
Core Research and Development

KAS Specification
> for RCT’s:

Oncology

Hypertension

| >, etc.

Meta-OPAL im
x . PhysicianE-OPAL Expert

Knowledge
Engineer

y v .

Other Domain > Oncology
Protocol Protocol
KB’s KB’s

 ¥
Hypertension

Protocol
KB's

y .

E-ONCOCIN

—

Vv y . y

Other Hypertension Oncology
Protocol Protocol Protocol

Management Management Management

Figure 8: Components of the Meta-OPAL System

E. H. Shortliffe 126 Privileged Communication

Core Research and Development

Teprogramming the whole system and revising the format of the Intermediate Data
Structure (IDS). However, if the operation of OPAL itself were completely and
explicitly defined in a very high level syntax, it would be far preferable to use Meta-
OPAL to revise this representation, automatically creating a new knowledge acquisition
system (KAS) that would incorporate (1) the necessary windows and menus, (2) an
appropriate IDS format, and (3) specifications for how the IDS should be translated
into E-ONCOCIN knowledge bases.

Meta-OPAL and the necessary KAS definition language will allow us maximum
flexibility in adopting OPAL for unusual protocols that might be encountered in the
future. If the KAS definition language is general enough, it will allow knowledge
acquisition for clinical trials outside of the domain of oncology. Because the
ONCOCIN inference engine (E-ONCOCIN) makes no specific assumptions about
oncology, Meta-OPAL could produce knowledge acquisition systems that would permit
physicians to enter new protocols for any kind of clinical trial; E-ONCOCIN could
then be used for patient consultations and for data management.

The Domain of Clinical Trials is Well Suited for Meta~OPAL:

Just as the structure of knowledge within clinical protocols is generally easy to
anticipate, knowledge about clinical protocols is equally predictable. For example, the
Sequence of interventions to take in any clinical trial should always be representable as
a schema. This schema might be similar in syntax to that now used. by OPAL to
express the order of treatments in cancer protocols. Other Tepresentations might be
more appropriate for RCT's in different domains. In oncology,

CHOP x 6

is quite satisfactory. However, stepped care for hypertension might be better expressed
using a format such as:

STEP 1: Hydrochlorothiazide
STEP 2: add Labetolol
STEP 3: add Captopril

Our initial work on Meta-OPAL will include developing a complete and unambiguous
syntax for specifying protocol schemas. Part of the KAS definition language will
involve declaring formatting options and what entries are permissible when a schemais
entered into the resultant KAS.

Knowledge about clinical trials is predictable in other ways. For instance, all protocols
list a host of laboratory test results and clinical conditions that must be recorded and
that may cause an alteration in the treatment plan. The number of ways in which
therapy may be modified within a given class of protocols is finite: these kinds of
actions will have to be specified in the KAS definition language.

Knowledge acquisition systems for RCTs also can capitalize on another constraint in
their domain: patients with concurrent diseases that might complicate analysis of the
study are excluded from participating in protocols. The scope of the knowledge needed
for a given expert system can therefore be limited to the one disease under
investigation. The task of designing a KAS for a given class of clinical trials is clearly
simplified when the scope can be focused in this way.

Although there are many different kinds of clinical trials, knowledge about such studies
is always formalized in a protocol document. Examining protocol documents will allow
us to generalize about what characteristics are required for knowledge acquisition
systems in each of the domains studied and provide the basis for developing Meta-
OPALand its KAS definition language. Our experience in developing and using OPAL
will also be essential in guiding our design for Meta-OPAL.

Privileged Communication 127 E. H. Shortliffe

Core Research and Development

How Meta-OPAL Will Work

The user interface to Meta-OPALwill involve the same menu-driven approach we have
adopted in the design of OPAL. Manyof the usual difficulties of communicating with
the computer will again be obviated by the use of graphics-based editing.

The knowledge engineer, in conjunction with a physician-expert, will use Meta-OPALto
specify the general nature of the clinical trials involved (e.g., sequential therapy, stepped
care) and certain study design issues (e.g., cross-over trials, repeated randomizations).
The expected modalities of treatment will also be declared. Meta-OPAL can then
establish the schema syntax for the protocols to be entered.

The program will then assist the user in structuring the IDS. The names and meaning
of each of the IDS entries will then be declared. The relationships among the various
IDS components will be specified using graphics.

A list of all knowledge base parameters will then be declared and the same rule
definition language that we will develop for OPAL will be used to specify how the
tules to conclude each of the parameters can be generated from the IDS. Parameters
will fall into several categories (eg., clinical conditions, concluded drug dosages,
intermediary parameters used in the reasoning process) and the nature and use of each
parameter will have to be specified. For example, the user must specify which
parameters correspond to items that must appear on a patient's “flow sheet" when
displayed by E-ONCOCIN. Similarly, it will be necessary to indicate those parameters
whose values will represent the system's “recommendations” during a consultation.

Finally, Meta-OPAL will prompt the knowledge engineer with the basic information
needed for each of the windows that will appear in the completed KAS. The exact
window formatting will then be entered by selecting locations on the screen with the
mouse and typing in the text that should appear there when the KAS is generated. If
dissatisfied with the location of particular blanks, the knowledge engineer will be able
to use the mouse to rearrange the formatting. For each blank, the system will ask the
knowledge engineer to specify the corresponding menu that will appear when the blank
is selected by the KAS user. The knowledge engineer must also indicate where the
entry for the blank is to be stored in the IDS and any information needed to check for
completeness or consistency.

Once the user has completed entry of information into, Meta-OPAL, a new data file
will be created that will contain all of the specifications of the KAS. This file will
serve as input to the E-OPAL program, which will follow the file's guidance in
displaying windows and gathering data during the knowledge acquisition process. The
information will be in a format that can be modified by a standard text editor, if
necessary, as well as by Meta-OPAL. The knowledge will be encoded using a KAS
definition language.

KAS Definition Language:

We will limit the scope of representations expressible in the KAS definition language
to the area of knowledge acquisition for clinical trials. This not only makes
implementation of Meta-OPAL morefeasible, but restricting the scope of the system
will also make the finished program easier to use because the necessary input will be
more focused. The kinds of knowledge contained in this output from Meta-OPAL
should be apparent from our previous discussion of how Meta-OPAL will work. The
syntax we will develop must express a numberof different concepts:

1. Various definitional items must be specified to the system. For each kind
of knowledge acquisition system Meta-OPAL can create, we must have a
syntax for declaring the names and the properties of:

E. H. Shortliffe 128 Privileged Communication

Core Research and Development

a. The modalities of treatment; for example, oncology protocols involve
chemotherapies and radiation. A protocol for treating esophageal
varices might use various surgical or endoscopic procedures as
modalities.

b. The agents of treatment; for example, the three drugs vincristine,
adriamycin, and methotrexate are the agents used in modality VAM in
cancer chemotherapy. "Positive reinforcement" and "negative
reinforcement” are two agents of the modality “behavior modification"
that could be used in psychiatry protocols.

c. Standard toxicity grades and their text definitions, representing
various measures of adverse effects on organ systems. Each toxicity
grade would also be linked to a parameter so that E-ONCOCIN would
be able to draw conclusions based on the presence or absence of
certain adverse conditions.

2. The list of parameters and their associated properties must be indicated,
including rule definition language specifications on how to generate the rules
that may conclude each parameter's value. The types of parameters include:

a. Physical examination findings

b. Laboratory tests and test results

c. Clinical conditions, such as “no evidence of disease", “complete
response”, or "progressive disease”

d. All “conclusions” reached by the system, including final treatment
recommendations.

