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The formula The distance, D 3 , of the center of gravity
of the two spaces from the initial plane,
is '

wherein A is the area of the generatrix
of a space, in its initial position, B, its
area in its final position, D is the distance
between these positions, and Y is the
amount of space between, is an expres-
sion representing a distance, or linear
measurement, like in kind to D, because
the second term is a product of four
dimensions divided by a product of three
dimensions of like kind. If the space be
a plane, the second term is still, as well
as the first, an expression of a single
dimension. This expression has been
found to represent the distance of the
center of magnitude from the initial end,
of each of a number of shapes, or the
center of gravity of a mass of uniform
density, which fills the space.*

To determine the extent of its applica-
bility, let us first consider twro spaces,

wherein As, B3, Vs, are the areas of ends,
and volume of combined space. There-
fore, formula (1) applies to the space

In the same manner it may be shown
that the formula applies to the space

if it apply to space, y— fXx)0 >
an d so on.

Consequently, if formula (1) apply to
each of any number of spaces between
same limits, it applies to their sum.

From a similar course of reasoning it
follows that If formula, (1) apply to all
but one of any number of spaces be-
tween same limits, it does not apply to
their sum. Also, if the formida apply
to certain spaces between same limits and
do not apply to certain other spaces, more
than one, between the same limits as
before, theformula does not apply to the
sum of all the spaces, except in special
cases, when its error for some of the
spaces is balanced by its error, with
opposite sign, for the rest.

Now let us consider the expression for

Let Aj, Bj, be the end areas of first, V,,
its volume, D, the distance between these
limits, and D,, the distance, from first end,
of the center of its magnitude. Let A2,

B2, Y2 , D, D2 ,
be the similar values of the

second space, both lying between same
limiting planes, as indicated in (2).

If formula (1) apply to each of these
spaces, then

* Formulae forR. R. Earthwork, Second Edition, p. 105.
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all spaces, ?/=F(a:).* Each term of this
is of the form 'Kxn ; and the distance of
the center of gravity, from the first end,
of the space represented by y=Kxn

, is

position whatever, since to shift the axis
of Y does not change the degree of eq. (5),
is all that requires demonstration. The
position of the center of magnitude in
that space is, then, immediately indi-
cated by formula (1), which may be
reduced for particular cases.

For instances: Because the areas of
generatrices of triangle, pyramid, cone,
and paraboloid, in terms of distance
from their vertices, are, respectively, ax,
b(cx) 3

, 7t(exy ancl nfx, formula (1)
applies to all of these and to all of their
frusta. Therefore, for triangle, the dis-
tance of center of gravity from vertex is

Formula (1) applies to this space when

This is true when ra=0. For all other
values of w, (3) becomes

For trapezoid;

For pyramid or cone when B is area of
base,It follows from this and the rules

written in italics, that the center of
gravity formula applies, between any
limits, to those spaces only which are
represented by the equation For frustum of this:

and it applies to special cases only,
[i. e., between special limits,] of all other
spaces.

By comparison of (5) with similar
equation, [eq. (11), p. 412, May No. of
this Magazine,] representing the limit of
the prismoidal formula’s applicability,
which equation is

The last result, which is formula (1)
only changed by cancelation of the com-
mon factor D, is at once in the simplest
form. Dr. Weisbach requires a page
and a quarter of laborious demonstration
to reach this result. See pp. 233-4, Eck-
ley Coxe’s edition of Theoretical Me-
chanics.

For paraboloid, the radius of whose
base is r,

it is seen that the center of gravity
formula is, practically , co-extensive with
the prismoidal formula; because the
generatrices of very few, if any, practical
shapes vary as cubic functions of the
path. This formula will, therefore,
serve in the same way as the prismoidal,
as a widely general rale, which renders
mmecessary the demonstration, recollec-
tion and use of a large number of special
rules.

Thus, the chapter on center of gravity
in a treatise on mechanics can be much
abbreviated by use of this formula. The
fact that the generatrix of a space, ex-
pressed in terms of its distance from
initial end of that space, or from any

For frustum of this we obtain an ex-
pression similar to that for trapezoid,
since its generatrix varies according to a
function exactly similar. It is

Formula (1) applies to the sphere,
because, with center as origin, the mag-
nitude of generating circle varies as* See introductionto article entitled Prismoidal For-

mula in May number of this Magazine.
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Fig. I.
Hence, for hemisphere, measured from
center,

Because the generatrix of the complete
rectangular prismoid [Fig. 2, p. 414, May
No. of this Magazine] varies as

formula (1) applies to all rectangular
prismoids and wedges, in direction per-
pendicular to bases.

