Medical School and projects. The new management team is committed

to sustaining the active development of the SUMEX-AIM resource and community.

2.1.3.2 MANAGEMENT COMMITTEES

As the SUMEX-AIM project is a multilateral undertaking by its very nature,

we have created several management committees to assist in administering the

various portions of the SUMEX resource. As defined in the SUMEX-AIM management

plan adopted at the time the initial resource grant was auarded, the available

facility capacity is allocated 40% to Stanford Medical School projects, 40% to

national projects, and 20% to common system development and related functions.

Within the Stanford aliquot, Dr. Lederberg and BRP have established an advisory

committee to assist in selecting and allocating resources among projects

appropriate to the SUMEX mission. The current membership of this committee is

listed in Appendix IV.

J. Lederberg € £. Feigenbaum 34

RESOURCE MANAGEMENT Section 2.1.3.2

For the national community, two committees serve complementary functions.

An Executive Committee oversees the operations of the resource as related to

national users and makes the final decisions on authorizing admission for

projects. It also establishes policies for resource allocation and approves

plans for resource development and augmentation within the national portion of

SUMEX Ce.g., hardware upgrades, MAINSAIL development priorities, etc.). The

Executive Committee oversees the planning and implementation of the AIM Workshop

series currently implemented under Prof. S. Amarel of Rutgers University and

assures coordination with other AIM activities as well. The committee will play

a key role in assessing the possible need for additional future AIM community

computing resources and in deciding the optimal placement and management of such

facilities. The current membership of the Executive committee is listed in

Appendix IV.

Reporting to the Executive Committee, an Advisory Group represents the

interests of medical and computer science research relevant to AIM goals. The

Advisory Group serves several functions in advising the Executive Committee; 1)

recruiting appropriate medical/computer science projects, 2) reviewing and

recommending priorities for allocation of resource capacity to specific projects

based on scientific quality and medical relevance, and 3) recommending policies

and development goals for the resource. The current Advisory Group membership is

given in Appendix IV.

These committees have actively functioned in support of the resource.

Except for the meetings held during the AIM workshops, the committees have "met"

by messages, net-mail, and telephone conference owing to the size of the groups

and to save the time and expense of personal travel to meet face to face. The

telephone meetings, in conjunction with terminal access to related text

materials, have served quite well in accomplishing the agenda business and

facilitate greatly the arrangement of meetings. Other solicitations of advice

requiring review of sizable written proposals are done by mail.

We will continue to work with the management committees to recruit the

additional high quality projects which can be accommodated and to evolve resource

allocation policies which appropriately reflect assigned priorities and project

needs. We hope to make more generally available information about the various

projects both inside and outside of the community and thereby to promote the

kinds of exchanges exemplified earlier and made possible by network facilities.

2.1.3.3 NEW PROJECT RECRUITING

The SUMEX-AIM resource has been announced through a variety of media as

well as by correspondence, contacts of NIH-BRP with a variety of prospective

grantees who use computers, and contacts by our own staff and committee members.

The number of formal projects that have been admitted to SUNEX has more than

doubled since the start of the project; others are working tentatively as pilot

projects or are under revien.

We have prepared a variety of materials for the nen user ranging from

general information such as is contained in a SUMEX-AIM overview brochure to more

35 J. Lederberg & E. Feigenbaum

Section 2.1.3.3 RESOURCE MANAGEMENT

detailed information and guidelines for determining whether a user project is

appropriate for the SUMEX-AIM resource. Dr. E. Levinthal has prepared a

questionnaire to assist users seriously considering applying for access to SUMEX-

AIM. Pilot project categories have been established both within the Stanford and

national aliquots of the facility capacity to assist and encourage projects just

formulating possible AIM proposals pending their application for funding support

and in parallel formal application for access to SUMEX. Pilot projects are

approved for access for limited periods of time after preliminary review by the

Stanford or AIM Advisory Group as appropriate to the origin of the project.

These contacts have sometimes done much more than provide support for

already formulated programs. For example, Prof. Feigenbaum's group at Stanford

has initiated a major collaborative effort with Or. Osborn's group at the

Institutes of Medical Sciences in San Francisco. This project in "Pulmonary

Function Monitoring and Ventilator Management - PUFF/VM" (see Section 4.1.6 on

page 93) originated as a pilot request to use MLAB in a small] way for modeling.

