Nuclaic Arid
26 Noventer 1952.
Athury rays eq. 2pe if $16.2 A$,

$$
a_{0}=18 \cdot 1 \%
$$

$$
16.2^{2} \cdot 2 / \sqrt{5}=203 A^{2}
$$

$$
\text { R.W. }=330 \text {. Qemitf } 1.62 \quad \therefore M . V_{1}=338 A^{3} .
$$

$\therefore 1.12 A$ per saidue.
Otrawed 3.34 .
st pethapse were traple-dina
Size of molecule. Yerterdon (25190.1252) iha bistrgyiqminan Poffey $101 /$

I asked the rize, and he repsated $15 A$, and discussed he difficult, of measuming a 2 L
? sio el bjecta Platy 250 a wer ~ 20 thes es raith Only ue dia ten; \therefore cyhindivat.
$\therefore 1.18$ per residue.

Let us form helixes with $\theta-1+\ldots .0$ nearly along axis

$$
\begin{aligned}
& 1 \\
& \frac{2.55 R}{4.28} 8 \text { max. }
\end{aligned}
$$

I assume PO
three will pacle soretton well.

$$
\begin{aligned}
& T_{0}+\angle P-0-H=110^{\circ}, \\
& H-0 \text { cata d a dark } \\
& \text { somet. }
\end{aligned}
$$

If ithotback in pla e Qpo, ade wox be 15°, and comporent $2.55 \times \cos 15^{\circ}=2.47 \AA$

Tassume cimponat $\frac{9}{j}=2.45 \mathrm{~A} ;$

$$
\frac{1,23}{+.208}
$$

then Qpor $=3.35-2.45=0.988$
2.25
$\frac{5.29}{7.16}$

Phopagte y rated 23.5°.
thatre $2.80 \AA$
 tolaqe.

Iforchude that the hydroger la doase not located bere Q, or that
assmuption about tiond a agte is in ever. a fle abundou assumptosi abant Q-0-44 it
in Tre ho no pock three por 1 ,

 (unt $z=/ 2$ (cornection lopen)
This fis wrouq. Thyy packly oy having ports nearly,

The $\left(\mathrm{PO}_{4}\right)_{3}$ rimpsare nearly arer one
The $P-0-1 t$ bonda gles pere that st
 there are $\left(\mathrm{So}_{4}{ }^{\prime} H\right)_{3}$, ess:

$$
\frac{3.82}{3,97}=\frac{3.53}{\sqrt{3}}
$$

Iassme Ologers $1.70 \AA$ apant, both with with 4 ?
This matees $O-O=2.45 \AA$ in $A O_{4}$
2.55 A $-0-H \cdots O$
3.16 A in basalplane
2.49 䈨 letween $\left(\mathrm{FO}_{4}\right)_{3}$ layss.

He lastis too small. Robbably Al's are tipped,

Tipplignt $P Q_{4}{ }^{\prime} s$.
Weasuruestsfa model quies
$h=1.52 \& . \quad h^{\prime}\left(\right.$ retwan $\left(\theta \theta_{3}^{\prime} \Delta\right)=1.88 \AA$

Hence with $h=1.52 A, h^{\prime}=1.88 \AA$ we have

$$
D-O=2.45 \AA \text { in } \mathrm{DO}_{4}
$$

$$
\begin{aligned}
0-0 & =2.45 A \\
& =2.55 A \\
& =3.45 R \\
& =2.74 R
\end{aligned}
$$

$$
\begin{aligned}
& =3.45 R \quad \text { inssal val }, z=1 / 2 \\
& =2.74 R \text { diagave }
\end{aligned}
$$

If $\mathrm{O}_{3} \nleftarrow \mathrm{O}_{2}$ mahe 60° an les wi pupection, otatimer from $z=0^{2} t=x=1$ is t_{0}^{0}, i.e., Nipeat after
 Q puraild be ${ }^{2} .69$ R and 2.77 A. Trese are quite all right.
Hence we camot predict number 7 fienidues pertume very alosely. We do predist
60 (lead $60 \times 3.4 \AA$, pitch $=c_{0}=20 \times 3.4=68 \mathrm{~A}$)

The PO_{4} grapsa are rotated 6.65°
Imeer $D_{\text {'s at }} x= \pm 0.76 \AA$, nuten O^{\prime} sat $z=0.96 \AA$
Nrte that each chami has $\Delta 甲=\sim 113^{\circ}$ on $\sim 127^{\circ} ;$ that is, roughly 3 rsidues per $\overline{\overline{t u r n}}$, There are thee chains closely interturineo, and Reld together liy hydrogen l,ands between PO_{4} 's.