3. We must permit specification of all of the various actions one might take to
change any component of the treatment plan. Such actions could involve
alteration of the protocol at any level. For example, the protocol itself
could be terminated or extended. Administration of any of the modalities
of treatment might be delayed or canceled. The dosages of any of the
therapeutic agents might be changed, or new agents might be substituted.

Other actions that do not specifically modify therapy need to be declared.
For example, based on someset of parameters, one might want to "order a
lab test" or “notify the principle investigator" of some problem.

Each of these actions will appear as potential entries in portions of the IDS
and will accordingly be specified in menus in the resulting KAS (i.e. in
menus displayed by E-OPALas it takes its directions from a KASfile that
was produced by Meta-OPAL). Such menus will offer steps to take in
Tesponse to various values of defined parameters.

In addition to the domain knowledge, the KAS definition language will require
declaration of important systems information, including:

1. A description of the high-level appearance of the knowledge acquisition
system, including the contents and layout for each window and the nature of
each blank and its corresponding menu. Meta-OPAL will determine this
knowledge from the graphical inputs of the user when defining the KAS.

2. Specification of the necessary IDS to use for the specific E-OPAL

Privileged Communication 129 E. H. Shortliffe

Core Research and Development

application, including the complete IDS format, the mapping of blanks from
the various windows into the IDS, and the control information needed to
translate the IDS into the final knowledge base for use by E-ONCOCIN.

E-OPAL:

In order for Meta-OPAL to produce new knowledge acquisition systems, we will first
have to develop E-OPAL, a program that will capture the behavior of the present
OPAL prototype. However, E-OPAL will acquire all of its formatting specifications
for windows and menus from the output data file produced by Meta-OPAL, rather than
from structures internal to the program itself. It will use the knowledge encoded in the
KAS definition language to produce an IDS, transfer knowledge from display windows
to and from that IDS, and use the IDS to produce a knowledge base for the ONCOCIN
inference engine. The physician will enter protocol knowledge in E-OPAL in a manner
identical to the present OPAL system.

E-ONCOCIN:

The current ONCOCIN system has been written with care to keep the ONCOCIN
knowledge base separate from its inference engine. Thus a relatively complete version
of E-ONCOCIN already exists, and this separation is being further refined as part of
our translation of ONCOCIN to run on the 1108 workstation. However, we anticipate
further changes as our understanding of the IDS and Meta-OPALevolve. ©

Encoding New Protocols with Meta-OPAL:

We will test the Meta-OPAL system by rewriting OPAL using Meta-OPAL. This will
be accomplished by producing a knowledge acquisition description file using Meta-
OPAL and showing that E-OPAL, driven by Meta-OPAL’s output, produces a knowledge
acquisition system with behavior grossly identical to that of OPAL. This will produce a
more generalizable version of OPAL that overcomes some of the limitations of the
initial prototype.

Wewill also use the system to encode protocols in at least one (and possibly two) other
medical domain. Dr. Peter Rudd, a member of the Division of General Internal
Medicine at Stanford, is conducting randomized - controlled trials of new
antihypertensive medications and has agreed to collaborate on knowledge base
development. This domain of hypertension and its treatment will provide a useful
environment for testing the definition of new knowledge acquisition systems using
Meta-OPAL. In addition, Dr. Gordon Banks from the University of Pittsburgh (a
member of the INTERNIST/CADUCEUSproject) has approached us about adapting
ONCOCIN for us in protocol-directed management of epilepsy patients. This may well
provide another pertinent domain for testing the generality of the notions described
here.

Strategic Therapy Planning

ONYX is an ONCOCIN-related subproject designed to fill the need for planning in
application areas where traditional planning methodology is difficult to apply. While
the program is being developed to assist with the planning of cancer therapy, its
architecture is intended to be of use whenever goals are ill-specified, plan operators
have uncertain effects, or trade-offs and unresolvable conflicts occur between parts of
the goal. ONYX combines strategic "rules of thumb" with a mechanistic model of the
domain to determine a set of plausible therapy plans. This is accomplished with a
three step process: (1) generate a small set of plausible plans based on current data; (2)

E. H.Shortliffe 130 Privileged Communication

Core Research and Development

simulate those plans to predict their possible consequences; and (3) based on the results
of those simulations, rank the plans according to how well each meets the goals for the
situation.

Much of the early work in artificial intelligence techniques for planning made
simplifying assumptions about the various choices that can be made at each step of the
plan, and in representing the effects of each of these planning steps. In medicine, the
planning task often cannot be represented in a form useful to a conventional planning
program. Often the goals are ill-specified and the operators have uncertain effects.
Furthermore, incomplete and unresolvable interactions occur between the parts of the
goal, limiting the usefulness of some of the techniques developed least commitment and
plan repair techniques. Consequently, medical therapy planning programs such as
VM [17], ONCOCIN, and ATTENDING [49] have frequently relied on algorithms or
Step-by-step protocols to provide explicit guidelines in the construction of plans
appropriate to a particular patient's condition.

Our work with ONCOCIN has revealed an important limitation of medical planning
systems which use explicit criteria such as algorithms and protocols. The knowledge in
these specifications is a "compiled" version of pathophysiological knowledge of the
human body, and of the strategic knowledge of the domain. In ONCOCIN, plan
elements are selected strictly according to the characteristics of the current treatment
Situation without considering the causal mechanisms of the domain or many of the
Strategies useful in prescribing therapy. Consequently,when a situation arises for which
the algorithmic knowledge does not apply, the planning system often recognizes the
problem, but cannot plan alternative therapy. The ONYX system is designed to suggest
expert quality therapy plans in such difficult cases.

The planning process used by ONYX consists of three steps:

1. Plan generation. Using current and past data about the patient, and
exploiting the hierarchical nature of possible plan steps, generate a small set
of “plausible plans" which are consistent with the patient's current state and
the treatment goals for the patient.

2. Qualitative simulation. Using causal knowledge of the human physiology,
and of this patient's in particular, predict the future states of the patient if
each of the plausible plans were in fact executed.

3. Plan Ranking. Using knowledge about how patient data satisfy the goals for
the patient's progress, rank each of the plausible plans according to the
extent that the simulation's predictions for each plan meet the therapy goals.

Cancer treatment strategies are often general statements such as “Try to give a greater
quantity of therapy during the early stages of treatment”. Restated in a particular
context, this might indicate a preference for decreasing a drug dose to 75% rather than
just 50% in response to a particular problem. Other strategies may be applied to a wide
range of decisions in the plan generation process, from broad therapeutic choices (e.g.
whether to give drug therapy or radiation therapy) to specific decisions about individual
drug doses. One such strategy is: "If a problem is encountered with a treatment, try to
eliminate the part of the treatment that might be causing the problem.” In one context,
this is interpreted as a suggestion to decrease or eliminate the previously administered
drug that is the likely cause of toxicity. In another context, it may also be used to help
decide between continued drug therapy and alternative treatments. Currently, such a
Strategy must be represented in each context in which it applies, rather than as a single
more general principle.

The input to the planning process is the database of patient measurements (e.g., the size

Privileged Communication 131 E. H. Shortliffe

Core Research and Development

of the tumor, white blood count) collected over a number of prior treatment cycles.
These input data are processed by the list of treatment strategies. The output of the
plan generation phase is a set of possible treatment plans for the current patientvisit.