Subsequently the AI potentialities of this domain were recognized by Feigenbaum,

Nii, and Osborn who have submitted a joint proposal to NIH and have a pilot

status at present. This summer Dr. John Kunz from Dr. Osborn’s laboratory is

planning to spend half time at Stanford to learn more about AI research and to

participate more closely in the development of the PUFF/VM program.

The following lists the fully authorized projects currently comprising the

SUMEX-AIM community C€see Section 4 for more detailed descriptions}. The nucleus

of five projects that were authorized at the initial funding of the resource in

December 1973 are marked by "<*>",

Rational Community -

1) Acquisition of Cognitive Procedures (ACT); Or. J. Anderson CYale

University)

2) Chemical Synthesis Project (SECS); Dr. T. Wipke (University of California

at Santa Cruz)

<*> 3) Higher Mental Functions Project; K. Colby, M.D. (University of California

at Los Angeles)

4) INTERNIST Project; J. Myers, M.D. and Dr. H. Pople (University of

Pittsburgh)

5) Medical Information Systems Laboratory (MISLJ; J. Wilensky, M.D. and Dr.

B. McCormick (University of Illinois at Chicago Circle)

6) Pulmonary Function Project C(PUFF/VM); J. Osborn, M.D. CInstitutes of

Medical Sciences, San Francisco) and Dr. E. Feigenbaum (Stanford

University)

<*> 7) Rutgers Computers in Biomedicine; Dr. S. Amarel (Rutgers University)

8} Simulation of Comprehension Processes; Drs. J. Greeno and A. Lesgold

(University of Pittsburgh)

J. Lederberg & E. Feigenbaum 36

RESOURCE MANAGEMENT Section 2.1.3.3

Stanford Community -

1} AI Handbook Project; Dr. E. Feigenbaum

<*> 2) DENDRAL Project; Ors. C. Djerassi, J. Lederberg, and E. Feigenbaum

3) Generalization of AI Tools (CAGE); Dr. E. Feigenbaum

4) Large Multi-processor Arrays (HYDROID); Dr. G. Wiederhold

5) Molecular Genetics Project (MOLGEN); Drs. J. Lederberg and E. Feigenbaum

(Stanford) and N. Martin (University of New Mexico)

<*> 6) MYCIN Project; S. Cohen, M.B. and Dr. B. Buchanan

<> 7) Protein Structure Modelling; Ors. E. Feigenbaum and R. Engelmore

As an additional aid to new projects or collaborators with existing

projects, we provide a limited amount of funds for use to support terminals and

communications needs of users without access to such equipment. We are currently

leasing 6 terminals and 4 modems for users as well as 4 foreign exchange lines to

better couple the Rutgers project into the TYMNET and a leased tine between

Stanford and U. C. Santa Cruz for the Chemical Synthesis project.

2.1.3.4 STANFORD COMMUNITY BUILDING

The Stanford community has undertaken several internal efforts to encourage

interactions and sharing between the projects centered here. Professor

Feigenbaum organized a project with the goal of assembling a handbook of AI

concepts, techniques, and current state-of-the-art. This project has had

enthusiastic support from the students and substantial progress made in preparing

many sections of the handbook (see Section 4.2.1 on page 123 for more

details).

Weekly informal lunch meetings (SIGLUNCH) are also held between community

members to discuss general AI topics, concerns and progress of individual

projects, or system problems as appropriate as well as having a number of outside

invited speakers.

2.1.3.5 AIM WORKSHOP SUPPORT

The Rutgers Computers in Biomedicine resource (under Dr. Saul Amarel) has

organized a series of workshops devoted to a range of topics related to

artificial intelligence research, medical needs, and resource sharing policies

within NIH. Meetings have been held for the past several years at Rutgers and

another is planned for this summer. The SUNEX facility has acted as a prime

37 J. Lederberg & £. Feigenbaum

Section 2.1.3.5 RESOURCE MANAGEMENT

computing base for the workshop demonstrations. We expect to continue this

support for future workshops. The AIM workshops provide much useful information

about the strengths and weaknesses of the performance programs both in terms of

criticisms from other AI projects and in terms of the needs of practicing medical

people. We plan to continue to use this experience to guide the community

building aspects of SUMEX-AIM.

