Dr. A. Klug, F.R.S.
MRC Medical Research Council
Laboratory of Molecular Biology
Oniversity Postgraduate Medical School
Hills Road, Cambridge, CB2 20H
England
Dear Aaron:

Thank you for you revised version of your paper. As you sent it on 23 June you would not have got my letter of 20 June.

It in clearly too late to recast it in a major way and in any case this is not really necessary as it reads fairly logically. I have, therefore, only a number of small points to make.

You will have already noted my remarks about the Russian cryatals. Yumey should put an explicit reference at the beginning and also perhaps near the beginning of page 6 .

I think you should put "about" $110 \times 110 \times 37$ both in the sumary and on page 12. Also, I would suggest "roughly I 3/4". I see you have not yet got over your obsession that these must be exactly 80 (or perbaps 90) base-pairs per turn. The axgument you give is a good one to explain why DNase I cuts at exactly every 10th base but it does not suggest that the superhelix has to have an exact multiple of 10 . I can explain this by saying that your argument would imply that the A form of DNA had to be orthorhombic rather than monoclinic. I am sure you will see the parallel. Incidentally you onit the argument that the "crystal forces" in the Bi_{c} form would tend to produce an integral number of base-pairs per turn. Your argument about 160 base-pairs being exactly two turns is also very feeble. Why should exactly two turns be needed to produce a pause?

I had not apprectated from your earlier draft (although it is obvious enough) that you got the aigns for the projections (and the "a" projection in particular) from the aigns of e/m pictures of a shrunken crystal. With a shrinkage of 10 to 20%, this could give you false signs for the higher order reflections. Strictly you need to know how
the x-ray. Intensitias change with shrinkage but this may not be possibla. Thia makes me very muspicious about your higher order signa. A falae sign would not altex your major conciusions but it might make the platysona look too thin for instance. Have you any worrian about, any of your elgns?

Ori page 15 yod imply that the cuti are symatrically arranged on the DNA. Hy impression is that thit was what ten thought originally but hia later more careful data shomed that it was only approximately true. Or have I got it wrong?

To ny surprize you are not completely gound about Inicage (I onclosed a short note on this). Check with Michal that my interpretation of "in the laboratory frame" is correct; is I hava minor doubte about it. Rowavar I an quite sure of the part dealing with kinking.

I have no special comment on the question of the arrangement of H3 and H4 excopt to ask if you think the platysome has a hole in the middle. Are you really aure that there is no DNAse I cut at 30 (and 110) when only $H 3$ and $H 4$ are there or are you just guessing from the way the gels look?

But all these pointe aside, the paper reade very wall. Could I ask you to bring alide of Fig. 6 for ma to Demmark (and also of Fig. 8) as I hould lika to show them in ny FEBS lecture.

Best Wishes,