The possible treatment plans are sent to the simulation component to determine the
likely ramifications of the treatment. We have designed special software to allow for
graphical description of the simulation model. The structure of the domain models is
organized hierarchically according to part-of relationships. The behavior of a model is
determined by the behavior and interconnections of its parts and by three knowledge
bases which describe its behavior in response to stimuli. The state of a model is
represented by a group of state variables, and by the states of its parts. Each model
has ports through which it communicates with other models using message passing
techniques provided by the object oriented system. Such hierarchical models can be
built interactively on a Xerox 1108 LISP workstation.

The behavior of each model is described by three rule bases containing production
rules. The first rule base dictates how a model will change its state according to the
stimuli it receives through its ports from other models. The second rule base contains
knowledge about how to make further conclusions about its state based on any recent
changes. The third rule base dictates how the new state of the model will be
propagated to neighboring models using a simple message passing scheme which acts
along connections between models.

Simulation can provide information which the plan evaluation process can use to
determine the likelihood that a plan will satisfy the goals for the patient. While the
plan ranking phase of ONYX is still under development, early experiments indicate that
the rule form used in the plan generation phase will provide some power in the ranking
of plans after simulation. In addition, decision analytic techniques can be used to
evaluate the decision trees developed by the strategic planning and simulation
components.

E-ONYX:

We have thus far challenged and tested this developing system with only a single cancer
protocol. However, we believe that the techniques can be expanded to other cancer
protocols, and then to other types of clinical trials. We propose to generalize this
program, with much of the work involved in representing the various types of plans
that may occur among different clinical trial experiments. We expect that the form of
the strategies may have to be modified for other medical trials. In addition, we need to
verify that the hierarchical nature of the simulation process is sufficient to represent
the dynamic processes as the treatment regimen of the clinical trial affects the body of
the patient as well as the disease process.

E. H.Shortliffe 132 Privileged Communication

Core Research and Development

2.2.1.2. Basic Research in AI

Overall Goals and Plans

Our basic AI research projects focus on understanding the roles of knowledge in
symbolic problem solving systems -- its representation in software and hardware,its use
for inference, and its acquisition. We are continuing to develop new tools for system
builders and to improve old ones. The research crosses a number of application
domains, as reflected in the subprojects discussed earlier, but the main issues that we
are addressing in this research are those fundamental to all aspects of AI. We believe
this core research is broadening and deepening the groundwork for the design and
construction of even more capable and effective computer programsto aid in reasoning
about biomedical problems.

As mentioned above, although our style of research is largely empirical, the questions
we are addressing are fundamental. The three major research issues in AI have, since
its beginning, been knowledge representation, control of inference (search), and
learning. Within these topics, we will be asking the following kinds of questions. As
our work progresses, we hope to leave behind several prototype systems that can be
developed by others in the medical community.

In particular, we will focus on four areas with immediate coupling to biomedical
applications problems and on several others that may have future application:

1, Blackboard Model of Reasoning -- can we design and construct 2 domain-
independent framework for problem solving programs using the blackboard
model and can we reason explicitly about control in that framework?

2. Constraint Satisfaction -- given a number of symbolic and numeric
constraints defining a satisfactory solution to a problem, how can a problem
solver efficiently find a solution?

3. Knowledge Acquisition -- how can knowledge-based programs effectively
acquire the large amounts of domain-specific knowledge needed for high
performance problem solving?

4. Qualitative Simulation -- how can biological _ modelling systems be
constructed that use domain-specific knowledge to reason approximately
about outcomes?

5. Other Research Areas -- architectures appropriate for highly concurrent
symbolic computation, a retrospective on the AGE blackboard tool, logic~
based systems, self-aware systems, and the SOAR general problem-solving
architecture.

These major research themes are discussed in the subsections below and build upon the
workstation and advanced computing environment technology also being developed
under SUMEX coreresearch.

1. Blackboard Model

GOALS

The long term goal of this part of our research is to improve the usability, the
flexibility, and the inferential power of AI software systems for handling problems of
hypothesis formation, signal understanding, constraint satisfaction and planning. We
proposed to design and implement domain-independent tools for building complex

Privileged Communication 133 E. H.Shortliffe

Core Research and Development

reasoning systems within the blackboard framework. These include development aids as
weil as run-time utilities. In other research, we have a coordinated goal of applying the
Blackboard framework as an organizing framework for parallel processing.

For the research described below, we have two main objectives. These are:

a. to develop scientific understanding of the “support environment" for Blackboard
framework systems and of key tradeoff issues; to design tools for building systems; to
implement a domain-independent system incorporating those tools.

b. to implement a substantial reasoning system in the BBl framework in order to
experiment with tradeoffs in the design. Specifically, we will work with the PROTEAN
collaborative project to implement and experiment with the program that infers tertiary
structure or proteins from NMR data (plus knowledge of primary and secondary
structure). This work is described in the research plan for the PROTEANproject.

MOTIVATION

In building knowledge-based systems, we have come to understand the importance of
flexibility in its operation. In the KSL, we have experimented with many frameworks
for building systems including rule-based, frame-based, and logic-based frameworks.
We have also experimented with various methods of inference and control, including
goal-directed, data-directed, and opportunistic reasoning. Of the paradigms we know
about, the one that seems to offer the most flexibility (at development time and run
time) is the blackboard model of reasoning. It has not been as well studied or used as
the rule-based or logic-based paradigms have been. Thus we believe a substantial
research effort is warranted in order to understand its strengths and limits, and to build
a suite of tools that allows us to experiment with it.

BACKGROUND

Though the Blackboard framework for problem-solving and hypothesis formation was
conceived at Carnegie-Mellon during the DARPA Speech Understanding project in the
early 1970's, it has received much of its scientific and practical development by
scientists of our laboratory. The first post-CMU/HEARSAY development was in
connection with the HASP system for passive sonar signal understanding. Subsequent
efforts involved experiments with scientific applications (to x-ray crystallography),
intelligence problems (ELINT and COMINT), and planning; as well as the development
of the first software tool to assist knowledge engineers in constructing systems using the
Blackboard framework (AGE-1).

As the last decade unfolded, the Blackboard framework was seen to be the most flexible
and powerful set of software concepts we had encountered for organizing the processing
of knowledge-based systems. It allowed arbitrary mixing of data-driven inference steps
("bottom up") with model-driven steps ("top down"). It allowed a hierarchy of levels of
abstraction in the ongoing solution formation, from the most abstract (the global
Situation) to the least abstract (the supporting data or problem conditions). And it
allowed multiple sources of knowledge to provide the links between these levels (i.e.
supported information fusion).

The growing significance of the Blackboard framework has given importance to entering
a second phase of its development: extensions of the basic concepts (e.g. reasoning from
uncertain evidence) and extensions of the suite of software tools for building such
systems.

BB1 [27] is a domain-independent environment for building AI systems in a
“blackboard control architecture" [28]. Like the standard blackboard architecture [16],
BB1 solves problems through the actions of independent knowledge sources that record,

E. H. Shortliffe 134 Privileged Communication

Core Research and Development

modify, and link individual solution elements in a structured database (the blackboard)
under the control of a scheduler. It expands upon the standard architecture as follows:

1. It provides an interpretable, modifiable representation for knowledge sources
with these attributes: event-based predicates for triggering; pattern-matching
functions for identifying multiple triggering contexts; state-based predicates
for assessing transient pre-conditions, and rule-based actions that instantiate
prototypical blackboard modification templates. BB1 provides support
facilities for knowledge source creation, modification, and checking.

2. Its blackboard representation permits dynamic assignment of attributes and
values to objects on the blackboard and provides selective, demand-driven
inheritance of attributes from linked objects, with local caching of results.