2.1.3.6 RESOURCE ALLOCATION POLICIES

As the SUMEX facility has become increasingly loaded, a number of diverse

and conflicting demands have arisen which require controlled allocation of

critical facility resources (file space and central processor time}. We have

already spelled out a policy for file space management; an allocation of file

storage is defined for each authorized project in conjunction with the management

committees. This allocation is divided among project members in any way desired

by the individual principal investigators. System allocation enforcement is

implemented by project each week. As the weekly file dump is done, if the

aggregate space in use by a project is over its allocation, files are archived

from user directories over allocation until the project is within its allocation.

We have recently implemented system scheduling controls to attempt to

maintain the 40:40:20 balance in terms of CPU utilization (see page 14) and to

avoid system and user inefficiencies during overload conditions. The initial

complement of user projects justifying the SUMEX resource was centered to a large

extent at Stanford. Over the past five years of the SUMEX grant, a substantial

growth in the number of national projects was realized. Buring the same time the

Stanford group of projects has matured as well and in practice the 40:40 split

between Stanford and non-Stanford projects is not ideally realized (see Figure 11

on page 47 and the tables of recent project usage on page 50). Our job

scheduling controls bias the allocation of CPU time based on percent time

consumed relative to the time allocated over the 40:40:20 community split. The

controls are "soft" however in that they do not waste computer cycles if users

below their allocated percentages are not on the system to consume the cycles.

The operating disparity in CPU use to date reflects a substantial difference in

demand between the Stanford community and the developing national projects,

rather than inequity of access. For example, the Stanford utilization is spread

- over a large part of the 24-hour cycle, while national-AIN users tend to be more

sensitive to local prime-time constraints. (The 3-hour time zone phase shift

across the continent is of substantial help in load balancing.) During peak

times under the new overload controls, the Stanford community still experiences

mutual contentions and delays while the AIM group has relatively open access toa

the system. For the present, we propose to continue our policy of "soft"

allocation enforcement for the fair split of resource capacity.

Our system also categorizes users in terms of access privileges. These

comprise fully authorized users, pilot projects, guests, and network visitors in

descending order of system capabilities. We want to encourage bona fide medical

and health research people to experiment with the various programs available with

a minimum of red tape while not allowing unauthenticated users to bypass the

advisory group screening procedures by coming on as guests. So far we have had

J. Lederberg € E. Feigenbaum 38

RESOURCE MANAGEMENT Section 2.1.3.6

relatively little abuse compared to what other network sites have experienced,

perhaps on account of the personal attention that senior staff gives to the logon

records, and to other security measures. However, the experience of most other

computer managers behooves us to be cautious about being as wide open as might be

preferred for informal service to pilot efforts and demonstrations. We will

continue developing this mechanism in conjunction with management committee

policy decisions.

39 J. Lederberg € E. Feigenbaum

Section 2.1.4 FUTURE PLANS

2.1.4 FUTURE PLANS

This next year will be the first of the 3 year renewal grant term. The

principal goals of our work are outlined below. Objectives for the individual

collaborating projects are discussed in their respective reports (see Section 4

on page 61).

1) RESOURCE OPERATIONS

We will continue to make available to the SUMEX-AIM communities an

effective, state-of-the-art facility to support the development of medical AI

programs and to facilitate collaborations between community members. Goals

include:

a) Assure a smooth transition in project management as Professor Lederberg

moves to Rockefeller University.

b) Continue development of the existing KI-TENEX facility to maximize

effectiveness for community use. We expect to continue improving system

efficiency, allocation controls, subsystem software, documentation

facilities, and communications facilities. We will complete the evaluation

of the TELENET netuork as a more cost-effective source of communication

services. Another key issue will be how best to maintain software

compatibility between TENEX and the newer releases of DEC's TOPS-20. This

may entail another "compatibility package" to translate system calls from

one system to the other.

¢) Recruit new applications and projects to broaden the range of high quality

medical AI applications. We look forward to Prof. Lederberg's efforts at

Rockefeller University to try to stimulate new projects as well as others

that might be suggested by advisory group members or other contacts.

d) We plan to work closely with other AIM resource nodes, such as the one

being implemented at Rutgers this summer, to ensure effective community

support between the facilities and to take advantage of expertise in

various user groups for system and user software development.

e) We plan to finish the preliminary evaluation of the new DEC 2020 system and

to make a recommendation for acquiring one by the end of calendar 1978.

