
1043 S

December 1975

Number
Average Delay
Std Deviation

Minimum Delay

Maximum Delay

LOUIS

June 1975

Number

Average Delay

Std Deviation

Minimum Delay
Maximum Delay

July 1975

Number

Average Delay

Std Deviation

Minimum Delay

Maximum Delay

August 1975

Number
Average Delay

Std Deviation

Minimum Delay

Maximum Delay

September 1975

Number

Average Delay
Std Deviation

Minimum Delay
Maximum Delay

October 1975

Number

Average Delay

Std Deviation

Minimum Delay

Maximum Delay

November 1975

1037 LOS ANGELES

05:00-09:

05:

12
800.4
211.1

431
1124

05:
16

649 .3
152.9

435
971

05:00-09
8

660.6
235.8

242
ghk2

05:00-09
8

569.4
221.0

333
988

05:

11
517.6
110.6

380

757

05:00-09

00-09:

00-09:

:00

:00

00-09:

700

201

CALIFORNIA

00 09:00-17
1

121.0
0

121
121

MISSOURI

00 09:00-17
27

766.9
212.4

480
1347

00
83

679.9
238.7

243
1550

27
601.9
209.8

268
1079

20
538.7
228.4

238

939

00
26

516.3
168 .8

237
960

09 :00-17:

09:00-17:

09:00-17:

09:00-17:

09:00-17:

LASR1 C ## 213/629-1561

200 17:00-22:00 22:00-05:00

:00

00

00

00

00

00

Li c 314/421-5110

17:00-22:00 22:00-05:00
2

309.0
39.0
270
348

:00-22:

11

325.9
53.9

24y

420

00 22:00-05:00

00-22:

1
302.0

-0

302
302

17: 00 22:00-05:00

00-22:

2

369.0
95.0
274
464

17: 00 22:00-05:00

00-22:
2

218.0

9.0
209
227

17: 00 22:00-05:00

17:00-22:00 22:00-05:00

202

Number 2 9 1 1
Average Delay 500.5 532.1 258.0 225.0
Std Deviation 85.5 119.7 .0 .0
Minimum Delay 415 320 258 225
Maximum Delay 586 770 258 225

December 1975

05:00-09:00 09:00~17:00 17:00-22:00 22:00-05:00
Number 4 9 1
Average Delay 498.0 345.9 294.0
Std Deviation 157.2 178.6 .0
Minimum Delay 315 155 294
Maximum Delay 749 807 294

January 1976

05:00-09:00 09:00-17:00 17:00-22:00 22:00-05:00
Number 1 14
Average Delay 374.0 399.6
Std Deviation 0 174.1
Minimum Delay 374 177
Maximum Delay 374 943

February 1976
05:00-09:00 09:00-17:00 17:00-22:00 22:00-05:00

Number 11 3
Average Delay 344 3 172.0
Std Deviation 87.9 7.0
Minimum Delay 153 163
Maximum Delay 491 180

March 1976
05:00=09:00 09:00-17:00 17:00-22:00 22:00-05:00

Number 5 12 4 1
Average Delay 849 .6 432.7 381.3 160.0
Std Deviation 722.3 265.5 306.2 .0
Minimum Delay 210 238 160 160
Maximum Delay 1779 1200 909 160

April 1976

05:00-09:00 09:00-17:00 17:00-22:00 22:00-05:00
Number 4h 10 1
Average Delay 300.0 279.5 175.0
Std Deviation 36.0 82.0 .0
Minimum Delay 251 201 175
Maximum Delay 347 431 175

1051 PORTLAND OREGON POR 1 ¢ 503/224-0750

August 1975
05:00-09:00 09:00-17:00 17:00-22:00 22:00-05:00

Number 1

Average Delay 299.0

Std Deviation 0
Minimum Delay 299

Maximum Delay

December 1975

Number

Average Delay

Std Deviation

Minimum Delay

Maximum Delay

January 1976

Number

Average Delay

Std Deviation

Minimum Delay

Maximum Delay

1054 SAN JOSE

August 1975

Number

Average Delay

Std Deviation

Minimum Delay

Maximum Delay

June 1975

Number

Average Delay

Std Deviation

Minimum Delay

Maximum Delay

July 1975

Number

Average Delay

Std Deviation

Minimum Delay

Maximum Delay

05:00-09:

3
666.0

110.7

519

786

05:00~09:

05:00-09:

1060 MOUNTAIN VIEW

05:00-09:

05:00-09:

203

299

OQ 09:00-17:

00 09:00~17

CALIFORNIA

00 09:00-17
1

211.0
0

211
211

CALIFORNIA

00 09:00-17

00 09:00-17:

3
318.0
124.7
220

4gy

00

:00

:00

:00

00

17:00-22:00 22:00-05:00

3
229.7
14.4
210
244

17:00-22:00 22:00-05:00
4

458.3
154.5
266
614

CRP2 ¢ #* 408/446-4850

17:00-22:00 22:00-05:00

AME1 EE #* 415/965-8815

17:00-22:00 22:00-05:00

3
287.0
88.0
171
384

17:00-22:00 22:00-05:00

204

1063 PITTSBURGH PENNSYLVANIA PIT] C 412/765-3511

June 1975

05:00-09:00 09:00-17:00 17:00-22:00 22:00-05:00
Number 2

Average Delay 471.5
Std Deviation 45.5
Minimum Delay 426
Maximum Delay 517

September 1975
05:00-09:00 09:00-17:00 17:00-22:00 22:00-05:00

Number 3
Average Delay 268.7
Std Deviation 49.5
Minimum Delay 200
Maximum Delay 315

November 1975

05:00-09:00 09:00-17:00 17:00-22:00 22:00-05:00
Number 1

Average Delay 283.0
Std Deviation .0

Minimum Delay 283
Maximum Delay 283

December 1975

05:00-09:00 09:00-17:00 17:00-22:00 22:00+05:00
Number 1

Average Delay 267.0
Std Deviation .0

Minimum Delay 267
Maximum Delay 267

February 1976
05:00-09:00 09:00-17:00 17:00-22:00 22:00-05:00

Number 1
Average Delay 668.0
Std Deviation .0

Minimum Delay 668
Maximum Delay 668

March 1976
05:00-09:00 09:00-17:00 17:00-22:00 22:00-05:00

Number 1 1
Average Delay 297.0 266.0
Std Deviation -0 .0
Minimum Delay 297 266
Maximum Delay 297 266

