
section 3.3.1.5 GENERALIZATION OF AI TECHNIQUES

h. Implement a facility which accepts descriptions of problem solver class

and enables the user to ask the questions for that class about an example
system;

5. Investigate new kinds of explanation capabilities -- for example, how a

program’s operation might be meaningfully summarized for several kinds of
users, such as domain experts and programmer/system designers.

References for this section

[Buchanan? 1] Buchanan BG, Lederberg J, The heuristic DENDRAL program for

explaining empirical data, IFIP, 1971, pp 179 ~ 188.

{ Buchanan72] Buchanan BG, et.al., Heuristic theory formation: data

interpretation and rule formation, in Machine Intelligence 7,
(Meltzer & Michie, eds), pp 257-292, 1972.

{Davis76] Davis R, Applications of meta level knowledge to the construction,
maintenance, and use of large knowledge bases, (thesis), AI Memo
283, Stanford University, July 1976.

{Davis77] Davis R, Buchanan B, Shortliffe E, Production rules as a

representation for a knowledge-based consultation program,

Artificial Intelligence (to appear, Jan 77).

[Engelmore77] Engelmore, R, and Nii, H Penny, A Knowledge-Based System for the

Interpretation of Protein X-Ray Crystallographic Data, 1977.

[Lenet76] Lenat, D, AM: An Artificial Intelligence Approach to Discovery in

Mathematics as Heuristic Search, Ph.D. Thesis in Computer Science,

1976.

(Lesser74] Lesser V R, Fennell R D, Erman L D, Reddy D R, Organization of the
HEARSAY II speech understanding system, IEEE Transactions on

Acoustics, Speech, and Signal Processing, ASSP-23, February 1975,

pp 11-23.

[MACSYMAT 4] The MACSYMA reference manual, Seotember 1974, The MATHLAB Group,

MIT.

(Nii77] Nii, H. Penny and Feigenbaum, E, Rule-based Understanding of

Signals, presented at Workshop on Pattern-directed Inference

Systems, 1977.

[Newel172] Newell A, Simon H, Human Problem Solving, Prentice-Hall, 1972.

[Nilsson71] Nilsson N J, Problem Solving Methods in Artificial Intelligence,

McGraw Hill, 1971.

J. Lederberg 76 Privileged Communication

GENERALIZATION OF AI TECHNIQUES Section 3.3.1.5

[Pople75] Pople H, Meyers J, Miller R, DIALOG, a model of diagnostic logic

for internal medicine, 4IJCAI, pp 848-855. (the system has
recently been renamed INTERNIST).

{Shortliffe76] Shortliffe E H, Computer-based clinical therapeutics: MYCIN,

American Elsevier, 1976.

[Stefik77] Stefik, M and Martin, N, A Review of Knowledge-Based Systems as a

Basis for a Genetics Experiment Designing System, 1977.

Privileged Communication 17 J. Lederberg

Section 3.3.2 SOFTWARE EXPORT ALTERNATIVES

3.3-2 SOFTWARE EXPORT ALTERNATIVES

Over the past few years, a number of the programs being developed by SUMEYX-

AIM projects have reached a developmental maturity where we need to consider ways
of meeting the demands to make them operationally available to a larger user

community and to export them where appropriate to other sites. Current examples

of such programs include the CONGEN biochemical structure elucidation progran,

the SECS chemical synthesis analysis program, and the MYCIN, ONET, and INTERNIST

medical diagnosis programs. Our present PDP-10 facilities are quite insufficient

for meeting the operational needs of this growing group of users, even if

providing this level of service were within the SUMBX-AIM mandate.

These programs have been written in a variety of source languages

(principally various dialects of LISP or SAIL) and are characterized by very

large address space requirements. The development medium for these programs at

Stanford has been the PDP-10 TENEX environment and the choice of language made to

facilitate development and representation of logical program concepts. In

contemplating the export of such programs, several points seem relevant:

- Development is continuing on the programs to extend their conceptual

framework and operational effectiveness. This implies that there must be a

low threshold between developmental versions of the programs and operational

ones during this phase and that the implementation environment of the

programs must be conducive to both.

