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MEANS OF THE MAGNETIC PARTICLE METHOD. PARTII.

THEORETICAL TREATMENT

F. H.C. CRICK

Strangeways Research Laboratory, Cambridge

Received February 9, 1950

A. INTRODUCTION

In Part I (1) a method was described for measuring someof the physical propertiesof the cytoplasmof chickcells in tissue culture by means of magnetic particles. Thecells were allowed to phagocytose these particles, which were then acted on hymagnetic fields, their movements being observed simultaneously under high magni-fication.
In this paper the theoretical basis for the experimental methods used has been setout. The results are mainly standard pieces of magnetism and hydrodynamics, butas they are scattered aboutin the literatureit was thought worth while to bring themall together in one place.
The paper has been written for workers who may wish to use the method them-selves, or who wish to examineits foundations critically. For those only interestedin the results an extended summaryof the theoretical conclusions has already beengiven in Part I. An elementary knowledge of magnetism and hydrodynamics istherefore assumed. There are occasional remarks from a more advanced standpoint,but they are not crucial to the main results.
The experimental methods have been set out in part I. It will suffice here to statethe general theoretical problems for which we require solutions. There are threemain cases. They are
(1) Twisting: the permanent magnet case.
In this case the magnetic particle is turned into a little permanent magnet byapplying a large magnetic field momentarily. It is subsequently twisted by a muchsmaller field applied in a direction roughly perpendicular to its permanent magneticmoment.

(2) Twisting: the soft iron case.
In this case the material is considered to have no hysteresis. A magnetic field isapplied at a small angle to the length of the particle, which is thus twisted.
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(3) Dragging.

In this case a large ficld, with a large field gradient is applied. The magnetic

particle is magnetically saturated, and after being twisted into line, is dragged by

the field gradient.

We wish to calculate the velocity (or the angular velocity) of the particle in terms

of its size, shape, and magnetic properties, and the physical properties and bounda-

ries of the medium in which the particle is embedded.

We Lackle the problems in the following order. We first show that we can neglect

the effects of inertia, and by elementary arguments find how the forces vary with

scale. We then consider the behaviour of the medium, discussing the effects of the

shape of the particle, of boundaries, and of non-newtonian andelastic behaviour.

Next wegive the formulae for the magnetic forces on the particle, and thenin sec-

tion F we show how all the factors can be combined to evaluate the velocity (or

angular velocity) of the particle for the three main cases.

l‘inally we give some brief theoretical notes on the production of large field gra-

dients and a note on some comparative numerical values for the stress.

B. GENERAL CONSIDERATIONS

1. Inertia

Inertia will delay the approach to the steady state and will alter the final

velocity distribution. We shall show that both of these effects can be neg-

lecled in our experiments mainly because the particles are so small.

There are two problems that can be considered separately. Firstly, the

inertia of the fluid, secondly the inertia of the particle.

For the inertia of the fluid the retevant characteristic of the motion is the

ratio of the inertia forces to the viscous lorces (Reynold’s number). It is

given by

cowa

where o = reciprocal of a characteristic time

@ =: density of the fluid

4 = viscosity. of the fluid

a= a characteristic length

(see for example the case of an oscillating sphere, (7), paragraph 354). This

formula applies strictly only to short particies.

If the above parameteris << 1, the inertia of the liquid is negligible. An-

. . . 1 . cow
other use of the parameter is that the value of (*) defined by putting »

equal to unity, gives the order of the time required to approachthe steadystate,

Weshall not be considering particles bigger than 10 @ in diameter, so we
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may puta = 5 x10°' em. If we take as a lower bound for 7 the value for

water (0.0L poise), since biological fluids can scarcely be less viscous, and

40

This is naturally very much smaller than anything we have measured. We

should note in passing that if the margin were not so great a more exact

treatment would be advisable. Our formula gives the time for the particle

1' 1 :
put @ = 1, we obtain for the upper boundof (‘) the value ~~ milliseconds.

to reach a goodfraction of its final velocity, but in certain cases the later

stages of the asymptotic approach to the final velocity may take much Jonger

than the earlier stages.

These results only apply strictly to the case of an infinite fluid. We can

give an argument which suggests that the effect of adding fixed boundaries

will usually be to decrease the time to approach the steady state. Consider

lwo cases: firstly a particle in an infinite fluid, secondly the same particle

with fixed boundaries addedto the fluid. Let the forces applied to the part-

icles be such that the samesteady velocity is attained in the two cases. We

will assume that as a rough measure of the time to approach equilibrium

we maytake the ratio of the kinetic energy of the fluid to the rate of dissi-

pation of energy, both for the steady state. The effect of fixed boundaries

is to increase the resistance and therefore the rate of dissipation of energy.

The boundaries also reduce the amount of fluid in motion and over most of

the volume! decrease the fluid’s velocity. The total kinetic energy is thus

likely to be reduced. Therefore the ratio referred to above will be decreased.

To estimate the effect of the inertia of the particle we consider the case

of the dragging of an iron sphere. The ratio of the inertia to the viscous

forees is

da ap" dp

3S dt

OGaHyav

where p= velocity

eo = density of sphere

. . eg 1 :
It we define the characteristic lime — by the equationso

dvi op

" ())
* This assumes that the boundaries do not force the flow into a very restricted channel, in

which case the velocity would be increased considerably.
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this ratio becomes

200’ a
94

which apart from the numerical factor is the same form as before, except
that 9’ is nowthe density of the iron. It can easily be shownthatexactlythe
same type of parameter is involved in the case of rotation. Thus the effects
of the inertia of the particle are negligible.
The case for non-newtonian fluids, whose “viscosity” varies with shear

is not quite so clear cut. However the margin in our experiments is so big
that we can simply consider the extreme case where the inner parts of the
liquid move effectively as a solid, and the outer parts as a newtonianliquid.
This is clearly similar to the movements of a body of increased radius in
water. In our experiments the radius of the body is boundedby the size
of the cell, so that we againget a very small value for the time to reach equi-
librium.