1072 PALO ALTO

August 1975

Number

Average Delay

Std Deviation

Minimum Delay

Maximum Delay

1073 UNION

June 1975

Number

Average Delay

Std Deviation

Minimum Delay

Maximum Delay

August 1975

Number

Average Delay

Std Deviation

Minimum Delay

Maximum Delay

October 1975

Number

Average Delay

Std Deviation

Minimum Delay

Maximum Delay

November 1975

Number

Average Delay

Std Deviation

Minimum Delay

Maximum Delay

January 1976

Number

Average Delay

Std Deviation

Minimum Delay

Maximum Delay

March 1976

05:00-09:

05:00-09:

05:00-09:

1

484.0

0

Hy

484

05:00-09;
2

769.5
97.5
672
867

05:00-09:

7
641.6

204.4

419

1106

05:00-09:
1

281.0
0

281
281

05:00~09:

205

PCOSR1 E *® 415/326-7015

22:00-05:00
1

148.0
0

148
148

UNISR1 E ** 201/964-3801

CALIFORNIA

00 09:00-17:00 17:00~-22:00

1

169.0

.0

169

169

NEW JERSEY

00 09:00-17:00 17:00-22:00

2

371.0

9.0

362

380

00 09:00-17:00 17:00-22:00

1

692.0

.0

692

692

00 09:00-17:00 17:00-22:00

1

485.0

0

485

485

00 09:00-17:00 17:00-22:00

10

689.8

178.2
476

1055

00 09:00-17:00 17:00-22:00

00 09:00-17:00 17:00-22:00

22:00-05:00

22:00-05:00

22:00-05:00

22:00-05:00

22:00~05:00

22:00-05:00

Number

Average Delay

Std Deviation

Minimum Delay

Maximum Delay

April 1976

Number

Average Delay

Std Deviation

Minimum Delay

Maximum Delay

1112 NEW YORK
NEW YORK

June 1975

Number

Average Delay

Std Deviation

Minimum Delay

Maximum Delay

July 1975

Number

Average Delay

Std Deviation

Minimum Delay

Maximum Delay

August 1975

Number

Average Delay

Std Deviation

Minimum Delay

Maximum Delay

December 1975

Number

Average Delay

Std Deviation

Minimum Delay

Maximum Delay

206

2

688.5

221.5

467

910

05:00-09:00 09:00-17

1

1125.0

0

1125

1125

NEW YORK

NEW YORK

05:00-09:00 09:00+17

4 13

668.5 308.1

207.6 51.3

458 232

960 439

05:00-09:00 09:00-17

5 7

655.2 532.9

176.9 104.2

401 356

891 679

05:00-09:00 09:00-17

1

600.0

.0

600

600

05:00-09:00 09:00-17:

j

894.0

0

894

894

200 17:00-22:00 22:00-05:00

NYCSR2 C **® 212/750-9433
NYCSR2 C **® 212/750-944

200

700

:00

00

17:00-22:00 22:00-05:00

17:00-22:00 22:00-05:00

17:00-22:00 22:00-05:00

17:00-22:00 22:00-05:00

207

1116 CHICAGO ILLINOIS CHISR1 C ** 312/368-4607

August 1975

05:00-09:00 09:00-17:00 17:00-22:00 22:00+05:00
Number 1
Average Delay 166.0
Std Deviation .0

Minimum Delay 166
Maximum Delay 166

1173 VALLEYFORGE PENNSYLVANIA VFOSR1 E 215/666-9190

December 1975

05:00-09:00 09:00-17:00 17:00-22:00 22:00-05:00

Number 1 4
Average Delay 311.0 392.8
Std Deviation .O 102.4
Minimum Delay 314 266

Maximum Delay 311 511

January 1976

05:00-09:00 09:00-17:00 17:00-22:00 22:00-05:00
Number 4
Average Delay 457.5
Std Deviation 28.2
Minimum Delay 421
Maximum Delay 496

208

APPENDIX E

MAINSAIL DESIGN SUMMARY

A MACHINE-INDEPENDENT PROGRAMMING SYSTEM

Clark R. Wilcox

SUMEX Computer Project, Stanford University

Stanford, California

ABSTRACT

A general-purpose programming system is being

developed for the support of portable software,

and as a tool for research into machine-

independent code generation. The issues involved

in such a design project are discussed, and an

overview is given of the approach taken for

MAINSAIL.

INTRODUCTION

Much effort is now expended in the development of software whose
conceptual framework, at least, is already well-understood and documented.
A significant amount of time spent in such development is invariably

attributable to the particular environment in which the program will
execute, rather than the funetion of the program itself. An algorithm is
easily overwhelmed by implementation details, and its intention obscured
by the resulting program. The source language, the operating system, the
size of the machine, the file system, the debugging facilities, the time
schedule, the demands of efficiency: all seem to conspire against elarity
and generality. The original purpose, and the means used to obtain a
running program, can become inextricably enmeshed, the result having no
application beyond its limited context. The program becomes tied to the
machine, the operating system, a particular version of the operating
system, and the various local enhancements, and certain terminals, with
given keyboards and character sets; it continually becomes obsolete, never
works quite right, and dies a certain death when the author departs. And
yet essentially the same program is developed for other machines, and
meets the same fate. There seems to be neither the time nor the tools to
do it right once, and distribute it; indeed, everyone is busy writing his
own version.

If a program is to find general use beyond the confines of a

particular implementation, the multitude of machine-dependent traps must
be defended against at every turn. Whether this necessarily entails a loss
in efficiency (program size and execution time), and the inability to use

209

local features which might otherwise enhance performance, is becoming less
clear, and certainly less important as memory and processing rates
increase. The programming task is being given increased scrutiny, with an
eye to the elimination of duplication, obscurity and inflexibility solely
for the purpose of execution-time efficiency. Software is viewed more as
a product with general applicability than as a means to an end. The
tremendous effort required for a quality software product is resulting in
a less tolerant attitude towards programs which must be totally rewritten
if "moved" to a new machine.

If programmers had access to programming systems which aided in the
creation of portable software, then perhaps we would be surprised at the
tasks now considered machine-dependent which could be cast in a more
general mold, passed from one machine to another, with possibly minor
changes isolated and well-documented. To gain acceptance, such a system
must balance several conflicting requirements without adversely affecting
its ease of use.

