JET PROPULSION LABORATORY

LEFEROFFICE MEMO

TO M. Einer FROM G. L. Hobby DATE November 8, 1960
SUBJECT A Device for the Detection of Microorganisms in the Martier

Atmosphere (Multivator, by J. Lederberg, for 1964 Mars Split Capsule

Lander)

I. Function

- 1. The device will collect fine dust particles from the Martian atmosphere.
- 2. The particles will be imposulated into small chambers which will contain a variety of types of liquid media.
- 3. Optical turbidity measurements will be made of the immoculated chembers at programmed intervals to determine increases in particle number.
- 4. pH changes in the media will also be measured at programmed intervals to detect possible metabolic activity of the innoculated particles.

II. System Description

1. Sample Collector

The general requirements of the collection mechanism are as follows:

- a. Provide the capability of sempling relatively large volumes of the Martian etmosphere in order to compensate for possible low concentrations of viable particles. (Ten to twenty-five. liters)
- b. Macriminate between particle sizes. Size of particles must be optimum for immoculation into chambers and for having a high probability of having a large number of absorbed microorganisms.
- c. The manner of sample collection should be consistent with

simple and effective immoculation of the growth chambers.

2. Impoculation System

- a. The system must be designed to permit unscaling and rescaling of growth chambers before and after innoculation.
- b. Innoculum must not interfere with subsequent optical turbidity measurements, or pH measurements.
- c. The amount of immoculium may range from 0.1 to 1.0 cc per chamber.

3. Growth Chamber

- a. Each chamber will provide for 1 milliliter of medium plus innoculated sample.
- b. Walls of chamber must be chemically inert. Toxicity tests should be designed for transit time to Mars or longer, (200 to 250 days).
- c. Walls of chamber not used in optical observations should have very low reflection coefficient.
- d. Chambers must permit optical turbidity measurements.
- e. Chambers should include electrodes or other system for pH determinations.
- f. Total system should consist of 50 to 100 (or more) chambers.
- g. Configuration of the chambers must consider minimum volume requirements and be consistent with a programmed scanning of the total chamber system for optical turbidity and pH measurements.
- h. All growth chambers in the system must have the capability of being sealed before and after immoculation.

4. Detector System

a. Turbidity

- 1) Only changes in forward scattering of light should be measured.
- 2) Light source must be miniaturized and of low power consumption.
- 3) Light detector of small size, (possibly photoconductive, PoS, PoSe, or CdSe).

b. IH Measurement

- 1) Range: 1-14
- 2) Sensitivity: 0.5 pH units
- 3) Measurements must be made in chamber while scaled.

CILI/An