3. It provides explicit reasoning about control--the selection and sequencing of
knowledge source actions--with control knowledge sources that construct
dynamic control plans out of modular heuristics on a control blackboard.
BB1 defines specific levels of abstraction and solution intervals for the
control blackboard. It provides a vocabulary and syntax for expressing
control heuristics. A simple scheduler decides which domain and control
knowledge sources to execute by adapting to whatever control heuristics
currently are recorded on the control blackboard.

4. It provides strategic explanation of problem-solving activities.

5. It provides generic learning knowledge sources to acquire new control
heuristics automatically.

6. Its run-time user interface provides capabilities for: displaying knowledge
sources, pending actions, and objects on the blackboard; graphically
displaying partial solutions via a user-specified interface; recommending
pending actions for execution; permitting a user to override a
recommendation; executing a designated action; operating autonomously until
a user-specified criterion is met.

BB1 is an evolving system incorporating the best results of several research activities.
It currently is being used as a framework for the PROTEANsystem here at Stanford
and for several applications by other research and industrial organizations. We propose
to continue developing BB1 as a prototype “next-generation” blackboard architecture.

RESEARCH PLAN

Trade-Off Between Knowledge and Control

As the complexity of the applications we attack increases, the tendencies have been to
build more complex control structures. This is a natural consequence of a strategy of
"divide-and-conquer™ -~- having broken the problem into manageable subproblems, the
question arises as to how and when to bring the sub-problems together. The other
factor that contributes to different control schemes is the difference in quality of
knowledge that can be brought to bear at different points in the problem solving
process. For example, if there is not much situation-specific knowledge to be applied
at a particular point, a system can resort to a method of generating all possible
solutions and testing them for credibility.

In the study of concurrent problem solving frameworks, control represents a
serialization of knowledge applications. A preliminary study indicates that there can be
a trade-off between knowledge and control. An almost control-free blackboard system

Privileged Communication 135 E. H. Shortliffe

Core Research and Development

may or may not converge to problem solutions. To date there is no research that
addresses the trade-off possibilities between degrees of control and various kinds and
amounts of knowledge. A blackboard architecture provides a very fertile medium in
which this research can be conducted, because all information, including control
information, is available on the blackboard. This provides an opportunity to vary the
amount of utilization of the control information and control knowledge sources at the
same time as adding and modifying task-specific knowledge.

Debugging at the Blackboard System Level

We propose to investigate what would constitute an effective suite of debugging aids for
blackboard tools. This investigation will be based primarily on our experience in both
using and building various blackboard tools.

The blackboard debugging aids that we will investigate include:

1. A blackboard break package. This package would permit, for example,
execution-time insertion of conditional break-points for a specific type of
modification of the blackboard nodes of a given class or classes, specific
knowledge source invocation, and specific rule evaluation or invocation.

2. A blackboard inspector package. This inspector would permit the inspection
of blackboard nodes and the relations between them at various levels of
abstraction. These levels of abstraction might range from the entire
blackboard presented as a graphics display of nodes by class icons with node
relations represented by colored links to the detailed attributes and their
values for a specific node presented as formatted text.

3. A stepper which would allow the single-step execution of a blackboard
program at various levels of resolution, for example, event posting,
knowledge source invocation and rule evaluation. This stepper could be
turned off or on by the user or by the execution-time insertion of
conditional stepper switch points.

4. A static analyzer which would analyze and present the relationships between,
for example, event postings, knowledge source preconditions, knowledge
source invocations, and possible blackboard node modifications.

We will use the results of this investigation to design and implement a suite of
prototype blackboard debugging aids. Although these aids will be implemented in the
context of a particular blackboard tool, for example, BB-1 or an AGEderivative, the
underlying concepts should be applicable to a variety of blackboard tools. In particular,
we plan to investigate how these debugging concepts could be extended to blackboard
tools running on parallel computational systems.

Control Blackboards

In attempting to solve a domain problem, an AI system performsa series of problem-
solving actions. Each action is triggered by data or previously generated solution
elements, applies some knowledge source from the problem domain, and generates or
modifies a solution element. At each point in the problem-solving process, several such
actions may be possible. The control problem is: which of its potential actions should
an AI system perform at each point in the problem-solving process?

Our approach to intelligent control problem-solving entails empowering AI systems to
achieve the following behavioral goals:

E. H. Shortliffe 136 Privileged Communication

Core Research and Development

e Make explicit control decisions to determine which problem-solving actions
to perform at each point in the problem-solving process.

e Decide what actions to perform by reconciling independent decisions about
actions that should be performed andactions that can be performed.

e Adopt variable grain-size control heuristics, including global strategies (e.g.,
first anchor all pieces of secondary structure in partial solutions; then refine
the most credible partial solutions), local objectives (e.g., fill in gap g in the
current solution), and general scheduling policies (eg., exploit the most
reliable knowledge sources).

e Adopt control heuristics that focus on whatever action attributes are useful
in the current problem-solving situation, including attributes of their
knowledge sources, triggering information, and solution contexts.

e Adopt, retain, and discard individual control heuristics in response to
dynamic problem-solving situations.

¢ Decide how to integrate multiple control heuristics of varying importance.

« Dynamically plan, interrupt, resume, and terminate strategic sequences of
actions.

e Reason aboutthe relative priorities of domain and control actions.

In sum, systems following the proposed approach would forgo efforts to predetermine
“complete” or “correct” control procedures that anticipate all important problem-solving
Situations. Instead, they would develop control plans incrementally while solving
particular domain problems, adapting their behavior to a wide range of unanticipated
problem-solving situations. (See [28] for more discussion.)

To realize these system behaviors, we are investigating a blackboard model of control in
which control knowledge sources operate concurrently with domain knowledge sources to
construct, modify, and execute explicit control plans out of modular control heuristics
on a structured control blackboard. The control blackboard has the levels of abstraction
defined and illustrated in Figure 9. Its solution intervals represent problem-solving
time intervals.

Problem Problem the system has decided to solve
"Elucidate the structure of LAC-Repressor Headpiece"

Strategy General sequential plan for solving the problem
"Anchor all secondary structures; then refine all partial
solutions that anchor at least one Secondary element”

Focus Local (temporary) problem-solving heuristics
“Anchor all secondary structures”

Policy Global (permanent) problem-solving heuristics
"Perform actions that generate control heuristics"

o-Do-Set Pending problem-solving activities
"Anchor-Helix helix 1 to Secondary-Anchor4
Anchor-Helix helix 1 to Secondary-Anchor5
Ref ine-Partial-Solution anchored by Secondary-Anchor1"

Chosen-Action Problem-solving activities scheduled to execute
"Anchor-Helix helix 1 to Secondary-Anchor5"

Figure 9: Levels of BB's Control Blackboard with Examples from PROTEAN

We also have developed a vocabulary and syntax for expressing heuristics, as illustrated
in Figure 10. A simple scheduler, which selects both domain and control knowledge
sources for execution, has no control knowledge of its own. Instead, it adapts its
scheduling behavior to the control plan currently recorded on the control blackboard.

Privileged Communication 137 E. H. Shortliffe

Core Research and Development

Name Focus
Goal Eq KS-Type ‘Anchor)
Criterion for Each-Anchor in ($Find-All ‘Solid ‘((Role@ ‘Anchor)))

always (S$Object ‘Copies Each-Anchor))
Weight 8
Rattonale "Incorporate a copy of each Anchor into at least one

parttal solution before deciding which parttal solutions
to refine”

Creator Chosen-Action 5
Source Strategy
Type Strategic
Status Onerative
First-Cycle 6
Last-Cycle 20

Figure 10: An Example PROTEAN Heuristic at the Focus Level

In previous research [28], we developed the blackboard model of control and
demonstrated its applicability to the control knowledge used in HEARSAY-II [16],
HASP [55], and OPM [30]. We have implemented the control blackboard and several
control knowledge sources arising from that research in the BB] system. We are now
using the model to organize control knowledge for the PROTEAN system. We propose
to continue refining the model by assessing its applicability in different problem
domains and by developing control knowledge sources that are useful for particular
problem classes.