PORTABILITY

The programming system itself must be transportable among a wide
variety of machines. Its design must incorporate the means to insure
compatible versions among machines, and to allow a new machine to be
implemented with a minimum of effort. A language standard, presumably
enforced in all implementations, is not sufficient. There is little chance
that every version will be totally compatible. A standard retards the
introduction of improvements and new ideas, since every implementation
requires concurrent upgrading to preserve compatibility. The orchestration
of such updates across a broad class of computers is prohibitive. Thus the
parallel development of the programming system on many machines is not
sufficient, and is an example of the very redundancy which a machine-
independent programming system can alleviate. Such is the case with many
languages which are now used for program portability, for example FORTRAN,
COBOL, BASIC and SIMULA.

If a single version of the system could be written and distributed
to all sites, then an elegant solution would be provided to the problem of
maintaining compatibility, and hence portability. There would be no need
for a language standard, since each site would use the same compiler.
Every version would without question be compatible, since there would be
only one version. Any changes to the system would be immediately
transmitted to all sites by merely sending copies of the updated software.
Errors found by one site result in fixes for every site.

This type of distribution can take place if the programming system
is written in its own language. All software comprising the MAINSAIL
programming system is itself written in the MAINSAIL language. The
compiler can compile itself, and its own runtime system. It is easily
bootstrapped since it is written in a subset of MAINSAIL which can be
compiled by an existing compiler for the language SAIL, from which
MAINSAIL is derived. Furthermore, the creation of a MAINSAIL system for a
new computer is largely automated by a compiler-generator program.

210

The programming system itself is one example of the portability of
programs written for the system. As a corollary, user programs can be
written which will execute correctly on any implementation. The
consequences of being able to move programs freely among several computers
and operating systems are far-reaching. Programs may be shared among all
sites, regardless of what computers are involved. At a Single site, the
same language can be used on all computers, thus promoting program
interchange, and removing the problems involved with using different
languages on each computer. If one computer system becomes unavailable,
programs may be moved to another. The introduction of new computers may
take place without fear that existing programs will become obsolete: it is
only necessary that the programming system be implemented on the new
system.

EFFICIENCY

In order to compete successfully with existing programming systems,
a machine-independent system must offer advantages greater than the
penalties derived from its lack of intimacy with the host machine. While
this statement is nearly tautological, it nevertheless suggests the
tradeoffs between efficiency and portability which must be dealt with in
the design of such a system. Machine-independence is more a question of
degree than possibility, since, in theory at least, even an extremely
limited machine can be made to simulate the operations of the most
powerful.

In order to obtain an acceptable level of efficiency, few
assumptions concerning the target machines should be embodied in the
programming system. It would be unacceptable to model all target machines
as stack machines, if this model must be carried to the point of code
generation. Similarly, register usage, linkage conventions,
addressability, and storage allocation must not be given rigid
characteristics if the system is to be truly portable. Interpreted code
cannot be emitted in every case. Such considerations seem to rule out the
effectiveness of a well-defined “abstract machine" for which code is
generated. Instead, the code should be made to fit each target machine as
well as most compilers now fit the machines for which they were designed.
In many cases MAINSAIL is able to generate better code than existing
compilers. For example MAINSAIL produces about 10 percent less code than
the SAIL compiler, which was designed for a particular machine (PDP-10).

MACHINE-DEPENDENCIES

Somewhat paradoxically, a machine-independent programming system can
benefit from features which support its use in machine-dependent
applications. If the language attempts to ban any constructs which it
considers machine-dependent, then programs which by their nature are
heavily dependent on a particular machine configuration cannot be written.
Programmers who would prefer use of the language must turn to another for
such purposes; their preferences may be similarly turned.

At the very least, linkage should be allowed to external procedures

211

written in other languages, so that a library of procedures of local
interest can be constructed. If such a procedure is very short, say merely
a call to the operating system, then the overhead for a procedure call may
be unacceptable. In this case, the ability to insert assembly language
directly into the program is most useful.

By its very design, MAINSAIL can benefit from machine-dependencies.
Though most of the runtime system is written for portability in MAINSAIL,
some system procedures are too machine-dependent to be written once for
all computers. When writing these procedures for a particular
implementation, it is desirable to use MAINSAIL if possible, because of
the ease with which the machine-dependent portion can be interfaced with
the machine-independent parts. Thus the entire runtime system may be
written in MAINSAIL, which seems almost magical considering that
everything else is also written in MAINSAIL.

There is of course a danger in explicitly allowing the introduction
of machine-dependencies into the language. Programmers may begin using
such constructs when not really necessary, so that the advantages of using
a portable language are lost.

LANGUAGE DESIGN

In designing a general-purpose language for portability, one is
immediately faced with the problem of data representation, for this is
most closely dictated by the underlying machines. The selection of
primitive data types must not be too narrow to prevent the full use of
more powerful machines, nor too broad to require extensive simulation on
smaller machines. Two basic approaches for data definition suggest
themselves: offer standard definitions from which the programmer must
choose; or give the programmer control over data characteristics such as
range and precision. These approaches can be contrasted for the primitive
data type integer.

The first would offer one or more standard ranges, for example
INTEGER and LONG INTEGER, with ranges corresponding to, say, 16 bits, and
greater than 16 bits (an upper bound would be of dubious value). These
ranges would correspond to the minimal ranges expected for all computers
to be implemented, and the programmer would understand that in a program
written for portability, LONG INTEGER would preclude its use on computers
with a small word size, unless this type were simulated. On larger
computers, INTEGER might be represented with, say, 32 bits, and programs
written specifically for such machines could make use of the full range.

The second approach would include, with each declaration, range
information, for example the smallest and largest values. The compiler
would use this information to allocate the integer, presumably choosing
different representations for different ranges. The programmer need
consider only the characteristics of his data, rather than the various
machines which are to support his program. The inclusion of a range
specification is also a useful form of program documentation, and aids the
compiler in checking that the variable is properly used. Of course, the
programmer must realize the consequences if his integer range is beyond
that of a 16-bit word.