For wedge, measured from edge;

about CX, then the circumference~of the
generating circle whose radius is y, gen-
erates in the time, dt, «r--i

To reach results similar to these for
wedge and prismoid requires more than
a page of Weisbach’s Mechanics. By
calculus, the demonstration is nearly as
long.

In a manner similar and quite as easy
it may be shown that formula (1). applies
to any segment of common parabola, in
direction perpendicular to axis, to all
parallelograms, prisms, cylinders, pris-
moids, eylindroids, spheroids, hyperbo-
loids, all segments of these between
parallel planes, and to the class of shapes
whose lateral boundaries are right line
surfaces the type of which is illustrated
in Fig. 6, p. 418, of May No. of this
Magazine. The last class includes alone,
columns, chimneys, piers, abutments,
warped-faced wing-walls, banks, retain-
ing walls, dams, earthwork solids, and
numerous other practical shapes.

If the extremity, S, of the generatrix
of a circle, Fig. 1, generate a length, dx,
of the circumference in an infinitesimal
time, dt, while it passes through center,
then, at any distance, x, it will in same
time generate a length equal to

which is the form of eq. (5), when b—o,
c—o. Hence formula (1) applies to any
zone of sphere, and the position of cen-
ter of magnitude is, when h is altitude of
zone,

Because formula (1) applies to the
cone CSS', and to the segment SXS', as
has already been shown, it may be used
to determine the positions of the centers
of gravity of these; and the c. of g. of
sector may then be found by composi-
tion of moments.

Formula (1) applies directly to the
spherical sector when D is understood
to be the distance passed over by the
center of magnitude of generatrix, a
varying, concentric zone, and V to be the
amount of space described by a plane
generatrix, varying as the same function
of, and passing over, the same path.

This is true, because the distribution
of magnitude along the path D is identi-
cal for both modes of generation, and
because, since formula (1) applies to one
of these shapes, the variation of genera-
trix being as ex2

, it also applies to the
other.

Thus is obtained for sector of sphere,

Hence formula (1) does not apply to
arcs of circles.

But, if the circumference be revolved
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where B is area of spherical circle, d is
distance of its c. of g. from center of
sphere, h is its altitude, and r is radius
of sphere.

In this sense formula (1) applies to,
frusta of spherical sectors, [i. e., be-
tween concentric zones], whether the
zones be terminal or annular; also, in di-
rection of sector’s axis, to all divisions of
these included each by two planes passed
through axis; to circular sectors between
any limits, to all portions of regular
polygons and polyhedrons, which can be
inscribed in circular and spherical sec-
tors, respectively, between any limits,
and to every shape, each part of whose
generatrix varies as the same function of
its distance from initial end.

Thus, it applies to the square diago-
nally, when the initial end is one vertex,
and the generatrix is the broken line
composed of the opposite two sides.

Applied in this way, formula (1) gene-
rally requires, preliminarily, the aid of
some other method to determine the c. j
of g. of generatrix itself. In case of
spherical sector, it applies both to the
generatrix and to the space described
thereby.

It will be observed from the foregoing
that the only familiar simple shapes,
such as are made examples in works on
mechanics and engineering, to which
formula (1) does not apply directly, are
the circular arc, sector, segment and
spandrel; and to latter three of these it
applies either indirectly or with aid of
composition of moments.

Formula (1) applies to all lines for
which

Formula (1) applies in direction of
axis to all surfaces formed by revolution
of the lines for which

where a, b, c, are arbitrary. The only
familiar surfaces of revolution for which
eq. (9) is true are the surfaces of cylin-
der, cone and sphere.

Formula (1) applies, as a center of
pressure formula, to the common cases of
hydrostatic pressure. The equation of any
immersed plane figure, referred to inter-
section of its plane with surface of fluid,
as the axis of Y, and to any line in its
plane, perpendicular to this intersection,
as the axis of X, is

If 6 be the angle of deviation of its
plane from plane of fluid surface, and y
be the specific gravity of the fluid, sup-
posed to be uniform in density, the press-
ure on the figure at a distance x is

