
(126) ACM-1
Page 3

3) The Campus Facility is located more than a quarter mile from the Medical

School. Although this distance may sound small, it is a physical obstacle which
does present potential interaction problems, despite the terminal service available;

4) Current disk rates and the ORVYL file system will make disk storage more

expensive for medical users that the current ACME rates. See the subsequent
section on Cost Considerations;

5) <A large facility serving several thousand users may have less flexibility
in terms of changing its systems than a smaller facility serving approximately
300 user projects;

6) ACMF users would have to translate their programs to the form of

interactive Pl,/1 mounted on the Campus Facility. Hopefully the conversion cost
can be minimized with translation aids prepared by the facility.

Comments on Cost Comparisons between Campus and ACME Services:

Cost comparisons have been difficult to draw between Campus and ACME Facili-
ties due to the disparate nature of the facilities and the accounting algorithms.
Three of the FORTRAN programs used in the ORVYL capacity study were translated

into PL/ACME. The three were of different types: A matrix multiplier which is
heavily compute-bound, a file writing program, and a psuedo parser which is pri-
marily a string manipulator with a great deal of 2741 output. Considering only
the charges for CPU time and terminal access time under both systems, the compute-
bound job would cost 42% less on Campus Facility than on ACME assuming that ACME
is used during hours of heavy activity. The other two programs (which were heavi-
ly dependent on output speeds) provided roughly equal costs at Campus and ACME.
These cost statements assume that ACME is charged at 2-1/2¢ per pageminute plus

$45.75 per terminal hour on the old 8 microsecond bulk core. The Campus rates

were the standsrd $10 per CPU minute on ORVYL, plus $3.50 per terminal hour.
One factor which is difficult to evalunte is the extent to which the CPU plus

terminal aceoesn at Campus: reflects the total cost of the job. Averaging all
user charges for Tinenl year 1971 at the Campus Facility, a total of 68% was de-

rived from CPU usage and terminal secess., This means that another 45% of the in-
cone wit derived fron disk storage, printing, card punching, card reading, off-
Line plotting, and use of the WYLBUR text editor. The point is that 32% of the
income comes from sources other than those used in the above comparison.

At ACME the charges to users other than pageminutes and terminal access
cover disk storage and terminal rental service. ACME's terminal rental service
includes an add-on to cover general services to the community whereas the Cam-
pus Facility terminal rental rate covers only costs. The rate is $135 per month
plus $4 to $13 for telephone lines on the Campus Facility versus $225 per month
on ACME for a private 2741 terminal. The disk storage rate at ACME is 1¢ per
track per day versus Campus Facility rate recently announced of 2¢ per track per
day. Since ACME has moved to a faster bulk core, it can now provide more comput-
ing per dollar than the old 2 1/2¢ per pageminute rate permitted; the effect of
the new core will vary by types of use. Cycle intensive users will use 50☝ to
70° of the pageminute usage encountered with the slower bulk core. Data input
via terminals and program development will require about the same number of
pogeminutes: on the new core.

ACM-1
(127) Page 4

The cost comparisons are difficult to make. It is clear that compute-bound
jobs can be executed more efficiently on the Campus Facility than on the ACME
configuration, 1/o bound jobs tend to run at roughly comparable costs on each
facility. On the basis of these findings, it appears that short term economics
should not be the basis for any decision with respect to merger or lack of merger.

Dist: Staff/All

(128)

APPENDIX B

ACME System Core Timing Results

(AMPEX vs. IBM)

(129)

ACME Note WCTR-1

Regina Frey

ACMI; bystem Core Timing Resulvus (AMPRXY vs, TpM) November 79, LO71L

Tntroduction:

A set of programs were collected for the purpose of measuring the effect

on the ACME system of substituting AMPEX 2.5 microsecond core for IBM's

& microsecond Large Capacity Storage.

hssentially, these programs were selected to answer three questions:

1. Whether the AMPEX core boxes do indeed have a 2.5 microsecond

cycle time.

☜. The performance improvement on a hopefully representative set of

PL/ACME programs.

3. Whether the core substitution would have any effect on the

maximum possible transmission rate between the 1800 and the 360.