The rifore residues somect uppen 0 at $z=0.76 \mathrm{~A}, \varphi \cong 0$ with lomert $0,2=\frac{1}{2}-0.768$,

sith The ribore groups will hoolp acrozs sither. hith butch. Fo for ribore, the nist po
 3.4 Aalong 2 wiphresakr pach, qina is at 90° for the then the thone poli

I I havist checked the ytrain ion the

With riztthanpre $(\text { (rtot })_{3}$ the ywo
M Nuinidines itick at a 4 , pop to x is,
Anow Wench ares with lege hegatue hirch ge
(N) at $\rho \cong 7 \AA$.

29Abremenn552
Ifelical arrangements $57 P A_{4}$ thatedra.
A straight colmen. Assume $P-0=1.54 \AA$

 char le defo it e ito a hal ditult t
 the hoix atoel 010 axis?

$\alpha-20$.
2. Re $2 \frac{0}{0} p=2$
to +4$)^{-2} \operatorname{AB}(a \operatorname{la}$
to inghta $d=D$. -tonighta d D.

Bundarand AB, of:

Now bend eround ED: Thisues a Relix.
Iassume 7° as augle of operation (fion Astl in 17). Roduis to $P=2.78 \mathrm{~A}$. Tranclat alion $q z=3 .+0 \mathrm{~A}$

$$
\begin{aligned}
& P_{1} P_{2}=3.42 \AA \\
& \Delta=0.34 \cdot \operatorname{in} 3.5^{\circ}=0.02 A
\end{aligned}
$$

R meanstht ve letete is on
 ofitomus hange ver, lefte.
$x=5.8^{\circ}($ at radius 8, Patm $)$ Which the PO_{4} pletrateg whe to te rotated. On p.6 we que $x=6.65^{\circ}$.

Why are the $104+$
They an at $3,42 \AA$ (if $5 \overline{8}^{0}=x$, right), whens we Predict 3:74f, assumniq $\quad 0 \ldots 0=2.65 \mathrm{~A}$.

Answer: The PO_{4} tetrathedr a are Trig. Dan with $D-P=1.54 \AA$.
Wee have pure give
dieter for which

(thc.).

Asa guess mus (th le courted anta)
I select $P=0=1.45 \AA$ \& $P-0=1.60 \AA$. Totrablubien in normal , ie tatar:

With no rotation.
or $\cdots 0_{0}=2.418$ assuming thaludnal
We can sain a little by $A^{\text {do }}$ s erasing the $O_{I}-P-O_{I}$ angle, 116°. Then all is $0 \cdots O^{10}$ distances are nearly equal:

$$
\begin{aligned}
& \theta_{I} \cdots O_{T}=2564 \\
& o_{工} \cdots O_{T}=2=49 \\
& \theta_{1} \cdots \theta_{I}=2.46 \lambda
\end{aligned}
$$

We con qain a little ling decrearing $2 Q_{1}-D-D_{I}$ to $10 \Omega^{\circ}$ and decearnig $O_{\pi}-D_{-} O_{I} t_{0} 10 \frac{2}{2}\left(s_{1}, e^{2}\right.$

$$
\left.\begin{array}{r}
O_{I} \cdot O_{I}=2.48 \mathrm{~A} \\
\angle O_{I}-P-O_{I I}=O_{113.04}=2.2 \% A \\
O_{I} \cdots O_{I}=2.55 A
\end{array}\right\}
$$