In order that formula (1) shall apply,

Fortunately, the last member of eq.
(10), when we make a f =o, represents
nearly all the usual submerged plane
shapes, since these are seldom other
than the rectangle, triangle and trape-
zoid, with bases parallel to fluid surface.
Because the pressure at every point of
submerged surface is normal thereto,
and equal in intensity to y sin 6 x, it
may be represented by a line perpendic-
ular to surface and varying in length as
the same constant multiple of x. There-
fore, the equation of entire pressure,

where a, b , c, are arbitrary. If c=o, dy
is always in integrable shape; but the in-
tegration is tedious. Eq. (8), however,
shows at once that the only familiar line
to which formula (1) applies is the
straight line. To obtain another ex-
ample, without much labor in the inte-
gration, make a and c zero and square,
subtract unity, extract square root, and
multiply by dx, each member of eq. (8).
By integration the equation of a line,
subject to formula (1) is found to be

is also the equation of a space, whose
generatrix is a rectangle varying as y in
last equation, its sides remaining con-
stant in direction. This shape can, con-
sequently, be only a frustum of the rec-
tangular pyramid, prism or prismoid.

dist. c. + 12^) =f^
=fHA) • • (7)

y=\bx Jx*_ _1 -J_ nap. log.Y 2b

| x+ |/a;2
— J_ | + const.

y +l=a+ b x+cxi
, (9)

2/=F(a;).

y'=F(x)y sin 6 x=F (x).

F '(x) — a + bx + ex'.
-r*i v a+ bx + cx2 a'

,, , 1AF(ar) = 7—5—=—+b +c«.(10)y sin U.x x

y + \—a+ bx-\- cx*, (8)dx

y=(b' + c'x)y sin 6. x=bx + cx*,



A NEW CENTER OF GRAVITY FORMULA. 31
We may, therefore, confine our attention
wholly to these shapes, because the re-
sultant of pressure passes through the
center of magnitude of each.

Of course, as shown by expression (6),
the prismoidal formula also applies to
these shapes, and, in consequence, to the
pressure. Indeed, it would seem that
this is the simplest method of determin-
ing the total pressure. The following
is the

KULE.
To find the total pressure on a sub-

merged rectangle, triangle or trapezoid,
whose bases are parallel to fluid surface,

Multiply top-width of shape by its dis-
tance beneath surface; call this A. Mul-
tiply bottom width by its distance beneath
surface; call this B. Multiply mid-
width by its distance beneath surface /
call this M. Then totalpressure is of
distance between end-widths

, multiplied
by the specific gravity of fluid, and
again by

and formula (13a) becomes

as simple as before.
To find distance of center of pressure

below fluid surface, multiply (15) by sin 6,
or use in (15), instead of diy c? 2, D, their
vertical projections, if these be known

EXAMPLES.

The submerged figure is a triangle
whose base is at fluid surface. Here, d xand w2 are zero; consequently, the dis-
tance of center of pressure is £D. The
pressure is

This corresponds to the case of the
entire middle branch of the complete
prismoid, Fig. 2, p. 414, May No. of this
Magazine.

The vertex of the triangle is at sur-
face, and the base is parallel thereto.
Here w x and dx are zero; and, in conse-
quence, formula (15) reduces to £ D.
Then,

When top-width is w 2, and its dis-
tance beneath surface is h 2 ; and w> 2 , A2 , cor-
respond to lower width, while D is dis-
tance between, the formula is The figure is a rectangle. Here w x = w 2,

and the formula (15) becomes
If it be desired to determine the com-

ponent of pressure in any direction, use,
instead of I), the projection of D normal
to that direction.

The formula determining the distance
of center of pressure, measured from fluid
surface along submerged plane, is

The distribution of pressure on sub-
merged trapezoids corresponds to the
distribution of magnitude in the various
segments of the complete rectangular
prismoid, as wedges, etc.

If the plane of submerged figure be
parallel to fluid surface, formula (13a)
shows that the center of pressure is co-
incident with the center of magnitude of
the plane shape itself. When, now,

— we have the case corresponding
to that of the rectangular prism.

While defining the rectangular pris-
moid on p. 414, May number of this
magazine, as a shape generated by a
moving rectangle, the product and quo-
tient of whose two dimensions vary, we
noticed two other shapes, in one of
which—the pyramid—the product is va-
riable and the quotient constant, and in
the other of which—the prism—both are
constant; also, a fourth shape was de-

where is distance from fluid surface to
top base, measured on plane of figure,
and the other symbols are as before.
(12) may be written

When, instead of h 2 , A2, we know the
distances d2 , d2, along submerged plane,
formula (11) becomes

a , ip | (v,d,-"A)p
1 2 2[yo ld 1

+ (w1
+ ?c2 )(d 1

+ d2 ) +wfij
(15)

T)y sin 6 w x d2 or D y

A+ 4M + B.

sin 6. wfi2, or JDy wji 2 .

p =JT> V OA + (m, + to,) (A, + h ) + wfij
• • (11)

1 5 T 6(c?a + c?j)
sin 6.