Comparative Core Timings:

An 05 batch program was written in assembler language which measured the

true cycle times of the TBM °050 'fast' core, the IBM 2361 LCS, and the
AMPEX core boxes. The time required in each case to perform a series of

fixed and floating point operations was measured.

The results are given in Table 1. The program contains four Loops. The

first measures true cycle time; the last three time loops containing

fixed point arithmetic, short floating point arithmetic, and long floating

point arithmetic instructions.

That each core box performed according to specification was proved in the

first operation. The operation consisted of little more than ten million

Sfore instructions. Each ST requires 2 core cycles for completion, Thus

if the core cycle is ® ps, then each ST will require 4 ws, ten million of

them require 4 x 10 x 10° us or 4O seconds.

(130) WCTR~1

Page 2

Table 1. Core Timing Results (Seconds)

Core

IBM IBM AMPEX 2050

Operation 2050 AMPEX 2301 2361 AMPEX
(Fast Core) (Bulk Core) (Bulk Core) (%) (%)

Fixed

point 40.29 50.46 161.65 31 80
Store

Fixed

point 111.10 121,11 220.17 55 91

arithmetic

Short

floating 118.14 128.15 21h, 36 60 92
arithmetic

Long,

floating 287.16 302.19 4LO,25 69 95
arithmetic
Notes on Table 1:

1. The AMPEX times are the averages of two runs.

2. All figures include overhead time for instruction loop control and

fetch/conversion of the interval timer.

3. Time intervals were calculated to the nearest one-hundredth of a second.

The TIME SVC was used to obtain the contents of the hardware timer.

4, The operations performed in each loop were:

a) Fixed point store: 10x 10° $T instructions.

b) Fixed point arithmetic: 2 x 10° sequences of L, M, A, S, D.

c) Short floating arithmetic: 2 x 10° sequences of LE, ME, AE, SE, DE.

ad) Long floating arithmetic: 2 x 10° sequences of LD, MD, AD, SD, DD.

5. No index register was used in any of the instructions.

(131)
WCTR- 1

Page 4

Representative PL/ACM rrograms:

sever pL/ACME prosyrams were run with the IBM #361 core and the AMPEX

core. All of these programs were written by the ACME staff.

Ali. runs were executed in single user mode. Module TEN], written on

11/4 and 11/11, was used. The differences between the two versions of the

module do not affect the results.

The program attributes are given below; the timing results are in Table 2.

The performance improvement was calculated as the difference between

TBM time and AMPEX time over the original IBM time.

Program Attributes

CONVERS Ts PDP-ll assembler. No terminal output. Moderate disk file

T/O. Heavy string operations,

CM] Matrix multiplier. No I/O operations, no strings. Totally

compute-bound.,

ioLime Disk file read and write sequential operations. ☁Time was

measured for reading and writing 100 records of one block

each, ☁The loop was repeated 10 times each run. Little

computation. No terminal output.

Lisptest LISP test program. Light file and terminal activity. The
program did not complete due to an error in the LISP garbage

collector, Time was measured by eyeballing the machine room

clock,

PLA Viel The PL/ACME to Pi/L translator. Heavy file and string activity.

he prorram produced a page of terminal output and required

Pour cne-character terminal responses.

PLOT] WW plotting proemram. No file or terminal activity. Light

mathematical calculations. Heavily dependent upon the speed

of the display.

randfile Random disk file operations. Light computations; no terminal

output. The program consists of three sequences: Write

direct of ☜O records with randomly assigned keys, each record

1200 words long; Read sequentially each of the randomly

written records; Read randomly the 20 records 5 times for a

total of 100 reads.

(132)

WCTR-1

Page 4

Table 2. PL/ACME Program Timing Results

Core

Perform.

TBM Performance

Program 2361 AMPEX Improvement (%)

CONVERSE 5.7 min. 3.2 min. 46.9

CML 6.1 min. 2.5 min. 59.0

lisptest 4.75 min. 3,0 min. 36.8

PLA_PL1 23.8 min. 17.4 min. 24.8

PLOT1 4,9 min. 4,0 min. 18.1

iotime:

100 reads 13.2 sec 9.5 sec 28.0
100 writes 19.8 sec 14.4 sec 27.3

randfile:

20 write direct] 23.0 sec 15.8 sec 31.3
20 read seq. 71.7 sec 34.2 sec 52.3
100 read direct 49.1 sec 29.1 sec 4O.7

Average 36.5

(133)

WCTR- 1
c

Page 5

The rather unexpected gains in the execution speeds of 'lotime' and
☁randfile' require discussion. While they were included primarily for

determining a base against which to measure the impending AMPEX disk

drives, the results of this test provide some interesting information
regarding the nature of the ACME file system.

