June 6, 1949.

Daar Xin:

Sinee our vary provocative discumaion on the miltiple-target theory, I have had a chance to look up som of the litorateure, and an aupprisod to have to confens that there has been surperisiacly little treatmont. Howevar, I 0 till think that somothing alght be found e.g., as a treAtment of the algmold aurvival ourves when beoteria are allowed to form aiorocolonies on agar before beling Irrediated. Laria and Dulbecoo's approach La mbstantialiy the same, although they have to use certain elighty different teriss, and appear to have dmpended on an arithmetic mameation of their sories in ovalumting the number of units. Laria and Latarjet's J. Bact. papar on irradiation of lafected bacteria was the oaly clear statement that I could find along the lines of the theorynthat you are developing, and they seem to have used empirieal methods of fitting to the untransformad curves. While on the train, I tried to see what I could do, but didn't come out with rory mach. Assuning a constint number of maciei, n, we have, of course:
(1)

$$
p=1-\left(1-e^{-a d}\right)^{n} \text {, or } \quad q=\left(1-e^{-a d}\right)^{n}
$$

I don't see any good way of aimplifying this to facilitate the eatimation of a and n from the p / d data, oxeopt posaibly to approximete, for ad large with respect to $\mathrm{n}:$
(2) $\quad P=a u^{-a d}$. This just mans, what we know already, that the los n / d curves will becom asyaptotic, for large dosea to lines with slope - which will extrapolate to the $p=0$ line with an intercopt dose equiralent to $\log n / a$.

Iarila and Latarjot refor to Delbridok's derivation of the expression:

$$
\begin{equation*}
p=e^{-n e^{-a d}} \tag{3}
\end{equation*}
$$ Poisaon distribution (untruactand). I asaum that this is the function which tranaforme so niocl with logloge:

(4) $\quad \operatorname{loglog} 1 / p=\log n-a d$. Thare is one major diffioulty with this expression that I can't see the solution for, and wondor how you map have handled it. Beomase of the derivation sroan fictitious Poisaon, tha p in (4) does not refor to $\mathrm{P}_{\mathrm{I}} / \mathrm{P}_{\mathrm{O}}$ where these rofer to the oberred values with and without radiation, ${ }^{\text {bal }}$ to $p_{r} / p_{o c}=p_{r} / p_{0}+e^{-1}$. It is Iairly obrious in (4) that p does not unopae unity when no d is delivared. The full expreasion should reed, (5) 5 , $\operatorname{loglog}\left(1+e^{-n}\right) / 4=\log n-a d$, which would not give precise strilght linse when loglog Pr isplotted against d.

The correction for p will become negligible when e is anal (egg. will be less than 18 for n more than 5), and for values of which allow low survival may be unimportant even for small n. But in the first couple of decades of killing, with values of n ca. 2 or 3, I think that this theory demands a rather appreciable deviation from linearity. However; the expression should lond itself to solution by successive approximation; by estimating an uncorrected n from (4), and then mbstititing this value of n in (5) and so on,.

I haven't. been able to find that reference to Y le ls paper, as we don't have a fill a of the Proc. Roy Stat. Soc London here, but I have a rather distinct recoillection that it was about 1916, and that it covered a good approximate function instead of (1), using tables of the gamamfunctions. It doesn't really have much bearing on the problem of (4). I'll be very much interested to hear how your analysis compress with this who, and am looking forward to seeing your manuscript. If you cant find the File refersmes. Dr. Rob't Boche, Institute of Radiobiology \& Biophysics, U. Chicano, Obi. 37, ie when I heard about it from in the first place.

I'm not sending the "analysis" of the N. tetrasperma data, as I found an error in it: I reg? enter to include the 3-hit clos. Yon ll. be interested to look un Uber and goddard, JWenPhraiol 17, 597, and recalculate their data on the basis that the 1 -target-killad are dead. and 211 of the 3-, and half of the 2- class are selfosterile.

That stuff of yours on induced belanced heterokaryons in Neurospora sounds very exciting, and I am going ton help areself to the ideas it provoked onncerning som parallel expta. in diploid knoll?.

> stnceral.

Joshua Lederberg
P.S. I didn't mind wy p's and $q^{\prime} s$ too carefully on the first page. But I think that you can get what I moan without revising it any further than I did in ink. Notice that (2) give e you $\log p=\log a-a d$, while (4) gives you
$\log \log (1 / 1-p)=\log n-$ ad. That is, innthe $\frac{1 i n i t i n g ~ c a s e, ~}{3 / n}$ p should approximate log (1/1-p); 1.e., $p^{-p}=1-p\left(+p^{2} / 2-p^{3 / 36) ~}\right.$ which is of course true for small values of p.

$$
\begin{aligned}
& q=\left(1-e^{-\Omega}\right)^{n} \\
& \doteq 1-n e^{-\Omega} \\
& q=1-n e^{-\Omega} \\
& 1-q=n e^{-\Omega} \\
& \log s=\log n \\
& \frac{d \log s}{d \Omega}=-1
\end{aligned}
$$

$$
\text { For } e^{-\Omega}<.01 \quad(>5)
$$

$$
n<10
$$

$$
\begin{aligned}
& \text { e.g. for } e^{-\Omega}=.01 \quad n=10 . \\
& \left(1-e^{-2}\right)^{n}=.99^{10}=.903 \\
& 1-n e^{-r}=r-10.01=.900 \quad 0 \mathrm{~K} .
\end{aligned}
$$

scenbe coaluated by measuming the slope of the hiniting line,
 ond infron the interept.

O we havea funcatef Pousan:
KCA (10)

$$
\text { (10) } \begin{aligned}
1-S & =\sum_{1} z_{n} q^{n} \\
& =\frac{1}{e^{r}-1} \sum_{1} \frac{r^{n}}{n!} q^{n} \\
1-S & =\frac{1}{e^{r}-1}\left[\sum_{0} \frac{r q^{n}}{n!}-1\right] \\
S & =1-\frac{e^{r} b-1}{e^{r}-1}
\end{aligned}
$$

$$
q=1-e^{-a d}
$$

Defining $S^{\prime}=1-e^{r q} / e^{r}$
We find $\delta^{\prime}=S\left(1-e^{-2}\right)$.
and $\log \log \frac{1}{1-s}=\log r-a d$.