+ ■ . (12)

cZ
i
+ 2 D + 2(B+4M+A) ’ ( 13)
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d +iD+ fej.-y,A)D

’ 2[w?1 A1 + (w 1 +wa )(A1 +A2 )+ a AJ
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scribed for which the product is constant
and the quotient variable. All these
cases occur in hydrostatics. The only
one not mentioned is that of the figure
whose generatrix varies in magnitude as
Qj
—, the first term of last member of eq.x
(10), while the pressure varies as cinx.

Formula - (13), or its equivalent, formu-
la (15), in same manner as formula (1),
saves the calculator the inconvenience of
remembering numerous rules, because
the reduction for special cases, a few of
which have been illustrated, can be in-
stantly effected before he proceeds to
the numerical part of the work. The
same may be said of the prismoidal for-
mula, as applied to the summation of
these pressures.

The only other submerged figure men-
tioned in treatises on hydrostatics is the
circle, which is usually the surface of a
valve. Formula (15) does not apply to
this. If r be its radius, and h the depth
of centre below surface, then

To find the moment of the horizontal
component of P, referred to fluid sur-
face, which is the moment usually re-
quired, multiply the former moment by
(sin Oy.

This is useful when we would find the
position of center of pressure of a com-
pound figure. Such a figure may be divi-
ded into triangles, trapezoids and rect-
angles, whose bases are parallel to fluid
surface; and the moment of each may be
found as above.

The moment which is most often re-
quired is that of the horizontal compon-
ent of P, referred to the lower base.
Tins is the product of sin 6. P and sin 6.
[ds

— (15)], which is

This is the moment which tends to
overturn the solid whose surface receives
the pressure.

Formula (1) will prove useful to the
practical engineer, since few shapes
to which it is inapplicable come under
his consideration. In his service i$ will
be especially simple, for the reason that
he will be very likely to have already
calculated,_ for other purposes, the con-
tents of the shapes he deals with, and
will, consequently, know at the outset the
value of the denominator of second
term. For instance, as often occurs, if
it be required to find the position of the
c. of g. of a piece of iron or timber of
known volume or weight and of pris-
moidal shape, for the purpose of hoisting
it, loading it upon a vehicle, or because
it is a member of a structure or machine,
the formula

The statical moment of a material
shape, represented by eq. (5), referred to
an axis parallel to plane of generatrix,
and at a distance beyond its initial
position, is the product of V by the sum
of dx and expression (1).

This has exactly same advantages as (1).
Formula (16) is very convenient when

we would determine the center of gravity,
or the statical moment of a compound
figure, every part of which is a shape
represented by eq. (5). The first term of
second member shows that the c. of g. of
each part may be assumed to be half way
between its ends; whereafter, by compo-
sition, very easily a false statical moment
of the whole figure can be obtained.
This should be corrected by the second
term of second member applied to each
part.

The statical moment of the pressure,
whose resultant occupies the position
indicated by (15), is, referred to intersec-
tion of submerged plane and fluid sur-
face, the product of P and expression
(15).

indicating its distance from mid-section
toward larger end, is exceedingly simple.
If y be the specific gravity of the mate-
rial and W the weight of piece, the ex-
pression becomes

Even when neither the weight nor
volume are known, the practical calcu-
lator will find formula (1) very conveni-
ent, because it can so easily be reduced
to the simplest possible form for special

£Dsin'2 6.P — & 2ysin8 6.(w id-w
l
dl ), or

*6.y[2W'dl
+ (to

,
+ wt) (d t

+ ].
(17)

P=hitifiy\
r 2

and dist. cen. of press. —h + ~.

. •; Statical moment= (d x 4- |D)V + J^D2

(B-A).
’

(16)

(B-A)D2

12V ’

(B-A)Dy
12W
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cases, by mere cancelation of symbols,
before the numerical part of the work be
commenced.

The calculator can, in most cases, re-
cognize at sight the shapes to "which for-
mula (1) applies. For doubtful cases
formula (5) is the criterion, and it is
easily used. When the shape satisfies
this, it is known that both theprismoidal
and the center of gravity formulae apply.

The best practical application of for-
mula (1) is to the determination of the
mean distance, which the material of a
cutting has been hauled to form an em-
bankment, since here it apparently satis-
fies the greatest want. Haulage is the
product of the quantity of material and
the average haul or mean distance which
it has been transported. The unit of
haulage is one cubic yard haided one
hundred feet. On this basis the price
for haulage is fixed.