The council-approved budget allocation for this machine in year 07. We

expect the technological rationale and community need for the use of such a

machine for increased capacity and an effective softuare export mode to

mature in year 06. Thus it would be desirable to move this expenditure

forward. This may not be possible within NIH appropriation limitations and

so we would have to defer delivery until year G7. As part of the

acquisition of the 2020 system, we expect to investigate the many issues

that will arise from the decentralization such machines will bring. The

availability of these machines bodes many advantages for effective support

of community computing needs but dangers as well of decreased sharing and

softuare compatibility.

J. Lederberg & E. Feigenbaum 40

FUTURE PLANS Section 2.1.4

2) JRAINING AND EDUCATION

Within our resources, we will continue to assist new and established user

projects in gaining access to SUMEX-AIM facilities. Collaborating projects will

provide their own manpower and expertise for the development and dissemination of

their AI programs.

a) We will continue to provide a high standard of system documentation and

limited staff assistance for user problems.

b) Council disapproved our plan to support a "visiting scientist" position to

bring selected investigators in contact with on-going AI projects. Funds

were approved to support "collaborative linkages". These will continue to

be used to facilitate project communications with the resource.

c) We will provide continued support for the AIM workshop activities in the

form of demonstration support, participation in workshop discussions, and

assistance for potential pilot users in understanding the SUMEX-AIM

sommunity.

3) CORE RESEARCH

Our core research efforts for the next year will emphasize the research

work discussed in our proposal but the level of effort will reflect the budget

cuts recommended by Council. This effect will be particularly hard felt in the

MAINSAIL project.

a) We will provide core research support to abcut 1.6 staff FTE's and 1

graduate research assistant for the documentation and generalization of AI

tools developed in the context of particular applications projects. This

work will complement the on-going project developments by providing a link

to make results available to the entire community. We plan to partially

support the AGE project and the AI handbook project. The detailed research

goals of these projects are summarized in Section 4.2.1 and Section

4.2.3.

b) Within the council-approved manpower level for MAINSAIL (2 FTE's), we will

only be able to complete a demonstration of the MAINSAIL system. A wide

distribution of the language, credible support of a user community, and

investigation of implementations for other target machines are well beyond

this level of effort. For the next year we plan to complete a debugged

compiler that will run on a 28K PDP-11, tutorial and reference manuals

(including procedures for bringing up MAINSAIL on new target machines), an

interactive symbolic debugger (providing breakpoints, variable examination,

single stepping, etc.), and documentation of the key design issues

encountered in defining a machine-independent language. Also over this

year we Will investigate ways in which this demonstration version of

MAINSAIL could be transferred to an environment with the necessary

resources to extend, distribute, and maintain it properly.

41 J. Lederberg & E. Feigenbaum

Section 2.2 FUTURE PLANS

2.2 SUMMARY OF RESOURCE USAGE

The following data give an overview of SUNEX-AIM resource usage. There are

five subsections containing data respectively for 1) system loading, 2) system

etficiency, 3) resource use by community, 4) resource use by project, and 5)

network use.

2.2.1 SYSTEM LOADING

The following plots display several different aspects of system loading

over life of the project. These include total CPU time delivered per month, the

"peak" number of jobs logged in, and the "peak" Toad average. The term "peak"

refers to the peak of the monthly diurnal loading curve for each variable which

in turn is the average of the individual daily diurnal curves. Thus, "peak"

values are quite representative of average monthly peak JToading and do not

reflect individual days. These data show well the continued growth of SUMEX use

and the self-limiting saturation effect of system load average. Since late 1976,

when the dual processor capacity became fully used, the peak daily load average

has remained at about 6. This is a measure of the user capacity of our current

hardware configuration and the mix of AI programs.