212

MAINSAIL presently offers the first approach with data types
INTEGER, LONG (integer), REAL, and DOUBLE (real). LONG and DOUBLE are
useful if the hardware provides these extended data types, or they are
necessary for the intended applications, but must be supported by
software. In the latter case they are expensive to use, and the single
precision types should be employed where possible. In either ease,
machine~dependent considerations are involved in deciding to use these
types, and thus they cannot appear in "portable" programs. This approach
simplifies the compiler design, and perhaps results in more efficient code
for smaller machines, where this is most crucial. The type BITS, for
logical operations on bit vectors, is also offered, and defined as
providing at least 16 bits. Thus the data types are optimized for ease of
implementation, rather than optimal use of storage on machines with larger
words. The compiler is never concerned with an attempt to "pack" a data
type into the available words.

MAINSAIL says nothing about the bit patterns used to represent data.
For example, integers can be represented as ones complement, twos
complement, or even decimal. Bit operations are allowed only on the type
BITS, with standard conversions among BITS and INTEGER. An INTEGER is
converted to BITS by forming the binary representation of the integer
(undefined if the integer is negative). Similarly, a BITS is converted to
INTEGER by forming the non-negative integer whose binary representation is
given by the bits. Thus it can be determined whether a positive integer is
odd by converting to BITS and testing the low-order bit, no matter what
representation is being used.

Another issue of data representation is the character codes,
MAINSAIL offers the type STRING, which is a variable-length sequence of
characters (the number of characters is automatically kept track of),
There are two operations which are concerned with character codes: the
first character of a string may be converted to its integer code; and an
integer may be converted to a string of one character. The codes used to
Store characters within strings are of no consequence; there is only a
need for a standard code during the two operations. MAINSAIL decrees that
the ASCII codes are in effect whenever an integer is deemed to be a
character code. Each implementation is responsible for any necessary
conversions to and from the internal codes used in string storage.

In order to allow the runtime system to be largely written in
MAINSAIL, some assumptions concerning memory and addressability are
necessary. The amount of memory required by each data type is measured in
"storage units." The physical interpretation of a storage unit is machine-
dependent; for example, a storage unit may be a "byte" or a "word." The
number of storage units required by n consecutive values of the same type,
for example elements of an array, is n times the size of a single value.
However, sizes of consecutive values of differing types cannot be added to
obtain a total size, since machine-dependent "padding" may occur between
the allocations for alignment purposes.

The type ADDRESS is introduced for manipulating memory addresses. A
memory model is adopted which specifies only those addressing
characteristics necessary for the simplest memory accesses. For example,
an address is not used to indicate a particular character of a string,

213

Since this is not possible on some machines without additional information

concerning the location of the character within a word. Associated with

each STRING is a “string descriptor" which contains the current length,

and the location of the first character. A string descriptor is a

primitive data type, since an integer-address pair may not be sufficient,

Addressability, and the associated issue of program linkage, is an

area which requires special attention. MAINSAIL allows programs to be

written as separate texts, called "segments." These segments are

separately compiled, and linked together to form a program in some

machine-dependent manner. Inter-segment communication is provided by

global data and procedures. Each segment is given a name and

characteristics such as MAIN and OVERLAY. A variable or procedure is

declared "external" by preceding its declaration with the name of the

segment which contains its "internal" occurrence. If a procedure is

internal to an OVERLAY segment, then that segment must be brought into

memory before the procedure can begin execution. MAINSAIL does not provide

the facilities for such overlay handling, but does include the syntax for

specifying which segments are overlays.

A machine must provide for an address composed of a static or

dynamic base (possibly external), with a static or dynamic offset. Static

means that the value does not change during program execution, i.e. it is

known at compile-time (within relocation). Thus a computer which does not
provide indexing will produce inefficient code. A single level of indirect

addressing can also improve the code quality. For example, if an address

variable is in memory, it is useful to be able to access, say, an integer

pointed to by the address, without first loading the address into an index

register.

The syntax of expressions and statements is more distant from the

underlying machine, so that there are few difficulties in removing

machine-dependencies. Perhaps the overall result is a clear and

straightforward syntax, since the prejudices and peculiarities exhibited

by more machine-dependent languages are missing. There are no exotic data

operations, since every machine would have to support such operations.

Probably no machine will have instructions corresponding to every

operation, though some come rather close. For example, BITS can be shifted

left or right by any amount. Some machines have instructions which do just

this; others require several instructions, or even a procedure call.

STRING operations are generally too complicated to be carried out in-line,

and thus there is no requirement for byte addressability or compact byte-

manipulation instructions.

COMPILER DESIGN

The primary consideration in the design of a machine-independent

compiler is the interface between what is known about the language and

assumed about all target machines, and what is left to be supplied for

each implementation. If too much is assumed, then the class of machines is

unduly restricted, and clumsy devices may be necessary to resolve a

distorted model to reality, resulting in needless inefficiencies. If too

little, then the generation of a new system could be a major undertaking,

retarding the spread of the system to new machines.

214

In contrast to a compiler-compiler which has no knowledge of the
source language, the MAINSAIL language and compiler evolved by an
iterative process. Features which were felt necessary for an efficient
compiler were simply put into the language. Similarly, the language was
modified in those areas requiring an inordinate amount of time or space
for compilation. With regard to optimizations, this intertwining of design
may result in additional statements in the compiler, yet a smaller
compiler when the optimized version compiles itself.

The compiler consists of two passes in order to cleanly separate the
machine-independent and dependent phases. The first pass converts the
Source program to an intermediate language, and the second translates this
intermediate language to the target assembly language (which must be
assembled by some machine-dependent assembler not provided by MAINSAIL).
The intermediate language consists of operators with a variable number of
operands, The operators reflect either MAINSAIL operations, such as
addition; program structure, such as procedure entry; or internal
information, such as the handling of temporaries. In most cases an operand
is a pointer into the symbol table.

This is quite different from an attempt to generate intermediate
code for an abstract machine. For example, the intermediate code for
"a i= a+b" might be <push a>, <add b>, <pop a> if the abstract machine
were stack-oriented, whereas MAINSAIL generates <add b a>. In the former
case, a register-oriented machine could certainly simulate the pushes and
pops, but the generated code would be of dubious quality. A machine with a
memory-to-memory add would suffer even more. MAINSAIL, however, generates
intermediate code which captures only what is in the source program, with
no assumptions concerning the target machine. The <add b a> ean involve
registers, a stack, memory-to-memory, or even a procedure call.

