U. S. DEPARTMENT OF HEALTH, FDUCATION, AND WETMAME

PUBLIC HEALIF SERVICE
NATIONAL INSTITUTES OF HEALTH
SEECIAL RESEARCH RESOURCE ANNUAI REPORT

Report Period: (same as c	rent I2-month budget period)	Grant No.	
	To: July 31, 1968	FR 00311-02	
mo/day/year	mo/dey/year		
Resource Title Advanced Computer for MEdical Research (ACME)	Resource Adciress Stanford University School of Medicine Palo Alto, Califormia		$\begin{gathered} \text { Resource TeI. No. } \\ \text { (415)321-2300 } \\ \text { Ext. } 5818 \end{gathered}$
Principal Investigator Lederberg, Joshua	Title		Acedemic Dept. Genetics
Grantee Institution Stanford University School of Medicine	Type of Institution (Private Univ., State Univ., Hosp., etc.) Private		Investigator's Tel. No. $\begin{array}{r} (415) 321-2300 \\ \text { Ext. } 5049 \end{array}$

Name of Institution's Special Research Resource Advisory Committee:

> Computer Policy Committee

Membership of Special Research Resource Advisory Committee		
(Indicate Chairman)		
Name \quad Title	Department	Institution

see next page

Typed Name \& Title of Principal Investigator Joshua Lederberg, Professor	Signature	Date
Typed Name \& Title of Grantee Institution Official	Signature	Date

ACME Policy Committee

```
    J. Weldon Bellville, M.D.
    Professor of Anesthesia
    Edwerd Feigenbaum, Ph.D.
    Director, Stanford Computation Center
    Robert J. Glaser, M.D.
    Vice-President for Medical Affairs, Dean of the School
    of Medicine and Professor of Medicine
    Keith F. Killam, Ph.D.
    Professor of Anatomy
    Joshua Lederberg, Ph.D., Committee Chairman
    Professor of Genetics and Biology, and Executive Head,
    Department of Genetics
*
    Frank Morrel, M.D.
    Professor of Medicine and Head, Division of Neurology
    Lincoln E. Moses, Ph.D.
    Professor and Executive Head, Dept. of Statistics;
    Associate Dean, Humanities and Sciences;
    Professor of Preventive Medicine
    Lawrence J. Schneiderman, M.D.
    Assistant Professor of Medicine (Ambulatory Medicine)
**
    Anthony M. Iannone, M.D.
    Associate Professor of Medicine (Neurology), and
    Acting Head (67-68), Division of Neurology
    Lubert Stryer, M.D.
    Associate Professor of Biochemistry
    Emmanuel Mesel, M.D.
    Assistant Professor of Pediatrics
    Gio Wiederhold
    Associate Director for the Real-Time Facility
```

[^0]General Descriptions of Resource Operations
This report covers the period from June I, 1967, the date of the preceding report, to April 20,1908 . The past year has seen the development of the ACME system from a primitive calculator system to one of the most powerful timesharing systews operating today.

During this secona year there was no change in the organizational status of the resource. The entire ACME Facility operates as one of the Stanford Computation Center facilities and received administrative assistance and technical information through SCC's central offices. ACME is housed in the medical school, however, and operates on an independent budget, and its professional siaff is solely responsible to the medical school and the needs of medical researchers, as represented by the Medical Computer Committee.

Development of Service Facilities

The initial services ACME provided were miscellaneous batch-type operations while the system was being developed. In May 1967, ACME had started providing calculating services at remote terminals. In July programs could be saved in ACME files and kept available for later use. In August single user data acquisition into the system was provided while other users were calculating. The ACME display was used for the first user project in September. In October small computers could be serviced by the ACME system; and since November, data storage is provided in ACME. In February the system started providing data accuisition service for multiple users. Facilities for reading cards into the system also became available in February.

Current Status of Facilities
The size and complexity of programs that ACME can handle has increased steadily so that a number of programs currently in use at ACME are larger than could be handled in 7090-size equipment. Since no timesharing alternatives of similar scope exist yet at Stanford, which was one of the expectations when the proposal for the ACME system was made originally, the system services a larger quantity of statistical and data manipulation needs than was originally expected. This has slowed down the development of ACME's capabilities for realtime data acquisition and control.

Currently, the system has the capability to handle up to 30 users operating simultaneously. Of these, up to four can use the data acquisition facilities provided by the time-shared 1800 . These four share 12 data channels and an aggregate data rate of up to 6000 samples per second. In addition, four data channels are available for high-speed transmission to or from instruments to the 360 processor. However, new high speed applications are still scheduled outside of normal operating hours until they have proven that they do not introduce errors or problems in the overall system. Small computers can be serviced routinely and four of these we connected to ACME.

Future Development Needs
Only two major aduitions are contemplated to the basic timesharing system: the implemention of extcrnal subroutines and provision for double precision arithmetic. The realtime aspectis of the system rill require further development since they are lagging very much behind oument demands.

The other issuc is sustem reliability. Even though the number of system failures we experience ere less than is typicai =or batch operating systems a single failure is felt by many users imediet $=-y$ and the failure rate has to be an order of magnitudé less tu de tolereble.

Development of the real-time facilities need corinuing effort. Both the number of simultaneous users and lines, agoregete data rates, and system response times are less than the demand put on tie system by the medical school. Within the current hardware we hope to de able to handle 72 users sharing a 20-kc aggregate rate on the 1800--as rell as allow slow-rate collection of data over 24 hours periods.

Development of Usage of the System
We began collecting usage records in September 2907 . The table below shows a steady increase of usage over the period of oこeration. The exceptions in December and January/February are due to major zroblems that we experienced, mainly with the IBM data cell, which has now been replaced. The detailed accounting covers only actual accounting recorcs, beginning in October when our summary accounting procedure came into opersiion.

On the detailed usage listing there is an entry for MISC. USERS (no files). This is the total for the many small occasional asers-mainly students--who do not keep permanent records in ACME. Neither does ACME keep permanent individual records of their usage.

We have designed our system so that no record is produced when a user's run is terminated due to system failure. In an on-line system this does not mean that all the time is wasted.

Month and Days	Daily Scheduled Service	Account Records		$\begin{aligned} & \text { Acco } \\ & \text { Days } \\ & \text { Miss } \end{aligned}$		Estimated Usage based on 30 days
		Console Hours	Page Minutes		Console Hours	Page Minutes
Sept I to 30	11-1800	783	220,376		783	220,000
Oct 1 to 31	11-1800	766	260,283		766	260,000
Nov 1 to 30	$\begin{aligned} & 7-14.30 \\ & 1800-2200 \end{aligned}$	983	353,936	7*	1227	460,000
Dec 1 to 31	$\begin{aligned} & 7-14.30 \\ & 1800-2200 \end{aligned}$	705	297,324		705	247,000
Jan 1 to 20	$\begin{aligned} & 7-14.30 \\ & 1800-2200 \end{aligned}$	918	403,649		1377	606,000
Jan 21 to Feb 20	$\begin{aligned} & 7-15.30 \\ & 18.30-2200 \end{aligned}$	1056	431,649	6*	1267	518,000
Feb 21 to Mar 20	$\begin{aligned} & 7-15.30 \\ & 18.30-2200 \end{aligned}$	1966	826,350		1966	826,000
Mar 20 to Apr 20	$\begin{aligned} & 7-15.20 \\ & 18.30-2200 \end{aligned}$	1274	639,826	10*	1911	960,000

* Our usage record system uses IBM's operating system files for its record-keeping functions. Unfortunately, there is an error in this system which has caused us to lose our accounting records three times. A fix is promised by IBM by June, therefore tabulated usage figures in the estimate columns above compensate for the lost days.

Now that the ACME system has developed to a desirable level for the users, reliability becomes of prime concern.

Hardware
Hardware reliability is largely out of ACME contro?. The ACME staff is trying to develop a better understarding with IBM of the needs posed by realtime operations. A major source of unreliability, the data cell, has been replaced. Higher data acquisition rates, however, are still prone to induce failures in the central processor.

Software

Software reliability, on the other hand, is under ACME control. The staff continues to redesign some system areas that are prone to failure. In addition, the rate of change in our basic system software j.s slowing down considerably, with resultant positive effects.

Failsoft

In addition, work has been going on and is expected to continue to minimize the effects of both hardware and software failures. Part of the effort is in obtaining control from IBM code when a failure is signalled, and limiting the interruption to one user. Another part consists of utility programs that repair files and programs when a failure has been serious.

Presentations
Even though the ACME project has been productive less than a year, its existence and design are becoming well known.

The ACME project is described in an IBM-distributed film on data acquisition. This film is also scheduled for showing on the educational television network. Another film was made at ACME and shown in Washington for the benefit of IBM salesmen.

ACME will also be on NBC nationwide television May 24 th as part of a Frank McGee program on the future of medicine.

Presentations describing the system have been made at:
IBM customer executive class, San Jose, October 6, 1967 (G. Breitbard). Katholischore Unversteit, Nymegen, Holland, November 6, 1967.
California Nurses Association, Sacramento, California, November 19, 1967. Cornell Medical School, New York, January 25, 1968.
IBM Computer Center directors' executive class, Poughkeepsie, New York, January 26, 1968.
SHARE PI/I Committee, Houston, Texas, March 1968.
Johns Hopkins University, Bal.timore, Maryland, May 3, 1968.
Johns Hopkins Hospital, Baltimore, Maryland, May 3, 1968.
Brooklyn Polytechnic Institute, New York, May 7, 1968.

ACMF has received many visitors from meny perts of the United states and from outside of the United States. There are currently 253 ACME Notes documenting the system. Our reguler mailing list includes 132 addresses in the Stanford community and 32 eddresses outside. The PI/Acme user's manual has gone through two major revisions since August 1967; there are approximately 300 copies in use.

Courses

During the year, about 300 medical school facuity, staff, residents, and students attended the three-session ACME course. About 50 percent of these now use ACME at least occasionally.

SUMMRY OF RESOUEE WEGE

The material for this section is presentex. En two forns in the following pages. The first presentation is comanernintout as resorce utilization is reportec by ACMB on monthly basis. as presentation is then expanded
 As expleined in section $I-A$, all utilirsac: is for the period beginning October, I, 67.
category:? ${ }^{\prime}$ ACHE STAFF'
Name Department project runs minutes pageminutes Equiv. cost

total

14:6	3268	20603	\$	1030.15
236	314,2	13088	\$	651.4.0
137	5372	59652	\$	2982.60
203	4581	23372	\$	1168.60
9	15	60	\$	3.00
1.93	2329	9119	\$	455.95
31	223	1063	\$	53.15
9	4	13	\$	0.65
64	1.512	5388	\$	259.40
89	1960	9080	\$	454.00
269	2113	8781	\$	439.05
22	129	482	\$	24.10
72	3606	25134	\$	1256.70
53	470	1537	\$	76.85
93	1355	4,543	\$	227.15
9.5	1499	5500	\$	275.00
14	97	374:	\$	18.70
1.57	4017	34399	\$	1719.95
72	184,3	43010	\$	2150.50
50	395	1380	\$	69.00
50	410	1384	\$	69.20
95	31:43	13178	\$	658.90
63	654	2708	§	135.40
103	1844	8343	\$	417.15
144	7016	42137	\$	2106.85
64	2402	13702	\$	685.10
9	4.9	149	S	7.15
286	7281	42066	\$	2103.30
13	159	655	\$	32.75
8	40	136	\$	6.80
190	5647	26777	\$	1338.85
3	59	205	\$	10.25
95	1638	5699	\$	284.95
23	298	1033	\$	51.65
26	438	1560	\$	78.00

$3186 \quad 69537 \quad 426310$ \$ 21315.43

[^1]category:? 'MEOICAL SCHOOL: Name Deparment project runs minutes pageminutes Equiv. cosi