Explanation Systems For Control Blackboard Systems

During efforts to solve a domain problem, an AI system should explain its problem-
solving behavior. It should justify actions in terms of the situations that trigger them,
the knowledge they use, and the solution elements they generate. It should also show
how actions fit into an overall line of reasoning, what specific control heuristics they
satisfy, and what alternative actions were considered. These explanation capabilities are
defining characteristics of intelligent problem-solving. They are also pragmatically
desirable as debugging aids for system builders and as credibility checks for domain
experts.

We propose to investigate explanation in the context of the blackboard control model
and its explicit representation of a dynamic control plan:

e The current scheduling rule for choosing among feasible actions (e.g.,
"Schedule the highest priority action”);

e The current integration rule for combining an action’s ratings against
multiple control heuristics to calculate its priority (eg., “Compute each
action’s sum of weighted ratings against operative heuristics");

e The operative control heuristics (eg., "First anchor all pieces of secondary
structure in partial solutions; Then refine the most credible partial
solutions.” "Exploit the most reliable knowledge sources.”):

e Each action's ratings (0-100) against operative heuristics.

« Each action's priority, computed by applying the integration rule to its
ratings.

A preliminary explanation mechanism, implemented in the BB1 system, constructs
stylized explanations such as the one shown in Figure 11.

We propose to continue this line of research to develop explanation mechanisms

E. H. Shortliffe 138 Privileged Communication

Core Research and Development

I recommend KSAR 6
Should I Display/Explatn/Go/Charge-Ahead/Override: E

KSAR 6: Knowledge Source: Anchor-Helix
Trigger Event: (Add Solid2)
Context: ((Anchor Solid1) (Anchoree Solid2))

Contro? Plan:
Scheduling Rule: Highest Priority KSAR
Integration Rule: Sum of Weighted Ratings
Strategyl: Anchor-Then-Ref ine
Rationale: Incorporate a copy of each Anchor

into at least one partial solution
before deciding which partial solutions
to refine

Focus1: {Eq KS-Type ‘Anchor) Weight 8 Rating 100
Policy2: (Eq To-BB ‘Control) Weight 10 Rating 0

Priority: 800
KSARs with the same Priority: KSAR 7, KSAR 8, KSAR 9

Figure 11: Example of Preliminary BB1 Explanation

appropriate for potentially much more complex control plans and to tailor information
selection and presentation to the different interests of system builders and domain
experts.

Privileged Communication 139 E. H. Shortliffe

Core Research and Development

2. Constraint Satisfaction

GOALS

The long-term goal of this part of our research is to produce tools for constructing
symbolic constraint satisfaction (SCS) programs, and to analyze and experiment with
them to determine their strengths and limits.

The near-term objectives are to implement and experiment with an SCS program in
resource management and to generalize it into a prototype SCS framework. We have
selected resource management as a test-bed for this research because it involves
constraints of different levels of detail and different degrees of "firmness," it involves
using the same constraints in the context of somewhat different tasks, it involves time-
dependentconstraints (e.g., a previously committed resource may becomeavailable again
in the future), and it involves a large amount of symbolic information that we, as
Tesource managers, know intimately. This work intersects the research on using the
blackboard model for constraint satisfaction problems, discussed in the previous section.

MOTIVATION

Reasoning about constraints is a ubiquitous problem with many facets. It occurs in
many important problem-solving activities in which a solution is constructed from
primitive elements but there are constraints on how those elements are put together. In
DENDRAL[43], for example, there were a priori theoretical constraints on the
meaningful constructs and a posteriori experimental constraints inferred from the data
gathered for a specific problem. Both sets guided the hypothesis generator toward
plausible solutions (and away from implausible ones). More recently, the Rl (or
XCON) [47] program developed at CMU uses constraints of both types to put together
a near-optimal configuration of computer components (including racks and wires). The
a priori constraints constitute the "rules of the game” -- the components that may and
may not be used together, for instance. The problem-specific constraints come from
the description of the computer buyer's requirements, such as space available, memory
required, and so forth.

Constraint satisfaction problems have not been as well-studied in AI as troubleshooting
and diagnostic problems. There have not been, for example, successful generic
frameworks developed in which constraint satisfaction systems can be built easily. For
troubleshooting systems, on the other hand, several frameworks have been developed and
successfully transferred to military and industrial installations. We believe that
academic laboratories must intensify research on constraint satisfaction.

In a very large space of possible solutions, each constraint may be taken as a
specification of a subset of solutions. In the abstract, then, successive constraints
narrow the solution space to just those solutions that lie in the intersection of subspaces
specified by all the constraints. This is a first-order model of constraint satisfaction
that can, in principal, be applied with constraints of all forms.! However, the first-
order model must be modified to accommodate several complexities:

e The languages in which constraints and solutions are expressed are not
necessarily the same. Some reasoning process must translate from one to the
other.

Mathematical methods for constraint satisfaction, while appropriate for many problems, depend on

constraints being expressed numerically with some precision. We are concerned here with problems for which
mathematical methods are not appropriate.

E. H. Shortliffe 140 Privileged Communication

Core Research and Development

e Qualitatively different kinds of constraints may apply to a single problem.
The problem-soiver must integrate them.

e The available constraints may be incomplete. The problem-solver must
either characterize the "family" of solutions consistent with the available
constraints or choose an arbitrary member of that family.

e The available constraints may be incompatible. The problem-solver must
either decide to compromise some of the constraints or identify a dynamic
solution that vacillates (in time or space) between states satisfying
incompatible constraints.

e There is a potential combinatorial explosion of hypothesized solutions. The
problem-solver must restrict search.

e The computational cost of applying individual constraints may be high. The
problem-solver must manage these costs.

e Resources available for carrying out planned actions in the real world are
constrained over time -- eg., previously committed resources become
available again after a time.

BACKGROUND

The management of resources is a critical part of most decision-making operations.
There are often constraint satisfaction problems in which symbolic and numeric
constraints interact at many stages in the decision- making process. Sometimes the
constraints are expressed in terms of (a) the goal to be achieved, (b) intermediate goals
or states, (c) resources available, or (d) the process itself.

A clear instantiation of this class of problems is the management of financial resources.
Financial management encompasses the planning and initiation of new projects and the
administration of awarded funding for on-going projects and operations. In most
institutional settings, the accounting tools for collecting, recording, and reporting
information about actual financial transactions in the performance of work (e.g., salary,
procurement, and reimbursement expenditures) are well developed. Typically such
systems are able to report monthly and cumulative expenses against a project budget;
attempt to capture transactions in progress (completeness and accuracy depending on
where a given transaction is in the bureaucratic pipeline when the monthly accounting
is run); and help with report abstractions, trend projections, and the mechanics of plan
calculations. Increasingly, the resulting information can be available to users in
electronic form.