Because \$ mucutarintir ober $t \angle O=P=O$ I leaver at $109^{\circ} 28_{1}$ and re 1

$$
\begin{aligned}
& \angle \theta_{\mathbb{I}}-\mathrm{P}_{\boldsymbol{\pi}}=110^{\theta}=O_{\pi} \cdots O_{\pi}=2.38=8 \\
& \angle O_{I} P-D_{I}=100^{\circ} O_{I} \cdots O_{I}=2.45 \AA \\
& \frac{219^{\circ}}{\frac{-105}{1140^{\circ}}} \quad-\theta_{I}-P=\theta_{I I}=113.78^{\circ} \quad \theta_{I} \cdots \theta_{I I}=2.538
\end{aligned}
$$

$\frac{2.41}{\sqrt{2}}=1.70 A . \quad$ Knge contret distanes betwe2AA

Pal 4 at Astt 17 in 17 seav2 17 in 2 tan

Let

$$
\begin{aligned}
& \text { ws at } \angle \theta_{I}-P-\theta_{I}=100^{\circ} \\
& \angle O_{\text {II }}=P=O_{H}=110^{\circ} \\
& \angle O_{I}-P=O_{\text {II }}=11+.2^{\circ} \\
& O_{5} \cdots O_{5}=2.45 \AA \\
& 0_{5} \cdots 0_{I}=2.22 A \\
& \begin{array}{l}
\sqrt{2}=1.15 \quad \begin{array}{r}
3 .+0 \\
\sqrt{2}=1.07
\end{array} \quad \frac{0,-165}{1.25}
\end{array}
\end{aligned}
$$

With $P_{-} P=3.40 R$, whact $0 . . .0 \cong 2.52 A$ Hence fy tripqpad at pet $0 \cdots 0$ vanl 1 a e
 Ccheck $\mathrm{S}_{3} \theta_{q}$). Rles are atill la gen.

$$
\begin{aligned}
& \text { Lut } \begin{aligned}
O_{I}-P-O_{I} & 90^{\circ} \\
O_{I}-D & =O_{I T}=116.7^{\circ}
\end{aligned} \\
& \begin{array}{l}
O_{I} \cdots O_{I}=2.26 \AA \\
O_{I} \cdots \theta_{I}=2.22 \AA_{I} \\
O_{I} \cdots O_{I}=2.60 \AA
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& O_{5} \cdots O_{\text {II }}=2.59 \AA \quad \text { Disi allmig }
\end{aligned}
$$

Mrewer, the pentox pinhs frim col

 uncually wigid Th \therefore required lyp the sho thangth of the pertone.

MHF
Ao sucleate, Wilkina, R.T.Q.i., W. E, Seeds, Wature. 167 7,5Q (r951) Nuckic Aid o. Ext, misist 45°.
Fileys rack duw ay otcetchng an become opt. pos.' Qreak at druble lemgth.

X-ray spacing does not champe an alyying.
WJ Fraser RDBR Rases ibid p.ib1: Deoxpribomcluc acid a polarized nifh red. A Stury shewed merid! ares at $3.34 \AA \leqslant 27 A$.

Chemistry

A Proposed Structure for the Nucleic Acids

By Linus Pauling and Fobert B. Corey

Gates and Crellin Laboretories of Chemistry,* C Liformia Institute of Technology, Pasadena 4, Calif.
(Comunicated December 1952)

The nucleic acids seem to be comparable in importance to the proteins, as constituents of living organisns. There is evidence that they are involved in the processes of cell division and growth, thet they participate in the transmission of hereditary characterss they are
important constituents of viruses. An
understanding of the molecular structure of the nucleic acids should
rixa be of value in the effort to understand the fundimental maziext

Prockexmexx phenomena of biakexy life.
reanmably
Only recently has $f^{\text {complete information been gathered about the chemi- }}$ cal nature of nucleic acids. Wheremantaf The nucleic acids are giant molecules, composed of comlex units. Each unit consists of a phosphate ion, $\mathrm{HPO}_{3}{ }^{--}$, a sugar (ribose in the ribonucleic acids, deoxyribose in the
deoxyribonucleic acids), and a purine or pyrimidine side chain traxtrosiong s.methylaytorne manacime (adenine, guanine, thymine, cytosine, uracil). The purine or pyrimidine is attached to carbon atom I^{\prime} of the sugar. enzyrecently
through the investigations of Todd and his collaborators; 1 bare (rood avi-
dance been obtained as to the nature of the linkage between the sugar and the phosphate, it seems likely that the phosphate ester links involve carbon
atoms 3^{\prime} and 5^{\prime} of the ribose or deoxyribose.