ADLER_S GENETICS /SERAMAL	9	15	49	\$	2.45
ARONON, $\mathrm{L}_{\text {- PHARMACOLOGY / LCELL }}$	53	1207	6430	\$	321.50
BARLOH, IH PATHOLOGY /EMSSION	5.7	1.1 .97	5870	\$	293.50
bASSET, RL GENETICS /CEASUS	114	3039	30019	\$	1.500 .95
BASSET, RL GERETICS /CEHSUS	7	5.	177	\$	8.85
BAYER_A _ ANESTHESIA /STUNT	13	J. 55	721:	\$	36.20
BAYLEY, P... Blochenistiry /Flu	39	1.480	5949	\$	297.45
BEATRICE, ES PATHOLOEY /LASER	107	2357	13875	\$	693.75
BEERNINK, KD FLEISCHmand /HANMA	24	181	612	\$	30.60
bellvilue, e anesthesia /RESplRat	11.	330	1661.	\$	83.05
bellville, Anesthesia /probabil	77	9514	31.31	\$	171.55
bellville, e ariesthes/a /prob	28	525	2370	\$	118.50
BODMER, W_ GENETICS /POPGEN	137	5699	31552	\$	1577.60
BOLTON, G_ ANESTHESIA /SCOPE	25	287	993	S	49.65
BOLTON, G- ANESTHESIA /SCOPE	22	290	1077	\$	53.85
BRAST_, N_ MED /CATALOG	32	1111	6550	\$	327.50
BRAST_, N_PSYCHIATRY /RODENTS	288	9053	6661%	\$	3330.70
BRITT., R_ NEUROLOGY / STARR	109	31:61	31086	\$	1.551. 30
BROWN_EN MED /PROTEIN	42	2975	1611.5	\$	805.75
BROWN, L_ PHARMACOLOGY /ASSAY	10	56	1.64	\$	8.20
BROWM_E_ MEDICINE /MED_DATA	62	1405	8516	\$	425.80
BRONN, BN MED /PROTEIN	7	1	4	\$	0.20
BRODY, B_ NEUROLOGY /FLYHIGH	54	2074	7619	\$	380.95
BUNNENBURG, E CHEMISTRY /CHEM	25	96.1	7265	\$	363.25
butler, E_ UROLOGY /UROLOGY	199	6242	39779	\$	1988.95
CANH., H_ PEDIATRICS /GUAT	257	16242	144995	\$	7219.75
Castelanor r radiology /schedule	8	128	1146	\$	57.30
CAVE_, P_ ANESTHESIA /VEntl	25	610	24.12	\$	120.60
COLIINS, K blochenistry /atcase	96	3675	32670	\$	1.633 .50
CONSTANTINO, C UROLOGY /ad	5	5	17	\$	0.85
DOERING, CH PSYCHIATRY /ISORATIO	14	2:3	888	\$	4:4.1:0
DOERING, CH PSYCHIATRY /DESMOLAS	120	4263	20648	\$	1032.10
DONG_, E_ SURGERY /DATA	6	287	1003	\$	50.35
DONG_, E SURGERY /MARGI	134	6963	9531.4	\$	4765.70
DONG_, E_ SUREERY /heart	3314	14213	109840	\$	5492.00
DUFFIE, A CHEMISTRY /CHEM	9	37	126	\$	6.30
durbridge,	140	3017	17393	\$	869.65
EDNARD, D_ PSYCHIATRY /STRESS	24	252	878	\$	43.90
ENGLUND, \bar{p} _ AnESthesia /ENZYME	27	965	3865	\$	193.25
enlander, ${ }^{\text {d }}$ pathology /cases	89	388.8	14239	\$	711.95
FJELDEO, W UnOLOGY / CHEM	12	87	381	\$	19.05
FOLK., B_BlOCHEMISTRY /GRS	22	920	4642	\$	232.10
FORREST, H VA / ANALGESI	204	8642	77645	\$	3882.25
GERSCH, W_ NEUROLOGY /SYNTHESI	45	922	101:86	\$	524.30
gleason, \bar{C} neurology / cortmeas	31	1048	5122	§	256.10
GODWN, D_ RADIOLOGY /ADRENAL	48	2893	231:62	\$	1173.10
goldstelut, pharracology /phaz	195	6965	43938	S	2196.90
golosteln, do pharbacology /earb	64	1857	91314	\$	156.70
goldstelna pharracology /aph	19	298	121].	s	60.55
hahh, g, radiology /radiate	26	968	1798	\$	239.90
HANCE., AU PHARHACOLOGY /rinotaur	33	594:	2322	\$	115.10
harris,du pediatrics /eplgenet	11	305	951	\$	4.7 .55

HAUSAREN, T REDICINE /STAT	98	963	3155	\$	5\%.75
HELLERSTEIN, D- GEHETICS /ELECTROT	$1: 9$	2483	21250	\$	1062.50
	51.	2121	12655	\$	632.75
HERZENBERG, GEMETICS / A B	25	393	14.79	\$	73.95
HILL . , C Biochanastey hassense	31	1549	5779	\$	288.95
H1LF...F...VA /B1ACKBOX	22	10:2	4.705	\$	235.25
HUFF-, U GENETICS /REPRINT	22	267	865	\$	43.25
MWANG..J GENETICS /GEMLIBI	162	326%	20079	\$	1003.95
HWANG_-J GENETICS /MKIRSCH	13	231	82.0	\$	41.00
HWANG., St GENETICS /CROUT	198	45%	378.4	\$	1892.15
JONES - D Blochenls iry /FLU	133	7036	$5 \% 050$	\$	2852.50
KADIS_, ANESTHESIA /INDIRECT	50	2381	11.800	\$	500.00
KAKIHANA, R PSYCHIATRY /AMOVAI	52	991:	3154	\$	$15 \% .70$
KAPLAN, B- PSYCHIATRY /PSYCHOPH	19	383	1329	\$	66.15
KAPLAN,HP NUC!EAR / ${ }^{\text {KLDVOLI }}$	53	591	3206	\$	160.30
KESSLER, S PSYCHIATRY /MATSPEED	14	237	1102	\$	55.10
KOUNTZ, S S SURGERY /TRANSPLA	108	2750	31.106	\$	705.30
KRAEMER, $\%$ PSYCHIATRY /PSYSTAT	18	425	J 1528	\$	76.40
KRISS.J. NUCLEAR /ASSAY	51	565	2476	\$	123.80
KRISS, J NUCLEAR /ASSAY	49	811	4.533	\$	226.65
LEDERBERG.J GENETICS /TESTS	12	358	1240	\$	62.00
LEDERBERG. ${ }^{\text {L GENETICS }}$ / MEMOPAD	185	5751	41972	\$	2098.60
LEDERBERG, GENETICS /DENDRAL	28	1006	4317	\$	215.85
LEIBOWITZ, U PHARMCOLOGY /MS	11	228	1377	\$	68.85
L.IEBES, S GENETICS /MS	164	61:24	55760	\$	2788.00
LUETSCHER, 4 MEDICINE /Elooci_pr	31.7	7650	47.535	\$	2076.75
LUME_J_ MICROBIOLOGY /C_TUMORS	17	149	570	\$	25.50
LUTZKER, M- RADIO /TORY -	37	1542	7598	\$	379.90
MACPHERSON, L /META	32	721	3105	\$	155.25
MAFFLY, RI- MEDICINE /CO2	52	2132	11:700	\$	735.00
MCPHIE, P- BIOCHEMISTRY /RNASE	17	315	1164	\$	58.20
MESEL_, E- PEDIATRICS /DOGLAB	90	3665	27923	\$	1396.3 .5
MESEL_E PEDIATRICS /VSD	53	4174	45523	\$	2276.15
MESEL, E- PEDIATRICS /WFR	113	7132	49504	\$	2475.20
MESEL_, E- PEDIATRICS /TV	6	37	137	\$	6.85
MESEL, E- PEDIATIRICS /carcat	318	13559	186106	\$	9305.29
MEYER_S MED /DOSEI	12	142	641	\$	32.05
MILLER,R-BIOCHEAISTRY /BIOSTAT	46	1910	10657	\$	532.85
MISC.USERS (no files) \# ACME /SCRA	1272	27429	102039	\$	5101.95
MORRIS, M GENETICS /MISC	162	3010	9968	\$	498.40
MORRIS, S_ GENETICS /EXPTH	83	2619	$123 \% 4$	\$	618.70
NALL, DERMATOLOGY /PSORIASI	5	117	1239	\$	618.75
NELSEN, T- SURGERY /GASTRIC	33	528	1722	\$	86.10
NYE....W- MICROBIOLOGY /STRUCTUR	150	6413	31529	\$	1576.15
NYE , W MED / STUDENT	28	930	4013	\$	200.05
PEARSOM, M PICCHEMISTRY /CTCOR	6	73	252	S	12.60
PETRALLI, J INFECTIOUS /MED_DATA	78	7332	43922	\$	2196.10
PORTER, RG EIOCHEDISTRY /ATC_KIN	129	6612	38012	\$	1900.60
PRYOR, H MED / GROMTH	15	425	1660	+	73.00
RABKIH, R GETETICS /SETUP	12	59	177	+	8.85
Reald ar ar meulcline /retrieve	70	1280	7558	\$	$37 \% .90$
REYHOLDS, WE GENETICS /S007	87	4123	23650	\$	1182.50

Name Deparement project runs minutes pageminuies Equiv. cosi

Name Department project runs minutes pagcminutes Equive cost

BERHS_RI CAMPUS /A5I2RERN	13	274	11927	\$	74.35
HARBAUGH, JU GEOLOGY -/A504GEOL	73	5333	45010	\$	2250.50
JUROH , J ... SLAC /A503PYE:	273	7336	31362	\$	1718.10
LEPPERT, G MECHAWICAL / SSOSLAB	1.	438	1860	\$	93.00
LIKENESS, A AERO / A503AERO	14	202	1789	\$	89.1:5
MACIHTOSH, A AERO /as 5	21.	685	3558	\$	1\%.90
RABINOWIT\%, M. SLAC /asolphel	10	63	212		10.60

RABINOWITZ, M SLAC /A5OTPBEL
10
63
212 \$
10.60
total
$435 \quad 34331$
$88278 \$$
4413.89

0 144: PAUSE AT LINE 26.80 .0
RUN!?
category=? 'STANFORD CORPUTATION CENTER'
Name Department project runs minutes pageminutes Equiv. cosi

LIEBERMAN, M_CAMPUS /TOSEAMRE	7	4	12	$\$$	0.60
MOSES_M_STATISTICS /DEVELOPE	171	5410	32730	1636.50	
total					

0 14!s: PAUSE AT LINE 20.800
RUN:?
SUMMARY OF COMPUTER RESOURCE USAGE
PFRIOD COVERED 10/1/67-4/20/68

Investigator	Project Title	Main Field of Investigation	Subcategory Code
Alder, S.	Data collection for white cell analysis.	Cytogenetics	2310
Aronow, L.	Analysis of laboratory data.	Cellular Pharmacology	1544
Barlow, I.f.	Cell analysis of layer microprobe.	Pathology	2730
Basset, R.I.	Large file handling and processing.	Genetics - census study	2342
Bayer, A.	Pulmonary shunts associated with oxygen intake.	Respiratory Physiology Drug Effects	1713
Bayley, P.	Spectroscopy of biological molecules ORD and CD.	Biochemistry	1360
Beatrice, E.S.	Biochemical analysis of elements by laser microprobe emission spectroscopy.	Biochemistry	2420
Beernink, K.D.	Samples on typhoid fever in the mouse.	Microbiology	3610
Bellville, E.	Quantitative stuay of anesthetics and of related drugs.	Analgesics	$\begin{aligned} & 4449 \\ & 4518 \end{aligned}$
Bellville, E.	Quantitative study of anesthetics and related drugs.	Analgesics	$\begin{aligned} & 4449 \\ & 4518 \end{aligned}$
Bellville, E.	Quantitative study of anesthetics and related drugs.	Analgesics	$\begin{aligned} & 4449 \\ & 4518 \end{aligned}$
Bodmer; W.	Fuman white blood cell genetics.	Cytogenetics	2310

		$\frac{\text { Grant No. FR 0031I-02 }}{\text { Section I-B-1 }}$	
Investigator	Project Title	Main Field of Investigation	Subcategory Code
Bolton, G.	Quantitative study of anesthetics and of related drugs.	Anesthesia	$\begin{aligned} & 4449 \\ & 4518 \end{aligned}$
Brast, N.	The effects of prenatal glucocorticoid injection on offspring behavior and steroid stress response.	Psychology	$\begin{aligned} & 1520 \\ & 3262 \end{aligned}$
Brast, IV.	Data-collection and reporting of glucortical injection results.	Psychology	3720
Britt, R.	Auditory regulation.	Neuro Physiology	1717
Broày, B.	Control of movement in hemiplegia.	Neurological Sciences	$\begin{aligned} & 1716 \\ & 1717 \end{aligned}$
Brown, B.N.	Statistical analysis of drugs on kidney.	Developmental Pharmacology	$\begin{aligned} & 3610 \\ & 3720 \end{aligned}$
Brown L.	Mode of action of barbital.	Biochemical Pharmacology	1569
Brown, E.	Data quality control, storage and analysis.	Medicine	3970
Bunnenburg E.	Use of data converter to replace manual calculations.	Spectroscopy, Magnetic Circular Dichrosm	3610
Butler, P .	Application of computers to urology.	Urology	$\begin{aligned} & 1714 \\ & 3720 \end{aligned}$
Cann, H.	Genetic studies in the Lake Atitlan Basin, Guatemala.	Genetics	2342