The second pass consists of a machine-independent part, and a
machine-dependent part which is translated from a code-generation
language. The machine-independent part is responsible for creating a
convenient interface to the machine-dependent part, consistent with the
separation between the two. It fetches the intermediate instructions, and
Sets up the operator and operands for easy accessibility. It supplies
answers to questions concerning the operands, or the current code
generation environment which it is responsible for maintaining.

MAINSATL employs a general notion of register which is useful in a
number of contexts. An operand is always associated with a memory
location, and may be temporarily marked as loaded in a register. The
compiler provides several services related to registers, such as: mark an
operand in a register, clear a register, or find the "best" free register,
It will automatically load and store registers when necessary. A register
may also be marked as containing the address of an operand.

The services provided for registers are never invoked unless the
code generators either directly request a service, or indicate that
registers are to be used in certain situations (for example, to pass
procedure parameters). Thus code can be generated for machines with no
registers, for example a stack machine (actually, the top of the stack can
be modeled as a register). A code-generation environment is created and

215

maintained which is flexible enough to be of use for a wide variety of

computer architectures. Many checks insure the internal consistency of the

environment, for example a register cannot be marked with two operands at

the same time. By knowing the rules of this environment, code generators

can be written for a new computer with minimal effort.

The code-generation language provides a powerful and convenient

setting in which to specify code sequences. Declarations give semantic

information concerning register usage, storage units, additional symbol

table entries, and various parameters used within the compiler and runtime

system. A code generator must be written for each intermediate

instruction. A generator has available to it services such as those
discussed above, and the operands of the intermediate instruction. In
general a code-generator looks like the assembly language which it is to

produce, except it contains keywords which are replaced during code
generation with operand names, registers, or constants. The code-
generation language is translated to MAINSAIL, and hence the full power of
MAINSAIL is available. In practice, the constructs provided are sufficient
for almost all situations which arise during code generation. A code
generator usually takes the form of a series of conditions, each followed
by pseudo assembly language which is to be processed if the condition is
satisfied. The complexity of the conditions is determined by the degree to
which the target machine conforms to the general framework provided for
code generation, and the amount of optimization desired. Procedures can be
used for commonly occurring code sequences.

Since code generators are associated with intermediate instructions,
they provide only for local optimization. Because of the extreme ease with
which the code generators can be altered, a compiler can be created from
the current generators, and its output examined for errors and

inefficiencies. Based on this, the generators can be altered, a new
compiler created, and so forth. This process continues until the code
appears correct, and is sufficiently efficient. Construction of a new
compiler from a few changes in the generators can be done in a matter of
minutes. Thus a single session spent tuning the generators can produce
Significant results.

The formal separation of target-machine semantics from the more
general aspects of code generation has an exciting potential for research
into the design of instruction sets. Since a wide variety of computers can
be described with the code generators, experiments can be conducted to
test features such as the number of registers, the utility of indirection,
or various procedure linkages. Existing machines can be compared to
determine which is best suited for a high-level language implementation.
For example, an instruction set which allows complete addresses can be

compared with one which offers a base with small displacement, to

determine which requires the fewest memory accesses. A micro-coded
instruction set based on the MAINSAIL intermediate instructions would
produce optimized code sequences.

The facility with which code generators can be written makes
MAINSAIL accessible to one-of-a-kind machines, For example, there is now
under construction a three-address parallel processor with no registers
which will use MAINSAIL as its high-level language. Programs can be

216

written, and the code examined, before the machine is complete (even the
assembler for the new machine can be written in MAINSAIL!). Providing such
a machine with a high-level language would be a major undertaking if the
compiler, runtime system and assembler had to be written in assembly
language.

RUNTIME DESIGN

The runtime system provides support during program execution:
program initialization, file manipulation, i/o, conversions among string
and numeric-bits, string handling, mathematical routines, string and
record collection, and dynamic memory allocation. If MAINSAIL is to be
used as an implementation language, then it may be desired to limit the
size of the runtime package. Since the system procedures are used only in
response to implicit or explicit requests, programs may be written which
require little, if any, support. For example, programs which involve only
arithmetic, logical and address operations, with no i/o, string handling
or dynamic storage allocation, may be compiled into assembly language
programs which call only the system initialization procedure. By removing
this call, a self-sufficient program is obtained which can be combined
with hand-coded assembly-language modules. In this sense, MAINSAIL can be
regarded as a convenient means of generating assembly language programs.

Mathematical routines for trigonometric functions, exponentiation,
logarithm, square root, and random numbers have been written in MAINSAIL,
accurate to at least 17 decimal digits in most cases. Since they are
written in MAINSAIL, there are of course no assumptions regarding word
size or representation. The obscurity of their assembly language
counterparts is in stark contrast to the clarity with which the algorithms
are expressed in a high-level language, and has probably contributed to
the astounding number of times they have been written, over and over
again, for different machines. The same can be said of the MAINSAIL
routines for conversion between string and floating point numbers.

MAINSAIL has a well-developed i/o capability, including any number
of sequential and random files, and terminal interaction. File names are
represented as strings, and the format of these strings is transparent to
MAINSAIL, since they are handled only by machine-dependent routines.
There are two types of sequential files: text and data. Text files are
meant for legible text, for example a program or document. Whenever
numeric or bits data is written to a text file, an automatic conversion is
made to a string representation; similarly, such reads from a text file
automatically scan for the proper string representation.

A data file contains machine-readable data in some machine-dependent
format. Any mixture of numeric and bits can reside on a data file,
presumably stored in a compact form identical to the internal
representation within the computer. Since no conversion is necessary,
input and output is efficient.

A random file is composed of fixed-length blocks of data, called
file-blocks. Reads and writes supply a file-block number, and the entire
file-block is involved in the transfer. A file-block is read into, or

217

written from, a memory area whose address is supplied to the read or write
routine.

Files can be opened, closed, and deleted. Additional file-
manipulation routines can be added for each site. Much of the i/o activity
is handled in a machine-independent manner, so that only a few well-
defined elementary procedures need be written for each machine.