X-ray photographs have been made of sodium thymonucleate and other preparations of nucleic acids by Astbury and Bell ${ }^{2}$ and, more recently, by
3. Some information about the nature of the struc-
tares has been obtained from these photographs, but it has not been found
possible to derive detailed structures from the x-ray data.

We have nov formulated a promising structure, by making use of the
general principles of molecular structure and the available information
about the nucleic acids. The structure is not a vague one, but is
precisely predicted; atomic coordinates for the principal atoms are given

in the
the x-ray photographs; intensity calculations hove af yet been made,
-haurrex, and the structure cannot be considered to have been proved to be
correct.

The formulation of the structure. - The most important configuration of polypeptide chains in proteins is the a helix. ${ }^{4}$ In this structure the amino-acid residues are equivalent (except for differences in the side chains);
there is only one type of relation between a residue and neighboring residues,
one operation which converts a residue into a following residue. Through rotation-
the continued application of this operation, a zwackworanslation, the a
helix is built up. It seems not unlikely that a single general operation asymmetric
is also involved in the construction of nucleic acids from their/fundamental
units. The general operation involved would be a rotation-reflection, and its application would lead to a helical structure. We assume, accordingly, that the structure to be formulated is a helix. The giant molecule would tius be cylindrical, with approximately circular cross section.

Some evidence in support of this assumption is provided by the electron micrographs of preparations of sodium thymonucleate described by Williams. 5 The preparation seen in the shadowed electron micrographs is clesrly fibrousf in nature. The small fibrils or molecules seem to be
circular in cross section, and their diameter is apparently constant; there
is no evicence that the molecules are ribbon-like. The diameter as estimated from the length of the shadow tar has been estimated at 15 or 20 A .

The x-ray photographs of sodium thymonucleate show a strong equatorial reflection at 16.2 A . If it is assumed that this is due to a hexagonal packing of cylindrical molecules, the dianeter of the molecules is 18.7 A . From the average residue weight of sodium thymonucleate, about 330 , and the density, about $1.62 \mathrm{~g} \mathrm{~cm}^{-3}$, we calculate that the volume per residue is $338 \mathrm{~A}^{3}$. The cross-sectional area tx per residue is $303 \mathrm{~A}^{2}$; accordingly the length per residue along the fiber axis is about 1.12 A .

The x-ray photographs show a/strong meridional reflection, with spacing about 3.40 A . This reflection corresponds to a distance equal to
along the fiber axis/three times the distance per residue. Accordingly, the reflection is to be attributed to three residues.

If the molecule of a nucleic acid is a single helix, the reflection
at 3.4 A would heve to be attributed to a regularity in the purine-pyrimicine sequence - that is, to a regular sequence of nucleotides, involving repetition

$-5-$

structural
of a/unit of three nucleotides. It seems unlikely that the nucleotides re-
peat in this regular way; it is likely instead that the nucleic acids,
like the proteins (insulin), involve a less regular sequence of the fund-
mental units. The alternative explanation of the strong 3.4-A meridional
reflection is that the cylindrical molecule is formed of three chains,
which are coiled about one another. The structure described below is a threechain structure, each chain being a helix with fundamental translation equal to 3.4 A Each of the three helical chains is tightly coiled, with a little
more 11.65
of the helix representing a single chain is mporimately 10 A. The three pitch
chains interpenetrate, in such a way that the leak of the triple helix is 3.88