Investigator		$\frac{\text { Grant No. FR 00311-02 }}{\text { Section I-B-1 }}$	
	Project Title	Main Field of Investigation	Subcategory Code
Castelino, R.	Computerized on-call scheduling.	Diagnostic Radiology	4230
Cave, P.	Investigation of mechanical ventiliation in infants.Collection of patient data.	n Inrant Respiratory Distress	$\begin{aligned} & 3440 \\ & 3720 \end{aligned}$
Collins, K.	Analysis of chromatograms.	Protein Chemistry	1310
Constantino, C .	Waveform and interval analysis of UMG.	Ureteral Physiology	1714
Doering, C.H.	Neonatal development of the adrenal glana.	Psychiatry	$\begin{aligned} & 3720 \\ & 3730 \end{aligned}$
Doering, C.H.	Development of adrenocortical hormone biosynthesis.	Psychiatry	$\begin{aligned} & 3720 \\ & 3730 \end{aligned}$
Dong, E.	Development of control system for artificial heart.	Cardiac Surgery	$\begin{aligned} & 1712 \\ & 1713 \end{aligned}$
Dong, E.	Analysis and reduction of cardiac data.	Caraiac Surgery	3720
Duftield, A.	High-resolution mass spectrometer measurement on-line.	Organic Chemistry	1230
Durbridge, I.	Laser microprobe of single cells. Oxygen toxicity. Antemortem/postmortem electrolytes.	Histochemistry	$\begin{aligned} & 2420 \\ & 3720 \end{aligned}$
Edward, D.	Time estimation on EEGs.	Psychiatry	3227
Englund, P.	Calculating data for binding of substrates to enzymes.	Enzymology	$\begin{aligned} & 1310 \\ & 3720 \end{aligned}$

$\frac{\text { Grent No. FR 00311-OE }}{\text { Section I-B-1 }}$

Investigator	Project Title	Main Field of Investigation	Subcategory Code
Enlander, D.	Data retrieval of hospital records.	Pathology	3720
Fjeldbo, W.	Calculation of renal function studies.	Urology	$\begin{aligned} & 1310 \\ & 1714 \end{aligned}$
Folk, B.	Studies of coli alycyl-f-RNA synthetase.	Molecular Biology Biochemistry	1350
Forrest, W.	Veterans Administration cooperative analgesic study.	Clinical Pharmacology	1569
Gersch, W.	Relationship between intracelluian potentials and neurophysiology.	Neurology	1325
Gleason, C.	Cortical neurorai activity.	Neurology - Electrophysiology	$\begin{aligned} & 1799 \\ & 3912 \end{aligned}$
Goawin, D.	Analysis of case records of adrenalectomy for storage, analysis and review.	Radiology - Cancer	3720
Goldstein, A.	Drug-induced mouse activity. Tissue distribution of radioactive levorphanol in mice.	Pharmacology	$\begin{aligned} & 1530 \\ & 1582 \end{aligned}$
Goldstein, A.	Drug-induced mouse activity.	Pharmacology	$\begin{aligned} & 1530 \\ & 1.302 \end{aligned}$
Goldstein, D.B.	Biochemical mode of action of barbital.	Pharmacology	1569
Hahn, G.	Analysis of survival data and simulation of X-Irradiated accumulation of	Radiobiology ls.	2414
Hance, A.J.	Miscellaneous statistical treatment of numerical data.	Neuropharmacology (CNS)	$\begin{aligned} & 1530 \\ & 3615 \end{aligned}$

Main Field of Subcategory

$$
\begin{aligned}
& \text { Iimannology } \\
& \text { Neurology - Biophysics }
\end{aligned}
$$

$$
G
$$

$\begin{array}{ll}\text { Inmunology } & 2217 \\ \text { Neurology - Biophysics } & 1325 \\ \text { Genetics - Immunology } & 2356 \\ \text { Cenetics - Immunology } & 2326\end{array}$
Biophysics \& Biochemistry 1350
Molecular Biology
Psychiatry
Genetics and Immunology
Coàe

> 2730
3720
321.2
3740
3610
3720 2399
2.399
3720 1310
1360
1712
1716
Infectious Diseases
. Genetics
Genetics
Genetics
Genetics
Biochemistry
Anesthesia

Main Field of Subcategory Investigation

$$
\frac{\text { Grant No. FR }}{\text { Section I-B.1 }}
$$ Investigation Code

Kakihana, R.	Steroid stress response to ethanol in inbred strains of mice.	Physiological Psychology	3262
Kaplan, B.	Analysis of psychophysiological data.	Psychiatry	3262
Kaplan, H.P.	Calculation of blood volumes used in isotope procedures.	Hermatology	$\begin{aligned} & 3222 \\ & 3262 \end{aligned}$
Kessler, S.	Mating speed analysis in drosofhela pseudoolscura.	Behaviorial Genetics	2338
Kountz, S.	Patho-Physiology of renal transblition.	Transplant Renal Physiology	1714
Kraomer, H.	Biostatistical analysis.	Psychiatry	3610
Kriss, J.	Measuring human material in animals (bio-assay response) .	Nuclear Endocrinology (Medicine)	$\begin{aligned} & 1730 \\ & 3610 \end{aligned}$
Iederberg, J.	Training program in genetics. Genetics of bacteria.	Biochemical Genetics	$\begin{aligned} & 2310 \\ & 2318 \\ & 2342 \end{aligned}$
Lederberg, J.	Information retrieval interfacing with display unit.	Genetics	3720
Lederberg, J.	Computer constructing of organic molecules as tree structures.	Genetics	3720
Leibowitz, U.	Clinical and epidemiologic study of multiple sclerosis.	Clinical Neurology	4412

Investigator	Project Title	$\frac{\text { Grant No. FR 00311-02 }}{\text { Section I-B. }}$	
		Main Field of Investigation	Subcategory Code
Liebes, S.	Nass spectral data handing.	Genetics	$\begin{aligned} & 2399 \\ & 3720 \end{aligned}$
Iuetscher, J.	Hormones and pressor factors in arterial hypertension.	Metabolic Research Endocrinology	1349
Lumb, J.	Study of alkaline phosphatase from chemically induced thymic lymphomas.	Medical Microbiology	1310
Iutzker, M.	Collection and analysis of social service aspects of patient data.	Radiology	3720
MacPherson, L.	Human responses to Pl ashes of light.	Psychiatry	$\begin{aligned} & 3247 \\ & 3912 \end{aligned}$
Maffly, R.	Relationship of metabolism to sodium transport.	Ion Transport	1349
McPhie, P.	Kinetics of conformational changes in rifonuclease.	Physical Chemistry of Macromolecules	1360
Mesel, E.	On-line analysis of cardiac catherization data.	Pediatric Cardiology	$\begin{aligned} & 1712 \\ & 1713 \end{aligned}$
Mesel, E.	Iraicator dilution measurements of pulmonary blood flow.	Pediatric Cardiology	17.13
Nesel, E.	Direct measurement of intracardiac blood flow.	Pediatric Cardiology	$\begin{aligned} & 3430 \\ & 3440 \end{aligned}$
Mesel, E.	Mathematical modeling technique.	Pediatrics	3710
Mesel, E.	TV display of cardiovascular hemodynamic data.	Cardiology	$\begin{aligned} & 1712 \\ & 1713 \end{aligned}$

Investigator	Project Pitle	$\frac{\text { Crant No. FRR 00321-02 }}{\text { Section I-B-1 }}$	
		Main Field of Invesiigation	Subcategory Code
Meyer, S.	Radium implant dosage calculation.	Radiation Therapy	$\begin{aligned} & 1140 \\ & 3610 \end{aligned}$
Miller, R.	Biostatistical analysis of various medical data.	Biostatistics	3610
Morris, M.	Files of department directory, màiling, lisì seminar.	Genetics	374:0
Morris, S.	Brain protein biochemistry.	Genetics	$\begin{aligned} & 2399 \\ & 3720 \end{aligned}$
Nalı, I.	Correlation between psoriasis and diabetes.	Dermatology	
Nelsen, T.	Cancer record keeping.	Surgery	3720
Nye, W.	Genetics of mouse compliments.	Immunology	2220
Pearson, M.	Control of bacteriophaze and RNA synthesis.	Biochemistry	1350
Petralili, J.	Data quality control, storage, ana analysis.	Infectious Diseases	3970
Porter, R.W.	Kinetics of aspartate transcarbamylase.	Biochemistry	1310
Pryor, H.	Unable to locate. Research project unknown.	--	--
Kabkin, R.	Experimentation with ACNE system.	Medical Student	3799

Subcatczory
Code
3720
4230
3912
1230

3720
2710
3299
3720
2410
3470
3730
3720
2342
2499
2730
1360

Investigator	Project Title	Mair Field of Investigation	Subcategory Code
Silvers, A.	Glucose, insulin and triglyceriae metabolic analysis.	Iipid Research	$\begin{aligned} & 1349 \\ & 3720 \end{aligned}$
SmalIwood, R.	Design of medical care facilities.	Meāical Facilities Planning	4299
Stark, I.	Neurological control of pupillary area.	Neurophupiology	$\begin{aligned} & 1717 \\ & 3970 \end{aligned}$
Stenson, B.	On-line cardiac catherization data analysis.	Cardiac Catherization	$\begin{aligned} & 1712 \\ & 1713 \\ & 3730 \end{aligned}$
Sti_Iman, R.	On-line elicitation of patient information and behavior.	Psychology	$\begin{aligned} & 3299 \\ & 3720 \end{aligned}$
Strickland, R.	Effect of corticosteroids on gastric function and structure.	Clinical Research	2211
Stryer, L.	Protein structure and function.	Physical Biochemistry	1360
Studeman, D.	Capital equipment inventory	Property Accounting Genetics	$\begin{aligned} & 3649 \\ & 3720 \end{aligned}$
Thathachari, Y. T.	Studies on m=lanin and melanoma.	Dermatology - Melanin and Melanoma	1300
Theker, R.B.	Computer control of mass spectronomers.	Computer/Instrument Interaction	3970
Upsher, M.	Resident call schedule	Anesthesia	4230
Von der Groeben, J.	Experimental project -not used.	--	--

$\frac{\text { Crant No. FR 00311-02 }}{\text { Section I-B-1 }}$
Main Field of Subcategory - Code

$$
\begin{aligned}
& \text { H } \\
& \underset{H}{H}
\end{aligned}
$$

Main Field of
Investigation

> Cardiology - Anesthesia
-3262 2229
2250
2742

4518
4400
1716

Vector-Electrocardiology Psychophysiologjr
Developmental Immuology
and Cancer Research
--
Anesthesia Radiation Therapy and
Clincial Cancer Training Neurophysiology

 Computer applications in caraiology.

Adaptive digital fiitering, sorting, processing, pattern recognition and adaptive classification.

Investigator

Warrick, G.I.
Weissman, I.
Whitcher, C.
Wong, ${ }^{\text {F. }}$
Zajac, F.

Mathematical formulation of the
kinematic properties of muscle.

- f ‘ueqeoxn Jep uon
- f ‘uaqeo.in dep uon

Von der Groeben, J.
,

Spectral analysis of korotkov blood
pressure sounds.
Radiation dosimetry and oncology.
-

- ject
$\xrightarrow{[}$

L-n

	Equipment					Cost	
Description/ Iaentification	Manufacturer	Model No.	Date Installed	Date Accepted	Purchase Price	Annual Rental	Source of Funàs
360/50 System	IBM						
CPU		2050-F				80,722.20	SRR (2)
Console Typewriter		1052-7				624.00	
Control Unit		2821-1				10,732.80	"
Printer		1403-2				8,256.00	"
Card Reader Punch		2540-1				6,528.00	"
Nagnetic Tape Moael		2401-1				3,312.00	
Masnetic Tape ana Control		2403-1				9,715.20	"
Data Adapter Unit		2701-1				9,724.80	"
Transmission Control		2702-1				12,259.20	(2)
16 Dist Packs		2316				$\frac{3.072 .00}{144,946.20}$	" (2)
Bualic Core		2316-2				74,778.00	(3)
Disk Drive and Control		231.4				51,936.00	(4)
Trans Control Unit		270.1				5,337.60	SCC-CF
18 Communication Teminui		274.1				17,884.80	SRR
(1) $\$ 115,956.96$ cost to SRR; $\$ 28,989.24$ cost to SCC CF all rentals above are also subject to 5% Califor (2) $\$ 4,060.80$ paid by Instrumentation Research Laboratory of Genetics Department. (3) $\$ 35,349.60$ cost to SRE; $\$ 39,428.40$ cost to SCC-CF plus 5% use tax. (4) $\$ 37,102.68$ cost to $\operatorname{SRR} ; \$ 14,833.92$ cost to $\mathrm{SCC}-\mathrm{CF}$.							