- Because of the complexity of the programs, it is likely that their

maintenance and upgrade should be centralized. This implies a convenient

means of receiving user feedback and of providing program updates.

- Because of the address space requirements for these programs (even after

possible rewrite for increased efficiency), it does not appear reasonable to

export them via 16-bit mini computers where unwieldy overlay structures would

be required to circumvent the addressing constraints.

- The target community for these types of programs will be fairly

heterogeneous. Users may include academic research groups, industrial

houses, hospitals, and educational institutions. One can expect the native

computing resources in these various user sites to cover a wide range of

hardware and operating systems, not ali existing PDP-10°s. We cannot expect

many users interested in the programs to be able to set up a full-seale PDp-

10 site capable of running them.

We have been considering a number of mechanisms for exporting such

software. These include a) implementing individual programs on machines which

could be accessed by interested users over some (commercial) network, b)

implementing or (reimplementing existing) individual programs in an appropriate

language which is "machine independent" and thereby could be run on a user’s

existing computer given some minimum size, or c) making the programs available on

an exportable machine (PDP-10 or its more cost-effective descendants) which is

compatible with the existing programs and the centralized PDP-10 facilities used

for continuing development.

J. Lederberg 78 Privileged Communication

SOFTWARE EXPORT ALTERNATIVES section 3.3.2.1

3.3.2.1 NETWORK ACCESS

There is a growing number of uses of computer networks for program

dissemination ranging from business accounting and modeling packages available

from commercial vendors to attempts to consolidate research tools such as a

collection of mass spectral library search and analysis programs (see for example

S. R. Heller, G. W. A. Milne, and R. J. Feldmann, "A Computer-based Chemical

Information System", Science, Vol. 195, Number 4275, page 253, 1/21/77). The

existing network connections at SUMEX are well-configured for experiments within

our capacity on this means of disseminating software. For many such programs,

this seems to be well-suited for export; and indeed Heller reports 162 current
user groups subscribing to his Chemical Information System. However, unless the

network machine runs the same operating system and language in which the program

was developed, a conversion would be required and perhaps at the same time a

barrier would be established between the continued development of a program and

its operational use. This appears to be the case for at least one proposal for a

network-available version of our CONGEN program. The DENDRAL project has

undertaken a very laborious conversion of CONGEN from its native LISP

implementation to one in MAINSAIL to achieve a level of exportability for lack of

other immediately available mechanisms. Other aspects of this approach involve

security and privacy. Some of the data used with these programs are sensitive

(patient records, or private, unpublished information on chemical structures,

ete.). Having such a public access as over a network can create problems in

protecting these data; and individual user groups may prefer to run the programs

on machines which are under their local control. Finally, since many of these

tools are in the research domain, it is not clear that they would be cost-

effective in a commercial environment.

3.3.2.2 MACHINE-INDEPENDENT LANGUAGE TMPLEMENTATION

An ideal which has been long sought for program sharing is to develop

languages with "universally" accepted standards and which are implemented in

machine independent ways so that programs running on one machine environment will

run in another with a minimum of conversion effort. This of course involves both

language implementation and application program implementation concessions to

achieve effective machine independence. We are working on a machine independent

version of the SAIL Language called MAINSATIL now to experiment with these sorts

of issues. Our detailed plans for MAINSAIL development are given below including

the possibility of special microprogrammed machines which may most economically

and efficiently run MAINSAIL. Practically speaking, the machine-independent

language approach is best-suited to the design of new program systems; and in the

particular case of MAINSAIL, to those that can be effectively expressed by means

of an ALGOL-like language. For existing programs, an extensive conversion would

be required. We are still exploring tne full range of implications of language

choice for AI programs such as are being developed on SUMEX but it is likely that

MAINSAIL cannot be a universal substitute for the full range of languages

(including LISP) useful for these programs in both operational use and on-going

development. MAINSAIL is nevertheless a definitive step toward understanding the

requirements, advantages, and costs of machine independent systems. It may offer

a useful base for implementing all or parts of new systems as well as for the

ultimate reengineering of existing systems as they become fully operational.