The case for the visco-elastic mediumis given on page 519.
Theconclusionis the same. Thus forall possible cases in our experiments

the steadystate is reached in a time very much smaller than anything we
can measure.

2. Scale

We shall next show, by simple dimensional arguments, how the forces
involved in dragging and twisting change with scale. We only consider a

. . dH .range of seale over which the magnetic factors CB.pean be considereddx
constant.

(a) Dragging

As before let @ == characteristic length of particle
p= characteristic velocity of particle
y= viscosily of (newlonian) liquid
o = density of fluid

The density of the particle is clearly not involved in the steadystate condi-
lion, We restrict ourselves to a range of scale over which the density ofthe
fluid can also be ignored, for the reasons given above.
The magnetic field will produce a force per unit volume given by

dit
I
dx
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where J = magnetic induction of the particle
dil . oa . . :dn = magnetic field gradient producing the force.

A force per unit volume has the dimensions M L-? T-?. The only combina-
. : 2 vlion of a, v and 7 which will give this is ("2).

a
Whence we obtain

aa (“2)p~—.7{22).
7] dx

Thus, as the scale is reduced, the velocity decreases as the square of the
characteristic length. The time for the body to traverse its own length in-
creases linearly with the reciprocal of the characteristic length.

(b) Twisting

Here the magnetic couple per unit volume depends on

(1 H) f(0)
where @ is an angle.

This has the dimensions M L~! T7? and from @ (the typical angular ve-
locity), 47 and a we can only form the combination 4a.

lHThus an £68)

Therefore the angular velocity does not vary wilh seale.
Note that if the liquid has boundaries they, too, must be sealed for the

above results to apply.
If the liquid is non-newtonian comparisons can only be made belween

conditions under which the shear is the same. For dragging this occurs
whenthe timefor the particles to go their own lengths is the same; for twisting,
when the angular velocities are the same. The interesling result for Uwisting,
that the angular velocily is independent of scale is therefore also true for
the non-newlonian case.

Finally note that the magnetic conditions have nof been scaled. S valing
the magnets producing the field makes no difference to the value of the field,
hut does alter the field gradient. This reservation is therefore Important
in dragging but not in twisting. [Lis -asy to see that if we do seale the magnets
for the dragging case the lime for a particle to be dragged its own length is
independent of seale for both the newtonian and the non-newtonian cases.
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Cc. THE FORCES ON A BODY IN A VISCOUS FLUID

t. Variation with shape

‘The variation wilh shape is naturally more complicated than the variation

with scale, and has only been worked out for special cases, usually in an

infinite fluid. Itis possible to obtain the result for the general ellipsoid, but

we shall only qnote those for ovary cllipsoids of revolution, as we require

them merely to give some idea of the general behaviour. We consider in

this section the formulae for a body immersed in an infinite newtonianlig-

uid, leaving to the two following sections the consideration of boundaries

and of non-newtonian behaviour.

Weshall use the following notation for the ovary ellipsoid:

major axis =a

minor axes = b = c
b2

eccentricity, e, given by 1—e? = a

We denote
2(1 — e?) l+e
aaa “3 —_—— (3 log le —e by QX-

(1 — e?) i+e 1
— ( “yg 3 log T—e _— ee by Bo-

and
b? t+e
— log-——— b .e 08 1—e y Xo

(All logs are natural logs).

(a) Twisting

For a sphere: couple = 8a%y40o

where w» = angular velocity

(7, para 334)

For an ovary cllipsoid of revolution:

Weshall only consider the case of rotation about a minor axis. This has

been solved by Edwards (2), but owing to an algebraical slip towards the

end he omits the factor 2/3. The correct result, in his notation, is, for the

general ellipsoid,

2b? “~@
32 une + 3

couple = —s PBC
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This being adapted to our notation, andrestricted to the case of the ovary
ellipsoid, becomes

» 2b?
at

32y20 "3rouple =efPo 2,couple 5 Gay +B fy ab

We express this as couple = k-8ayq@a?b and evaluate k numerically for
different values of a/b.

Some values are given in ‘Table [.

 

 

 

TABLE [|

a

b 1.0 2.0 3.0 4.0 5.0 10.0 20.0

k 1.0 | 0.84 0.91 1,00 1.10 1.60 2.50       
 In the limit (a/b) > 00, k > 3 (5) ___} .

5\b (tog 2a 1)
b

(b) Dragging
For a sphere:

the force is 627av with the usual notation

(7, para 337)

For an ovary ellipsoid of revolution

(i) in the direction of its major axis, a

we have force = 627 Rv

where R=I
3 x9 + a a?

(7, paras 339 and 114)

This reduces to

_ 8 ae

3 1 l+e 2
(1 + =) log -— —_

R

For the special case where the ellipsoid is very long, so that a = b

Ro 4. a

(2 log * -- 7)
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Numerical values are given in Table I below.

(ii) in the direction ofits minor axis, b

8 ab?
we have R= 50 iepol?

(7, paras 339 and 114)

whence we obtain

16 ae

B38 Tg) tog LE2) 42
e? oe ) e

and when a > b

roo.4.
3 2a

(2 log b + 1)

Numerical values are given in Table IL.