Total CPU Usage
600;

~ 900;
Ww

a

<= 400-

Y

£ 300-
t~ 256K Memory Added

Disks Upgraded> 2004
YO

Dual Processor
100- Installed °

0 'eugrgd TY PF rrrer tT tT tre? Ff ft Ferrer rrryprert

ASONDIFMAMJJASONDIFMAMIJASONDIFMAMIJASONDIFMA
1975 1976 1977 1973

Figure 6. CPU Time Consumed by Month

J. Lederberg €& E. Feigenbaum 42

SYSTEM LOADING Section 2.2.1

Peak Jobs Logged In

404

wy 307 |
2 256K Memory Added
KF Disks Upgraded

* 20-
aie Dual Processor

Installed

10-

Oe

ASONDJIFMANJJASONDIFMAMSJASONDIFMAMIJASONDJIFMA
1975 1976 1977 1978

Figure 7. Peak Number of Jobs by Month

87 Peak Load Average

6-

a
On
m
‘

Ig 4
> 256K Memory Added
a Disks Upgraded

° Dual Processo

4 27 Installed *

Ot

ASONDIFMAMSIASONDIFMAMIJASONDIFMANJTASONDIFMA
1975 1976 1977 1978

Figure 8. Peak Load Average by Month

43 J. Lederberg & E. Feigenbaum

Section 2.2.2 SYSTEM EFFICIENCY

2.2.2 SYSTEM EFFICIENCY

The following plots show two measures of system overhead and the influence

of hardware augmentations on them. The first is "total overhead" which includes

scheduler time, 1/0 wait, and core management time. The second shous "page trap"

time which is charged to user run time but reflects lost time in working set

management for each job. Note the sharp rise in overhead with the introduction

of the dual processor caused by the increased memory contention. This overhead

drops back to single processor levels after we doubled memory. The peak around

February/March 1975 is anomalous and reflects testing of the drum and disk

systems during installation.

Oo. .

YW

xa
~ =5 30

ao

2 20.S 20
Y
c

256K Memory Added
. Disks Upgraded
> 10-
2
x Dual Processor

Installed

0 Pere prrrrrrrrrryt PEPrrrrrvrrrprrrrrrrrrrryrrry
ASONDIFMAM JJASONDIFMAMSJASONDIFMAMJJASONDIFMA

1375 1976 1977 1978

Figure 9. System Overhead by Month

J. Lederberg & E. Feigenbaum 44

SYSTEM EFFICIENCY Section 2.2.2

(
b
o
t
h

C
P
U
'
s
)

%
T
r
a
p

T
i
m
e

15>

10-

 0

Page Trap Time

f
256K Memory Added

Disks Upgraded

Dual Processor

Installed

rrrryprernrerrrereer rerrrrrerrrrprrrerrnrrerepereg

ASONDJIFMANJJASONDIFMAMSJASONDIFMAMJTASONDIFMA
19793 1976 1977 1973

Figure 10. Page Trap Time by Month

45 J. Lederberg & E. Feigenbaum

Section 2.2.3 RELATIVE SYSTEM LOADING BY COMMUNITY

2.2.3 RELATIVE SYSTEM LOADING BY COMMUNITY

The SUMEX resource is divided, for administrative purposes, into 3 major

communities: user projects based at the Stanford Medical School, user projects

based outside of Stanford (national AIM projects), and common systems development

efforts. As defined in the resource management plan approved by BRP at the start

of the project, the available system CPU capacity and file space resources are

divided between these communities as follows:

Stanford 40%

AIM 40%

Staff 20%

The "available" resources to be divided up in this way are those remaining after

various monitor and community-wide functions are accounted for. These include

such things as job scheduling, overhead, network service, file space for

subsystems, documentation, etc.

The monthly usage of CPU and file space resources for each of these three

communities relative to their respective aliquots is shown in the plots in Figure

11 and Figure 12. Terminal connect time is shown in Figure 13. It is clear that

the Stanford projects have held an edge in system usage despite our efforts at

resource allocation and the substantial voluntary efforts by the Stanford

community to utilize non-prime hours. This reflects the development of the

Stanford group of projects relative to those getting started on the national side

and has correspondingly accounted for much of the progress in AI program

development to date.

J. Lederberg €& £. Feigenbaum 46

RELATIVE SYSTEM LOADING BY COMMUNITY Section 2.2.3

“”~
A
v
a
i
l

C
P
U

U
s
e
d

%
A
v
a
i
l

C
P
U

U
s
e
d

“~
A
v
a
i
l

C
P
U

U
s
e
d

405 National AIM

30-7

20-

ARR
WI
P

0 peeryprrerrrrrecey PE rTrrrrrrperrprerrerrrrrrrrprryr.