Privileged Communication 79 J. Lederberg

Section 3.3.2.2 SOFTWARE EXPORT ALTERNATIVES

3.3.2.3 EXPORTABLE (PDP-10) SYSTEM

An alternative view is that with the dramatic downward plunge of hardware

costs, the costs of software development should play a larger and larger role in

determining software/hardware optimizations. An attractive solution involves a

PDP-10-like machine which could run the existing software intact and which could

be made available for a reasonable cost to interested user (or network) groups.

Since the machine could run the native operating system and language in which the

program was developed, the initial conversion would be minimized and future

developments (either conceptual or for improved efficiency) would be readily

incorporated. Furthermore, a given user group could (perhaps with a change of

microcode or system) run programs from various PDP-10 environments. By using

network communication facilities, such satellite machines could retain contact

with central development efforts, share files or data bases where appropriate,

and provide a means for cost-effective incremental expansion by adding more such

satellite machines or upgrading to a larger PDP-10 configuration when usage

justifies. In this sense, this option is really a variant on the first network

option using a more flexible hardware capability which can adapt better to

individual program and development group/user community needs.

This approach may be best suited for this intermediate stage in AI program

development where continued research and improvement is going on while extensive

operational access is demanded. An economical export by tnis means defers the

need for reprogramming until the design is fully stabilized and ready to be "cast

in concrete", Nevertheless, even if the host machine is very inexpensive, in the

long term if a factor of 10 improvement in speed or the number of users supported

is possible by reprogramming, then a reimplementation will likely be warranted

eventually as development tapers off and more and more users demand efficient

production runs.

J. Lederberg 80 Privileged Communication

EXPORTABLE MACHINE PLANS Section 3.3.3

3.3.3 EXPORTABLE MACHINE PLANS

Because of the already large effort that has gone into other existing

software systems we are attempting to export, the "exportable machine" option may

offer a substantial advantage in minimizing conversion efforts, maintaining

contact with program development groups, and offering a cost-effective way for

even relatively small groups to use these programs. This is particularly

important in just moving from the strictly developmental phase into a combined

development/refinement/operational stage.

For our purposes, such a machine could be either a hardware-designed PDP-10
or a microprogrammed emulation of this machine. As a tentative functional

configuration we would like the machine to perform at about the speed of a KI-10

with several users including:

- PDP-10 instruction set and "BB&N" paging facilities

~ at least 256K logical address space

- 256K physical memory size (36 bit words, < 1 microsecond cycle)
- memory interface for swapping device and small file system including

at least 200M bytes of disk storage

- facilties for about 16 terminals

- 200-300 lpm printer

~ slow tapes

- some kind of external bus interface (I/0 bus, UNIBUS, etc.)

- facilities for network communication connections

The cost for such a system (CPU, memory, and minimal peripherals) should

ideally be in the range of $50,000 - $100,000. This may be below the initial

announcement price for such machines but should represent realistic longer tern

pricing possibilities. A number of vendors may be working on the planning stages

of such a machines which could be announced within the next 18 months. We budget

for an initial version of such a machine at $200,000 based on very general

pricing estimates (noting also that no vendor announcement has been made). The

detailed alternatives and plans for this acquisition will be reviewed with the

AIM management committees before implementation.

The detailed requirements for integrating such a machine into the SUMEX-AIM

resource are also necessarily vague since this will depend on needed operating

system and user support changes to accommodate the reduced size and perhaps

different memory management system (paging). These changes may also reflect

themselves in modifications for the language support underlaying the programs we

want to export. We expect to track these develooments closely during the first

year of the follow-on grant and to formulate a plan for acquiring such a machine

for experiments in packaging our AI programs for export. We will only be able to

assess the required level of system software work when the details of the vendor

systems become known. The budgetary details are discussed in the "justification"

section of the five year budget plan.