TaBLe ITI

Values of a/R for the dragging of an ovary ellipsoid.
 

0.3 |0.4

 

0.5 | 0.6 | 0.7 |0.8 | 0.9 | 10

 
bia | 0.0 | O01 | 0.2

 

 Lane  
t

2.799) 2.267 Lvt4 1609 1467 1.314 L0H 1.091
 

a/R (along major axis) | oo 3.701

 

1.606 1.451 1.326 1.224 1.138! 1.063 1tert

 

a/R (along winor axis) | co leoi7 2.1081 1.815

The numerical values are taken from Gans (4), where the numerical results

for a planclary cHipsoid are also given.

2. The effect of boundaries

(a) Boundariesare, in general, more important in dragging thanin twisting.

This is not surprising when we remember that the viscosity of a VISCOUS

. . 1 .
fluid through which a sphere is dragged falls off as 7a Jong wayfrom the

sphere (in contrast to the case wherethe inertia is important and viscosity

negligible), while the angular velocity in the Muid round a rotating sphere

. . 1
falls off as 4:r

r
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The following examples illustrate this point. In all cases a is the innerra-

dius, b the outer radius.

(i) translation of a sphere in a fixed cylindrical tube

force = banav(t + 2.1045 +]

(ii) rotation of a sphere in a fixed spherical shell

couple = 8 aa 1I muy aw i— ails

(iii) translation of a cylinder in a fixed cylinder

Force per unit length = 2anv (seeing)

(iv) rotation of a cylinder in a fixed cylinder

couple per unit length = 4aya°7w (<7) .

_(b) Dragging

For the translation of a sphere along the axis of a fixed cylindrical tube

the solution with the higher terms included is

 
force = Oanav a

1—2.104(") + 2.09 (“ *_o.93(“)a0") 2.00 (“) —0.99(%)
where a = radius of sphere

b = radius of tube.

This formula is for the case when Reynold’s number is infinitesimal. (3.)

Thus when b = 3a the formula gives a resistance of 2+ 7 times that for

an infinile fluid, and for 6 = 4a, a factor of about 2-0, so thal increases

of this sort are very probable in a small cell. Neighbouring inclusions mas

well have quite a large effect.

For bodies of a shape not greatly different from a sphere, a good approx-

a” the value for the
.

imation is to use the above formula taking for “oquiv-

alent sphere’? in the infinile Muid case. This approximation can only be

very rough for the case of a very elongated body, or of a wall very close to

a body.
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(c) Twisting

The effect of boundaries on the couple exerted on a compact bodyofre-
volution rotating about its axis of symmetryis fairly casily grasped, and is
small wiless the boundaries are near the equatorial belt of the body.
The effect of the boundaries on less restricted bodies (including our par-

ticles) has not been worked out, but below we try to give a rough bound.
(i) Bodies of revolution.
These have beentreated by Jeffery (6). He gives a general treatment which

can be described as follows: for any body of revolution rotating in an in-
finite fluid about its axis of symmetry we can find a family of surfaces each
of which rotates with constant angular velocity. We can then always ob-
tain the solution for the body rotating within one of these surfaces, regarded
as a fixed wall, by superimposing a uniform counter-rotation on the whole
system to bring the “wall” to rest. This explains the form and intimate
relauionship between the fall-off of angular velocity and the increase of
couple due to a houndaryin the two simple cases of rotation quoted above.

Jeffery gives the formulae for the case of an ellipsoid of revolution. A
typical result, for a planetary ellipsoid with an axial ratio of 2.24, sur-
rounded by a confocal planetary ellipsoidal shell such that the spacing at
the equator is 20 per cent of the body’s equatorial radius, shows that the
shell increases the viscous couple by a factor of 1.9.

Jeffery has also solved another illuminating case; that of a sphere rotating
close lo a fixed plane perpendicular to the axis of rotation. The results show
that the plane has to be extremely close to the pole to have any consider-
able effect c.g. ala distance of 2 per cent of the radius it inereases the re-
sistance by only £7 per cent. This is because the major part of the viscous
couple comes from the equatorial bell, where both the arm of the couple
and the velocity are big.

We may thus conclude that unless the boundary approaches close to the
bodyat points far from the axis of rotation, the increase in coupleis unlikels
to be big.

(ii) Other’ bodies.

In general our particles are not bodies of revolution, and even if they were
we could nol casily distinguish their different angular positions under the

microscope, Apparently no case has been solved which helps us here.
We propose to estimate the couple on an ovary ellipsoid of revolution

rotating inside a fixed spherical shell, radius d (d not too close to a) as fol-
lows: we suspect that such a shell would not increase the couple ontheel-
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lipsoid by more than it would increase that of a sphere of radius a. This
implies that the couple would be increased by no more than

3
neglecting terms higher than (<r)

Nowwe have shown(page 51 1) that the couple on the ellipsoid in aninfinite
fluid is approximately given by

8aynat bw

so that the total couple could be written as

2 aeSanadbha (1 pS]

where p is probably between (a/b) and 1. Howeverthis estimate is little
more than a guess.
For a comparatively short particle the boundaries are not likely to cause

a large variation in the couple e.g. for d one half greater than a, and for a
particle of axial ratio 2:1, the couple is probably not more than doubled.
Finally we consider how a fixed obstruction at one end of the particle

affects its behaviour. A rough estimate can be made by comparing this case
with that of a particle of twice the length, and acted upon by double the
magnelic couple, with obstructions near its middle. It is clear that in this
second case the motion would hardly be altered at all by the obstructions,
as they are so near the axis of rotation. The viscous couple on the seeond
particle in a newtonian fluid. is very roughly + fimes that of the first (sce
page 512). Therefore the angular velocity will be halved.
Thus in an infinite newtonian liquid an obstruction al one end inereases

the resistance so thal about twice the couple needs to be applied to give the
sume angular velocity. It also, of course, produces a small translation of the
particle.