BOUTFECT IOCATLD IN MAIT RESOURCE ARFA

Fguipment					Cost		
$\begin{aligned} & \text { Describtion / } \\ & \text { Identioication } \end{aligned}$	Manufacturer	Model No.	Date Installed	Date Accepted	Purchase Price	Annual Rental	Source of Funds
3800 System							
Grocess Controller	IBM	1801			76,694		$\underset{i}{\text { Other }} \underset{i}{\operatorname{red}}$. Agency
Pririven Keyboard	11	1816			$2,438$		
Enclosure	"	1828			333		" 1 "
Analog Inplit Permina?	"	1851			2,908		" 11
Ancilog Output rexminal	:	1856			6,540		" 11
Data Adapter Unit	11	1826					
Comd Read Punch	"	1442					
Cand Punch	11	029					
5 Data Sets	Westinghou						
	Electric	103A2				2,322	SRR
Digital Display	ACMB					(1)	"
Oscilloscoye	Hewlett						
	Packard				1, 500		Macy Crant
Pulse Generator	巴. H. Res Labs	$139 B$				1,275	"
Data Transmission Device	IBM	$270 \mathrm{X} / \mathrm{Y}$	12/14/67	$6 / 14 / 68(2)$	72,800		$\begin{aligned} 50,600 & \text { SRR } \\ 22,200 & \text { Other } \\ & \text { Ied } \\ & \text { Agency } \end{aligned}$

RESOURCE EMTAREW ITSN

Period Covered $8 / 16-7 / 3168$

Equipment						Cost		
Descrapsoal Increizication	Mandac turer	Type	$\begin{aligned} & \text { Mode?. } \\ & \text { Ko. } \end{aligned}$	Date In. staljed	$\begin{aligned} & \text { Dace } \\ & \text { Scesece } \end{aligned}$	Purchase Price	Ammal Rental.	Somyce of Funds

See communication terminals, IBM 2741, Mote 5 in I-C-I; included as a group as they are moved about from time to time.

Section I-D. Summary of Publication
The publication published during the report period is shown below. The publications crigitating wholly from members of the faculty in the medical school are not listed.
"An Advanced Compater for Medical Research," W. Sanders, et al, published in the proceodings of the Fall Joint Computer Conference of the American Federation of Information Processing Societies, 1957.
0%
Grant No. \quad PR 00321.02
Section II-A

$$
\left.\begin{array}{cccccc}
\text { SUMMARY OF RESOURCE EXPRNDITURES } & & & & \\
& \begin{array}{c}
\text { Total Resource } \\
\text { Expenditures }
\end{array} & & & \text { SRR Support }
\end{array}\right]
$$

2.	Persomel: a. Salaries \& Wages b. Iringe Benefits
	subromaz
2.	Consultant Services
3.	Equipment a. Main Resource - Rented b. Main Resource - Purchased c. Supporting Pquipment
	SUBTOTAL
4.	Supplies
5.	Travoi
6.	Alterations \& Renovations
7.	Publication Costs
8.	Other:
	a. Computer time b. Other
	SUETOTAL
9.	SUBTOTAL - Direct Costs
20.	Indirect Costs
12.	total cosis

85,715	11,572				
112,502		$\quad	$		
:---	:---	:---			
$\$ 642,495$	$\$ 579,260 \quad \$ 653,924$				

SIIVbea menuiantaxa
Direct Costs OnIy

		EXPENDI	$\begin{aligned} & \text { URE } \\ & \text { Dir } \\ & \text { Cut } \end{aligned}$	E DETAII rect Cos urrent	S (contin sts Only Budget Per			Estima	Grant Sectio ate for	No. on II22003 \square ext Buaget	$311-02$ Perioa
			TAI					tora		SRR	
		$\%$ of Time or Effort		Amount	$\%$ O Salary From SRR Grant		Amount	$\begin{aligned} & \text { por of } \\ & \text { Time } \\ & \text { or } \\ & \text { Effort } \end{aligned}$	Amount	$\%$ of Salary From SRR Grant	Anount
1. Personime :											
Lemilion	Lutire										
Staitsticion	Schach, Elisabeth (started 9-18-67)	100	\$	6,550	100	\$	6,550	100 \$	\$ 11,100	100	\$11,100
Operations Manager	Class, Charles	100		9,730	100		9,730	100	10,400	100	10,400
Computer Operators	(80\% $\times 3$)	300		23,349	80		18,679	300	24,500	80	19,600
Computer Operators		hourly		6,515	100		6,515*	hourly	6,07.1	100	6,071
Computer Technician	Curcis, Gayle (startod 10-5-67)	100		4,145	100		4,145	100	6,040	100	6,040
Computer Techician	Osborne, DeWayne	100		6,050	100		6,050	100	6,850	100	6,850
Com. Tech. Suinee	Fofiman, Stephen	hourly		1,132	100		1, 1322^{*}	hourly	2,300	100	2,300
Operations Asst.	Bunay, Maurice	hourly		1,172	100		$1,172^{*}$	hourly	1,200	100	1,200
Operations Asst.	Larnea, Stephen	hourly		1,074	100		1,074*				
Student Res. Asst.	Sprague, M. L.							$50 / 9 \mathrm{mos}$.	2,475	100	2,475
Student Res. Asst.	Lierre, Raymond							50/9 mos.	2,475	100	2,4.75
Secretary	Plasch, Gyneth	100		5,976	100		5,976	100	6,250	100	6,250
Secretarial Assistance		hourly		855	100		855^{*}	15	941	100	941

1. PRRSOMTEL:

$\frac{\text { Position }}{\text { Administrative }}$| Assistance by |
| :--- |
| SCC |
| Miscelianeous |
| hourly |

SUBIOTAL - Direct Salaries
Fringe Benefits
SUBMOMAL - Personnel

Grant To. FR 00217-02 Section TT-D

BUDGEP JUSTTETCATIOL

There is no significent deviation in the budget for the current yean or contemplated En the next year Irom the three yecn plan originally smoped for AchE. The resource had substantial funding From the Josiah Mecy Jr. Foundetion duming the first year; but the funds remaining at the ond of the ol year were used during the wwaent period; and we do not expeot aditional funang Irom this source durang the next year. As the leay funds were consumed, the NIH funding beceme s larger percentage of the total support of the resource.

To improve reliability of the system the TBM 2321 , data cell drive, ena IBM 2841, storage control unit, and two IBM 2311, disk drives were replaced with an IBM 23I4, direct access storage device. Reference Dr. Lecerverg's letter to Dr. Taxman of February 29, 1968. The 2321 had 400 K Bytes or memory and each of the 2311s had 7 K Bytes; and the replacement 2314 has only 2l2K Bytes. This change has resulted in substantially improved pereomance from the harcware configuration at the expense of data storage capebility.

A second IBM 2314, Direct Access Storage Device, has been budgeted Ior addition to the configuration in February, 1969. It woula be desirable to install this device as early as possible but delivery will be dolayed to keev within the budget ceiling established for the third year.

Travel expenses have been somewhat higher than budgeted in the awser for the 02 year and $\$ 4,000$ is requested agein for 03 year. It is frequently more economical to search out information and advice from institutions and individuals who have experienced problems than to duplicate effores. In the field of computing the months that separate problem solutions and publication (if any) cannot be afforded.

INDMVDUAL USER PROJECT DESCRIPTIOA

PROJECT DESCR!PTION

(Approximately 300 words:
My computer time has been used to bring the $A C E$ software system from a desk-calculator level of operation to a full-scale time-sharing systen with generalized file handing, real-time input/output capabilities, and a fairly large statistical library. Extensions to the compiler have included full PI/I character handling facilities, internal procedures, ON conditions for interrupt handing, and complete editing facilities for terminal input/output.

File handing capabilities have been implemented entirely within the past year; they include the ability to store and retrieve PROCRAR files by line number, store and retrieve sequential DATA files, and retrieve DADA files by record KEV.

Real-time input/output capabilities were added to the $A C M E$ system this year. Basic to these is an ACMF-witten IBM 1800 software system that allons the 1800 to act as an input/output multiplexor. The 360 software, which can be called from PL/ACME programs, was written to comunicate and provide an interface with the 1800 software. This has permitted input (and limited output) of analog and digital data from research laboratories under control of a terminal-written PL/ACME program. Also, FL/ACMEwritten programs can call for input/output through the 2701 or 270 X data control devices to commancate with auxilliary small computers located in the research laboratories or with an ACME-built vector display.

Most of the computer tire for the central ACE project, has been devoted to compiling, link-editing, and debugging of the software dsscribed above. Remaining time has been divided among:
(1) Aiding users in early stages of real-time data gathering when stand-alone use of the computer was indicated.
(2) Jumping data cell (or disk) files onto tape for back-up storage.
(3) Running an analysis progran to find errors in the stored files, and the consequent repairing of Eiles that contain extros.

INDVIDUA USER PROUECT DESCRPTION

INVESTGATOR: Class, Charles H .	DEPARTMETT ACM	INSTITUTION: Stanford Computation Center Stansond Modical. Schoo?
FIELD OF WESTGGTOA		PROECT TTLE
Operations		Ecaizent Inventory Control

13.088 pege minutes

PROJECT DESCRIFTION
(Approximate!y 300 words)

I maintain two equipment inventory control reports using the ACME system, a few demonstration programs to stow visitors, and a test program to check status of various system functions.

One equipment inventory file lists ACA's IBM 2\%4] terminals, by machine number, location, department, installation date, device festures, and drilling account number.

A second report lists type of equipment irterfaced into ACM , by user, department, cable numbers and distances.

IWDVIDUAL USER PROJECT DESCRIPTIOA

AMOUNT OF RESOURCE USAGE:

59,652

PROJECT DESCRIPTION

(Approximately 300 words;
Several programs listed under my project were test programs developed for the Cardiac Catherization Lab by ACiME and the Dept. of Cardiology personnel. These programs were subsequently transferred to the Department of Cardiology files. Theyinclude:

1. A ventricular pressure analysis program to analyze ventricular pressure curves transmitted either on-line or during playback of an FM tape recoraer in the catherization lab. The program determines end-diastolic and peak-systolic pressures and the times at which they occur, and maximum slopes on the curve [1].
2. A peripheral pressure analysis program.
3. An analyzer program that analyzes ventricular, wedge, brachial-artery, and atrial pressures. It also calculates some gradients and valve areas.
4. Several EKG programs are being developed for use by the Dept. of Cardiology and Anesthesia. The main program digitally filters the data, picks out QRS complexes, and identifies the onset of the Q wave. Another program simply detemines heart rate.

Several smaller prograns were written to test various aspects of the 1800/360 system. PB, for example, tests the digital control box used by the catherization lab [2]. A progran was written to store preliminary artery and wkc data in data files to smooth the data and to display the results on a 360 -controlled TV. A TV program was written to display data transmitted from the catherization lab and other projects. This program displays the original ventricular pressure curve, and indjcates the points at which the program picks out the end-diastolic pressure points. The accuracy with which these points are deternineddeternine the accuracy of subsequent results. The TV progran provides indispensable and quick focdbeck. to the vser about whether the visual progran is wowing comectiv. The ry program also allors the vere to magnify a gradient of data to ary porer.

Section 11-A

INDIVIDUAL USER PROJECT DESCRPTIOU

34,399

PROVECT DESCRIPTION
(Approxirately 300 words)

ACME provides statistical consulting service and is building a library of statistical programs, so the system was used for:
a. Consulting and some data analysis.
b Writing and debugging of statistical programs for the library (multiple and polynominal regression analysis programs, plotiing program, scheduling program for residents on call.)

43,010
PROJECT DESCRIPTION
(Approxirately 300 words)

Mostly used for program developnent for clienical research in Psychiatry for Dr. Kopell. Also used for verious test programs.

13.702

PROEET DESCRIFTION

(Approximately 300 words;

The purpose is to offer consultation and assistance to users of the ACME system. This aid has proved very worthwhile because most of the users are not computer-oriented. The program help allows the users to get information about any of the keywords in the PI/ACME language, while they are working at their terminals.

Other prograns have been written to maintain and update the HELP program.

Section II: A
INDUIDUAL USER PROUECT DESCRIPTION

PROIECT DESCRIPTION

(Approxirately 300 word

The work was done as a member of the ACME stafr. Hence, all of the resource usage was devoted to furthering ACME's goals. Specifically, najor amounts of computer usage were devoted to:

1. Hardware testing for a TV display, a small computer interface, a 270 X , and a Sanders display interface.
2. Develop system software for the hardware.
3. Developing application programs dealing with the above, along with programs for other applications such as interactive text processing.

MDVVDUAL USER PROJECT DESORGPTION

$$
55,768
$$

PROIECT DESCRIPTION

(Approximately 300 words)

The ACME system was used to support the ACME-provided statistical consulting service and for writing statistical programs for our library. More specifically ACME was used for:
a. Consulting (date analysis, demonstrations of program usage and date the handing, debugging and testing or user's statistical programs.)
b. Enlarging ACME's statistical library (Linear regression program, programs for frequently-applied statistical tests, periodogram analysis.)