These kinds of machines may also offer an effective way to incrementally

expand the capacity of facilities like SJUJMEX and we will review them in this

context as well (see the discussion of facility hardware upgrade plans on page

62). The main issues arising in coupling such satellite systems to the central

facility as independent machines involve managing a distrivuted file system,

Privileged Communication 81 J. Lederberg

Section 3.3.3 EXPORTABLE MACHINE PLANS

convenient terminal routing, and allocating users between machines. These are

all manageable problems within existing technology such as we employed in

developing the initial dual processor implementation. Since we are operating on

fully amortized hardware, the indicated time table is driven by the real costs of

system software modernization and compatibility of maintenance. Local users will

be less injured by persevering with dated systems than a wider community to which

software must be efficaciously exported in a contemporaneous idiom.

J. Lederberg 82 Privileged Communication

MAINSATL DEVELOPMENT PLANS Section 3.3.4

3.3.4 MAINSAIL DEVELOPMENT PLANS

The on-going MAINSAIL development effort was described earlier as part of

our detailed progress report. A summary of language features can be found in

Appendix III on page 231 (see Book II). This section summarizes the planned

directions for future MAINSAIL developments. These efforts have two
complementary thrusts: 1) development as a programming system and research tool

and 2) demonstration of implementations for additional target systems. The first

area is independent of what machines are used as hosts and seeks to explore the

design ramifications, programming techniques, and advantages and costs of machine

independence. The second area addresses the acquisition of practical experience

in the export and use of MAINSAIL on real systems and the issues involved in
gaining user acceptance of MAINSAIL as a programming tool.

3.3.4.1 DEVELOPMENT MANAGEMENT

In the early phases, the design for MAINSAIL was developed by Mr. Wilcox

with a range of community inputs collected in relatively informal exchanges.

These have included discussions with the designers of the SAIL language, studies

of other languages (PASCAL, ALGOL-60/68, and SIMULA in particular), comments on

our preliminary design documents from interested groups, presentations and

discussions at several DECUS symposia, and community experimentation and critique

of evolving MAINSAIL implementations. Our network connections have been

invaluable in this regard, providing access to our documents, allowing rapid

responses to suggestions, and providing a means for network collaborators to

experiment with MAINSAIL on their own machines as implementations have become

available. As MAINSAIL achieves a more operational status and we receive

feedback from a larger community, we will reexamine many of these initial design

decisions based on criteria of generality and effective portability as well as

community acceptability. In this process we will formalize our user community

contacts to take better advantage of their suggestions for system evolution and

for effective system maintenance. We will, of course, provide a mechanism for

reporting community comments (most easily done via networks) and may organize

workshops or participate in other meetings to disseminate and discuss MAINSAIL.

The AIM Executive Committee will play a key role in advising about development

plans and making priority trade-offs within our limited available resources.

3.3.4.2 LANGUAGE DEVELOPMENT

Interrupts: We are currently investigating the implementation of both

deferred and immediate interrupt facilities for MAINSAIL to give the ability to

stop a program in the midst of execution, communicate with an interrupt-driven

i/o device, or synchronize cooperating processes. A key issue is how to

coordinate interrupt control transfers with on-going dynamic memory and storage

management. This is particularly critical for immediate interrupts as may be

Privileged Communication 83 J. Lederberg

Section 3.3.4.2 MAINSAIL DEVELOPMENT PLANS

needed for real time applications. It may be necessary to restrict the range of

language facilities available during such interrupts. We will continue these

studies and implement appropriate interrupt handling support.

Concurrency: The current implementation of MAINSATL has been designed with

concurrency in mind, and appears to provide a solid base. We must complete the

definition of the role of concurrency in MAINSAIL, then specify a set of

primitives needed to support concurrency. There will then be an efficient

implementation of these primitives including a convenient and flexible user

interface,

Minimize runtime checking: Much of the code produced for runtime checking

could be eliminated if the compiler "understood" more about the program. We

propose to give MAINSAIL the ability to verify that certain conditions are met

within the program so that more checking can be done at compiletime, and less at

runtime. This involves exploration of what features MAINSAIL should include to

allow the programmer to help in this process.

LEAP: LEAP is a facility in SAIL which provides an associative data store

to allow the retrieval of data based on the partial specifications. We have

encountered a number of prospective MAINSAIL users who have used and feel a need

for LEAP. We plan to investigate the most useful features in LEAP which should

be incorporated into MAINSAIL. It should be pointed out that many of the

facilities of LEAP can easily and efficiently be coded in MAINSAIL using

RECORD’s.