Stated in this way it seems probable that the result would also apply to
most non-newtonian liquids.
Note that it is not essential for the obstruction to touch the particle, as a

very close approach may producesufficient resistance to reduce the angular
velocity appreciably.
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3. Non-newlonian behaviour

So far we have only considered newtonian liquids. This is sufficient for
calibration liquids, but may not be for the cytoplasm.
Consider first the behaviour of a liquid, whose “viscosity” varies with

shear, in a concentric cylinder viscometer (neglecting end effects). Ht can

be shown that what we measure is the average value of the fluidity (’\. In
0

svinbols

Sb

[as

Ne = Sa

‘b
ds

Sa

where 4, = experimental value of the viscosity
s = shearing stress

Sq == Shearing stress at inner cylinder
8, == shearing stress at outer cylinder

That is, if we substitute the experimental values of angular velocity, ete in
the usual formula for the viscosity, we obtain the above value of He Wis
assumedthat the ‘viscosity’ is a function of the instantaneous value of the
shear only.

This solution is possible because the surfaces in the fluid which retain
their shape (i.e. move as if solid) are surfaces of constant stress, and one
‘an therefore give the stress distribution across the annulus irrespeclive of

I .the curve of (;) against s. This condition also applies to the only other case

which has been worked out, namely that of the flow through a capillary.
although the actual formula given above does not. ,
Wethus see, as is intuitively obvious, that the effect is to slur over the de-

tailed variations in the curve of (; against s, andto give an average value.

The details are usually got by making b onlyslightly greater than a, so that
the average is taken over only a very small portion ofthe curve on cach we-
fasion, and by repeating at different rates of shear lo cover a wide range.
We are clearly unable to do anything of this sort in our experiments. Even

for a sphere in a non-newlonian liquid the problemis of a different order of

The physical properties of cytoplasm. Part 11. 517

difficulty and does not appear to have been solved. The shear stress varies

with latitude from zero to a maximum and itis not at all clear howit distri-

butes itself in the non-newtonian case. ‘The problem ofthe ellipsoid is even

more hopeless.

However it appears extremely plausible that if we substitute the expert-

mental values in the formula, the value of 9 derived will correspond to some

average value; that is, to some point on the curve of 7 against s between the

maximumvalue of s and some minimum, probably zero. Moreoverit seems

very likely that the apparent change of 7 with shear will be less than the

maximum change anywhere within this region. Sinee we cannol rely on

our experimental arrangements to measure small differences accurately,

we conclude that this method will only show up large changes of“viscosity”

with shear, and may conceal small changes.

We note at this point a feature which may be expected in the behaviour

of a non-spherical particle in a non-newtonianfluid of the type which be-

comes very viscous at low shearing stresses. Since the shear nearthe axis

is much less than that near the ends of the particle, the fluid may behave

almost as a solid at points near the axis, and also at points far from the par-

ticle, so that the flow may take place over a rather restricted region.

D. The forces on a body in a jelly

We can apply almost all the previous formulae to the case of a particle

in an isotropic elastic medium. Since we are only dealing with feeble jel-

lies we may take Poisson's ratio equal to $. For small strains all the algebra-

ical results for velocity in a viscous newtonian fluid apply to the deflection

in a hookian elastic medium, providing we substitute n, the rigidity modulus,

for 4 the viscosity.

For example, the couple on a sphererotating in a viscous liquid, whichis

8an@a

nH = Viscosily

wo = angular velocity

a = radius of sphere

enables us to write down the couple on a sphere embedded in an clastic

medium as (for small angles)

8anad0

n = rigidity modulus

0 = angular deflection

36— 503704
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Fig. 1.

To clarify our terms consider next a simple visco-elastic medium, which
behaves as shownin figure 1 when a constant stress is suddenly applied
and later suddenly removed. In this figure the elastic properties are re-
presented by AB and DE, the viscous damping by the exponential rise AC
and fall DG, and the pseudo-viscous yield occurring along CD, by EF. The
relaxation time is HA.

If we have a particle embedded in a simple visco-elastic medium whose
relaxation lime is constant with stress, we can obtain the relaxation time ex-
perimentaly without knowing anyofthe details of the particle, boundaries,
ete. by simply dividing the elastic deflection (for small strains) by the cor-
responding pseudo-viscous yicld rate for any given applied couple. This
follows from the similarity in form of the viscous and clastic coefficients
mentioned above. If the relaxation time is a funetion of the stress, there is
no simple solution for the general case.
We have so far neglected inertia. We now take it into account and show

that the period offree oscillation is very short, and the damping high, again
mainky beeause the particles are so small.
Wefirst consider a particle in a simple clastic medium without Viscosity.

Due to the inertia it will be capable of free osciltations of both translation
and rotation, ICean easily be shownthat, neglecting for simplicily the inertia
of the medium, the dimensionless parameter for both cases is of the form

oo’ a

oR

where

—

is the order of the period of free oscillation, and eis the densitya

of the particle.
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Putting ! = 1 millisecond, a = 5 yw, and @’ = 4, we see that for the pa-
a

rameter to equal unity, m must be 1 dyne/em?. This is extremely feeble (for

anormal gelatin gel n = 103 to 10° dynes/em?). For a stiffer medium the

time is of course shorter.

