MIE CORRELATION OF CYTOLOGICAL AND GENETICAL CROSSING-OVER

IN ZEA MAYS. A CORROBORATION.

By Herrict B. Creighton and Barbara McClintook. Botany Department, Cornell University.

There has recently been some skepticism expressed (Brink and Cooper, 1935) as to the value of the studies on the correlation of cytological and genetical crossing-over in maize published by Creighton and McClintock (1931) because of the fermess of the data. Since the paper by Stern (1931) dealing with Drosophils and having much more extensive data appeared at practically the same time and yielded the same conclusions, the authors felt it unnecessary to add to the ever increasing amount of published work merely to record more evidence of the same nature without supplying anything essentially new or advancing. Therefore, confirmatory date which have accumulated since the time the joint paper mentioned above was published have not been considered for a separate publication. However, we now feel forced to old more data merely to counteract any suspicion that the evidence previously presented constituted This will be done in as brief a form insufficient proof. as possible, since a discussion of the method has been given in the paper mentioned above.

Chromosome 9 in maige is characterized by its relative s ize in the chromosome complement and by the 1:2 ratio in lengths of its two arms. The end of the s hort arm in some strains possesses a large knob while other strains have

a vory small knob or no knob. Evidence that the knob or knobless condition of a particular chromosome 9 is inherited with the same precision as a gene has been given in the previous paper and has been confirmed in many additional The knob, therefore, could be used as one CTOSSOS. cytological marker for this chromosome. The presence of an interchange between chronosones 8 and 9 (Burnham, 1930, 1934; licClintock, 19307) which broke chromosome 9 at a position on the long arm a short distance away from the spindle fiber attachment region provided the second cytological marker. That the genes <u>ye</u>, <u>c</u>, <u>sh</u>, <u>vx</u>^{*} lie in the interchanged chromosome which possesses the short arm of chromosome 9 has been shown by McClintock, 1931, Creichton, 1934, and Burnham, 1934 . With reference to the knob and the interchange point, the order of the genes is knob-yg-c-ah-wzinterchange with yg very close to the knob (Creighton, 1934) and we close to the spindle fiber attachment region (Burnham, 1934 and unpublished). The standard crossover values for those genes alone are <u>Mg-0</u> 210, e-sh 3.30, sh-wx 210. The crossover value of vox to the interchange is 13.70 (Burnham, That there is very little crossing-over between the 1934). knob and yg can be seen from the data given below.

A plant with the constitution knob-YE-C-Sh-WX- interchange was crossed to a plant with the constitution Knobless-YE-O-<u>sh-WX-normal.</u> The F₁ was beckerossed to knobless-YE-O- <u>sh-WX-normal.</u> Two hundred and sixty one individuals resulting from this beckeross were examined cytologically to determine

2

the presence or absence of the knob (knob or knobless in table below) and the presence or absence of the interchange (interchange or normal in table below) in the chromosome carrying these genes contributed by the F_1 parent. Since there are five regions in which a crossover can be detected, the results have been tabulated according to crossovers which occurred in each of these regions. The tabulated results do not represent the total backpross progeny. A higher percentage of <u>YG-G-Sh-WX</u> and <u>YG-C-ch-VX</u> plants were examined cytologically in an effort to obtain crossovers between the knob and <u>YG</u>. Likewise, more <u>YG</u> plants were examined cytologically than <u>YG</u>, since plants honorygous for <u>YG</u> are reduced in vigor and often do not afford sufficient material for cytological examination.

TABLE 1.

Knobless-Yg-C-Sh-lix-interchange	imobless- <u>yc-c-sh-wx</u> -normal
Knobe-ye-e-ah-viz-normal	
Non-croscovers	Europer of individuals.
1.Knob-Yg-C-Sh-Wx-interchange 2.Knobless-yg-c-sh-Wx-normal	84 46
Crossovers in region 1.	
S. Knob-yg-c-sh-wx-normal 4. Knobless-Yg-C-Sh-Wx-interchange	3 1
Crossovers in region 2.	
5. Knob-Yg-c-sh-wz-norual 6. Knobless-yg-C-Sh-Wz-interchange	13 11
Crossovers in region 3.	
7. Knob-Yg-C-sh-wx-normal 8. Knobless-yg-c-sh-wx-interchange	5 3

3

Crossovers in region 4.

寒

9.	knob-Yg-C-Sh-rax-normal	53
10.	Knobless-yg-c-sh-Wx-interchange	18
	Crossovers in region 5.	
11.	Knob-Yg-C-Sh-Tz-normel	16
12.	Knobless-yg-c-sh-wx-interchange	3
	Double crossover involving regions 2 and 4	
13.	Knobless-yg-C-Sh-wz-normal	1
	Double crossovers involving regions 4 and 5.	
14.	Knob-Yg-C-Sh-wx-interchange	5
15.	Knobless-yg-c-sh-Wx-normal	2

It is obvious from the data given above that a genetic crossing-over between the genes <u>Yg-C-Sh-Wx-involves</u> a cytological crossover between the knob and the interchange point. These data, therefore, supplement those given in our previous ublication and indicate the soundness of the conclusions drawn.

The genes refered to in this paper by symbols are: <u>yg</u>, yellowcreen plants; <u>o</u>, colored alcurone, <u>sh</u>, shrunken endosperm; <u>wx</u>, waxy endosperm.

-	Brink, R.A. and	Cooper, C.D., <u>Genetics</u> 20, 22-35 (1935).
2	² Burnham, C.R.,	these Proceedings 16: 269-277 (1930).
С.,	17 3F F7	<u>Genetics</u> 19:430-447 (1934)
4	<u>с</u> в п я	An. Nat.68: 81-82 (1954).
~	Creighton, H.B., these Proceedings 20: 111-115 (1934).	
6	6 Creichton, H.B. 492	and McClintock, B., these Proceedings 17: 2-497 (1931).
7	7 McClintock, B.	these Proceedings, 16: 791-796 (1950).

4

⁸McClintook, B., these Proceedings 17: 485-491 (1931). ⁹Stern, C., <u>Biol. Zbl.</u> 51: 547-587 (1931).