3.3.4.3 COMPILER DEVELOPMENT

Increase speed of compilation: There is much room for improvement in the

speed of compilation. The current version was designed for flexibility rather

than efficiency. Most important is a close look at the synbol-table lookup, for

that is where (the first pass of) the compiler spends most of its time.

Improve error detection and recovery: The compiler’s error detection and

recovery is now rather primitive. In general the entire edit-compile-debug loop

should be streamlined for user convenience. We propose the utilization of a text

editor as an integral part of compilation, so that MAINSAIL can automatically

Switch between compiling and user editing.

Machine~Independent code optimization: The first pass of the compiler

produces an intermediate language which is the same for all target machines.

This intermediate language is simply a recoding of the source file into an

assembly-like language which reflects the properties of MAINSAIL. Various

machine-independent transformations could be carried out on this intermediate

text to translate it into an equivalent but more efficient representation of the

source program,

Machine-dependent code optimization: The MAINSAIL code generators,

themselves being MAINSAIL procedures, can be more readily written to utilize

J. Lederberg 84 Privileged Communication

MAINSAIL DEVELOPMENT PLANS Section 3.3.4.3

complicated algorithms and data structures if necessary to generate efficient

code. At present, the primary hurdle to a thorough analysis ofthe intermediate

code by the code generators is the lack of a "look ahead" facility. We propose
adding to the second pass the ability to build a machine-independent structure,
on the procedure level, which can be interrogated by the code generators prior to
generating code for a procedure. This would allow the code generators to make
decisions based on a global knowledge of a procedure.

3.3.4.4 RUNTIME DEVELOPMENT

The runtime system is composed of modules which support the code generated
for a user module. A single small module, called the kernel, is permanently
resident, while all other modules are swapped as necessary. Tne modularity of the
runtime system is what allows MAINSAIL to run in a small address space.

Optimize system modules: To a large extent, the efficiency of the system
modules determines the efficiency of user programs. Thus it is well worth our
time to optimize these modules. We propose to develop some modules which measure
system performance. These would also be made available to users to help them
evaluate their programs. A profile of a program, reporting how many times each
Statement is executed, is also proposed.

The primary use of these performance measurements will be for the tuning of
memory allocation, swapping and garbage collection. MAINSAIL is largely

independent of the exact strategies utilized, thus providing much leeway in
working with alternate approaches. These algorithms need to be separately tuned
for each implementation.

Virtual data space: MAINSAIL now supports the swapping of control sections,
which could be considered a form of virtual control space. We are interested in
studying whether this same form of support can be extended to data. Now that
MAINSATL can support a virtually unlimited control space (by breaking the program
into modules), an implementation will be limited primarily by the amount of data
which must be resident. We propose to add facilities to the language which allow
the user to help structure the data so that it can be efficiently moved between
memory hierarchies.

Support data operations: Machines which do not directly support the data
types which MAINSAIL offers will need additional support modules. In particular,
we need to write machine-independent modules to perform arithmetic on long
integers, reals and long reals.

Runtime certifier: We will need a runtime certifier, i.e., a set of modules
which give new MAINSAIL implementations a thorough workout, comparing the results
with those obtained from running MAINSAIL on other machines. We have been using
the compiler for this purpose, but it does not exercise all facilities of

MAINSAIL, e.g., real and long real.

Privileged Communication 85 J. Lederberg

Section 3.3.4.5 MAINSAIL DEVELOPMENT PLANS

3.3.4.5 DEBUGGING SYSTEM DEVELOPMENT

We feel an effective and integrated debugging system will play a key role

in the utility of MAINSAIL. Our goal is to provide interactive debugging

capabilities comparable to those of INTERLISP which can significantly increase

programming productivity. The combination of comprehensive debugging facilities

with efficient production execution will help bridge the gap between program

development and operational use.

The basic approach involves the integration of the now distinct phases of
source text editing, compilation and execution. An internal representation of the
program will be maintained which can serve a variety of purposes. This

representation will be interpreted during debugging so that MAINSAIL can monitor

execution and interact with the user in a manner which reflects the program

structure. Errors can be corrected by editing this structure, and execution
continued with no need for recompilation. Program text can be generated from the
structure in a standard format, including the original variable names.