It is clear that for a substance as feeble as this the viscous damping would

in practice be important. We will therefore consider a particle in a medium

with both viscous and elastic properties, and find the condition for critical

damping. We assume that the times involved are so short that we can neg-

lect any pscudo-viscous yield.

If we work through a particular case, such as a sphere undergoing rotary

oscillations about its axis, and neglect for simplicity the inertia of the me-

dium, we obtain the condition for critical damping as

2

natn
—ea

oe’ = density of sphere.

We could have derived this, without the constant, in a rough and ready

Manner by equating the values of ¢? which make the two previous dimen-

sionless parameters (page 506 and page 518) equal to unity.

Pulling a = 3 x, 7 = 0-01 poise, and ge’ = 4, we obtain n = 1,100 dynes/

em? ‘This is not high, but it is rather higher than ourestimates. Moreover as

already observedit is highly unlikely that the “viscosity” coefficient in bio-

logical materials is as low as that of water.

As regards the effects of boundaries, a closer examination shows. that

since the ratio of the viscous to clastic forees is independent of them, the

condition for the damping remaining critical or greater when boundaries

are added, reduces to the condilion that the ratio of the damping forces to

the inertia forces shall not deerease, which we have already shown (page

007) lo be probable in’ most cases. ,

We thus conclude that the time-period of free oscillation of our particles

is less than a milli-second (probably much less) and that the damping is

critical or greater unless the rigidity modulus is high and the viscosity low,

which is not the case in our experiments.

We have only considered the case of small strains. Large strains may

well increase the apparent value of the rigidity modulus, calculated using

the simple theory. [tis unlikely however in our cases to increase il suffi-

ciently to alter our general conclusions.
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We have dealt with this point about critical damping because it is some-

limes suggested that a resonance method should be used. Apart from the

experimental difficulties due to the very short time periods, it is clear that

the extremely low *'Q”’ of the system would make this unprofitable.

It has also been suggested that the restoring force on a particle could be

increased by magnetic means, though this would mask any elastic effect

due to the medium, The simple theory shows that in the case of a sphere

this is equivalent to the medium having a rigidity modulus of

i: dynes/em?,

A more exact treatment would be required if the method were seriously con-

templated. It is thus not impossible that oscillations could be produced. The

envelope of these oscillations is determined by the ratio of the viscous to

the inertia forces, and this could be used to measure the former. As has

been shownthis involves making measurements in a time probablyof the

order of microseconds. This is not impossible, but it is certainly not easv.

The only advantage of such a methodis that it is not necessary to knowthe

magnetic forces accurately, although il is essential to knowthe exact formnu-

lae for the viscous andthe inertia forces. These could if necessary be checked

by calibration experiments in a known liquid. We have not pursuedthis

approach further.

E. THE FORCES ON A BODY IN A MAGNETIC FIELD

1. Twisting: the permanent magnet case

Assuming that the particle is magnetically homogeneous we nole that

the magnetic condition is independent of scale, and therefore the forces

per unit volume are also independent of scale, over a range where H and ‘Le

can be considered constant,

The variation with shape is more complex. The ellipsoid is the only bods

for which the magnetic conditions are constant throughout the volumefer

a uniform applied ficld. As in the hydrodynamic cases, we will consider

only ellipsoids of revolution.

We proceed as follows: we first calculate a factor depending on the shayu

of the ellipsoid. Using this we find from the B/H curve of the material th:

relevant value of B for an ellipsoid permanently magnetised along its ma-
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jor axis. Fromthis we easily obtain the magnetic moment (7) of the ellip-

soid. The couple due to a small applied field, A, perpendicular to the length

of the ellipsoid, is then Afh.

The factors which are calculated for ellipsoids are ‘“‘demagnetising fac-

tors.” These express the amount by which the magnetisation of the ellip-

soid produces a reversed magnetic field acting uponitself, and thus tending

to demagnetise itself, and are defined by the equation

H’=DI

where H’ = the demagnetising field produced

I = the intensity of magnetisation

D = demagnetlisation co-efficient.

D will in general depend upondirection, and will have three different values

corresponding to the three axes of the general ellipsoid. The behaviour for

other directions can be found by compounding J and H vectorially.

We shall, as usual, only quote the formulae for an ovary ellipsoid of re-

volution. They are

1 1 ite . :
D, = an(5— 1) (5. log ime t) for the major axis.

1 1 — e? l+e .
D, = 22|-5 -5-q— log j-— -} for the minor axes.

e 2e 1—e

(The logs are natural logs)

. . . 2
where a = major axis, b = ¢ = minor axes and 1-e? =-,-W hen az b,

a

these formulae become

D,sL 2a
be 2b

D,24 x7, (log -1):
a

: : da
For the particular case of a sphere D, = D, =.

. 4a tn
hat is == fhthat 1s D, Dg 3

((8). The notation has been altered.)

. a . . . : da
Thus if we consider the case of Bb fixed and a increasing, we sce that (,

1
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D)2
INcereases rapidly, while ( ) tends to the value 2. We give a few values

in Table TH.

TABLE ITI
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As is well knownthere is a simple graphical construction to find the work-
ing point on the B/H curve for a body with a given Din a (parallel) external
field H,. The curve of (B-H) against His plotted, and a line is drawn from

. ws 4 . :the point H, on the H axis with slope — (a) The working pointis the point

where this line cuts the curve. This construction applies for any value of
the applied field JZ, For a permanent magnet we usually have H, = 0;
in this case we are working in the top left-hand quadrant of the (B-H)
against H curve.
Once we have found the working value of (B-H) the magnetic moment

(M) of the ellipsoid is simply

M = (B—HF) Vv
4x

where V = volume ofthe eHipsoid.