However, the tools for the more judgmental aspects of resource management, planning,
and subsequent resource allocation, are much more primitive. The integration of the
conceptual planning for work to be done with the financial planning, expenditure
initiation, and control processes needed to actually carry out the work is mostly handled
in the heads of individual project managers and administrators. It is these human
experts who cumulate the working knowledge and experience of how to allocate
financial resources to achieve work goals while satisfying the constraints imposed by
funding terms and conditions and governing policies and procedures of the funding
agency and parent institution. In a research laboratory, considerable specialized
expertise develops for managing particular types of work under particular funding
arrangements. For example, there are experts at managing contracts, or computing
equipment purchases, or electronic assembly subcontracting, or hazardous material
procurement, or a myriad of other activities confronting the performance of work
objectives. Unfortunately, such expertise is almost never taught and it is acquired

Privileged Communication 141 E. H. Shortliffe

Core Research and Development

through experience involving trial and error and communication of lore from friends

who have already had similar experiences. Frequently, there are wide variations in the
ability of individual managers to properly administer these matters because of differing
levels of experience and even degrees of caring about such managerial details in the
face of the primary professional goals of the group.

Many project groups develop local administrative systems, many of them manual or
adaptations of spread sheet software packages (e.g., VisiCalc), to facilitate management
tasks. But these help only with the mechanical numerical aspects of management and
do not assist in the judgmental matters involving optimal use of resources for work
goals or satisfaction of policy and procedural constraints. These systems give little help
in selecting and filling out appropriate forms for personnel, procurement, or other
transactions. They do not provide intelligent interactive planning help that
automatically relates, for example, personnel assignments in budgets with supporting

expenditures like salaries, supplies, travel, telephone, and publication costs. appropriate

to the work group involved. They do not provide catalog information for budgeting
purchases of computing equipment, instrumentation, parts, or other discipline-related
items. They do not advise on proper cost allocation and documentation relative to
funding terms to assure that costs will be allowed. They do not help with planning
expenditures among overlapping funding support so as to effectively achieve work goals
within funding constraints. They do not help with the integration of institutional
financial performance data with on-going plans, locating errors and reconciling the
interface between locally recorded commitments and actual expenditures. And they do
not provide the required flexible modes of information presentation such as tables and
graphs, monthly details and plan exceptions, subproject detail or aggregation, or cross-
project distributions.

Now clearly the above functions combine knowledge from many sources -- some
factual and some experiential; constraints from many sources -- some numerical and
many symbolic; and frequently no unique solution exists for a given planning problem.
Spread sheet programs provide a useful interactive mode of calculating and displaying
information but they only do part of the task of assisting with the managerial

judgements involving symbolic knowledge and constraints. We have, under separate

funding, begun work on a prototype system to utilize some of the techniques developed

over the recent past for knowledge-based system design to further facilitate computer
assistance in the task of budget planning and resource management.

In the longer term, this is one example of a broader class of complex constraint

satisfaction problems. Other examples include space allocation, hospital scheduling and

triage, interpreting Nuclear Magnetic Resonance data with other information to

determine protein conformations, and system design. In studying the financial resource

planning problem, we hope to gain more experience with this class of problems in the

hope of developing more general problem formulation and problem solving tools for
dealing with them.

RESEARCH PLAN

We propose to build a constraint satisfaction program that is (a) general across several

types of problems and (b) useful within one or more specific management problems.

The shortcomings of spreadsheet software packages mentioned above will be addressed

in the context of the prototype object-oriented system already implemented.

The first system uses strictly numerical constraints to aid in constructing a research
budget. It is able to access data stored offline about default values for budget items,
such as salaries for individuals, cost of specific equipment, and the university overhead
rate. It uses windows to display information rather than the more restrictive

spreadsheet. Subsequent improvements will focus mostly on incorporating symbolic
constraints in extensions that allow:

E. H. Shortliffe 142 Privileged Communication

Core Research and Development

e defining forms

filling out forms consistently

e integrating information from forms with budget information

e producing projections under different perspectives

e managing the flow of expenses over the life of a project

We will target our experimental systems for workstations with bitmapped displays to
take advantage of powerful graphics tools which we believe will be necessary for an
effective human interface. We will use the existing computing resources of the KSL
for this work, including Xerox D-machines, Symbolics 3670's, or possibly Texas
Instruments Explorers, while keeping a view for software portability to other
workstations that will undoubtedly becomeavailable.

We expect to evolve the AI portion of the design carefully, based on requirements. Our
view is that the system will start out by taking on some of the onerous manual tasks of
financial plan development, with better interactive capabilities and being database
driven. It will then become increasingly effective as an advisor for planning, leading
ultimately to a more active role in plan formulation and review.

Privileged Communication 143 E. H. Shortliffe

Core Research and Development

3. Knowledge Acquisition

GOALS

The long-term goal of this research is to develop robust machine learning programs
that can be integrated with a variety of intelligent systems, and to develop a set of
criteria under which machine learning techniques can be successfully applied to
different problem-solving architectures.

In the near-term, we propose to design, implement, and experiment with learning
methods in different problem-solving environments. In particular, we propose to: (a)
extend the work on induction with rule-based systems in the BBl and HERACLES
architectures; (b) develop methods for learning control heuristics in the blackboard
architecture; (c) develop programs for learning by chunking (as already implemented in
the subgoaling architecture of SOAR) for the classification architecture of HERACLES
and the blackboard architecture of BBI1. We also propose to extend our analysis of
issues in building machine learning systems, specifically the role of noise, the role of
examples, and the role of knowledge representation in machine learning.

MOTIVATION

Over the last decade, many machine learning programs have been implemented for
special-purpose acquisition of new knowledge. They have been constructed with an eye
to generality but with the generality lying mostly in the descriptions of ideas, not in the
details of the method andcertainly not in the code. The details need to be analyzed so
that the strengths and limits of different methods can be assessed in different contexts.

Domain-independent methods are limited by their lack of semantics underlying the
names of features being manipulated. Statistical methods, for example, are generally
applicable (for data described with numerical features) but lack the ability to use
specialized knowledge of a domain that could increase their power. The tradeoffs
between generality and specificity in machine learning systems need to be analyzed in
order to build powerful learning methods that apply to more than single tasks. Meta-
DENDRAL[43], for example, was completed in our laboratory about 1979, but was not
developed outside its original task area until 1985 [19].

In the future, it is imperative that methods for machine learning be well enough
understood that “off-the-shelf” packages can be constructed and made available for the
different classes of intelligent systems we now know how to build. For example,
diagnosis and troubleshooting problems are modestly well understood. There are
framework systems, like EMYCIN and its commercial cousins, that aid in the
construction of a new expert system, ¢g., a diagnostic problem solver for a specific

task.1 But there are no pre-packaged learning programs that can be added to the
resulting expert system to give it the ability to learn. Since learning takes many forms,
there is not just one single package that will serve all purposes. If there is a large
library of cases, then learning by induction may be a good way to begin building, or to
tefine, a knowledge base. If a problem solver is in routine use, then it may be more
appropriate to couple it to a learning program that will refine the knowledge base by
interacting with specialists using the system, or by watching -~- and forming a model of
-~ what they do.

BACKGROUND

1rhe classes of problem solving systems, themselves, need to be better characterized so that framework

systems like EMYCIN can be reliably matched to proposed problem areas. Some work along those lines has
been undertaken, on which we will build [10, 5].

E. H. Shortliffe 144 Privileged Communication

Core Research and Development

Recent work indicates the feasibility of building domain-independent learning programs
that use knowledge supplied from the outside to guide the learning. Several overview
articles written by members of the KSL and others summarize and analyze the state of
machine learning and knowledge acquisition systems. Among the most influential of
these on our own work was the "Models of Learning Systems" paper in which learning
was viewed as a problem-solving activity with distinct components. It is shown in
Figure 12 below.