Machine code can be generated from this same structure, and compiled and
interpreted code intermixed during execution. This provides fast execution of
debugged modules along with interpreted execution of modules under scrutiny.

Interpreted execution will allow for the interrogation of variables, setting and

removal of break points, procedure trace, and single stepping. We plan to
integrate these capabilities with a display terminal under the control of an

editor, though the debugger will also operate from a hard-copy terminal. A split-

screen facility will allow the program text to be viewed during execution along

with any output from the program.

There are a number of difficult problems to be resolved concerning the

relationship between the original source text (if any) and its internal

representation which may be edited during debugging. Unlike LISP, the MAINSAIL
syntax requires a significant amount of compilation before it can be put into a

form which can be interpreted with reasonable efficiency.

3.3.4.6 DOCUMENTATION PLANS

Language manual: The currently available documentation for MAINSATL
consists of a preliminary language reference manual. It will be rewritten and
expanded to be useful to users unfamiliar with SAIL.

Runtime manual: We will also provide a runtime manual which explains what

happens during program execution. This information can be enlightening when

designing a program, though its primary purpose is to document the machine-

independent runtime system. This manual will also be necessary for the

implementation of MAINSAIL on a new machine.

Code generation manual: A third manual, the code generation manual, will

describe how to write code generators. This involves a description of the

intermediate code, and how it is presented to the code generators. The goal is to

J. Lederberg 86 Privileged Communication

MAINSAIL DEVELOPMENT PLANS section 3.3.4.6

describe the code generation process in sufficient detail to allow any user to
write a complete set of code generators. In this way the burden of implementing
MAINSAIL on new machines can be dispersed.

System implementation manual: The system implementation manual will
describe how to write the machine-dependent parts of the runtime system. This
manual will describe what procedures need be written, and the data structures and
other procedures with which they interact. It will also describe all the parts

of MAINSAIL, how they fit together, and how to build a new system.

3.3.4.7 MAINTENANCE AND DISTRIBUTION PLANS

The maintenance and distribution of MAINSAIL could easily overwhelm us if
we do not carefully plan for it. This is a good opportunity to bring someone else
into the project, since it presents the chance to become familiar with the inner
workings of the system.

Local experts: Each site must have a local expert who can repair errors in

the machine-dependent portions and make patches to the machine-independent parts

prior to receiving a new version which incorporates the changes. Another role

for the expert would be that of liaison between the local user community and

SUMEX. Questions and bug reports should first be directed to the local contact,

and then directed to SUMEX in a form standardized across all sites.

SUMEX liaison: As MAINSAIL begins to be used at a number of sites, we would
expect the number of inquires from potential users to rise to the point where it

could require an inordinate amount of time from the developers. We propose that

an additional person be hired at SUMEX as a liaison for MAINSAIL. This
individual must be capable of fixing bugs and generally keeping current versions

of the system healthy. The liaison will keep in touch with the local experts,

and pass to them any necessary updates. This involves making tapes and sending

them through the mail; editing the documentation, overseeing its printing and

distribution; responding to inquiries from potential users; consulting with new
users concerning program design (but not actually writing user’s programs); and
new user orientation.

3.3.4.8 PLANS FOR ADDITIONAL IMPLEMENTATIONS

The current implementations are for the PDP-10 and PDP-11. These give us

experience on medium and small scale machines. We plan to nold off on

introducing additional implementations until we have received sufficient feedback

from these. It appears that the orchestration of parallel implementations on a

wide variety of machines will rival the technical problems.

Privileged Communication 87 J. Lederberg

Section 3.3.4.8 MAINSAIL DEVELOPMENT PLANS

We have surveyed a large number of computer systems while designing

MAINSAIL. Most of these are known to us only through manuals, so that further
study will be necessary to determine how well a particular system could support
MAINSATL. Among the machines surveyed are: IBM (350/370, Series/1), CDC (69000
Series, 7600), UNIVAC (1100 Series), Texas Instruments (990), Honeywell (Level
6), Varian (V70), Hewlett-Packard (3000 and 2100), Data General (NOVA, ECLIPSE),
Interdata (16 and 32 bit series), SEL (32), Harris (Slash series), Burroughs
(B1700) and MODCOMP. We plan to keep abreast of new computer announcements, since
we are in the position of relatively easily providing software for emerging

hardware.

