Reprinted from Abstrame, 7th International Congressof Microbiology, Stockholm, 1958, pp. 58-60.

Extranuclear transmission of the F compatibility facto in E. coli. Joshua Lederberg, Departments of Genetics and Medical Genetics, University of Wisconsin, Madison 6, Wisconsin, U.S.A.

The mating types of E. coli include F females and F⁺ males, the latter being determined by the presence of a readily contagious factor "F". A number of lines of evidence converge to suggest that this is inherited outside the chromosomal system of linked markers which encompasses most of the known heredity of E. coli: 1) in crosses of $F^+ \propto F^-$, virtually all of the progeny are F⁺ while other markers segregate in characteristic ratios. 2) When an F culture is seeded with a few F^+ cells, the F^+ character spreads through the entire population, indicating that it multiplies more rapidly than the other genes. 3) After pairing with an F⁺ cell, an F⁻ cell gives rise to a pure F^{\dagger} clone; in comparable matings of F^{\dagger} x Hfr (high frequency of recombination with respect to other markers) the exconjugant F clone invariably segregates a mixture of unaltered parental and recombinant types. 4) F⁺ is transferred more rapidly and efficiently than any other known markers, and in $F^{+} \times F^{-}$ crosses, shows no linkage to any other marker. 5) As described by Y. Hirota, the F⁺ factor can be efficiently removed from a population of F⁺ cells by treating them with acriding dyes, especially acriding orange. These findings suggest that the F^+ cell carries an extranuclear factor, i.e., a plasmid, which is rapidly and efficiently transferred to F cells during brief contact. In many respects, the inheritance of F is analogous to that of the factor which governs the trait colicinogeny as analysed by Fredericg. The mating behavior of Hfr mutants, the instability of

some of these to give infective F^+ reversions and the segregation of the Hfr in various linkage relationships in Hfr x F^- crosses suggest that the Hfr mating types represent the fixation of the F factor at specific chromosomal loci.

The dearth of recombinants given by F^+ compared to Hfr has provoked the hypothesis that F^+ is instrinsically sterile, and that its recombinational fertility depends on spontaneous mutation to Hfr. Such mutants undoubtedly occur, but it is difficult to assess their role in F^+ fertility without an accurate measure of the mutation rate. The regularity with which $F^+ \propto F^-$ crosses give F^+ progeny argues against the necessary role of stable, non-infective Hfr mutants similar to the type Hfr the regularity of F^+ progeny is not due to secondary reinfection. It is still possible that in addition to occasional Hfr mutations, the more fertile cells in an F^+ culture have experienced more transient changes in the quality or position of the F agent they carry.