Unfortunately, ☁ilotime' was executed only once with the TBM core, so while

the times listed are the averages for 1000 operations (100 read/writes
repeated 10 times), they may not in fact represent true average results.
This statement is based on two facts: The times for the 10 repetitions

did not vary greatly, but the differences between the AMPEX runs were

considerable,

☁iotjme' was executed 4 times with the AMPEX core. The time required

for 100 reads varied from 7.2 seconds to 14.7 seconds. For 100 writes,

the variance was from 143 seconds to 17.4 seconds.

These broad ranges are due to the variability of the required disk head

seek time (from near zero to a maximum of 130 milliseconds.)

Because of the ascendingly ordered nature of the ACME Space List, the

averarze seek time should not be 60 ms, but 25 ms (time to seek to next

contifuous cylinder). Total 1/0 time for an average read is 25 ms plus

ih.5 ms disk rotation time or 37.5 ms, For a write operation, an
additional complete rotational period of 25 ms must be added for an

averarse time of 62.5 ms.

Subtracting these figures from the average times for a single read or

write, we get these software overhead values:

TBM AMPEX

read LS 95
37.5 - af.

OWLS ins 57.5 ms

write 198 14h
- 62.5 - 62.5
145.5 ms 81.5 ms

The values are somewhat inflated since the times required to update the

index and to type the time on the terminal have not been subtracted. But

clearly the unexpected savings while performing disk I/O have been

explained, and equally clearly the file system software could be optimized.

'randfile' was executed twice with the IBM core, four times with the AMPEX

core, Ail comments on ☁iotime' apply as well to 'randfile' except that

the results of the individual runs were not as variable.

The phenomenal savings on the read sequential operation can be explained

by the fact that the record keys were distributed randomly throughout the

(134)

WCTR-L

Page 6

Tile index and consequently a considerable amount of in-core index
searching was necessary for finding the next sequential record.

1800 Communications:

Little improvement was expected in the 1800 communications transmission rate
since the essential routines (EIGHING@, RW18¢¢, YIELD) were already located
in the 2,0 us core,

To test the hypothesis, one of Lee Hundley's 1800 test routines (READALOT)
was executed before and after the core switch. The purpose of the tests
was to establish the conditions under which data overruns (data arriving
too soon for the 360 to process) would occur,

READALOT accepts as parameters the number of 1800 input lines (N), the
sample interval in milliseconds (TIME), and the number of 360 buffers
assigned to each line (BUFS). Buffer size was fixed at the maximum
permitted, 250 points. After experimentation, we decided to leave BUFS
at its maximum value (20) and to vary only N and TIME,

The following information was gathered from the IBM 2361 test:

1. N=8 and TIME=1 (8000 points/sec) will crash the 1800.

2. N=7 and TIME=1 (7000 points/sec) will cause data overruns.

3. N=lé and TIME=2 (6000 points/sec) will not cause data overruns.

Running as a single user and performing no calculations on the collected
data, the only significant overhead was the time required for YIELD to
service the commutator (i.e., look for another user and ultimately
return to the only active one). Therefore, to determine the approximate
amount in excess of 6000 points/sec at which overruns would occur, we
inserted DELAY(O) statements in the program following each CALL READ
(One DELAY(O) forces one yield to the commutator and wastes one time slice),
With N=12 and TIME=2, two DELAY(O) statements resulted in overruns.

The same program, executed in AMPEX core, gave these results:

1. N=7 and TIME=1 (7000 points/sec) will not result in overruns.

2. N=? and TIME=1 with two DELAY(O) statements will result in
overruns.

Thus the maximum possible data rate was increased by approximately 1000
points per second or roughly 15%,

The second experiment was concerned with the question of whether
EIGHTNZS could execute properly in 2.5 ps core. About six months ago,
EIGHTINGS was moved from the 8 us core to 2 us core when it was discovered
that the channel commands contained within EIGHTN@¢% could not be decoded

(135) WCTR- L

Page 7

fasl enough and channel data chaining checks occurred. This condition

prevailed only if the buffer size was extremely small.