Choices for target systems will be based on user demand and priorities
established in consultation with the AIM management committees. We are
projecting approximately two man-months to create a new implementation, though
this will vary according to how well the target machine and operating system fit
MAINSAIL, and the availability of a target system during the early design

iterations. Additional time will be required to actually install the

implementation at the target site, have it thoroughly tested, distribute
documentation and make it generally available. There are, of course, problems in
developing MAINSAIL for a machine to which we have no access. The code
generators and operating-system interface can be written independently of the
target machine, but the debugging of these will require access for a period of at
least a few weeks. It would not be acceptable to implement a machine by sending
tapes through the mail. There appear to be four possibilities: access over a
network; access to a nearby machine for which MAINSAIL has been implemented; rent
or borrow a machine for the duration of the development; emulation of the target
machine.

3.3.4.9 MAINSAIL OPERATING SYSTEM PLANS

In the course of designing the operating systen interfaces it has become

apparent that MAINSAIL needs very little support from any machine-dependent
operating system, at least with regard to the execution of a single program. We
feel that in many cases we could provide our own stand-alone version of MAINSAIL
for single-jobd environments. Technology seems to be pointing in the direction of
less expensive computers which can be dedicated to a single user at a time, and
these would be the initial target of our operating system.

In the context of a single-job systen, MAINSAIL’s primary need is a file

system and device drivers. Once our primitive operating system is written in

MAINSAIL, it should not be difficult to add monitor commands and utilities such
as file manipulation. Of course the MAINSAIL operating system would be special
Purpose in that it would support a single language, with everything designed
around that language: The main elements of our operating system would be the
compiler, a text editor, the MAINSAIL runtime system, and the additional modules
to support the file system and i/o.

MAINSATL does not need a linker, overlay system, or loader (the swapping of
modules takes care of those). Additional components of the system could simply

J. Lederberg 88 Privileged Communication

MAINSAIL DEVELOPMENT PLANS Section 3.3.4.9

be added as new modules. A goal would be to design an open~ended operating system

kernel which could be extended by the user as desired.

3.3.4.10 MICROCODED MAINSALL MACHINE PLANS

We have thus far been discussing the achievement of portability by making

MAINSAIL fit existing machines. If the reason for portability is understood as

the desire to provide an economically viable way of distributing software, then

another approach is to make the hardware fit MAINSAIL, and distribute the

hardware along with the software.

We propose to design an "optimal" representation of MAINSAIL code for

emulation by a microprogrammable computer; to purchase a suitable computer for

MAINSAIL emulation; to implement MAINSAIL and the supporting microcode on this

computer; and to evaluate the resulting system to determine the economic and

technical feasibility of distributing such an integrated hardware-—software

programming environment. Details of our plans are given in Appendix IV on

page 235 (see Book II).

We expect considerable improvement over implementations for existing

machines which have been accommodated to less than optimal, and in some cases

quite poor, instruction sets. Many benefits accrue from such an approach, and it

is likely that microcoded hardware, specialized to a particular language or

application, will play an increasingly important role in the development and

operational use of future software systems. We expect a microcoded MAINSAIL to

outperform other MAINSAIL implementations in much the same way that DELtran (a

"directly executable language" (DEL) implementation for FORTRAN II) outperforms

FORTRAN II(4). Initial measurements show that the DELtran representation is less
than one fifth the size of the code generated by the FORTRAN-H optimizing

compiler, and executes about five times faster.

MAINSAIL is perhaps better suited to the emulation approach than FORTRAN

because of the locality of reference provided by procedures, records and modules.

A preliminary DEL has already been designed for MAINSAIL, but further work is

necessary before we can predict (or demonstrate) size and execution comparisons

with standard implementations.