After having calculated one factor of
haulage, the quantity,

it remains for us
to find the other, or average haul. To
do this pass a plane anywhere between
cut and fill normal to route of haul.
Suppose the magnitude of cutting to be
generated by a limited plane, whose vari-
able area is represented by y. Let x de-
note the variable distance of y from the
secant plane. However irregular may
be the shape of cutting, we know that y
varies as a function of x. Hence ydx,
the elementary volume, multiplied by x,
which produces the elementary amount
of haulage, is integrable.

the average haul from same plane to fill
is equal to the distance of c. of g. of fill
from plane.

Therefore, the average haul of a piece
of excavation is the distance between the
center ofgravity of the material as found
and its center of gravity as deposited.

This is as it is stated in works which
touch upon the subject. But the prac-
tical computation of this theoretical re-
sult has been found to be a far more te-
dious task. It is evident that, first, the
centers of gravity of the component
solids must be severally ascertained,
since the cut or bank is measured as a
compound shape. But the application
of formula (18) to each of these produces
a very intricate expression, involving
about double the labor necessary to cal-
culate the true content of the solid by
means of the prismoidal formula in
crudest shape. After this the several
moments must be compounded.

To avoid this some calculators have
been in the habit of dividing the excava-
tion into two parts of equal volume by a
plane normal to center line, and estab-
lishing this as the initial point of the
average haul. A plane similarly fixed in
the embankment marks the terminal
point of same distance. But this plane
is always nearer the larger end of shape
than the c. of g. is, as may be illustrated
upon the cone, triangle or any shape of
unequal end dimensions.

For instance, if the first five 100 ft. sol-
ids of a railroad cutting have been trans-
ported to a bank, and the generatrix
commence with an area zero at beginning
of cut, and reach, at the end of consid-
ered part, an area whose center height
is 20 ft., road bed width 20 ft. and side
slopes 1\ to 1, the total volume is about
10,000 cubic yards, and, consequently, a
difference of 1 ft. in distance makes a
difference of one dollar in money. But
the difference in the cut is 20 ft., and, if
the bank be of same form, 20 ft. is there
added to average haul distance. The
average haul of other end of same cutting
is likely to be also 40 ft. too long. The
error of this method, then, makes a total
error of eighty dollars for that cutting,
which is invariably at the expense of the
railroad company. In the time that a
calculator would, by this method, com-
pute the haulage of a division of ten
miles he would be likely to cost his em

where c?2, are distances of ends of cut-
ting, is the haulage of cut to plane, and,
when x' is the average haul so far as
to the plane, the following equation is
true.

The first member of this equation is,
by definition, the average haul to plane;
the second member is, by principles of
mechanics, the distance of c. of g. of
material from plane, and the equation
shows that these are equal.

By similar reasoning it is proven that

/id

J * xydx,

fd ' 1 xydx
x - X—• ( 18)

Jch V dx
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ployers an amount equal to a year’s
salary.

To divide the cutting into numerous
small parts, and find the sum of their
moments, or to determine the c. of g.
by a mental estimate merely, are methods
either laborious or liable to error.

Because the earthwork solid belongs
to the class of shapes bounded laterally
by straight line surfaces, formula (1) ap-
plies thereto. Let A, B, C, . . . . K,
be the areas of cross-sections, a constant
distance apart, 100 feet, or D, in a piece
of railroad excavation, whose material is
all carried in same direction to form an
embankment. Assume an axis, outside
of cutting, a distance rf,, equal to 50 feet,
beyond A. Then, according to formula
(16), the statical moment of first volume,
referred to this axis, or the haulage of
its material to this axis, is, since d +

=100,

Obviously, the axis may be established
anywhere. It is merely convenient to
place it midway between the 100 ft. sta-
tions. It might occupy the position
midway between A and B. Then the
moment, or haulage thereto, would be
expressed by formula (21), with each co-
efficient of all but final term [called the
correction term] decreased by unity. So
the first term, Volx, would vanish.

Since this is so, the embankment can
be referred to the same axis, wherever
that may be with respect to the bank.
In short, all the terms, except the correc-
tion term, express the operation, to mul-
tiply the number of cubic yards in each
volume by the number of hundred feet
that the mid section of that volume is re-
movedfrom the axis.