A special link edit off TEN] placed WIGHTN@Z in 2.5 ps core. Tests on
this module save these results:

1. A buffer size of one no longer caused data chaining checks, but

overruns consistently occurred, even at low data rates. At
1000 points/see on the line, the 1800 will crash.

2. A buffer size of two points or greater will execute properly.

However, it is not recommended that EIGHTN@S be moved out of our fast core.
AMPFX performance at its best is still 80% of the maximum on a Model 50.

Moving EIGHTNDY would decrease our maximum possible transmission rate

(has not been tested).

Summary :

It has been confirmed that the AMPEX core does run with a 2.5 microsecond
cycle time, Fixed point operations execute 2 to } times faster; floating
point operations roughly 1 1/2 times faster than in 8 microsecond core.

Total time savings is heavily dependent upon the nature of a PL/ACME pro-
gram. Terminal-bound or otherwise T/O dependent programs will see lit-
tle increase in execution speed. Compute-bound programs may execute as
much as 2 1/2 times faster.

The time slice allocated to each executing program remains as before.
Thus, terminal response time will in many cases be the same, but since
more computation is possible within each time slice, total execution time
for a program will decrease. A sample of PL/ACME programs executes from
18 to 60% faster. The average was 46.5%.

While some improvement is realized for disk file operations, the gain may
be unnoticed due to the yield to the commutator (other users) at the start
of each T/o operation and the resultant wait by a user until his turn again
arrives.

The maximum 1800/360 transmission rate has increased by about 15%. A
greater increase was not expected since the 4360 communications program
had already been located in 2 microsecond core.

Dist: Prog/All/D. Phillips/C. Dickens

(136)

APPENDIX C

Results of Three Compaction Algorithas

The test was performed during a File System Analyzer run
on all user data sets, February 28, 1972.

CODINGS USED BY EACH COMPRESSION ALGORITHN TO BUILT BITSTRING*

COMPAC?i COMPAC2 COBPAC3
WORD IS ZERO 00 00 =
WORD IS UNDEFINED 01 01 -
WORD HAS VALUE 1 10 0
WORD IS REPEAT OF LAST WORD - V1 1

TOTAL NON-NUMERIC WORDS = 16,532, 183

TOTAL EMPTY (zero) WORDS = 5,184,105

The resultant savings from the application of each algoritha
is stated below. Percentage figures were computed as the total
storage requirement after application of the algorithm over
the current storage requirement. TOTAL WORDS WHEN LESS refers
to the inclusion of a file only when its ☁compacted! size is
less than the original size.

TOTAL WORDS IN ALL ACME NUMERIC DATA FILES 7,783,794

TOTAL WORDS USING COMPAC1 ON ALL FILES 4,395,400 (56%)
TOTAL WORDS USING COMPAC1? ONLY WHEN LESS 4,314,484 (55%)

TOTAL WORDS USING COMPAC2 ON ALL FILES 3,661,950 { 47%)
TOTAL WORDS USING COMPAC2 ONLY WHBH LESS 3,612,031 (46%)

TOTAL WORDS USING COMPAC3 ON ALL FILES 3,818,520 (49%)
TOTAL WORDS USING COMPAC3 OHLY WHEN LESS 3,783,314 (48%)

*The bitstring describes the characteristics of the values ina
numeric array. It is stored on disk along with sufficient data
to reconstruct the array. Repeated, undefined, or zero data is
omitted from storage.

(137)

¥
2
°
C
8

£
°
0
8

2°
7
E

a
S
e
r
a
a
y

T
e
n
u
u
y

¥Ll°LyT

8°
T
e

£°
9
9

a
s
e
r
a
a
y

T
e
n
u
u
y

¥
o
°
C
8

 0
°
8
8

9°2?e

n
r

¥
L
°
L
T

O
°
9
L
T

S
°
V
e

T
r

☁
z
e
a
k

y
o
r
e

j
o

p
o
t
i
e
d

s
u
e
s

0
7

p
e
i
e
d
m
o
d

s
e

ean[tTejy
0
]

o
w
t
}

u
P
e
U

J
s
e
g

¥
7
°
C
8

7
°
0
8

7
°
0
9

u
n
g

¥
Z
°
L
9
T

7°
C
O
T

0°es8

u
n
c

¥
o
°
C
S

T
☂
L
E

8
°
6
2

A
e

¥
L
°
L
y
T

C
7
8
2

9
°
6
S

A
C
W

 L
°
9
T
T

6
°
6
2

0
°
¢
S

zZ°99
G
0
8

L
H
S

O°
L
e

o
°
S
?