This work will complement the on-going implementations of MAINSAIL on

conventional hardware. Thus we will be in a unique position to compare the two

approaches.

The combination of a microprogrammed machine with the MAINSAIL operating

system could result in a system optimized for the execution of MAINSAIL programs.
AS hardware costs continue to fall we see this approach as a realistic way of

providing a powerful system at a low price. We are interested in determining

emneeeeeare eeee ae ee re re re a ee re ee re eerereeeee na ce ar ee ae ae ee ae ee re ee ee ee re ee eeeeee weeeee

(4) See Hoevel, L. W. and Flynn, M. J., "The Structure of Directly Executed
Languages: A New Theory of Interpretive System Support," Stanford Digital Systems

Laboratory, Technical Note No. 108, Stanford University, March 1977.

Privileged Communication 89 J. Lederberg

Section 3.3.4.10 MAINSAIL DEVELOPMENT PLANS

whether a "soft" machine of this sort can be provided cheaply enough to serve as

a basis for the export of software which presently requires extensive hardware

facilities.

3.3.4.11 DEVELOPMENT OF PORTABLE SOFTWARE

We would like to see a collection of portable programs developed in

MAINSAIL both to serve as examples of portable software, and to provide support

to those sites which begin to rely on MAINSAIL as the primary programming

resource. Such software development will also help us debug MAINSAIL,

familiarize the programmers with it, and spread its use. We are aiming for the

complete support of a stand-alone MAINSAIL implementation which is aligned with

developing hardware trends, i.e. video displays and compact, relatively

inexpensive computers and peripherals.

We do not now have the facilities to implement all of this software at

SUMEX, and thus expect to collaborate with others in its design and

implementation. It is imperative that the software be portable except possibly

for certain well-defined modules which need support outside MAINSAIL (e.g.,

special device support).

Display editor: A MAINSAIL text editor is at the core of a number of
planned developments. Our interest is centered around a display-oriented editor

because of its clear superiority over hard-copy editors. The TV~EDIT program now

in use at Stanford and a few other sites is an excellent base of development,

especially since it is written in SAIL. We would like to see additional features

added to what TV-EDIT now possesses. Our intended applications for compilation

and debugging require a split-screen facility, and a multi-file capability. It

must direct all communication with the display through a display package, as

described below. This separates the editing functions from the display functions,

so that the editor is independent of the display and hence can be used with a

variety of displays.

Display package: A display package is necessary as part of the editor, and

is also important as a package for use by other programs. The display package

will accept standard commands to control a display terminal. It must be smart

enough to simultaneously maintain several areas on the screen. Such a package

will be machine-independent (as much as possible), but have terminal-dependent

modules which feed the terminal hardware commands to effect the machine-

independent commands. It should be able to drive a hard-copy terminal as if it

were a limited display terminal.

Graphics package: Similar to the display package is a graphics package for
drawing pictures on a graphics display device. This package would allow for the

description of pictures, the choice of display device, and the display of the

pictures. This package would be machine-independent and display-independent. The

OMNIGRAPH systen developed by Sproull at NIH may form the basis for this package.

Document preparation: A simple document preparation program would serve as

J. Lederberg 99 Privileged Communication

MAINSAIL DEVELOPMENT PLANS © Section 3.3.4.11

the "back end" to the display editor. We feel that much of the work of current
document programs could be provided by the editor in a form providing instant
feedback. Thus the primary purpose of the document program would be to provide
Sliobal processing, e.g., to generate a table of contents or index, and fill in
symbolic references with appropriate chapter or section numbers.

Math and statistics packages: MAINSAIL currently has a mathematics package
with trigonometric and logarithmic functions. These functions need additional
testing for accuracy, and should be augmented with other functions, e.g., a
random-number generator. There is also a need for a statisties package.

Privileged Communication 91 J. Lederberg

AVAILABLE FACILITIES

4 AVATLABLE FACILITIES

The existing SUMEX-AIM computer and communications configurations have been
described in earlier sections. The number of personnel to support this follow-on
work will remain at approximately the same level as before so no additional
office space will be required. We anticipate no changes will be needed for the
machine-room facilities.

J. Lederberg 92 Privileged Communication