INDIVDUAL USER PROEECT DESCRIPTIOA

PROJECT DESCRIPTION

(Approximately 300 vords)
Work undertaken under this project title falls into two classifications. The major portion of the usage was the testing of res: features, developments of the ACME system, and the writing and execution or seecial test prograns to track down programing difficulties reported by users. Much of this usage took place outside of regularly scheduled hours to avoid interference with user prograns.

A number of special debugging and monitoring statements have been made available in the ACiE system to allor testing, monitoming, and ercor checing while other users are receiving regular or slightly delaje sexvice. The effect of this type of computer use has not been felt directiy. but has enabled ACrle to fix, modify, and adjust the syster within a few daye to a week-rrather than the few weeks to hardly ever experienced in other systews.

The other usage under this project ïs the collection of usage statistics, both for use as a tool in system develoment and For monthly sumaries used for accounting of non-medical use and reporting to ...I.

Section $11-\mathrm{B}$

INDIVIDUAL USER PROECT DESCRTPTION

AMOUNT OF RESOURCE USAGE:
30196

PROJECT DESCRIFTION

(Approximato!y 300 words)
This project was established to prove the practicability of using a direct access systeri to process investigations on a huge denographic file such as a dicenmal census subset, and at the same time, protect the file against any violation of the confidentiality of its content. However, the primitive state of file handing routines in the system at the time, prevented any solutions or conclusions. An estimate of four-fifths of the tine utilized in thits effort was cirected to re-entry of data or progrems or restart of prograns due to system outage or other failure.

INDIVIDUAL USER PROJECT DESCRIPTION

INVESTIGATOR: E. S. Beatrice	DEPARTAEAT Pathology, Division of Histochemiatry	INSTITUTION: Stanford Computation Center Stantord Medical Center
FIELD OF INVESTIGATION Cytochemistry	PROUEC Biochem Micropro	LE: Analysis of Elements by Laser mission Spectroscopy

ARIOUNT OF RESOURCE USAGE

13875

PROJECT DESCRIPTION

(Approxinately 300 words)

A focused laser beam is utilized in the vaporization of cellular targets. Light from the incandescent vapor is separated into characteristic wavelengths by a spectrograph and the spectral line intensities are measured photographiccally or directly photoelectrically. A correlation is made between recorded photoelectric voltage and quantity of element in target. Computer is used for statistical analyses of data for each analysis and to provide a graphical display of results.

Each analysis consists of recording laser output as well as the integrated photoelectric voltage. Diameter of crater formed by beam is also noted. Correlations are made of mean standard deviation and coefficient of variation for all three recorded values.

It is hoped that in the near future a direct system will store the data. without necessity for considerable time spent on the 2741 terminal. Data for a series of 400 analyses will average 1200 numbers and take $1 / 2$ hours computer time. Maximum output of the laser system over 6 hours use would yield 1600 analyses to generate 5000 answers.

Recent work included analysis of 10 nanoliter samples of human serum for calcium and magnesium, and determination of iron in single red blood cells.

INVESTGATOR: DEPARTMENT Wa1ter F. Bocmer Genetics	MASTMUTION: Stenfer: Computation Conter Stensua Modical School
FIELD OF NVESTGATOR Human Wiite Flood Cell Genctics	PROECT THLE: POPGEN

$$
31,552
$$

PROEECT DESCRIPTION
(Approximately 300 words)
At the present time our major use of ACME is for the storage and analysis of data relating to white blood cell antigens in humans. We are storing data on up to several hundred people, the basic information being reactions to a variety of sera also up to one or two hundred in number. This data is then processed to analyze the relationships between the actions of different sera on various sub-groups of our population, the identification of people with various combinations of reactions to the sera required for absorption studies and the investigation of the distribution of serum reactions within families in ordei to elucidate the genetic control of the identified antigens. Other separate projects, involve the use of ACME for following through the consequences of simple population genetic models and for the analysis of data from density gradjent centrifugations.

INDIVIDUAL USER PROEECT DESCRIPTION

PROJECT DESCRIPTION
(Approximately 300 words)
The prograns under this project title service the laboratory of E. P. Noble, Ph.D., M.D., Assistant Professor. The projects in this laboratory include:
$\sqrt{ }$. Studies of the steroid stress response to ethanol in inbred strains of mice (Ryoko Kakihana, Ph.D.).
2. A study on the effects of menstrual cycle phase and an anovulatory agent (in women) on biochenical (free fatty acids, plasma cortisol, and urinary catecholamines), biopsychological and psychological variables (Sam Silbergeld, Ph.D., M.D.).
3. Development of accurate assay methods for corticosteroids (John Butte, Ph.D.).
4. A study on the effects of prenatal glucocorticoid injection on offspring behavior and steroid stress response (N. Brast, B.S.).

The programs under this project title fall into three categories:

1. Prograns to calculate descriptive and inferential statistics for experimental data;
2. Programs to store and analyze data from fluorometric asseys;
3. Prograns to store and search bibliographic data.

INDIVIDUAL USER PRORET DESCRPTION

PROJECT DESCRETION

(Approximately 300 words)

The analysis of voltage recordings fron the cortical surface of the brain of a cat. 8 channels of data will be digitized over 5 seconds for 1,000 words per second. The analysis will consist of the computation of:
(1) probability density and probability distributions.
(2) joint probability density and probability distributiono
(3) crosscorrelations and autocorrelations.
(4) cross spectral density functions.
(5) Fourier transforms of data.
(6) eigenvalues for Schroedinger time dependent wave equation.
(7) diagonal from 3 by 3 Hermitian coherency matrix.
(8) the display of recorded data upon television set for photographing.
The analysis is designed to focus upon differences in phase, amplitude and frequency between recordings under different conditions of stimulation. The differences are also to be translated into quantum mechanical form.

The ACME system has also been used in this laboratory for analyzing comparisonjof single units (neurons).. A number of statistical programs have been written utilizing subroutinej made available from ACME for this analysis.

IRDIVIDUAL USER PROUECT DESCRPTION

PROJECT DESCRIPTION

(Approximately 300 words)
Wurins the past nime mothe we hove had the opportmity to eaploto fine amplication of computes to mology in the followar acas of invontgationa

1. Tent Frocessins -

Pationt lifncego and Fhysion Exaninatiou Sosentific arnuocrato
2. Date Processing -

Romal Puction Siuly (Coloulation and Intorpetwion) Angiocensin Dotermination
3. T.V. Grapiic Digplay and reaching Machine (Compurea babod)
4. Piomans under developnant -

Urinary Inyection Study Neurogenic Bladder Pationt Revier Uretoral Persstalsis Stuty (Go-ine data moceseing)

Pleace ree ecompanjing dosertptive materint foz cotills of each project.

INVESTIGATOR: Howard M. Canu, M.D.	DEPARTMENT Pediatrics	Institutiod: Stanford Computation Center Stanford Modical School
FIELD OF IHEESTICATIOA Genetics		PROECT TTLE: Genetic Studies in the Lake Atitlan Basin, Guatemala
Amount or resource usage		
		144995

PROJECT DESCRIPTION

(Approximately 300 words)
In this research project we are investigating factors which affect frequencies of genes controlling various human heritable characteristics. A group of Mayan Indian isolates are being studied in the Lake Atitian region in Guatemala. A high infant mortality rate, the age distribution of these populations and of mortality in these populations, and preliminary sero-epidemiologic studies indicate the harsh environment of these conmunities.

We are collecting from a number of these commities demographic information concerning fertility and migration, genealogic information, data on significant causes of pre-reproductive morbidity and mortality by means of physical examinations and sero-epidemiologic indicators, and information about polynorphisms of blood by laboratory examination of blood specimens. We are emphasizing data collection from individuals in nuclear family units so that we may undertake segregation analysis of polymorphisms. Studies of distributions of gene frequencies are also being undertaken. Demographic data and information about morbidity and mortality will be used to analyze variation in gene frequency distributions and to analyze distortion of segregation frequencies.

The Stanford Unjversity Medical School computer system (ACME) is used to process and analyze the large amount of data being generated from these studies. A complete census is performed for each conmunity for identifying inhabitants participating in the study, for demorraphic data for our analysis, and for establishing nuclear families and relationships of various individuals in the commulty. These data are processed by computer at Stanford. Computer analysis of the genetic data is also being undertaken.

At present the Indian communty, San Antonio Palop , consisting of Cakchiquel speakers, is being studied.

individual user progect description

INVESTIGETOR: K. COLITSS	DEPARTMENT BICCHETSAR		INSTITUTION: Stamord Comptation Center Stanford Medical Center
FIELO O WVESTGNTONPROTEIN CHEMSTRY		PROEST TITLE:	
		Atcase	

AMOUNT OE RESOMRCE USAGE:

32670

PROEECT DESCRIPTION
(Approximately 300 words)
ATCase contains two types of programs and data files. One type is used in conjunction with an anino acid analyzer, to process data gotten from the analyzer. The second type is used in conjunction with ultraviolet spectral studies of the E.coli enzyme aspartate transcarbamylase (ATCase).

First type: An amino acid analyzer is used in our research group for a wide variety of studies in protein chemistry. These include structure - function studies on (borine) ribonucleass, structure - function studies on (T.c01j) as partate transcarbamylase, and extensive studies on the development of procedures for the sequential degradation of peptides and proteins. Thus the analyzer is heavily used by a number of people working on several projects. The analysis of the chromatograns obtained from the amino acid analyzer is laborious and tedious when done by hand. Thus ACME, in conjunction with some other automatic equipment, has been adepted to make these analyses fast, accurate, and dependable. The peaks on the chromatograms are either measured automatically (by an integrator attached to the analyzer) or, if necessary, measured by herd. This data is then fed into an ACME program ("AAanal"), which then processes the data. The features of the program include the following:
a. The input may be either $H-W$ (hand measured) or I (automatically integrated) data.
b. Either the most recently determined set of constants nommlization factors for each peak of the chromatogran or the average of the last ten sets (stored in the computer) may be used.
c. The prozrem determines the total weight of the sample analyzod.
d. The anount (in millemicromoles) of each amino acid in the sample is computed.
e. The micromoles of each residue per mg. protein in the somple may be computed.
f. All tho data can be corrected (autombically) for tryp to plan destruction.
g. Tho number of resiaues of each amino acid in the protein cen be computed, and the moler ratios of the amino acids, nomalized to any residue, can be determined.
h. The progran can deal with 23 amino acids and derivatives, or the 17 comonly occurring acid-stable residues.

Thus the use of ACME has allowed large amounts of data that would have had to be calculated by hand be processed by the computer - with resulting improvements in speod and accuracy, and in the increased versatility.

Second type: ACMF is being used to create ultraviolet differenco spectra from model compounds to simalate spectra generated on studies of the mechanism of action of the catalytic subumit of aspartate transcarbamylase. The studies have not progressed far enough to evaluate their effectiveness, but the outlook is good that this application will prove neaningful and enlightening in the system being studied. Such a simulation study with model compounds could not be undertaken in any systenatic way without access to a computer.

$$
20,648
$$

PROJECT DESCRIPTION
(Approximately 300 words)
The adrenal gland is involved in the response to stress. In the newborn rat, there is a brief period of poor response to stress by the adrenal gland. As one parameter, we are measuring the capacity of the adrenal gland to synthesize steroid hormones.

From the glands of newborn rats of a particular age group we prepare an enzyme system that catalyzes the conversion of cholesterol to pregnenolone, the homone precursor. The rate of this conversion is an indicator of the amount of enzyme present in the glands. We follow the rate of conversion by using cholesterol labeled with two different radioactive isotopes and calculating the change in isotope ratio. From each incubation more than ten samples are withdrawn, counted in duplicate for the two isotopes and recounted with a radioactive standard. Thus, about 100 different counts are generated with each incubation.

We use ACME to compute the ratio of the two isotopes for each sample (by averaging duplicate counts and correcting for overlapping counts) and to store these results along with other information about the incubation. Various other programs are used to work on the information stored in the data file and to produce the rate of enzymatic conversion by fitting the best line through the experimental points and by determining the slope and its confidence interval. All this derived information is stored in another data file. To date over 125 incubations ranging over the ages of 1 to 46 days have been carried out and treated in this manner. The project was started in oct. 1967.

All the information of a set of similar experiments has been retrieved, and a significant pattern of development of the enzyme system has been discerned. Another program analyzes the entire set of experiments and generates a mathematical function that describes the pattern of development. This developmental pattern of the enzyme system was found to correlate closely with the pattern of stress responsiveness described for the adrenal gland of the neonatal rat. A report of these findings has been submitted for publication in Science (1968).