CURRENT STATUS

MAINSAIL now runs on a PDP-10 with TENEX, and a PDP-11 with RT11.
Development is under way for a PDP-10 with TOPS10, a PDP-11 with UNIX, and
the IBM-370. Code has also been generated for an INTERDATA 7/16, VARIAN
and NOVA. Many more machines were examined while developing MAINSAIL, and
will be considered for implementation as sufficient resources are made
available,

A number of projects across the country are interested in using
MAINSAIL for the development of portable software. Among these are a
robotics project, a mass spectrometry system, a program for chemical
structure elucidation (now written in LISP), a computer-aided-instruction
system for the teaching of logic, an automated cell classification
laboratory, a machine-independent version of INTERLISP, and a display-
oriented text editor.

218

APPENDIX F

SUBSYSTEMS AND DOCUMENTATION DIRECTORIES

Naney Smith

December 1974
(updated April 1975)
(updated Sept. 1975)
(updated Oct. 1975)

The sources of available documentation for these programs will be
abbreviated as follows:

TUG Tenex User’s Guide (1975 edition)
DUH DEC Users Handbook
DAL DEC Assembly Language Handbook
DML DEC Mathematical Languages Handbook
HC a hard-copy manual for the language
OL on-line documentation which can be found by

@DIR <DOC>programname.* . The following extensions are
used on the <DOC> directory:

»-MANUAL complete usually fairly long manual
-HELP or .HLP shorter summary, list of commands, etc.
. SUPPLEMENT on-line supplement to hard-copy doc
UPDATE list of updates by date
SAMPLE sample program or output

See <DOC>A-LIST-OF-ALL-AVAILABLE-DOCUMENTS. INFO for complete details
on these documents including where and how to order then.

Many of the major programs also have a <BULLETINS>programname. BBD
file where messages about new developments, bugs, hints for using the
program etc. are sent. These <BULLETINS> files can be read by any of the
mail reading programs (READMAIL, RD, MSG, or BANANARD).

New programs or new versions of old programs will be put on <NEWSYS>
for a trial period. The file <NEWSYS>NEW-SYSTEMS. INFO which is a message
file will have a message about each program available. These new programs
will not be included in the list of programs given here.

The HELP program obtained by typing @HELP gives assistance in
finding the appropriate on-line documents for the various programs.

SUBSYS

2SIDES
ACCESS
ADDMSG
AID
AIFAIL
ALIAS
BAIL
BACKUP
BANANARD
BASIC
BCPL
BINCOM
BLIS10
BLIS11
BLISS
BOOTGT
BUDGET
BYE
CALENDAR
CAM
CCL
CLEAN
COPYM
CREF
CRSREF
CRYPT5
DCHANGE

DCHECK
DDT
DED
DELOLD
DELVER
DFTP

DIABLO

DIREXT

bo

DOM

DONE

DROP

DSKACC

DTACOP

DUMPER

BOFIX

EXTR

F4O

FAIL

219

DESCRIPTION DOC

makes files for multi-columns and/or 2-sided listing OL

gives a list of subsys’s currently available to GUESTs

appends a msg to a specified file

algebraic interpretive dialog conversational lang. HC

assembly lang. - early version of FAIL from SU-AI OL,HC

allows a dummy name to be set up for a program

SAIL debugger (on <SAIL>) OL
short term file loss protection OL

msg reading program (many extra features) OL

conversational programming lang. (DEC version) OL,DML,TUG

compiler writing and systems programming lang. HC

binary comparison of files (now replaced by FILCOM) DAL

compiler for system implementation (DEC version) OL,HC,TUG

BLISS for the PDP11

compiler for system implementation (TENEXized) OL,HC(DEC)
loader for the PDP11 (GT40Q)
budget management program (especially proposals) OL
@BYE same as @BREAK (LINKS)
calendar management and reminder system OL,TUG

the compare and merge program of SOUP see <DOC>SOUP.MANUAL

concise command language OL, DUH

a file by file directory clean-up program OL

reading/writing DECtapes OL, TUG

cross-reference assembly listing OL, DAL

TENEX cross-referencing program (outfile_infile(s))
En/Decrypts textfiles to provide security OL

character set conversion for "foreign" tapes OL

see <DOC>DCHANGE.MANUAL and <DOC>DCHANG.HLP

reads blocks of file into core & calls DDT to examine OL

debugger (single-stepping added at IMSSS) OL,TUG, DAL
text-editor (designed for TENEX) OL

deletes files by cutoff date of last access OL
deletes excess versions of files TUG
file transfers to and from the Datacomputer OL

(for certain special file storage needs)

prints final copy of PUB-produced documents on DIABLO OL

prints directory information for files sorted by OL

file extension rather than file name

creates or appends a line to a reminder file OL

effects the assembly and loading of a single

MACRO program OL

deletes a line from a reminder file OL

Similar to DELVER, deletes oldest and 2nd newest on *,*#
gives dsk allocation for all members of accounting groups

DECtape to DECtape copy

reads/writes magnetic tapes

deletes any pages past end of file mark OL

"EXTRactor" processes MACRO/FAIL source files to

produce .FAI listing of labels defined

FORTRAN IV (see also <DOC>FORTRAN.HELP and

<DOC>LISP-FORTRAN~INTERFACE.HELP)
assembly language (BBN version of FAIL) OL ,HC

(see also JSYS manual & <DOC>SUMEX-JSYS “S. INFO)

OL, TUG, DML

FED
FILCHK
FILCOM
FILDMP
FILES
FILEX

FORMAT
FORTRA

FREQ
FRKCOM
FTP
FUDGE2
GETDMP

GRIPE
HELP
HOSTAT
IDDT
IFAIL
ILISP
IMSSS
INSPEX
KILL
LAST
LD
LINK10
LINK11
LINKSTAT
LISP
LOADER
LOADGT
LOADVT
LOWCASE
LPTSTS
MAC 11
MACRO
MAILBOX
MAILSTAT
MANTIS
MATHLAB
MLAB
MSGFIX
MTACPY
MTCOPY
MULTI
MY-ACCOUNTS
NDIR
NETSTAT
NEWFILES
NEWINFO

NODE

NON

220

the final edit program of SOUP see <DOC>SOUP.MANUAL

checks SAIL programs for loader incompatibilities OL

complete file comparison package OL,DAL,TUG

dumps files in variety of formats OL

multiple to multiple copies, renames, protections

for file transfers converts between DEC machine

formats for dsk and DEC-tape.