2. Twisting: the soft iron case

We consider the case ofan ellipsoid of soft iron ina magnetic field inclined
ata small angleto its major axis. By soft iron we mean here a material with
no hysteresis. We do not restrict ourselves to the case of constant perme-
ability, and will in fact consider a material which becomes magnetically
saturated. ,

Wecalculate the case of an ovary ellipsoid of revolution (major axis =
a, minor axes = b = c) where the applied field, H, makes and angle §
with the major axis, and the intensity of magnetisation, J, makes an angle
a with the major axis. In general «+ 0. Lis constant throughout the body
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hoth in magnitude and direction. We solve by splitting into components

We obtain

Icos a= ere cos @—- D, Icos «) along the major axis
x

I sin « = MtH sin @— D, Isin «) along a minoraxis.
cr

We shall only consider the cases where the angles are small. We therefore

put sin 8 = 0 and cos 0 = J, elec, and eliminating I we obtain

roaa

(u—1) (52)
6 : Dy}
me 1

——__.... -+ wee

(u—1) (4x[to
Nowto this approximation the couple (C) experienced bythe particle is

C=IVH (6—a)

where V = volume of particle.

That is

C=I1VH (1-4)

which we can write

1 + — i

i) 63D, D,
C=1VH6 AntMl

w= * (a)
D,

This is the expression we require.

It follows that

(i) if (u—1) > (5 (the suffix 2 referring to the broadways-on case) the

term in the bracket is effectively constant as H varies, and

C varies as IH

as we should expect.
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(ii) if we have a material of low permeability, or one which is saturated

4a

D,
varies from 3 fer a sphere to 2 for a long ellipsoid (page 522). Writing the

expression for the couple as

so that (—1) has become low, we may have (u—1) < ( ) This latter factor

1 1
i4n\ ~~any

C=IVH(n,—1)0 tn)Lo)

4x

D,

we see that C varies as I H (u—1) approximately

that is C varies as I? approximately.

Thus if the material is saturated the couple does not increase with the

field indefinitely, but tends to a limit.

(iii) for short ellipsoids the couple is less than might be expectedon simple

theory by the factor

dD,

( - 2)

1+. Dy} .

(uw — 1)

which is always less than 1, and moreover becomes zero for a sphere, for

which Dy == Dg.

A moment's thought shows that this latter point is obvious. If a soft iron

sphereis subjected to a slowly rotating magnetic field, the magnetismrotates,

not the sphere. This is in fact the clue to all the effects. As the magnetic

material saturates with increasing field, for example, it becomes easier for

the magnetism to rolate. For magnetite, where (g—1) can be small these

effeels may be quite important.

3. Dragging

As we are concerned with obtaining the maximum drag, we will only

give the case wherethe particle is in a magnetic field large enoughto saturate

it. The magnetic moment (M) will normally be in the direction of theap-

plied field. The foree on the particle in the x direction, Fy, is given by
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0H, OH
F, a Mee + MiGy + M,

OH,
Oz

where M,, M,, M, are the vectorial components of M

and H, is the x component of the applied field H.

There are similar expression for F, and F,.

HA,
The force thus depends on terms of the form (22) rather than of the

Ox

0 Hz . . .
form Hx Da which occur in certain other cases.

The force on the particle is not necessarily along its length. For example,

if the particle is in a magnetic field whichlies in the y direction (H,=H,=0),

so that it, too, points in the y direction (M, = M, = 0), there will never-

H.
theless be a force on the particle in the x direction if (2) is not zero.

F. THE VARIATION IN RATE OF MOVEMENT WITH SHAPE

We can now combinethe results of the previous sections.

1, Twisting: the permanent magnet case

We assume that an ovaryellipsoid is magnetised parallel to its major axis

so that it becomes a permanent magnet, of magnetic moment M, andthatit

is then acted on by a small magnetic field (fh) perpendicular to its length.

This will produce a couple Mh andif the ellipsoid is immersed in a new-

tonian liquid it will rotate with an angular velocity @. The problem we wish

to solve is, how big is @ and howdoes it vary with shape?

To obtain the value of w for any particular case we merely have to work

out the magnetic and the viscous couples from the formulae given in the

previous sections and equate them. However it is useful to get a qualita-

tive idea of how ow changes with shape (we knowthat it is independent

af scale) so we shall suppose that b is kept constant and a alowed to in-

crease, The nature of the variation depends on the nature of the magnetic

material.

We take the extreme case first. If the ellipsoid is long, so that the slope of

: . dn yep at
the (B-A) against H curve is muchless than (37) then (B-JZ) will effectively

be constant, and M will only increase due to the increase in volume, that is

proportional to ab? The viscous couple, however, increases at a rate be-
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tween a®b and a Thus in this range the angular velocity decreases rather
Fast tl (aster than .

(aib)

On the other hand, if the ellipsoid is short, and the magnetic material such
thal the slope of the (B- H) against H curve is much greater than (;;} then

dD,

ab (p)

katb

the angular velocity varies as

where & is tabulated on page S11.
- a Pdad by. : .We thus evaluate (;. D, ea) for various values of a/b.