INDIVIDUAL USER PROJECT DESCRIPTION

INVESTIGATOR: Eugene Dong, Jr., M, D.	DEPARTMENT Surgery		institution: Stanford Computation Center Stenford Medical Center
FIELD OF MVESTICATON		PROECT TITLE:	
Cardjac Surgery		Heart, MARG I	
AMOUNT OF RESOURCE USAGE			
		95,314	

PROJECT DESCRIPTION

(Approximately 300 words)
Our project is to develop a control system for an artificial heart. The technique will be to telemeter out blood pressure and flow information from an experimental animal whose heart has been denervated by cardiac autotransplantation. The data will be analyzed and reduced on the $360 / 50$. A mathematical model will then be built which will simulate the data. This model will form a comparison model to the live animal which will then form the trajectory for a controller. A mathematical model will be built into a real time computer such that the heart rate of this animal will be controlled according to the model and according to the biologic stress.

Calculations done are blood volume, renal plasma flow, cardiac output and Fournier analyses.

We are also investigating the rhythmic characteristics of arrhythmics using large volumes of interbeat intervals to characterize the populations.
\qquad
Section Ma

INDIVIDUAL USER FROEECT DESORIPTION

INVESTGOTOR	$\begin{aligned} & \text { DEPARTHETR } \\ & \text { "istocimastry, } \end{aligned}$		WSSTIUTION:
			Stanford Compu Stenford Modic
FHELD OF GUESTGATOA Lasor hicraprow; Mxyen toxisid -respiratnry adtholium; noto. romtom/ astho:-n olactrolytas.		PROECT TMLE	

]73,93

PROJECT DESCRIPTION
(Approximately 300 words:

This project title was used for:

1. Learning how to code in Acme/pl.
2. Statistical evaluation of the relationship between antemortem and postmortem values of electrolytes in serum and with postmortem specimens of vitreus and serebrospinal fluids. While we were able to confirm the semi-quantitative findings of earlier authors, our expectation of being able to quantate antemortem serum electrolyte concentrations was not attained. Substantial use of Acme statistical subroutines was made to show the independance of antemortem and postnortem values within acceptable range.
3. Laser microprobe analysis of single cells. It was decided to organize data in the form of scatter diagrans and plots. It was not clear which parameters were of substantial importance in obtaining "accurate" results. Furthermore, results subjectively assessed as aberrant had been rejected, leading to non-correction of microprobe system defects though quite good results.

By introducing raw data into the computer, a better sample of microprobe output was obtained, and graphical analysis certainly assisted in excluding sone supposed inter-relationships, between laser output and pmt difference for example. In this way the development of an efficient microprobe has been accelerated. Initial prog-amming of a 2471 output scatter diagram was time consuming and a run cost about 150 page: minutes for 10 data points. Subsequently the program has been inproved to where 200 data points with their mean and standard deviation per X line are plotted for 50 page minutes. Use of thislater progran is project laser has saved an estinated greater than 10,000 page minutes when compared to the cost for original scatter diagram program. The effect of oreanic matrix in plasma and self absorption on cation deteminations is now clearer.

Effect of exygen concentration on exfoliated bronchial epithelial cells. Here the data had greater variance than even in the electrolyte concentration projoct, smoothing routines and trigonometric interpolation was performed. The results were
ambiguous.
4. Several extensive prograns for manipulation and filing of alphanumeric and numeric data were built. The aim initially was to wite a sufficiently generalined program to cope with most of the procedures I was heing asked to deal with, These programs cost too much to run, and occupied a great quantity of the system's memory. The project titie is now being used to file progroms for subsequent partial or complote copying into other projects in an attenpt to consorve programaing time.

INVESTIGATOR: Enlander, OFREK	DEPARTMEAT Pathol.ogy		INSTMUTIOA: Stanford Computation Center Stenford Medical School
FIELD OF MUESTIGATION		Proiect	
data retrieval		CASES	

PROJECT DESCRIPTION
(Approximately 300 words)

RETREIVAL OF AUTOPSY dATA AND hOSPITAL RECORDS from Various paralieters.
progran iill be suitable for use by secretarial staff Iidsertion of data
daily and then phogralmer retrieval of data frohi ally miage paraideter
e.g. DIAGNOSIS, HOSPITAL RECORD NO., etc. CORELATION OF DATA BETUEEN
cases will be availble.

INDIVDUAL USER PROECT DESCRPTOON

PROBECT DESCRIPTION
(Approxirately 300 wods)
The Veterans Administration Cooperative Analgesice Study is a cooperative clinical pharmacological study in five VA Hospitals. It has the following aims:
A. To evaluate compounds now in use for analgesic and sedative activity, and to verify under controlled conditions the clains for efficacy and side effect liability.
B. To evaluate newer analgesics of the non-addictionoral type and to place them in their proper heirarehy with standard drugs nanely morphine.
C. To investigate the methodologic problens by use of modern computers and statistics.
D. To stimulate new research into the area of analgesic and sedative evaluation, and to provide a framowork for the teaching of clinical phamacology within the Departnent of Anesthesia.

This study is conctucted by the Anesthesia Section of the various involved Veterans Administration Hospitals under the direction of the Chief of Anesthesia and assisted by Nursc Observers. The Nurse Observer has been trained in the standard method of patient interview for subjective and objective pain evaluation in pationts, and for followup and intervicws for nighttime sedation. The study is orientca to postoperative surgical patients and patients in whon chronic pain is a problem, or in patients with chronic hospital care requiring nighttime sedotion. Double blind crossover techiques are used, except when dose ranging is done. Medications are prepared in identically-apporing form, randonized and numered serially. Patients are selected acconding to proscribed methods and questioned for efficacy and side effects.

INDIVIDUAL USER PROJECI DESCRIPPION (continuod)

Protocols and forms for collection and managomont havo been devised. The data is collected from all the hospitals at the data collection center here in Palo Alto VA Hospital and is imputed dixcetly through the 2741 Temminal to the Acme Systom at Stanford. Data is errorchecked inmediately upon entry into the system and errorchecking reports are redistributed to the participating institutions. At the present tine, our data file includes programs for errorchecking our data, analyzing for means, analysis of variance and potency, confidence surves and orthogonal comparisons. In addition, we are contemplating the use of additional programs which will use the linear hypothesis for obtaining relative potencies in those studies where order effects are important.

Subsequent methodologic studies will be made ruch easier by immediate turnaround and storage capabilities of the $360 / 50$. In addition, we plan to use our date for historical controls using Bayesian theories of statistics and eventually hope to have output of patient histories from the data inputed on the computer forms.

INDIVIDUAL USER PROUEOT DESCRIPTION

PROJECT DESCRIPTION
(Approximately 300 wods)
Iwo computation activities concerning the relationship between the electrical behavior of single intracellular slow potentials and simul.tancously recorded macropotentials (EEG) in a human subject were pursued. Dr. Frank Morrell, Cheirman, Department of Neurology proviced the data. In one, transfer function and coherence function computations were performed using the intracellular data as input data and the ERG as output data. The objective was to reconcile Dr. Ross Adey's (UCIA) contentions that there was no significant cohersnce between the intra~ cellular slow potentials and the EEG and Dr. Morrell's demonstration of significant coherence between particular EEG wave complexes and intracellular potentials. (Feference in 1966 Intensive Study Progrom of the Neurosciences Research Program, Rockefeller Univ. Press 1967). The computational results achieved demonstrated that the relationship between the intracellular potential and the eeg was linear and time varying. This result is compatable with both the Adey and Morrell findines and reconciles the two points of viev. (The results wore comanicated in
the January 1968 Neurosciences Research Prosran Meeting on Information Coding in the Nervous System, end will appeax in a forthconing Meurosciences Fesearch Progen Dulletin.)

In the second activity a preliminey attempt ves made to synthosize an intexvel of an fer record using portion of simultaneously recorded intracelnular bata. The technique erployed was to construct a filter matched to particular segments of EEG wave corplexes and to extract from the intracellular recording those segments which were very highly correlated with it. The computation is thet of a running correlation coefficient as computed through a digital matched filter. Preliminary results sucgest that EEG records can be synthesized arbitrarily well by this means. The computational results therefore suggest that what happens at any instant in the macropotential (synchronous behavior) is duplicated throughout the time course of the individual cell intracellular potential. In effect therefore, at least under the circunstences exanined, it appears that the macropotential can be interpreted as being primafily due to the summation or average of the intracellular potentials within the field of the macroprobe. Additional experimental and computational studies are contemplated to further understand this phenonenon.

In both cases, the investigation could not be conducted without the use of large scale digital computations.

INDIVIDUAL USER PROIECT DESCRIPTION

PROJECT DESCRIPTION
(Approximately 300 words:

Pilot Analysis of Case Records of Adrenlectomy for Storage, Analysis, and Review.
\qquad

INDIVIDUAL USER PROJECT DESCRIPTION

PROJECT DESCRIPTION
(Approximately 300 words)

ACME is used for general labozatory computations of several kinds, primarily those in which exhaustive calculations are required following experiments of several days' duration. These uses are all in connection with project Biochemical Mechanisms in Drug Addiction, supported by NIMH. Statistical packages are also used routinely. Some of the studies concern drug-induced activity of mice, measured in photoelectric counter cages at successive drug injections. Other studies involve tissue distribution of radioactive levorphanol in the mouse. Yet other studies concern binding of radioactive levorphanol under various conditions to subcellular fractions of mouse brain homogenates.

ACME is also used for miscellaneous purposes in connection with graduate student training; a number of student projects are handled on this same project account.
INDIVIDUAL USER PROJECT DESCRDPTION

\qquad I? \qquad

individual user project descraptons

This project consists mainly of programs for the analysis of cyclic praphs to allow the enumeration of the ring structures of chemistry. Prorrams analized the trivalent cyclic graphs. The main ohjertives are to indicate all the possible eraphs, isomorphisms of superficially different graphs, symmetrios within a eraph, rational descrintion of eact item, rational ortering of the graphs, rational numbering of the vertices and paths and compact, conputahle notation for each feature.

Each graph is renresented as a llamilton circuit projected n the hountary of a regular polygon with l! vertices. oining these V vertices and $" / 2$ chorts, since each vertex is rivalent. The locations of these chords are specified by $/ 2$ charactors.

Section $111 \cdot[3$

Individual user project description

PROJECT DESCRIPTION
(Approximately 300 words)

This project contains the statistical and miscolleanous proerams use by the fenetics department.

Statictical profrems: reneral statistical analysis for the calculations of sum, mean, standard deviation, the analysis of variance, chisquaroant probahility of chisquaro distribution, correlation and raeression analysis, the normal distribution with the same mean and stantarl deviation for fitions a curve.

Plotting orograms: Plot har granh in 100 positions, plot of Dercentage distribution, plot by function scaled to the range of 0 to 100 . plot of multivalued function allows the choice and supersition of several characters. Flas is inserted on the chart when underflow or overflow occured.

Sorting prosrams: Sorting a vector in ascending order, sort array and alphahetical informations.

Section $111-\mathrm{B}$

INDIVIDUAL USER PROJECT DESCRIPTION

INVESTIGATOR:	DEPARTMEAT	IWSTITUTION:
S.E.Jones	aiochaistry	Stanford Compatation Centor Stanford Medical School

FIELD OF INVESTIGATION
Protoin structura

AMOUNT OF RESOURCE USAGE:

PROECT TITLE:
Faosocon fluorinatric nethods
for wroceir structurs soterninawon

57,050

PROJECT DESCRIPTION

(Approximately 300 words)

The projoct unier consiceration invodves the use of a nanosecons fluorimetor dosionod orianglly by malley, owar,
 instruaent the course of funorescence of various compuris in solution can wo follouta diroctly as a function of time, thus furnisting a mothod for the ㅎrect imestisotion of anission
 Mell as rotational caracteristics (troet osspvetion of fluoreoconce demolarization of tho flaorascont wisty. In tho case hore a fhoroscent laed is boun covelonty or throu, Van Var :aals interaction to a biological moromolocule, charectoristios of the macomolecula cen be investiataj throun the betavior of the fluoresconce kinetic propertias of tho small Gluorescent lagel.

In this project tho Aoir facility is use for foth beta collection ant lata ratuction. Oata collection is implemnte: ait: the İuO Data hoguisition Bystea and on-line experinents: output fron a plotomultiblier is projectet onto a samilab oscilloscone, the output of mich is trensmitte to the lou0 after a iifital pulso Fron the 1300 tri, jers a timeseop in the uscillosecpesysto: malu, dota thus callecto is di itallat, stored, and finally the lift irtansity vorsus timo zata is avorage over a serigs of soans. Furthar ata reduction is accomplisine in tia 300 by sevoral wrosans encompasoine soveral sata raudctici routincs. In Genaral, this consists of íterinin. the true cours ot wission versas tima, as tho weserve
 the tras mission anotios:

[^2]

41,972

PROJECT DESCRIPTION
(Approximately 300 words)

A program for information retrieval interfacing with the Sanders 720 display. Programs work with multiple files. Files is created by program and store on disk.