5
The first question to be answered is that as to the nature of the
core of the three-chain helical molecule - the part of the molecule closest to
the axis. It is important for stability of the molecule that atoms be well
paced together, 玉txsmansxidnexy and the problem of packing atoms together
is a more difficult one to solve in the neighborhood of the axis than
at a distance away from the axis, where there is a larger distance between
on atom and the equivalent atom in the next unit. (An example of a helical structure which seems to satisfy all of the structural require ments except that of close packing of atoms in the region near the helical axis is the 5.2-residue helix (the γ helix) of polypeptide chains. This structure y seems not to be represented in proteins, whereas the dAb eff packed in a similar a helix, in which the atoms are/satisfictorily close manner about the axis, is an important structure. There are three possibilities as to the composition of the core; it may consist of the wax w purine-pyrimicine groups, the sugar or the phosprorichovis. Because of their varied nature, canon
it to improbable that the purine-pyrimidine groups cox id be packed along the axis of the helix in such a way that suitable bonds could be formed between the sugar and the phosphate gond; this pessribizizy choice is accordingly also
eliminated. It is \wedge unlikely that the sugar groups me constitute the core of the molecule; The shape of the ribose molecule and the deoxyribose molecole is such that close packing of these molecules along a helical axis is

packing is provided by the polysaccharide starch, which forms helices with
a hole along the axis, into which iodine molecules can fit. We conclude

$$
-5-
$$

that the core of the molecule is probably formed of the phosphofrefed
groups.

A close-packed core of phosphoric acid residues, HPO_{4}^{--}, can easily
be formed. At each level along the fiber axis there are three phosphate groups. These can be packed together in the way show in Figure 1. Two oxygen atoms of each tetrahedral phosphate group form an octahedron, the trigonal Which is the figure axis of the
 complex of three phosphate tetrahedra can be superimposed on this one, with on y a ane dol
lIthe change in azimuthal orientation. The neighorhood of the axis
of the molecule is then filled with oxygen atoms, arranged in groups of
three, which change their azimathal orientation by about 60° from layer to oppraxise
layer, in such a way as to produce closest packing of these atoms.
distance were preserved between the next oxygen layers, the basal-plane distance along the fiber axis would be 3.46 A. This value is xexyx olove-to
the spacing observed for the principal meridional reflection xurgextragx

It is to be expected that the outer oxygen atoms of the complex of three phos-
phate groups would be attached to the ribose or deoxyribose, and that the hydrogen atom of the HPO_{4}^{--}residues would be attached to an inner oxygen atom, and presunably would be involved in hydrogen-bond formation with another of the inner orygen atoms. The length of the 0-H... 0 bond should be close to that observed in $\mathrm{KH}_{2} \mathrm{PO}_{4}, 2.55 \mathrm{~A}$. The angle $\mathrm{P}-0-\mathrm{H}$ should be approximately the tetrahedral angle. It is found that the spacing 3.4 A is not prescrved, with this bond angle, if the hydrogen bonds are formed between one $\left(\mathrm{HPO}_{4}\right)_{3}$ group and the group above or below. Accoroingly we assurne that hydrogen bonds are formed between the oxygen atoms of the phosphate groups in㗔 the same basal plane, as indicated in Figure 1.

If the bond angle $\mathrm{P}-0-\mathrm{Hl}$ is assumed to be the tetrahedral angle, and the hydrogen bonds $0-\mathrm{H} \cdot \mathrm{O}$ are assumed to be linear, the phosphate groups must be rotated by 6.7°, in such a direction as to bring the plane of the inner oxygen atoms closer to the plane of the phosphorus atoms. The \underline{z} parameter of the inner oxygen atoms then becomes $\pm 0.76 \mathrm{~A}$, with that of P equal to 0.00 A . The \underline{z} parameter of the outer oxygen atoms is $\pm 0.96 \mathrm{~A}$.

The radius of the inner oxygen atoms (the distance from the axis of the molecule) is found to be 2.11 A, assuming the values given above for the P-O and $0-H \cdot 0$ distances. The paraneters of the phosphorus atom and the outer oxygen atoms are easily celculated, and are given in Table 1.