ASONDJFMAMJSASONDIFMAMSJASONDIFMAMJJASONDIFMA
1975 1976 1977 1978

407 Stanford

30-

20-

10-

0 Pere perrrerereryryprrprrrrrere pe rerre rye ryprrery

ASONDJFMANJJASONDIFMAMSJASONDIFMAMJJASONDIFMA
1975 1976 1977 19783

207 Stat

10-

 0 TTTTTTT
ASONDJIFMANJJASONDIFNAMSJASONDIFMAMIJASONDIFMA

1975 1976 1977 1978

Figure 171. Monthly CPU Usage by Community

47 J. Lederberg & E. Feigenbaum

Section 2.2.3 RELATIVE SYSTEM LOADING BY COMMUNITY

National AIM

 t
Disks Upgraded

 TRIPP rt rrrrrrrr PE Prerrrrerypurerrrrrrrryprerry

ASONDJIFMANJJASONDIFMAMJJASONDIFMAMJJASONDIFMA
1975 1976 1977 1978

tanford

I
Disks Upgraded

 rrenrprecrrrrrert PYrrrrererrrprrvrrrrrreryt Le oe |

ASONDIFMANJJASONDIFMAMSJASONDIFMAMJJASONDJFMA
1975 1976 1977 1978

Staff

f
Disks Upgraded

v 405
SN

=o

» 304
O

@ 20-
wy

Y% 10°

t 9
x

@ 405
a)
=a

» 307
9S

& 20-
Te]

¥ 410-

+ 9
x

© 207
Ww
=

Yy
9

@ 10-
”

’

+ 9
nx

 PEELE ECT Ure rrerryprrrrerrrrrryprrrr rrr rrr ry rr

ASONDJIFMAMJIJASONDIFMAMSJASONDIFMAMIJASONDIFMA
1975 1976 1977 1978

Figure 12. Monthly File Space Usage by Community

J. Lederberg & E. Feigenbaum 48

RELATIVE SYSTEM LOADING BY COMMUNITY
Section 2.2.3

(
H
r
s
}

C
o
n
n

T
i
m
e

C
o
n
n

T
i
m
e

(
H
r
s
)

(
H
r
s
)

C
o
n
n

T
i
m
e

4000-

3000-

2000-

1000-

0

4000

3000

2000

1000

0

4000

3000-

2000-

1000-

0

National AIM

 rriet TUTTTrrirere s | rerrrrr rr | Trrrrrerrire
TTT

FIRMAJASUNDIFMANSJASONDIFNAMS
JASONDIFMA

1975 1976 1977 1978

| Stanford

=

_

~ TTF rrr es TUT|
Tere rr erp

SoDRMRJASONDJFMANJJA
SONDIFMAMJASONDIFMA

1975 1976 1977 1978

Staff

 TT's TrrTTrrrrye 6 rrrTrTrTryriie
CTT TTT TTT eye

ASONDJFMAMJJASONDJFMAMIJASON
DIFMAMIJASONDJFMA

1975 1976 1977 1978

Figure 13. Monthly Terminal Connect Time by Community

49 J. Lederberg & E. Feigenbaum

Section 2.2.4 INDIVIDUAL PROJECT AND COMMUNITY USAGE

2.2.4 INDIVIDUAL PROJECT AND COMMUNITY USAGE

The table following shows cumulative resource usage by project in the past

grant year. The data displayed include a description of the operational funding

sources (outside of SUMEX-supplied computing resources) for currently active

projects, total CPU consumption by project (Hours), total terminal connect time

by project (Hours), and average file space in use by project (Pages, 1 page = 512

computer words). These data were accumulated for each project for the months

between May 1977 and April 1978. Again the well developed use of the resource by

the Stanford community can be seen. It should be noted that the Stanford

projects have voluntarily shifted a substantial part of their development work to

non-prime time hours which is not shown in these cumulative data. It should also

be noted that a significant part of the DENDRAL and MYCIN efforts, here charged

to the Stanford aliquot, support development efforts dedicated to national

community access to these systems. The actual demonstration and use of these

programs by extramural users is charged to the national community in the "AIM

USERS" category, however.

J. Lederberg & E. Feigenbaum 50