Progran is callet in hy 1012741 terminal thru ACMF. After the comm pilation by ncme, the excution of the program is initiated on the terminal, all the communication to and from the computer is turned over to Senters 720 display via the display keyboard.

Program features the option of working with any files, also provides selection of the following actions - create new file, addition of records to the existing files, alter content of any record, delete or insert records, listing any portion of the existing file and search for key words in the file. After each selection is processed user has ontion of rerunning the program without recompiling. While execution is in prooress, in addition of the information displayed on the scope, a list of options and selections is prinied on the lbh 2741 terminal to keep track of what has been done during each run.

INDIVIDUAL USER PROJECT DESCRIPTION

55,760

PROJECT DESCRIPTION
(Approximately 300 words)
The computer has been used to provide various suppori functions for research In the area of mass spectral microanalysis of organic materials. The mase swectrometer is run in either of two different modes. The data derived While ruming in one of these modes is transmited autonatically to the ACME systen for storage. The other mode requires operator participation in the transmission.

The stored data is subjected to a varlety of incerpretative manipulations. In one running tade the mass peak locations are quadratically related to the real ruming time parameter. Linearization of the mass peak displacement has been performad with the aid of the computer thus simplifying the identification of individual peaks.

A computer driven television unit has been used to facilitate the visual comparison of pairs of mass spectra. The unit incorporates a manual contcol that positions a spot on the screen. The coordinate of the spot location may be entered into the computer by activacion of a suitch. The basic display fomat for the program consists of a central area surrounded by a marginal pattern of zones. A wide selection of progran decisions can be rade in program execuition by directing the spot to different zones. This flexibility enabler selection, for example, of the spectra (identified by fille nubezs) to be displayed for each spectrum; the nomalizacion to be used in the peak height display; the identification of the nass nombers associated with vasious peaks, etc.

Section $111-B$

IRDIVDUAL USER PROUECT DESCRIPTION

PROIECT DESGRIPTION
(Approxircately 300 words)

Consultant and programer. Programs written so far include a scatter ploting routine which plots as many different sets of data as is desired on one graph using a different symbol for each plot; array size checking procedures for approxinately 35 statistical subroutines to keep users from writing over the system; and semple prograns for an ACME publication which introduces the ne: user to ACME.

Section 1 I $\cdot \mathrm{B}$

INDIVIDUAL USER PROUEGT DESCRIPTION

PROJECT DESCRIPTION

(Approximately 300 words)
The Bndocrine Unit of the Deprotwent of vedtote is oncacod in a study os ciroulating pressor substanoss, neesurod unden standach ized conditions in pationts with heporension. The efects of sodimn loating, sodim depletion, and divratic abmistration, as veli as changes in posture ane observed. Wo heve used nome in several different wats to increase the effotence of ow laboweton wont (Son ownmle, in the timsmeonsumine catoutatons os zuostorono
 analysis is botng aplied to the results. mone apear to be several pownations of patients wth mpentension, sowe cormelated wits chinicel findinge, and othows whan rerpine furthen chawactorization. Comelation beoroan varions Eactors, suoh as puamo electalute concentrations, citoulating catocholmmo levels, plasma renin activity, and aldosterone socuetion, heve been calounated. Curveritting nethods are appliod to cerdain functions whirh oen be desoribod as the sum of emponontials. with the presont poonans and filles, we can organise and use the data from this emponding gromp of putiencs, interpreting ana vilizing the infomation for on-going stuctes.
INDIVIDUAL USER PROUECT DESCRIPTION

INVESTIGATOR: Roy H. Maffly, M.D.	DEPARTMENT Medicine	WSTTTUTION: Stanford Comptetion Centor Stenford Meaicel School.
FIELD OF INVESTIGATION Ion transport		PROEET TMLE: Relationship of Metabolism to Sodium Transport
	GE: $\quad 1$	AMOUNT OE RESOURCE USAGE:

PROIECT DESCRIPTION
(Approximately 300 words)
We are measuring simultaneously the rate of sodium transport and the rate of CO_{2} production by the urinary bladder of the toad. Rate of sodium transport is measured as the short circuit current. Rate of CO_{2} production is measured as the rate of decrease in conductivity of a dilute NaOH solution as CO_{2} is trapped. Outputs proportional to each measure are recorded on a dual chamel Varian recorder.

The computer is used to facilitate "continuous" (4 minute inter.. val) comparison of the two variables. By means of the computer we calculate (1) rate of CO_{2} production from change in conductivity (not a proportional factor); (2) ratio of short circuit current to rate of CO_{2} production a) at each 4 minute interval, b) as increments following change of rate by adding variables (hormones, substrates, drugs), expressed as abṣolute numbers and as percentage change. We can thus compare changes in metabolism to changes in sodiun transport to see how they interrelate. In particular we are studying which changes first in different siutations and the different ratios obtained in different situations.

Grant No. \qquad
Section III-B

INDIVIDUAL USER PROIECT DESCRIPTION

$$
45.523
$$

PROJECT DESCRIPTION
(Approximately 300 words)

Project VSD is concerned with blood flow through ventricular septal defects (VSD) surgically produced in dogs. Two major sets of comparisons are made: the pattern of flow through the VSD is compared with the pattern of differentid pressure between the left and right ventricles and with the electrocardiogram (ecg) ; and flow measured by an electromagnetic flow probe (which we consider a primary standard) is compared with flow measured by other techniques used on people (Flick, dye dilution).

During the experiment, VSD flow, left and right ventricular pressures, and the ecg are recorded on tape. The more interesting data are selected for A to D conversion and for compuation of the differential pressure by program WORKHORSE. Program LISTHG lists digitized data, which, when graphed, permits comparison of the pattern of flow with the pattern of differential pressure. As might be expected, we have found that these patterns are very similar even under varying conditions (eg, ectopic beats), with flow slightly delayed with respect to pressure. Program cathlog produces a file which sumarizes all our VSD experiments.

Future effort will be directed towards the incorporation and use of programs developed in project carcat for pattern recognition of pressure and flow contours.

INDIVIDUAL USER PROJECT DESCRPPTION

PROJECT DESCRIPTION

(Approximately 300 words)
The project is an investigation of mathematical modeling techniques applicable to medical diagrams. The plan is ultimately to apply the causeeffect modeling techniques developed in reference 1 in an enviromment that allows online interaction between physician and computer model.

Currently programmed is the congenital heart disease model of Warner and his collaborators ${ }^{\hat{\alpha}}$. Also programed are text editor routines that are being used to speed the preparation of reference 1 .

Though a program has been written to implement the cause-effect modeling techniques of reference 1 using a Burroughs $B 5500$ computer, adapting even that program to ACME will require considerable effect as the program depends heavily on the nearly unique ability of the B 5500 to efficiently handle recursion and treat overlay automatically. It is felt that the ability to experiment with the models constructed in a way available only in an online system and that the increased interest and criticism that will result from testing the models produced in a clinical environnent justify the effuri.

1. W.F. Rousseau, A Method for Computing Probabilities in Complex Situations,
Doctoral Dissertation, Stanford University (in pieparation) Doctoral Dissertation, Stanford University (in preparation).
2. H.R. Warner, A.F. Toronto, L.G. Veasy, R. Stephenson, "A Mathematical Approach to Medical Diagnosis," JAMA , Vol. 177, July 22, 1961, pp 177-183.

IWDIVIDUAL USER PROJECT DESCRPTION

$$
186,106
$$

PROJECT DESCRIPTION

(Approximately 300 words)
Project "carcat" analyzes cardiac catheterization pressure tracings in children. From catheters in the right and left heart, pressure tracings are transmitted to the ACME computer, converted to digital data, and analyzed to determine atrial, ventricular, arterial, venous and wedge pressures. Currently the values in millimeter of mercury are calculated for the a and u waves, x and y troughs, and mean pressures in the artia and great veins, for systolic and end-diastolic pressures in the ventricles, for systolic, diastolic and mean pressures in the great arteries, and for mean pressures for the wedge positions. These values are calculated immediately and printed out on the computer terminal in the catheterization room.

At this time, efforts are under way to improve and ascertain the accuracy of the algorithms used in pattern recognition for atrial and ventricular pressure tracings.

The basic data acquisition and analysis system that has been set up will also be used to store data acquisition and analysis sytem that has been set up will also be used to store data for additional calculations and for the preparation of reports. As data is accumulated in storage from cardioc catheterizations and from other sources of clinical information, it will be possible to analyze large amounts in clinical data rapidly using eh ACME computer. Research into methods of storing and recalling data for analysis of clinical information will be an important part of our future efforts.

INDIVIDUAL USER PROJECT DESCRIPTION

INVESTIGATOR: Boma	DEPARTMERT 202 4as		INSTITUTION: Sempon -adery somol Stanford Computation Center
FIELD OF MVESTIGATION		ProJect TITE:	
Finmonem \qquad		noter	

PROJECT DESCRIPTION

(Approximately 300 words)

 reprosonts the dyo comentrutions in the wht hont folloting thation of
 herat, then the imphes response $h(t)$ is descibed be the cmotion:

$$
\operatorname{co}(b) \cdot \ln (s) \omega(b-3) d s
$$

$$
\cos (n)=\sum_{i-0} n(i) \operatorname{ci}(n-i)
$$


```
4
M%%
```


INDIVIDUAL USER PROEET DESERIPTION

$$
123,74
$$

PROJECT DESCRIPTION
(Approximately 300 wods)

An inexpensive, easy to realize interface for a Packard \#3314 liquid scintillation counter - IBM 1800 was built and tested. Several support programs written in 1800 Assembly Language and PI/l complete the interface. (A full description is available in ACME Note \#TPA-l). The interface mares possible direct reading of data into ACME date files from the counter output.

INVESTGATOR W. Nye	DEPARTMEAT Medical Merobiology	INSTITUTIOA: Stanford Medical School Stanford Computetion Certer
FIELO O MVESTGAT.OH see below	Prosect se	LE.

AMOUNT OF RESOIRCE USAGE:

PROUECT DESCRPTION

(Approximately 300 words)

The usage of this terminal under this name actually represents usage by several investigators in this depirtment. Mr. Nye has written most of the progrems and his field of usage has been calculation of equilibrium constants of antibody-hapten reactions and structural studies. Dr. Rosenberg hes used it for genetic studies of complement in mice. Dr. Stockor has used it for genetic studies in bacteria, and Dr. Ampraut for statisiical studies of the inmunologlobulins in men. It has also been used in a pedagogic sense by students of these men as vell as for manuscript editins. As the advantages of time sharing and date files become more evident, and directly connected instrumentation becones more comonplace, it is expected that there will be considerably more usage by this department.

INDVIDUAL USER PROEECT DESORETION

43,922

PROJECT DESGRIPTION
(Approximately 300 worts)

This project deals with the data collected in the Hospital Bacteriology Labovetory, quality control of the input as vell as storage in a fora suitrble for later analysis.

As conceived the project will proceed as follote: the secretaries will type the infomation at the teminal. The data vill be placed in a temoragy file fron when it will be andyaed for gmolity coneot. Deta not conjutont wh provious data vill be questioned and perheps the leboratory rest ropored. The data vill then be placed in a complete file and a sorted file, each of which moy be used for later analysis. The temporary file will be used to put out the daily laboratory reports. This step will include sowe calculations such as convexsion of sensitivity zone size to "sensitive" or "resistant".

Using the computer to put on dally roports allows the project to procead without addition of personel to type in information. The input tine of the secretary will be less than the time usually required to type reposts.

The data analysis vill give us information about the sensitivities of various bacteria to entibiotics. This infommen will help us to decide winch treatment to use in certain ceses. We will also be able to detect significont chonges in sensitivity as vell as major treads.

inomboun user promet descraption

Investigntok: Robert W. Porter	GEPARTMEA Biochemistry	INSTITUTION: Stantord Compation Center. Stanford Medicg School
FIELD O AVESTMATOM Kinetics of Aspartate Transcarbamylase		Proget TTLE ATC KIN

$$
38,012
$$

PROIECT DESORPTION
(Approximato!y 300 words)
ATC_KIN contains six programs used for the study of the reaction catalyzed by the enzyme, aspartate transcarbamylase. Program LstSq simply calculates a least-squares linear fit and standard deviation. Program Datafit calculates initial rates of reaction from experimental data. These data are time points and counts per minute of product at each time point. Initial rates are calculated by a least-squares linear fit; rates are taken from the fitted slopes, converted to molar values using a value for specific radio-acivity, and also corrected for onzyme concentration. This program, like the others in Project ATC_KIN, has been written so that it can be operated easily by other workers in the research group without experience in using computers.