It is well to place the axis between
cut and fill, or, if they overlap, as nearly
so as possible, in order to avoid negative
moments or haulage. For instance, the
axis might be established half way be-
tween B and C. Then the partial haul-
age would be

The haulage of second volume is, evi-
dently,

The haulage of each remaining volume is
represented by a similar expression, ex-
cept that the coefficient of first term is
always the product of 100, or D, by the
ordinal number of the volume. Thus,
for last, or n th

, volume, the haulage is

This is less than (21), but the difference
in defect, 2 Yol, where Yol is total vol-
ume in cubic yards of material removed,
is exactly balanced by the same differ-
ence in excess, which is created when
the haulage from axis to fill is consid-
ered.

If the irregularity of the ground sur-
face make it requisite to sub-divide one
or more of the 100 ft. volumes, as the
volume between H and I in Fig. 2, where,
also, a plus or intermediate station, K',
instead of a full station, terminates the
portion of cutting carried one way; the
same rule expressed in italics, second
paragraph above, holds, but the correc-
tion formula is, for example above,

The sum of these expressions is the total
haulage to the axis. But the sum of all
the second terms is

Therefore, an exceedingly simple rule for
determination of haulage can be con-
structed.

Before stating this rule let us make a
further reduction in the formula. The
unit of expressions (19), (20), is a cubic
foot hauled a linear foot. To reduce
this to the haulage unit, divide by
27D.=2700. Let etc
Yoln=-^V n) that is, let the abbreviations
represent the number of cubic yards
instead of cubic feet. This, it happens,
is the denomination used in dealing with
these quantities, and is, therefore, the
denomination in which these quantities
are presented to us when we commence
to calculate the haulage. Now, divide
the sum of expressions (19), (20) by 27D,
using the abreviations.

which is simply a combination of the cor-
rection formulae for the volumes of dif-
ferent lengths.

The haulage from axis to fill is deter-

Sage }=V* +*V<*+ . . . . nVoln
+«f(K-A) (21)

100V1 +*D’(B—A), (19)

200 V2 +^D2(C—B). (19a)

-Vol 1 +Vola+ 2Vol
i

. . . + (n-2)Voln

+ (K ~ A>' <22>
100 n V„ + TV D*(K—J) (196)

tV D2(K-A). (20)

2(H +K-A-I)+D' 2(H'-H)
+ (D—D') 2 (I—H') +D" 2(K'—K)], (23)
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Fig. 2.

mined in same manner. But the result
must be multiplied by

yards in bank, and midtiply quotient by
number of cubic yards in cutting. The
sum of these is the total haidage required.

This rule, although wonderfully sim-
ple, in view of what might be expected
from so irregular a solid as a railroad
cutting, is absolutely correct. It only
remains to multiply its result by the
price paid per unit of haulage to find the
price to be paid for the work.

The position of c. of g. of cut may be
determined in same manner described
above for the bank.

It frequently occurs that portions of
excessive cuttings are transported to
spoil-banks near at hand. Often the en-
tire top is taken off by scrapers. The
accurate final estimate does not distin-
guish between these portions. In such
a case the haulage from cutting to fill,
as found by rule, is not the true haulage.
Let Vol' be the amount in cubic yards
wasted, as recorded in monthly estimates.
LetH' be the haulage of this amount to
waste pile, as determined in monthly
estimates. The position of c. of g. of
this portion of cutting must be known.
It can be found, according to method of
last paragraph, at the time when that
material is measured, and its position
should be recorded. Let the distance of
this position from the c. of g. of fill be
L'. Now, the error in the haulage, as
first calculated, is the result of the ope-
ration founded on the supposition that
YoV was moved to the fill instead of
to the waste bank. The correction is,
in consequence.

for the reason that the material does not
occupy same space in embankment as in
cut. Ordinary earths become compressed
to various degrees. Solid rock fills more
space in the bank. The result of division
by Embankment Yol. is the number of
hundred feet from axis to c. of g. of
embankment, or the true average haul
between. This should be multiplied by
Excavation Yol., because the amount of
material should be measured in the exca-
vation. The sum of the haidage from
cut to axis and from axis to the fill is
the total haidage from cut to fill.The foregoing may be condensed into
the following systematic

RULE.
To find the haulage of material from

a piece of railroad excavation to the em-
bankment built therewith, in terms of
the haulage unit, 1 cu. yd. hauled 100 ft.

Consider a plane to be passed midway
between two consecutive full stations, as
nearly as qwssible between cut and bank.

Multiply the number of cubic yards in
each volume offull [100 /if.] or minor
[less than 100 ft.~\ length, in cutting by
the number of hundred feet its mid-sec
tion is removed from the plane. If any
such mid-section be on the side ofplane
toward thefill, its product must be taken
as negative. The sum of theseproducts
is approximately the haulage from the
cut to the plane.