0
°
6
E

a
d
y

IeyW
q
e
q

O
°
S
Z
T

8
°
E
H
T

62°95

O
°
c
8
T

O
°
7
9
E

L
°
S
T
é

L£°8S
G
"
6
E

w
h
y

a
d
y

I
E
W

q
o
q

c
'
O
V

俉
°
8
E

C
Y

u
e
r

俉
°
0
9

0°
7
0
T

俉
°
2
9
T

u
e
r

(
S
U
N
O
H

N
I
)

9°
9
S

L£°
H
E
T

0
°
8
4

2
a
q

c°
#
9

0°
7
0
4

0
°
9
S

2
e
q

ZL61T
SO俉

TlYdVvV
-~

6
9
6
T

☁
L
T

A
l
o
r

B
°
t
e

O°
T
S
T

G
°
9
¢

A
O
N

7
°
6
E

O
°
?
9
E

e
°
T
e

A
O
N

S
H
U
N
T
I
V
A

N
E
A
M
L
E
d

A
N
I
L

N
V
A
N

J
O

N
O
S
T
Y
V
d
K
O
O

0
S
/
0
9
俉

A
W
O
V

Gd
X
I
C
N
d
d
d
v
V

☁
Z
L
6
1

T
t
a
d
v

y
Z
n
o
r
a
y
}

T
/
6
T

3
s
n
8
n
y

F
o

[
e
3
0
2

s
y
j
U
O
W

o
u
T
U

4saITjJ
u
o
d
n

p
a
s
e
q

VAN{TTej}
O
F

S
U
T
}

u
v
a
W

p
a
q
o
e
f
o
r
g

(
7
2
6
1

S
A
T
n
G

-
A
C
K
)

x

S
o
I
n
s
t
y

p
e
u
t
[
T
i
e
p
u
g

 9
°
E
L

T
°
9
S

£
°
L
T

220

8
°
9
"
T

+
2
L
6
T
-
T
L
E
T

0
°
6
2

*
T
L
6
T
-
O
L
6
T

0
°
0
7

*
0
2
6
1
T
-
6
9
6
T

a
n
y

 A
a
v
V
M
G
a
V
H

☜
I
O
N
E

S
H
Y
N
T
I
V
A

T
I
V

 O
°
8
9
俉

O
°
9
L
T

o°
S
e

290

L
°
e
7
e

+C
L
6
T
-
T
L
O
T

9°
C
L

*
T
L
6
T
-
O
Z
6
T

俉
°
T
T

*
O
0
L
6
T
-
6
9
6
T

s
n
y

S
a
Y
V
M
C
a
V
A

(138)

APPENDIX E

Proposal for Small Computer Service by ACME

(139)

ACME Note PSCS-1
Bob Stainton

Proposal for Small Computer Service by ACME March 21, 1972

The rapid decline in the price of mini-computers has led to an incrense

in the number of these computers installed at the Medical Center. This

memo describes the services which could be provided to these computers

by the ACME facility.

The service is summarized as follows:

1. Spooling service-~-

A. Accept data - GO hours a2 day

B. Send data (or processing modules) - 20 hours a day

☜, On line service (while the user is actually logged on to ACME)-~=

A. Retrieve data from the spool

B. Write data (or processing modules) to the spool for later
use by the mini-computer

C. Read and write directly to the mini-computer

N
N All services of an ACME typewriter terminal.

4. High level language processors.

spooling Service

☜pooling (Simultaneous Peripheral Operation) refers to a procedure which

has become popular with large-scale third generation computers. It is

exemplified by s card reader which is always ready to accept cards, even

though these cards may not be processed by a user program until severnl

hours have passed.