Other programs are used to fit the various kinctic equations which describe the relation of initial rate to substrate concentration. Program Hyperfit fits the simple hyperbolic equation, called the Michaelis-Menten equation. The curve fitting procedure is very crude. For the two constant parameters in this function, initial estimates are provided, with ranges to be tested for both. In a first step, a coarse fit is obtained by testing all the combinations of the trial values for the two parameters, in coarse steps covering the two ranges. In succeeding steps, the operator provides new, smaller ranges to be tested, repeating this procedure until achieving a sufficiently defined pair of values. Next the data points are scamed for deviations from this fitted curve, and the point with the largest deviation may be rejected, at the option of the operator. If the point is rejected, the fitting process is repeated, giving new values of the two parametcrs for the best curve.

Program DataFit 2 simply gives a least-squares lincar fit for the linear equation obtained from the reciprocal form of the Michaelis-Menten equation, first calculating reciprocit values of the data points, and also calculating the kinetic parameters from the fitted slope and intercept. These values are then used as the initial estimates for use in Program Hyporfit.

Program DataFit 1 fits the much more complicatod equation which describes the kinctics of the two substratc reaction, or the simitar equation for the kinctics in the presence of intibitor. The equation fitted is in the simpler reciprocal form, which predicts a family of straight lines having a commonintersection. The programis designed to s elect the values for the coordinates of the common interscction point which gives the ! west value for the deviations of all the experimontal. points from their corresponding best lines. The fitting procodure is similar t, l... crudo teial-and-error method describod for program HyperFit. It should be noted that this curve-fitithg procedure requires the use of an on-line communication eystem.

Finally, Program ATCase 11 is a manuscript in preparation for publication of thesekinctic studies.

INVESTCATOR Walter E. Reymolia	DEPARTBTU Conctico - Inche -ntabsm materch 16				
FIELD OF MVESTGATION Conputer inswmantation of basic research instrmantation		$\begin{aligned} & \text { PROUECT TTLE: } \\ & \text { SOO7 } \end{aligned}$			

23,650

> PROJECT DESCRIPTION
> (Approximately 300 words

The "S007" project is a subset of the general work of the Instrumentation Research Laboratory, Cenctics Depermeat, in the ficid of instrumentation research conceived to ensver the question, "What kind of autonaced basic biological instruentation vould be suitable for interplanetary probes of exobiongentitia forme" Aconal accuplishmonts of this labotary hewe shed light upon thet arca and have inmediate here and now applications in comentional biological and nedical research. An emople is the compater-directed mass opectroneter implemanted by this laboratory and reported in this laboratory's Technical Report No. IRL 1062. A quadrupole mass spectroneter was uniquely controlled by a computer to achieve a high order of instrumen efficiency.

The "So07" account supporis technical and cngineering development. Progxans to help in engineering design have been written and used. Two such prograns are "RCs" and "Dbifoces." The first of these exaples vas a streightfonmatd electrical engineering circuit analysis aid and the second was an evaluation of the accurecy and complexity of instrmentation needed for a contemplated mass spectroncter puchase. Other "S007" files heve experimentel deta ucful in the development of algorithirs to be used in the control or data acquisition modes of ACR . "RACE" and "PICRE" are exaples of this mpe.
 that ACRE is to develop. This is the direct digital comection of the AChe comuter to laboratory finctmants. Aul of his investigazon's vage of ACht
has becn dixecty or indirectly in pussuif of this goal. To this date usage has been in anicipation of AOR's abiltey to serve these dixect
 spection stex.

Once princtpal goal is the futçation of an Asoocieced Electronic Tndustries
 is being supported by NIP grant 5 ROL NM 04257.07.

INDYIDUAL USER PROAECT DESORIPTON

PROIECT DESCRIPTION

(Approximately 300 words)

Individual objects, cells or standard spheres, are measured at a magniffication of 1000-3200x in a microscope for size and flourescence intensity at a specified wave length. Data thus tabulated forms the basis for statisticel analysis by computer. The computer is used similarly in calculating corrections when the microscope is used as a spectroflourimeter. Two menuscripts have been accepted and two are in preparation using these facilities.

The computer is also used to write the text of the MOS.

INDIVIDUAL USER PROJECT DESCRIPTION

ANOUNT OE RESOURCE USAGE:
14,655

PROJECT DESERIPTION

(Approximately 300 words;
The program tabulates the results of models for the genetical variability among populations in a linear array, with migration between adjacent colonjes.

The basic quantity is given by the symetric recursion

$$
\alpha\left(F_{d+2}+F_{\dot{d}-2}\right)+\beta\left(\mathbb{F}_{\dot{d}-1}+F_{d+1}\right)+\gamma F_{\dot{\alpha}}=0 ;
$$

its proper, spectal solution has thefom

$$
F_{d}=A_{1} \alpha_{1}^{d}+A_{2} \alpha_{i}^{d}
$$

where A_{1}, A_{2} are very complicated algebraic functions of the parametexs. The final quantity is a linear combination of F_{d} 's, d up to a few huncred. Thus, with the precision of this computer, a too large exror would result from its direct applickition.

To avoid this on ecuivalent direct procedure has been appied to the vector $F_{0}, F_{1}, \ldots, F_{d}$, making use of the asymptotic property $F_{d+1} \approx X_{1} F_{d}$. Initial vectors were calculated by an approximate formala and iterated to deternine if they were increasing of cecreasing. The two nearest ones of each kind were stored and, as new trial vectors, their average was used. The process was repentea till oscillations of the last digit, due to truncation, were observed. Thus final pecistions of the ouder of 10^{-5}, determined by perturbation of the parameters, vere obtained. Fine requited for each calculation varied frow a few mates to more than one hour, eccondig to the value of the perarebecs.

INDIVIDUAL USER PROJECT DESCRETION

PROJECT DESCRETION

(Approximately 300 words)
Our laboratory has used extensively the ACME computer. We used the com. putor for two major purposes:
A. ACME is used for considerable statistical computations and for the processing of laboratory data. We have been able to improve our insulin. assay significantly, and have obtained calculated values in a fraction of the time ordinarily spent on these computations in the past. The ACME statistical library has given us many programs which have proven to be very useful.
B. The ACME system has been helpful in the investigation of problems of glucose, insulin and triglyceride metabolism.

1. It has enabled us to obtain an initial mathematical formulation for the transport mechanism of glucose across the cell membrane when modified by insulin.
2. We have been able to obtain approximate answers for the kinetic constants describing 2 and 3 pool models.
3. It has been helpful for obtaining simulations of theoretical curves and therefore has given us insights into the possible mechanism operating in a particular metabolic situation.

We expect in the near future to utilize the analog digital conversion abilities of AGME and to expand our use of ACME considerably.

individunl user promect descraption

INVESTGATGE R. Sma11wood	DEFARTMERT Dean's Office		institution: Stanford Comptation Cont Stanford Medical School
FIELO O MGESTGATOA		modect tile	
Medical Facility Plauning		Mibitilan	
AMONT OF RESOURCE USAGE:			
		101, 849	

PROUECT DESCRIPTON
(Approximate!y 300 words:

The Stanford Medical Facilities Planning Group is carrying out a system planning study for the design of the new Stanford Medical Care Facilities. The project is dependent upon the services of ACME for two important functions. The first of these is as a data gathering vchicle for acquiring medical information from the Medical School faculty and community physicians. In the evaluation of alternative desjgu strategies for the Medical Care Facilities it is important that the medical care demands of the patients be knorm. To acquire this information a conputer dialogue system has been programmed on ACPF for interviewing doctors and encoding their standards of high quality medical care. This dialogue system has been completed and an extensive data gathering experiment is currently getting under way.

The second important use of ACME to the Medical Planning project will be in the evaluation via simulations of alternative macro organization strategies for the facility design. These simulation programs will use the data gathered via the dialogue system plus some estimate of pationt mix to simulate the total patient care demands that will be made on the major units of a particular design. In this way estimates of the relative efficacy of particular desigas can be obtained. Some preliminary programs toward this end are in the process of development. Later work under this project will very likely involve a much more extensive devolopment of these simulation progmeas.
\qquad

Section $111-\mathrm{B}$

INDIVIDUAL USER PROJECT DESCRIPTION

INVESTIGATOR: Pobert stonson, a.	department Cradiolom nivision sept. of vadicino	institution: Stemfori iocicel shoo Stanford Computation Cen
FIELD OF INVESTIGAOA Cardiac cathoterisation		PROUECT TTLE Cach rat

AMOURT OF RESOURCE USAGE:

$$
233,453
$$

PROJECT DESCRIPTION

(Approxinately 300 words)

The Cardiolog bivision is currenty employino the home computer svsten to develop a reliable, on-line methoe for analysis of cariac cathe terization cata. At prosent four lines of analog data are being transmitted from transcucers and a dye consitoreter located in the catheterization latocratory to the IBM 1800 process control conouter vhore the information is cigitized at a rate of 100 samples pex second. Bfter completion of the sampling the iwformation is transformed to the Th $360 / 50$ digitel computer whe ancysis of atrial, vontricular punamay artery, aortic vedge and brachial artery pressures and dariac outout are performed. rio results of the analysis porats of conmutaton of varions points os intorest in the ventricular and arterial pressure vavoform such as end diastolic and maximu systolic pressuros diastolio and systolic time intervals, and -V and semilumar valve oracionts and areas. A rrelininary coscription of the system and mothods of analysis is contained in the articles entitled Computer ralvsis of Cardiac Cathoterizotion deta vich hes been acceptec for publication in the Dorican Journal of Cardiology and a me-Ghared Dirital Comuter suste for on-tine ravivs of Curaiac Cothetorization Deta whoh has been sumitted for pulication to Computers in bjomedicine.

The ultinate desion aims of the pronram are;

1. Papic computer-caraiologist interaction
2. Canabjlities of performing more cotajled analysis of pressurwaveforns and transient hhenomena than con ke conveniently accomplished at pacont
3. Computer service for perinheral catheterization loboratorics
4. Centralized data fjles containine catheterjzation atatana varions jroontant clinical facturas of mationt roconcs for conclation stazios.
\qquad

144119

PROJECT DESCRIPTION

(Approximate!y 300 words)
The ACME facilities are being used in the development of computer controlled instrumentation. This involves using the $360 / 50$ either to commicate with a small laboratory computer or commicate directly with the instruments in the laboratory.

Data collected by a LINC computer (a small biomedical computer) from mass spectroneters is being sent to the 360 where calculations are performed on it. The output: is thon retumed to the LINC where it is displajed on a CRT display unit. Utilizing the 360 in this operation increases the speed at which the calculation can be done and provides the opportunity to progran for them in a higher leve1 langiage (PL/1). The commanication is done via the 270X-270Y general purpose digital interface.

The $270 \mathrm{x}-270 Y$ system also provides the ability to commenicate directly with laboratory instrunents and other devices (for exanple digital plotters). Prograns have been written for testing the capabilities of this equiprent and the 1800 Process Controller to compare their capabilities to those of the LINC for instrumentation control. In this instance the instrumetation involved is a GLC/mass spectrometer system. It is intended that with the ACWE time sharing systen we will have the flexibility and accessibility of the enall compater combined with the capacity for data storage and compating of the large computer.

ACME is also being used in a rather conventional sense for time shared data storage and retrieval.


```
ANOQ:UZ NESUUNOE US, 心E:
```


79,932

The programs separate basically into two categories: (1) PDP-8/ACME interfacing and utility routines, and (2) ACME data processing routines.

The PDP-8/ACME programs consist of generalized inter-computer communi cations: 2 -way data transmission and 2 -way storage routines which operate with the PDP-8 slaved to ACME. Utility programs provide some PDP-8 capabilities on ACME (e.g. PDP-8 assembly language program listings.)

Some of the major data processing programs are:-
(1) An adaptive digital filtering program for removing muscle tremor in the ECG waveform.
(2) A sorting program which allows re-grouping and listing of patient data stored on disk files by age, sex, diagnostics, etc.
(3) A processing program which given output from the sorting program computes various parameters for any time increment over the ECG waveform (e.g. mean, variance, conversion of rectangular to polar coordinates).
(4) Non-parametric pattern recognition algorithms to dichotomize disease entities collected and pre-processed by the PDP-8. The work is in early stages of development, thus it is premature to predict the eventual power of such procedures applied to the diagnosis of ECG waveforms.
(5) An adaptive classification program is in progress which forms a pattern vector from samples of the P-wave and QRS-wave. The vector is multiplied by a matrix to remove statistically insignificant elements, and the euclidean distance between the vector being classificd and a set of vectors with known classification is measured. Using a massive amount of data soon to be collected and transferred from the PDP-8 to the ACME system. it is oxpectod that the program will provide a significant improvement in current diarmostic: torhnirmse

[^0]: *Sebbatical Leave 67-68
 *
 Substituting for Dr. Morrel

[^1]: 0144 : PAUSE AT LINE 26.800
 RUN!?

[^2]: (where is lifte intontity and is ta sumed li At maso as sam 'y tha atecion systan)