To correct this add the expression Quite as often it happens thatportions
of the embankment are built of material
from borrow-pits at hand. Let Vol" be
the number of cubic yards borrowed, as
measured in fill, Hx/ the haulage thereof,
and L" the distance of c. of g. of this
portion of fill from the plane. Let the
number of cubic yards in entire part of
bank to which material from cut has been
hauled be Yol'". This is equivalent with
expression, EmbankmentYcaused above.
Then ('Sol'"—Yol") is theportion of bank
brought from cut; and its c. of g.,—not

once for every series of consecutive vol-
umes of equal length, in the cutting, D
being the length of each such volume,

K, the area of end cross-section of the se-
ries, farther from the plane, and A, the
area ofend cross-section nearer theplane.

Determine in exactly same manner the
haulage from the assumedplane to the
fill/ but divide result by number of cubic

Excavation Yol.
Embankment Yol.’

H'-L'xVol'. (24)

f D2

lff% 9x6x6 (K ~ A)’
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the c. of g. of Yol'", as calculated in rule,
—is the terminus of average haul dis-
tance from cutting. If 1/" be the dis-
tance of c. of g. of fill from plane as
determined in rule, and L iv

, the distance
therefrom of c. of g. of {Yol'"—Yol"),
then

ence in labor, occasioned by change in
amount of haulage, so often made neces-
sary during progress of work, is directly
provided for in the original agreement.

The paragraphs containing expressions
(19), (20), show that the statical moment
of a series of consecutive, equally long
shapes, each of which is represented by
some of the forms of a quadratic func-
tion, we may find by assuming the c. of g.
of each shape to be half way between its
ends, then compounding the several
moments, and finally correcting by the
expression ,

The correction to be made in mean haul
distance from cutting is (L iv—L'"); and
the correction to be made in haulage is,
when aportion Yor of cut, has beenwasted,

To determine the c. of g. of series, divide
foregoing result by V. Therefore, find
the c. of g. of series on supposition that
the c. of g. of each shape is in its mid-
section, and correct by adding to the
distance, of the point thus found, from A
the following:

When nothing has been wasted, Yol' in
(26), (27) is zero.

The haulage H" from borrow-pit is
usually kept separate.

Formulae (26), (27) are correct on the
supposition that the correction (24) has
already been made.

It appears from the foregoing that in
cases where parts of cuttings are wasted,
or parts of embankments are borrowed,
not only should the quantities and haul-
age of such parts be estimated from
monthly measurements, as is always
done, but also the centers of gravity of
these parts should be established and
recorded at such times, for use in de-
termination of total haulage finally.

The same methods apply, of course,
to theborrow-pits and waste-banks. The
method can be readily modified to suit
all practical cases.

For another method, also depending
upon formula (1), of determining haul-
age, when the cuts and banks have been
calculated entire, that is, when the con-
tents of single volumes are unknown;
also, for graphical methods of solving
the problems just presented, and for de-
tails concerning the terminal solids of
the banks and cuts, the reader is referred
to the chapter on Average Haul in For-
mulae for Railroad Earthwork

, Quanti-
ties and Average Haul, since these de-
pend partially upon formulae foreign to
the nature of this article.

The plan of basing contracts upon ex-
cavation and haulage prices, seems to be
preferred to that which considers exca-
vation and embankment prices. The ad-
vantage of the former is that any differ-

Thus, formula (1) reduces the problem
to this simple one: to find the resultant
of a system of parallel forces in one
plane, whose intensities and positions are
given, the position of this to be corrected
by expression (28). The singular advant-
age of formula (1) is, that its second or
correction-term, (28), remains as simple
for any number of shapes in the series as
for one.

It is evident, in consequence, that the
error of the assumption that the c. of g. of
each shape is in its mid-section, is com-
paratively less as the series is longer);
also, that no error whatever results from
this assumption, when the end areas are
equal.

For instance, to find c. of g. of a
spherical sector whose component cone
and segment have equal altitude, it may
be assumed that the c. of g. of each is
half way between its bases.

To find c. of g. of a series of trapezoids
such as represented in Fig. 2, assume as
before the c. of g. of each to be midway
its length, and correct the resulting posi-
tion of c. of g. of series by

The series of trapezoids may have such
arrangement that some are negative, as

T<lv —i/"Vor"-L"Vor (25)Yol'"-Yol" V '

(Liv—I/") {Yol-YoV) (26)

(27)
*D*(K-A). (20)

(28)12V ' ’

D2 (H +K-A-I)+D' 2(H'-H)
+(D-DT(I-H') +D//,(K , -K).