TasBLe IV
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tea  £.00

30D, k al ff

It can be seen that the variation with shape is not very great. Eventuallythe angular velocity will fall off, but bythis time the approximation usedis unlikely to be still valid. Thus fora real (8-H) against H curve the angu-lar velocity will eventually decrease with increasing (a/b). It mayberoughivconstant over a range for (a/b) small, but this depends on the shapeofthecurve. The exact values can be calculatedfor anygiven curve fromthe for-
mulae given.
The above results applystrictly to the special ellipsoids chosen, It seemsreasonable to assume that in the region where the shape of the ellipsoid ismaking a large difference the approximation for a bodyofarbitrary shape

will not be as good as for ranges where the ellipsoid’s shape is havinglitteffect on the angular velocity. However it is not easy to put a figure to theusefulness of the approximation,
We have not pursuedthis further, as the problem is complicated and wehavein any case in our actual experiments taken an average value. Ifgreater

accuracy is required the solutions for the viscous forces and the demagnet-
ising co-elficients for the general ellipsoid are available, and might give abetter idea of the effects of irregular shape.
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2. Twisting: the soft iron case

The qualitative results for the corresponding problem in the soft iron case
can easily be seen. For very long ovaryellipsoids the angular velocity will

1 . . > .fall off rather faster than (cais)) as in the previous case. For almost spherical

ones it will again be small. Somewhere in betweenthere will be a maximum,
depending on the properties of the material and the size of the applied tietd.
The exact values can be calculated for particular cases from the formulac
given.

It seems probable that for actual particles of irregular shape we shall get
similar effects to those calculated for the ellipsoid. That is, for very short
particles we shall get smaller couples than might be expected on the simple
theory, and for larger applied fields the couple tending to a maximum
instead ofincreasing indefinitely. In the case of any particular material the
evaluation of a few cases for the ellipsoid should give a good idea of the
general behaviour, though the reduction in couple due to shortness is likely
lo be less important for irregular bodies.
The treatment will not apply to materials which show hysteresis.

3, Dragging

We will only consider the cases of an ovary ellipsoid of revolution being
moved either parallel or perpendicular to its length. Other directions can
be solved by compounding vectorially. We consider the relevant field gra-
dient as fixed, and investigate howthe velocity of movement depends on the
dimensions. For our case the magnetic force, for a given value of (B-H)
at saturation, depends only on the volume, not on the shape. We have al-
realy shown (page 509) that the effect of size is to make the velocity vary as
the square of the characteristic length, so that it only remains to investigate
shape variations. As before the formulae will give an exact solution for any
chosen case.

(a) dragging parallel to the major axis.
The formula for the viscous resistance and a selection of values are given

on page 512. These showthatfor a fixedb, the drag increases with a, initially
4

rather slowly, say as Va, and gradually increases to rather slower than a.

Taking Va as a typical value, the velocity of the particle will roughly be pro-
portional to

ba

Va be
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(b) dragging parallel to a minor axis.

The formula anda selection of the values are given on page 512. These

showthat if b is fixed and a increased, the drag increases initially a litle
faster than the previous case, so that we maytake Va as typical, giving

ba
velocity ~ --—--

Va

Whatis wanted in fact in both cases is a good estimate of the volume of

the particle, plus an approximate estimate of a and b. This conclusion is

likely to stand for particles having irregular shapes.

G. PRODUCING FIELD GRADIENTS

We first note that since

0He 4 0Hy + OH; =)
Ox dy Oz

OH, _, :
we cannot get a large value of or without either one or both of the other

two being large, and of opposite sign. This implies that the lines offorce

cannot be parallel in such a region. They must either diverge or be bent.

It can be shown that a magnetically saturated particle can never be im

true stable equilibrium under the influences of magnetic forces alone. Tha

follows simply by regarding the particle as having a (fixed) surface dism-

bution of magnetic poles, and applying the appropriate analogue of Eam-

shaw’s Theorem(5, 374 and 167). The particle will in fact be either in wt-

stable equilibrium or be moving towards one of the magnets producing tbr

field.

We next wish to show, quile generally, that a very large ficld gradientvn

only be produced (leaving aside electric currents for the moment) by having

ferromagnetic material near the particle. This is perhaps obvious on di:

mensional grounds. A magnet of a given shape and of a given material will

produce the samefield at corresponding points, irrespective of seale. Thus,

clearly, the smaller the magnet, the greaterthe field gradient. As there is en

upper limit lo the size of (B-H) for magnetic materials, there must come 4

time whenthe gradient can only be increased by making everything smaile

We canillustrate this by calculating the result for an ideal polepicce ah
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the shape of a truncated cone, semi-angle «, with the particle at the apex of
the cone, which we will take as the origin. We will assumethat the direction
of magnetisation is everywhere parallel to the axis of the cone. The solution
of this problem, which is quite straightforward, gives the field gradicnt alt
the origin as

, OH 6alI
mo =-——— sin? « cos? «
Ox xz=0 Xp . /

where I = intensity of magnetisation of the pole-piece, which is as-
sumed to be uniform.

9 = distance of pole-piece from the particle at the origin.
There are three points to notice about this answer. Firstly that the expres-

‘: . . 3
sion has a maximum with respect to « at cos a = —==. Secondly that we can

V15
wrile this maximum (putting 421 = B-H) as

(B— H) 18V3 .— ———= (B, refer to the polepiece
% 50V5 ( polepiece)
 

so that the field gradient at the origin is of the form

(B—H)
Vo

where p is a constant a bit less than 1. This form of result is very general.
Thirdly we note that if we had not continued the pole to infinity, but stop-

ped it at the point 2,, we should have obtained

1 1
p(B—H) (5 -=Xt

shich shows that as long as 2, is several times wg, the result is not sensitive
Wits exact value. This obviously follows from the fact that we are inle-

. . . BH .@ating an expression of the form ree through a volume. Thus distantF

entributions have hardly anyeffect, because of the upperlimit to (RoI)
his not necessary, however, to produce the magnetic gradient dire: any

sith the primary magnet. We can produce a large uniformfield, and con-
veer the gradient near a small body ofsoft iron placed in this field. For
simplicity we will consider the case where this body is a sphere. This is
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extremely casy, as for points outside it behaves exactly as a doublet of

strength

located at its center (a = radius of sphere). Let the particle be a distance

r from the centre of the sphere (r > a).