Instance Performance
Selector Program

\ /
\ /

Blackboard
/

/ \
Editor Critic

Figure 12; The components of a Learning System.

The problem-solving vocabulary, assumptions, and procedures are defined for all of the
components of the system within a world model. One component, the instance selector,
chooses training instances to present to the performance program. Performance is
critiqued by the critic, whose advice is implemented by the learning element. These
steps are not always separate or all automatic.

In the last several years, we have undertaken several experiments in machine learning.
Most of these are implemented programs either completed or near completion. Most of
these have been done on SUMEX using a biomedically relevant task area as a test
domain. They are briefly described in this section with some of the conclusions that
are emerging from preliminary analyses.

e INDUCTION -- LEARNING FROM EXAMPLES

oe Meta-DENDRAL -- a model-driven induction program that learned
new inference rules for the DENDRAL program. It demonstrated the
power of heuristic search as an induction method, the power of a
“half-order theory" for constraining the search, and the power of a
two-tiered search strategy with approximate search followed by detailed
search. Its primary mode of learning was generalization from
examples, with specialization added in a separate, final step.

o Version Spaces -- a bidirectional search program that also learned new
inference rules for DENDRAL. It demonstrated the power of using
generalization and specialization together to refine a subspace of
allowable rules (or concept definitions).

e PRE -- a program that uses a partially formed theory to interpret data
in the context of learning refinements and extensions of the partial
theory. This “theory-driven data interpretation” program uses
constraint propagation methods to keep track of interrelationships in
the emerging theory.

oe JAUNDICE -- an inductive learning program that learns new rules for
performance programs written in EMYCIN by generalizing and
specializing from cases in a data base. It demonstrates the power of
bidirectional search, the power of reducing the number of features and
filtering out noise.

eo PIXIE -- a program that learns a model of a student's behavior in a

Privileged Communication 145 E. H. Shortliffe

Core Research and Development

tutoring context from a record of correctly and incorrectly solved
problems. It shows the power of starting with a model that “should”
produce correct I/O pairs and systematically perturbing the model until
the predicted I/O matches the observed data.

e KNOWLEDGE ENGINEERING -- LEARNING FROM EXPERTS

0 DENDRAL -- the activity of knowledge engineering was first
described (but not named) in 1971 [7] in the context of DENDRAL.
It was recognized there as a bottleneck in buiiding knowledge-based
programs using experts as sources of knowledge.

o MYCIN -- several of the now-classical difficulties of knowledge
engineering -- such as the problems of welding consensus from
incompatible knowledge sources and maintaining a consistent KB
-- were first described in the context of our work on MYCIN.

e TEIRESIAS -- a program that used meta-knowledge in interactively
debugging and maintaining a KB (specifically MYCIN'’s KB). This
work demonstrated the value of explanations for understanding the
contents of a KB and the value of meta-level knowledge for helping
edit a KB efficiently and consistently.

o EMYCIN -~ a generalized framework for building MYCIN-like
consultation systems. It incorporated an abbreviated rule language
(ARL) that allows an expert on knowledge engineering to write new
rules in a stylized form that is easier than LISP (but more telegraphic
than English).

e ROGET -- an experimental expert system whose domain of expertise
is knowledge engineering. Although never used outside our laboratory,
it showed the extent to which our own knowledge about knowledge
engineering could be codified.

oe MOLGEN -- within the UNITS package; MOLGEN included a KB
editor that experts, not knowledge engineers, use to maintain a large,
complex KB. It demonstrated that experts can and will learn a
powerful, but syntactically simple, KB editor when the benefits
outweigh the costs.

eo BLUEBOX -- an EMYCIN system with considerable expertise gleaned
from the literature by students. It showed that an expert system can
be built without tying up an expert if the domain is well structured
and well agreed-upon.

e OPAL -- an interactive KB editor still under construction. It shows
the power of building knowledge structures on top of a well designed
language. In this case, the language is one of procedures, with
temporal predicates.

e LEARNING BY WATCHING

e ODYSSEUS -~ a program nearing completion that learns by mapping what
it infers an expert knows (by watching what an expert does) onto a KB for
an expert system. It demonstrates the power of using a modelling system
(originally constructed for modelling a student in an intelligent tutoring
system, GUIDON) to determine the rules an expert probably uses, without
asking the expert directly.

E. H. Shortliffe 146 Privileged Communication

Core Research and Development

« LEARNING BY ANALOGY

e NLAG -- a program that uses an analogy, stated as a simple hint, "b is like
a”, in order to construct new rules in domain B from a KB already built for
domain A. It demonstrates the power of an abstraction hierarchy for relating
concepts in similar domains and for mapping from oneset to another.

e LEARNING FROM THE LITERATURE

o REFEREE -- a prototype EMYCIN program that reasons about the
contents of journal articles in order to find new rules in those articles.
(Note that answers to questions are supplied by a student who reads
the articles, not by a program, or an expert, who reads the articles.)
Preliminary results indicate that some journal articles are written
clearly enough that a program with only general knowledge of the
domain can guide a novice to the new knowledge contained in them.

eo BLUEBOX -- (see above). One lesson is that the literature of a well
structured domain can be interpreted correctly by novices to build the
KB for an expert system.

e LEARNING FROM EXPERIENCE

e DENDRAL-- a dictionary of previously solved subproblems increased
the efficiency of DENDRAL's heuristic search. It illustrated the power
of rote learning but also pointed out clearly the tradeoffs between
storing and recomputing answers.

¢ AM/EURISKO -- programs that use previously computed material to
aid in the discovery of new knowledge. These programsillustrate the
power of combining existing elements in a KB in various interesting
ways in order to construct new elements that are interesting and useful.

0 SOAR -- a general problem-solving system under construction that
incorporates a methodology for "chunking", i.e. rote learning with
generalization. Preliminary results point to chunking as an effective
method for learning from experience in a broad class of problem
solving systems.

e STATISTICAL METHODS

e RADIX -- a program that finds statistical correlations in a very large
data base, and then discovers whether or not the empirical association
is semantically interesting.

RESEARCH PLAN

A) Induction

We propose analyzing the strengths and limits of the generalization and specialization
methods in the JAUNDICE program [19], mentioned above, and to implement the
same methods in the HERACLES and BB] architectures. As developed, those methods
can be used to learn rules of an EMYCIN syntax from case libraries. The primary
techniques are successive specialization guided by general knowledge of the domain, and
successive generalization guided by positive and negative examples in the case library.
The specialization and generalization operators, as written, are closely tied to the rule-

Privileged Communication 147 E. H. Shortliffe

Core Research and Development

based formalism, but will be recast to work with the slot-attribute representation used
in BB1 and HERACLES.

As described in [19], inductive learning can be considered as either or both of top-
down specialization of a general concept or bottom-up generalization of the
descriptions of specific instances. The rules used in the JAUNDICE system, which we
propose to implement in other systems are summarized in the table below.

Rules of generalization: . Dropping conditions1
2. Climbing up the value hierarchy tree
3. Creating new symbols
4. Taking minimum or taking maximum
5. Allowing disjunction

1
2

Rules of spectalization: . Adding conditions
. Climbing down the value hierarchy tree

3. Closing interval

Figure 13: Summary of Rules of Generalization and Specialization by
Fu [19]

The search proceeds stepwise using the heuristic rules summarized above as plausible
"move generators” in the space of rules, and checking alternative formulations against
the data in the case library, as in Meta-~DENDRAL[43].