makes table of contents & index for SAIL sourcefiles OL

FORTRAN10(version 4) (see also <DOC>FORTRAN.HELP) OL,HC
ranks words in text file according to frequency

compares an address space with address space of file TUG

ARPANET file transfers TUG

updates/manipulates files containing rel programs DAL,TUG

loads into core .dmp file from SU=-AI (SAV only to

677777) type filename to * prompt
sends comments or complaints about system to staff TUG

helps locate on-line documentation

prints network site status information TUG

DDT for inferior forks TUG,OL
assembly language (IMSSS version of FAIL) OL,HC
UC Irvine LISP (extension of LISP 1.6) OL
direct link to IMSSS

checks files for wasted space and pages past eof OL
closes all jfns--useful when RESET can’t get a file closed
Gives date, time of last full dump, archive or daily dump
prints SYSTAT-like info

DEC loader

linker for PDP11 DOS operating system

prints status of IMSSS link

INTERLISP=see also <DOC>LISP-FORTRAN-INTERFACE.INFO OL,HC

(from IMSSS)-see <DOC>LINK10-LOADER-DIFFERENCES.HELP TUG
GT40 standard format loader
loader for PDP11 (GT4O)
converts a text file to lowercase

gives the files on the lineprinter queue & their size OL
MACRO cross-compiler for the PDP11

assembly lang-JSYS manual & <DOC>SUMEX-JSYS‘S.INFO TUG, DAL

OL ,DUH

OL,DAL,TUG

to reroute mail (not fully implemented yet) OL’
info on queued mail TUG
Fortran debugger

interactive symbolic algebraic system OL
mathematical modeling and graphics package OL
TECO routine to help fix the format of messages
magtape program TUG
DEC magtape program OL
multiple-fork supervisor--switches between forks

prints user’s valid accountnames

gives compact list of files on connected directory

prints info on ARPANET status TUG
directory information for files written in last 24 hrs OL
gives all new files on public directories or for any OL

file group (includes number of reads for each file)
gives the geographical location of a TYMNET node

zero-compresses file, options to remove linenumbers,
pagemarks, convert eol’s, etc.

PCSAMP

PDP6DT

PIP

PIP(1

PNTMAK

POET

PPL

PROFIL

PUB

PUB2

RD

READMAIL

RECOG

RECORD

REDUCE

RPURGE

RSEXEC
RTTY
RUNFIL
RUNOFF
SAIL
SCAN
SEARCH

SEARCHDIR
SEARCHP
SEGSAV
SITBOL
SNDMSG
SNOBOL
SORT
SOS
SPELL
SPSS
SRCCOM
STP
SUBMIT
SWITCH
SYSDPY

SYSIN

TABLE

TALK

TAPCNV

TBASIC

TCTALK

TECO

TELNET

TIPCOPY

TMERGE

TODAY

TRITAP

22)

measures the operation of other user programs TUG
DEC-tape program

DEC utilities program OL , DUH
transfers PDP11 DOS DECtapes to/from TENEX files OL
converts underlines to suitable format for LPT: OL
text editor designed for TENEX use OL
an interactive extensible programming lang. TUG
gives freq of execution of SAIL statements OL ,HC
document preparation lang. OL
2nd pass of PUB -- used separately to change underlines
mail reading program (MSG is better) TUG
mail reading program (MSG is better) TUG
when ordinary recognition is ambiguous RECOG gives OL

the possible filename matches

for pseudo-ttys, typescript of job, detaching OL
from running job

symbolic algebraic language OL
requires confirmation before purging (delete & expunge) OL

& puts info on purged files in a file by date
restricted access only TUG
types out a file starting at the end (reverse) OL
uses file instead of tty for input commands TUG
document-preparation language (DEC not BBN version) OL
ALGOL-like lang.-see also <DOC>LEAP.MANUAL OL , HC
scans multi-directories for a variety of file info OL
searches multi-text files for English words or SAIL OL

identifiers, can be used with TV editor
substring search of directory information on files OL
substring search also allows random reading of file OL
reads .shr & .low files to produce TENEX .sav OL
compiler version of SNOBOL OL
message sender OL,TUG
string-processing programming lang. OL,HC
Stand alone COBOL column-oriented text file sorter OL,TUG
text editor OL
spelling checker/corrector for text files (not TENEX) OL
Statistical Package for the Social Sciences OL
compares text files TUG
Western Michigan University StaTistical Package OL
submission to batch (see <DOC>BATCH.HELP)
switches the format of a reminder file OL
gives SYSTAT-like info constantly updated on display OL

(CRT) terminal
executes LISP SYSOUT’s OL
creates conversion tables for DCHANGE
used with LINK command to eliminate need for ;‘s
reads card image file processed by MTACPY TUG
TENEXized version of DARTMOUTH BASIC OL
teleconferencing over ARPANET OL
text editor (see TENEX TECO manual) OL,TUG
restricted access only TUG
sends text files to a TIP port TUG,OL
merges specified text pages from files into new file OL
lists the contents of today’s reminder file OL
processes magtapes from XEROX, IMSSS, BBN OL

TTYTRB
TTYTST
TV
TVFIX
TYMSTAT

TYPBIN
TYPEIN
TYPREL
UPCASE
WATCH
WATCH. IMS
WHAT
WHO
WHOIS
VIEW
XED
XT
Z

222

used to report terminal line problems TUG
prints test patterns for diagnosing terminal TUG
text editor for TEC and DATAMEDIA displays OL
restores bad TV files (see <DOC>TV.MANUAL)
(for TYMNET lines only) gives measure of current
efficiency of TYMNET transmission

does an octal dump of a packed file TUG
appends type-in to file with some editing allowed OL
analyzes contents of .REL files TUG
converts an entire file to uppercase
continuous on-line monitoring of system activity TUG
IMSSS version of WATCH

lists the contents of a reminder file OL
prints SYSTAT-like information

looks up username & prints name/address info on user OL
examines a file word by word, several typeout modes OL
text-editor (used with BANANARD) OL
reformats and prints text file OL
logs jobs off including from inferior (lower) forks &

prints a witty saying

<DOC> DIRECTORY LISTING

223

The following is a listing of the <DOC> directory which contains

most of the on-line formal documentation about the system and subsystems.