If we consider the case where the applied field is parallel to the line join-

ing the particle and the sphere, the force is an attraction given by

_ 3

|F[ = “= (3) 2M
r r

CV refers to the particle, B and H to the soft iron sphere.)

For the case where the field is perpendicular to the joining line, we have

a repulsion of

_. 3
jr) = Bo (‘) 3M

r r 

It is thus possible to control the direction of the force to some extent by al-

tering the direction of the applied field. It should be noted that the force

falls off as g> so that it will vary rapidly with the position of the particle.
r , .

To sum up, the maximum gradient will usually be of the form

BH
pF)Xp

where (B-H)is the value for the iron in the immediate vicinity, avis the

distance of the nearest iron [rom the particle, and p is a constant depending

in a complicated way on the configuration, but approaching a value ofthe

order of 1 in well-designed cases. The more distant parts of the magnetic

cireuit do not affect the gradient directly, but only in so far as they deter-

mine (B-H) in the iron near the particle.

We must consider briefly the possibility of producing high field gradicnts

by cleetric currents in air-cored coils. We first observe that we require a

sustained force for our purposes; a short pulse is in general not sufficient.

The limitation is therefore the steady heating effect: cither the small rise in

temperature which the culture will tolerate, which would be important for

coils close to, or the rise in temperature of the coil itself for larger, more
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distant coils. We will not give a general treatment, but will give one simple
example. Consider the conical polepiece of page 529. Instead of a cone of
magnetic material, imagine that this cone is a former upon which a coil is
wound, What is the current through such a coil which would produce the
same field-gradient as the magnet did? By considering the equivalent mag-
netic shell we arrive at the simple answer that

nt = Iwhere n = number of turns per cm

i = current in coil (e.m.u.)

J = magnetic intensity of the iron.

Nowwe can easily make TJ = 103, so that if we had 1 turn per mm (n =
10) i must be 10?, or 10? amps. This will clearly give an enormous amount
of heat. The margin in the calculation is so big that more precise considera-
tions would not be appropriate. Briefly we note that the heating effect al-
lows (ni) to increase as 127, where 1 is a characteristic length, so that air-
core coils can only compete with magnets if they are both very large, which,
as we have shownis the case which produces lowfield gradients. Thus,
in general, magnets are much better than air-cored coils for our purpose.

H. SOME NUMERICAL VALUES FOR THE STRESS

Although we have arguedthat the methodis a very poorone for finding how
the “viscosity’’ of a non-newtonian liquid varies with stress, it is clear that
if the range of stresses is very wide indeed we mayexpect quite considerable
differences in behaviour. It is therefore useful to compare the maximum
values of the stresses due to twisting and dragging magnetically, and due to
gravity. To simplify matters, since we are only concerned with orders of
magnitude, we will consider the case of a sphere, taking its radius (r) as 1 ye.

1. twisting of a sphere magnetically.

The maximum stress in this case is

BH
~_ -- dynes/cem?,
4a

For B = 225 and H = 45 oersteds we get

~ 400 dynes /em?.
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2. dragging a sphere magnetically.
The maximum: stress is

B

12a

1H
(‘ =) dynes /em?

dx] ~

. - 1Hfor B = 1500 and “ix = 10* oersteds/em (say)

and r= 107+ «em

we get

~ 40 dynes/em?,

3. dragging a sphere due to gravity,
For the general case (as in a centrifuge) where the centrifugal acee-
leration is ng we haye the maximum:stress equal to

n
(e — @0) “2 T

where @ = density of particle

Oo = density of liquid.

There are two cases of interest.
(a) for magnetic particles under gravity.

Taking @=4 o=1 n=1 r=10-4 cm
we get

1
= -—~ dynes 2io ‘ ynes/em

(b) for natural inclusions of the cell, in a centrifuge.

Take, arbitrarily, (@ — gy) = 0-1.

We obtain for the maximumstress

n
a, dynes/em?
300° /

for an acceleration of ng.

The point we wish to bring out is not merely that the stresses produced
during magnelic twisting are rather bigger than in magnetic dragging, bul
that both are enormously bigger than the effect of gravity. Moreover, these
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stresses are only equaled when centrifuging natural inclusions of the same
size by centrifugal fields of the order of 10° times gravity.
Finally we must emphasize that these results only apply for particles of

the chosen size, as can be scen from the factor r in the later expressions.

SUMMARY!

1. The paper gives the theory of the magnetic particle method, in which
some of the mechanical properties of a fluid are estimated by observing the
movements of magnetic particles in it due to applied fields.

2. For the very small particles likely to be used in biological systems the
inertia can be neglected.

3. The effect of scale is derived for particles of irregular shape in a new-
tonian liquid.

4. Exact formulae are quoted, for the three cases most often encountered,
for an ovary ellipsoid of revolution in an infinite newtonian liquid. Refe-
rences to the general ellipsoid are given.

5. The effects of the irregular shape of a particle, of boundaries, and of
non-newtonian and elastic behaviour of the fluid are discussed qualita-
tively.

6. Some theoretical notes are given on producing large gradients of mag-
netic field.

7. Some comparative numerical values ofthe stresses in certain biological
applications are evaluated.
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