The methods developed by Fu & Buchanan in the context of EMYCIN systems, will be
generalized so that the dependence on a rule-based representation of knowledge will be
removed. This requires clean separation of the credit assignment methods and the
editing methods, as discussed in [8]. The credit assignment programs need to determine
generally what is wrong and what to fix (when predictions are false), and then
communicate this information to the editor in a high-level, representation-independent,
language which the editor translates into specific changes for the knowledge structures
being used. In a rule-based representation, for example, inferential links are
represented exclusively as premise-action pairs of conditional rules. In a frame-based
system the inheritance links carry some of the same kind of inferential information.
Thus the editor needs to know the semantics, as well as the syntax, of slots and
attributes in order to change the appropriate constructs.

B) Learning Control Heuristics by Experience

Articulating and coding domain knowledge is time-consuming for both the domain
expert and the knowledge engineer. Acquiring control knowledge poses additional
probiems [22], [25]. Control knowledge appears to be more difficult for experts to
retrieve than domain knowledge and they have difficulty distinguishing domain and
control knowledge. Experts produce general heuristics during questioning, but use more
specific heuristics during problem-solving. Stimulating experts’ retrieval of a
comprehensive set of heuristics may require analysis of many example problems that
produce no new domain knowledge. At the same time, powerful control knowledge is
essential for the solution of many problems.

Wepropose to study automatic learning of control knowledge in the context of BB1. As
discussed above, all cognitive activities in BBl systems are performed by knowledge
sources that are triggered by changes to objects on the blackboard and, when executed,
produce new changes to objects on the blackboard. These include domain knowledge
sources that construct solutions to the domain problem on the domain blackboard and
control knowledge sources that construct control plans for the problem-solving process
on the control blackboard [28]. Similarly, knowledge sources for learning will
introduce new control heuristics into the current control plan and they will construct
new control knowledge sources to generate the new heuristics in the future.

E. H. Shortliffe 148 Privileged Communication

Core Research and Development

We envision a range of potential learning knowledge sources, including some that learn

new control heuristics, some that learn more general or more specific forms of known
heuristics, and some that expand or restrict the applicability of known heuristics.
Within each category, some learning knowledge sources simply replace the knowledge
engineer and interact directly with domain experts. For example, the knowledge source
Understand-Preference, a prototype version of which we have already implemented
[29], is triggered when a domain expert overrides BB1’s scheduling recommendation.

Its action interacts with the expert to determine the reason for the override and encodes
a corresponding new heuristic. Other learning knowledge sources could operate
autonomously. For example, the knowledge source Attribute-Results might be triggered
by dramatic improvement (or deterioration) in the current solution to the domain
problem. Its action would attribute the change in solution rating to preceding actions
and encode a heuristic favoring such actions. Evaluate-Heuristic, another autonomous
knowledge source, might be triggered when a new control knowledge source is executed.
Its action would evaluate subsequent changes in solution rating and adjust the posted
heuristic’s assumed importance (Weight) accordingly.

The proposed work will develop specialized mechanisms for these different kinds of

learning. For example, Understand-Preference compares attributes of the action
recommended by the scheduler to corresponding attributes of the action preferred by
the expert and, with the expert’s assistance, diagnoses the key differences. By contrast,
the knowledge source Evaluate-Heuristic requires a mechanism for measuring and
evaluating changes in the quality of a solution and for distributing "credit" for those
changes among simultaneously active control heuristics.

BB1 provides a rich and well-structured foundation for learning in its explicit,
structured representations of all blackboard objects, knowledge sources, and potential
actions. The structure and semantics of BB1l's control blackboard entail a prototypical
form for all control heuristics used by the scheduler:

Goal: Function <KSAR:Attributes> <Other-Arguments>) = {0-100}
Weight: 1-10}
Criterion: (Predicate) = T/F.

A heuristic’s Goal is a function that, when evaluated for a potential action, produces a
rating 0-100. Its Weight is a number 0-10 that signifies the importance of an action's
rating on the Goal function. Its Criterion is a predicate specifying an expiration

condition that, when met, signifies that the Goal is no longer desirable. All learning

knowledge sources will attempt to construct (or modify) control heuristics in this
prototypical form. They also will attempt to construct control knowledge sources whose
triggering conditions describe appropriate situations in which to adopt new heuristics
and whose actions post the new heuristics on the control blackboard.

The proposed work will supplement the BB1 foundation with additional knowledge of

canonical forms for semantic classes of control heuristics. For example, control
heuristics that rate actions on attributes with numerical values might incorporate Goals
in the canonical form:

(Translate-Value-To-Scale KSAR:Attribute Maximum-Value),

in which observed values on the target attribute are translated into corresponding values
on the required 0-100 scale. Alternatively, they might incorporate Goals in the
canonical form:

(Compare-To-Threshold KSAR: Attribute Threshold),

in which observed values on the target attribute are rated 100 if they are above some

threshold, and 0 otherwise. Obviously, there are many alternative canonical forms that

are potentially appropriate for attributes with different data types (e.g., numerical,

Privileged Communication 149 E. H. Shortliffe

Core Research and Development

literal, list), Learning knowledge sources must determine which form is appropriate for
each new heuristic.

Although we will develop and evaluate learning knowledge sources in the context of the
PROTEAN system for protein structure analysis, the knowledge sources themselves will
embody generic learning mechanisms applicable to a wide range of problem domains.
Wewill incorporate these learning knowledge sources in the BB] environment.

C) Knowledge Engineering

We propose to build interactive aids for knowledge engineers in the context of the BB1
and HERACLES frameworks. Many of the aids in EMYCIN,although developed nearly
a decade ago, have never been duplicated, or have only been partially duplicated, in
other contexts.

These ideas include:

1. meta-level constructs to guide the acquisition and checking of new
knowledge;

2. interactive debugging aids for tracking down the source of an error in the
context of an incorrect conclusion;

3. explanation facilities.

HERACLESis a tool for building expert systems that we have generalized from our
experience with NEOMYCIN, a program designed to clarify the knowledge structures
and reasoning processes of MYCIN. HERACLESsolves problems by classifying them
in terms of a set of pre-enumerated solutions, a method we call heuristic classification.
For example, a generic form of heuristic classification, commonly used for solving
diagnostic problems, is causal process classification. We have been studying how
causal processes are classified in medical diagnosis, and have recently applied our model
to the problem of diagnosing surface flaws in cast iron.

In causal process classification, data are generally observed malfunctions of some device
or process, and solutions, pre-enumerated in the program, are abnormal processes
causing the observed symptoms. We say that the inferred model of the device, the
diagnosis, explains the symptoms. Only the simplest devices and processes, can be
adequately described in terms of function/structure models, enabling a principled
comparison of faulty behavior to intended design. Instead, it is necessary to construct a
causal network that relates normal and abnormal states to observed behavior and
ultimate fault etiologies.

While causal networks of this sort have been incorporated in medical diagnostic
programs, for example, for more than a decade, the principles by which they should be
constructed is still an area of research. In our own work, we have been investigating
heuristics for constructing such networks in knowledge acquisition dialogues. We have
discovered that an expert’s terminology and explanations of causal processes must be
carefully analyzed for the resulting network to be coherent and applicable to many
problems. For example, an expert may say, "a brain-tumor causes a brain-mass-lesion.”
But a network simply linking these two terms will be meaningless: a brain-tumor is a
kind of brain-mass which causes a brain-lesion (cut). The two terms cannot be linked
simply by either cause or subtype because the term “brain-mass-lesion" bundles together
a location, a cause, and an effect.

In our ongoing research, we propose to continue this kind of analysis to develop a
program that can help a knowledge engineer construct a principled causal network. We

E. H. Shortliffe 150 Privileged Communication

