Dear Rosalind :
It was very generous of you to offer to send me a copy of the numerical entries from which your TMV cylindrical Patterson map was drawn. On reflexion, I would like very much to have this, if it is not troubling you too much. [Please say if $\bar{F}(000)$ is zero or? and the scale of the entries, even if only roughly known. I have been wondering whether you find any confirmation of the idea of Bernal and Fan. that there is two-dimensional periodicity perpendicular to the e-axis...na hexagonal cell $a=\ldots$, or any other two-dimensional cell and whether, In particular, you agree with them in theniting that the strong 11 A refer exions on $l=2$ are triconally arranged about the axis? I ask this last question in particular because of the overall impression one gets from your figualmap in Nature 26 Feb 55^{2} of the importance of the $10-17 \mathrm{~A}$ reflexions on many different layer lines. Any information you feel willing to give me as to the presumed positions in three-dimensional space of such rerlexions would interest me greatly.

I am very mach interested in and (27 so full of admiration/ for your remarkable work on NaDNA , as I mentioned in my last letter. The idea of having been able to get a three-dimensional Patterson map is extremely impressive. I stud
the twa sections in N ture 172,157,1953 with great interest and feel very curious as to what three-dimensional situation turns out to be responsible for the various remarkable features of the cylindrical. Patterson , particularly of those features at z about 7 A and $\rho=8-14 \mathrm{~A}$ and z about $2 \frac{1}{2} \mathrm{~A}$ and p about $5 \frac{1}{2} \mathrm{~A}$.

I do wish it were possible to discussnall these aspects of your beautiful work with you in conversation instead of in letters. Cant you spend some time with us at w odstl le this summer, as my guest? We could, I think, give you a' good time- and I hove no hurricane!