If the oxygen atoms in the next layer are placed at ecual cistances from those in the first layer, it is found that the group of three tetrahedre is to be rotated through 6°, while being trenslated by 3.40° along the \underline{z} axis. The oxygen-oxygen contact distances are 2.45 A (in the phosphate tetrahedron), $2.55 \mathrm{~A}(0 \mathrm{H} \cdot \mathrm{CO}$ distance), 3.45 A (in the basal plane), and 2.74 (diagonal distance, between $\left(\mathrm{FPO}_{4}\right)_{3}$ groups). It is found that a ribose residue may be bridged across between the upper oxygen atom of a tetraheuron and the lower oxygen atom of the tetrahedron above it, and rotated by approximately 120° (114° or 126°) in azimuth. The bridging may be achieved for either the right-handed screw arrangerent of phosphate tetrahedra, shown in Figure 1, or the left-handed screw, the mirror image of this. However, the right-handed screw seams to be/better, in several respects. In order to form ester linkages with cerbon atom 2 and cerbon
atom 5 of the ribose residue, with the furanose-ring configuration, the lane of the 5 -mombered ribose ring must be pleced nearly at right angles to the basal plane (perpencicular to the axis of the nucleic acid molecule), if the left-handed conijguration is used for the phosphate complex.

There then occurs steric hindrance betweon the ribose residue and the simi-
lar residue almost directly above it - the rotation by 6° corresnonds to a

Iateral translation, at the radius (about 6 A) of the center of the ribose ring, of only about 1 A, which is not enough to permit the atoms of the two residues to clear one another. For the right-handed configuration of the phosphate complex the plane of the ribose ring is at about 45° with the basal plane, and satisfactory packing of the sugar residues is achieved.

Also, the angle between the edxuxisxx Cl-N axis, where N is the nitrogen atom of the purine or pyrimidine group, and the basal plane is about left
25° for the rigdt-handed phosphate complex, and about 10° for the right-
henced complex. The nucleic acids are observed to have strong negative
birefringence. This anisotropy in makiegz index of refraction is to be attributed Eaxgexyocosx aimost entirely to the purine and pyrimicine planes, and it provides strong evidence that the planes of these conjugated systems
structure involving
are nearly parallel to the basal plane of the molecule. The/right-handed phosphate complexes accordingly provides a more satisfactory explenation of the bircfringence than does the other structure.

Coordinates of the atoms of the ribose mexemsx residue and of the nitrogen atom of the purine or pyrimidine group are given in Table 1 . These coordinates are subject to grecter uncertainty than those for the phosphete groups. The way in which the ribose residue bridges the region between one xyxxXx nucleic acid chain is shown in Figure 2.

Description of the structure. - In the proposed structure each nucleic acid chain forms a tightly coiled helix, with approvimately three ribose-phosphate residues per turn of the helix. The lead of the helix (the distance along the fiber axis from one twonexwexarix position on the chain to the correswonding position on the same chain after one complete turn) is apidentical
proximately 10 A. Three/chains are intertwined. \boldsymbol{z} A single chain is represented in Figure 3. In the complete nolecule three idential chains are intertwined, as shown in Figure 4, to form a closely packed three-chain helical molecule. The three chains are attached to one another by lateral
hydrogen bonds between the inner oxygens of the phosphate groups.

The diameter of the three-chain molecule, taking into consideration the size of the purine-pyrimidine groups, is about 20 A .

If the oxygen atoms in one phosphate complex are equidistant from basic neighboring oxygen atoms in the next complex, the xascicicaszangle of rotaAn individual
tion of the helix differs from 120° by 6°. mm /chain accordingly has on identity distance of approximately 60 times the axial length per residue, 3.4 A. The identity distance of the three-chain molecule is predicted to be one third as great, about 20 times $3.4 \mathrm{~A}=68 \mathrm{~A}$. 解碞 The identity distance cannot be predicted very accurately, however, because a considerable change can be made without causing the oxygen-oxygen contact distances to be unsatisfactory. If the rotation mancter differed from 120° by 12°, rather than by 60 , the oxygen-oxygen contact distances would be 2.69 A and 2.77 A, respectively. These values are acceptable, and accordingly the identity distance might be that corresponding to a 12° rotation, which is 10 times $3.4 \mathrm{~A}=34 \mathrm{~A}$. The x-ray photographs indicate an identity distance along the fiber axis of approvimately 50 A.

We plan to make a detailed comparison of intensities and other
features of x-ray photogrphs of nucleic acid preperations, and the prosmex

女xamsx calculated values for the proposed structure. It should be peassible
to eliminate the structure, or to obtain further support for it.

This investigation was aided by grants from The National Foundetion
for Infantile Paralysis and The Rockefeller Foundation.