Our early experience with ☜741 terminals has shown that their usefulness

takes a quantum jump as soon as a computer system is installed which is

continuously avcilable to ☜answer the telephone☝.

Our proposal is to provise a computer system which is always (20 hours a

duy) available to take dota from the user's mini-computer. Our defini-

tion of mini-computer is any device which is able to conform to the re-

quirements of the communications protocol. The data will be held on a

special disk system, and retrieved when the user ☜logs-on"☝ to the ACME

system and runs a program. In this way a research scientist may set up

an experiment which may run for several hours during the night. The

next morning he may ☜log-on☝ and run a program which processes the data

generated by that experiment.

Ancther service of the spooling system is the ability to provide storage

for ☜processing modules☝ which can be called by the mini-computer. The

relntionship betwern the mini-computer and the ACME system in this in-

stance can best be described by an analysis of the classic ☁pen tracking

problem".

(140)
PSCS-1

Page 2

In order to draw a line by means of a "light pen", a tracking cross is
displayed on the screen of a cathode ray tube at the location where the
☜pen☝ is pointing. As the "pen" moves, the cross is no longer in the
center of vision of the pen, and a computer interrupt takes place. The
computer now re-establishes the cross in a new location.

To accomplish this smoothly requires a fast response and a large amount
of data transfer. The response must be fast, or the cross will appear to
drag as through a viscous fluid. The constant re-writing of the display
requires the transfer of a large amount of data.

The conventional solution to this problem would be to use a very high
speed communications line between a large central processor and the re-
mote screen. This would ask the communications line to do that which it
is least able to do, namely, provide fast response with large volumes of
data.

A better solution is to employ a local mini-computer at the screen which
produces the rapid response necessary to accomplish the ☜pen tracking☝.
In this solution, a low speed communications line is used, and only the
location of the tracking cross is sent to the large central computer.
This information may be saved for later analysis or processed for a real
time response.

In the medical research environment, the local mini-computer would con-
tain that part of the software necessary to provide immediate reaction to
the stimulus of the experiment. This software is contained in a replace-
able "processing module☝ which also directs the sending of partially
processed data to the ACME system for storage and statistical computation.

The replaceable "processing module☝ may be changed for individual experi-
ments, or a new module may be loaded dynamically as the life of an ex-
periment progresses.

These "processing modules" may be compiled inthe ACME system and saved on
the spooling system for later call by the mini-computer. A list of ex-
perimental parameters may also be stored on the spool and played back as
data over an extended period of time.

On Line Service

The ACME user wouldbe able to access data which has been previously placed
on the spool by using a special "OPEN FILE" statement. The data may then
be accessed with "READ FILE" statements as a sequential data file, Simi-
lar "WRITE FILE" statements may be used to write data (or processing mod-
ules) to the spool system for later use by the mini-computer.

An option would also be provided to bypass the spooling system and com-
municate directly with a running ACME program, using the current directory
mechanism. This allows the same real time interactive service which has
been available in the past.

(141)

PSCS-

Page W
N

yu

reryvies of an ACME Terminal

As a convenience, it is realized that the ☜teletype☝ console of a mini-

computer should be able to act as if it were an ACME terminal, so that

the user need not use a separate 2741 terminal in order to use the ACME

system, The user would also be able to "log-on" and run programs auto-
matically, under control of a program in his mini-computer.

High Level Language Processors

We will attempt to provide a hardware-independent language for writing

"processing modules". Translators for this language to produce object

code for the most popular mini-computers would be produced. This would

provide an ease of programming not found on stand-alone systems, as well

as a medium for sharing programs among individual researchers.

Implementation

Implementation would require several loosely related projects:

lL. The spooling system, housed in a separate mini-computer so that

it can operate during maintenance hours for the large central

computer.

n
N - A switching system, for attaching a given user to an ACME port,

a real time data port, or the spooling system. As a by-product,

we hope to allow any mini-computer in the system to communicate

with any other mini in the system.

45. A communication system to transport the data and verify its

correct receipt, with as little effort on the part of the mini-

computer program as possible. We hope to provide a parallel,

demand-response interface to the mini-computer, which appears

to its program as 1 device similar to a tape drive.

4, Ihgh-level processors to provide an easy way of writing prograus

for the mini-computer.

Dist: Staff/All