<DOC> 13-MAY-76 08:19:25

FILE NAME SIZE (COMPUTER PGS)

.HELP;2 1
2SIDES. HELP; 3 3
A-GENERAL .HELP;12 2
A-GUIDE-TO-TENEX-USER “S-GUIDE, INFO;2 5
A-LIST-OF-AVAILABLE=DOCUMENTATION. INFO;8 14
A~SURVEY-OF~ THE~DEC-HANDBOOKS. INFO; 10

ACCOUNT-NAME-USAGE. INFO; 2 3
AID. HELP ;4 2

.INFO;3 1
ALL-SUBSYS ‘S~AVAILABLE-AT-SUMEX. INFO;8 7
BACKUP .HELP 32 2
BAIL.HELP;5 1

MANUAL33 17
-UPDATE; 1 3

BANANARD .HELP; 1 1
BANK. MANUAL 32 46
BASIC.HLP32 2

UPDATE; 2 12
BATCH. HELP; 3 3

UPDATE; 2 4
BLIS10.HLP;4 2

UPDATE; 2 10
BLISS. HELP ;2 2
BSYS. MANUAL; 3 25
BUDGET. MANUAL ;7 9

.UPDATE;2 1
«SMP 32 1

CALENDAR.MANUAL;2 6
CCL.HELP;2 2
CHECKDSK .HELP; 3 4
CHESS . HELP; 1 3
CLEAN.HELP;1 2
COPYM.HELP;2 5
CREF .HLP3;1 1

UPDATE; 2 2
CRYPT5.HELP;1 2
DCHANG .HLP;2 2
DCHANGE. MANUAL; 1 12
DCHECK .HELP;1 1
DDT.SUPPLEMENT; 1 2

.HELP;1 1

. BRIEF;2 y

. SUMMARY; 1 9

224

DEC-HANDBOOK~GLOSSARY-UPDATE. INFO; 1 3
DEC/TENEX~COMMAND-EQUIVALENTS. INFO;4 11
DED. MANUAL; 1 15
DELOLD .HELP; 1 1
DESCRIPTION-OF~SUMEX-AIM= PROJECTS. INFO;3 4
DFTP.HELP;3
DIABLO.HELP;9
DIREXT. HELP; 1
DOM.HELP;1
DUMP.INFO; 1
EDIR.MANUAL ;2

-HELP;1
UPDATE; 1

EDIT. INFO; 1
EDITOR-PROGRAM=INTERFACE. INFO; 2 2
EOFIX.HLP;2
FAIL. MANUAL 33

HELP ;5
FILCHK.HELP; 1
FILCOM.HLP; 4
FILDMP .HELP ;2
FILEX .HLP3; 1

.UPDATE; 1
FLECS.HLP;1
FORDDT.HLP;1

.UPDATE; 1
FORMAT. HELP; 1
FORTRA.HLP31
FORTRAN .HELP;2
FTP.UPDATE; 1

. ANONYMOUS-ACCESS; 1
GLOB.HLP;1

UPDATE; 1
GRUMP .HELP; 1
GT40-LIGHTPEN.HELP;1
GT40-LIGHTPEN-IMPL. DOC; 1
GT40-OMNI-MONITOR-DIRECTIONS.HE
GT40-OMNIGRAPH. INFO; 1
GT40/OMNI-MONITOR.DOC;2
GUEST-ACCESS-SUMEX. INFO; 1
GUEST-LOGIN.HELP;1
HOW~TO-UPDATE=DOC. INFO;3
IDDT.HELP; 1
ILISP.MANUAL; 1

. TENEX=MANUAL; 1
HELP ;2

INSPEX.HLP;1
INTERROGATE. HELP; 4
INTRO-TO-SUMEX-AIM-TENEX. INFO 55 6
ISAIL.HELP;1
JSYS-INDEX. INFO; 1
LEAP .MANUAL;3
LINK10.HLP3;1

UPDATE; 3
LINK10-LOADER-DIFFERENCES. HELP;

e
A
a
O
A
a
w
A
U

7
O
W
|

M
Y
—
=
W
W

|
=
a
w

d
P

|
=
F
M
P

=
=

W
w

J
j
=

P31 1

a

f
h
—

P
M

F
S
M
w

=
—

f
r

f
o

w
O
o
m
—

~
a
o
n
=
u

—

225

LISP.HELP;3
.UPDATE;5

LISP=FORTRAN-INTERFACE. HELP ;2 2
LIST .HELP 33
LOADER.UPDATE; 1
LPTSTS. HELP; 1
MACRO.HLP3;1

UPDATE; 3
MAILBOX .HELP;1
MAKLIB.HLP;1
MARK=-MSGS.HELP3;1
MATHLAB.HELP;3
MLAB, HELP; 1
MSG. MANUAL ;4

UPDATE; 3
MTCOPY.HLP;2
MULTI.HELP3;1

M
h

—=
—
a
i
o
e
F
P

a
h
w

a
2
=
P

M
Y

D
W

s
a
=

NEW-SOS-TO-SUMEX-SOS-COMPARISON. HELP; 3 2
NEW-VERSION-SOS. INTRO; 143 4

. MANUAL; 1 31

. SUPPLEMENT; 144 20
NEWF ILES. HELP 32 2
NEWINFO.HELP;1 2
NOTE. HELP; 1 2
OLDFILES. HELP; 1 1
OMNIGRAPH-USER ‘S-GUIDE. INFO; 1 94
OVERVIEW-OF-COMPUTER-SYSTEM. INFO; 1 2
PAGESCAN.HELP; 1 1
PCAL.HELP; 3 2
PIP.HLP;3 1

UPDATE; 2 10
PIP11.HELP;1 2
PLOTTER. INFO; 1 2
PNTMAK .HELP; 1 1
POET.HELP;1 3

. MANUAL; 1 13
PROFIL.UPDATE;2 2
PROJECTS-AND-ASSOCIATED-USERS. INFO;69 T
PSEARCH. HELP; 1 2
PUB.MANUAL;3 62

sHELP;5 AT
. UPDATE; 10 8

RADIX.HELP;1 1
RECOG.HELP; 1 2
RECORD. MANUAL; 3 19
REDUCE. MANUAL; 1 yy
RPURGE .HELP; 1 2
RTTY.HELP;1 1
RUNOFF .HLP;1 2

.UPDATE; 1 24

. COMMANDS; 1 3
»HELP; 1 1

SAIL.HELP;2 1
. SUPPLEMENT; 4 34
. TENEX-SU PPLEMENT; 2 7