12 Y
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illustrated in Fig. 2, p. 291, April No. of
this Magazine. When the last ordinate
is coincident with first, the algebraic
sum of trapezoids is the area of a poly-
gon, included by the top lines of the
trapezoids, and the c. of g. or statical
moment of this polygon can be found by
application of formula (1) or (16).

Suppose the polygon to be ABCDEA.
Let a, b, etc., be the ordinates of the
vertices; and let a', b', etc., be the cor-
responding abscissae of the same. Since
we may at first assume the c. of g. of
each trapezoid to be midway its length,
the several moments of these figures,
when the lever arm lies in the direction
of abscissae, are,

Always, when choice may be had,
place the origin at one vertex, as at A.
Then a=o, a'=o. In consequence, one
term in the numerator, and one in the
denominator, of fraction, vanish, and
some of the remaining terms become
reduced.

Each term of the statical moment is
the continued product of the ordinate of
each vertex

, the difference between the
abscissae of the two adjacent vertices, (the
subtraction being made always in same
direction around polygon,) and the sum
of the abscisste of the vertex itself and
the two adjacent vertices.

To construct the formula for the
ordinate of c. of g., simply change , in
formula (33), a, b, etc., to a', b r

, etc., and
a’, b', etc., to a, b, etc.

Professor Weisbach in article 112 of
his Theoretical Mechanics, Eckley Coxe’s
translation, demonstrates a method of
determining c. of g. of polygons. The
one above presented is, however, de-
cidedly shorter when one co-ordinate
only of the c. of g. is required. When
both co-ordinates are sought, there is
little preference between them, this being
in favor of Weisbacli’s method.

The first two columns of the following
example are quoted from the article in
Theoretical Mechanics above referred to.
The problem is solved by the method of
this paper.

for first,

for second,

for last,

The correction term, for first trapezoid, is

for last,

The sum of expressions (30), (31), is
the statical moment of polygon, when
the lever arm is parallel to abscissae.
This may be arranged as follows:

To obtain abscissa of c. of g., divide
(32) by area of polygon, as expressed by
rule B, p. 293, April No. of this Maga-
zine. Accordingly, distance c. of g. of
polygon is To find yx, substitute a for a', and a'

for a, etc.; then proceed as in above ex-
ample.

Applied to a triangle ABC, when the
origin is placed at vertex A, formula (33)
becomes

Each term of the statical moment is
the product of three factors, two of which
are the factors of a term of the area.
These two factors need be used once
only. This makes the determination
oasy. The abscissa and ordinate of c. of g.

Ua +bW-a’Wib' + a')=\(a + b)(b'*-af2 ), (30)

£(& +c)(c ,2-6' 2 ), (30a)

£(e+ a)(a' 2 -e'*). (306)

.&{b'-a'y(b-a)-, (31)

-e’y{a- e). (31a)

$la(b' - e') {e!+ a’ + V) + b(c' - a')
(a' + b 1+ c') . . . + e(a' -d')(d' +ef

+ «')].
(32)

ry. — 1 23444 — Q 771X 1 — 3- T¥?4'— 1 '

%\_a(b' - e') [e! + a' + b') + b(c' - a')
(a r + b’ + o') ... -f e(a' - d') ( d’ + e' + a')]

£[a(b' - e') + b(c' - a') .... + e(a' - d')~\
(33)

Ubc '-cb') (b' + c')
_

Stat. Mom.
£(bc'-cbr )

~~ Area.
=i( b + c)=a? 1

'> /cm\
Likewise, J(6+ c) =y,j '

a' a Double Area. Sextuple Stat.
Moment.

24 11 x 11=121 x 49= 5929
7 21 x 40=840 x 15=12600

-16 15 x 19=285 x-21=-5985
-12 - 9 x -34=306 x -10=-3060

18 -12 x-36=432 x 30=12960

1984 22444
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of the retaining wall, Fig. 3, the origin
being at the left end of lower base, are:

According to formula (1),

The numerator of (36) can be reduced.
For Fig. 4,

Fig. 5.Fig. 3. Fie. 4.

To determine the abscissa of the c. of
g. of the embankment, Fig. 5, which has
a core of different density from that of
the covering material, we may find the
abscissa of polygon ABCDEFGHIJA,
and then that of polygon JIHGJ, and
compound the moments, having regard
to the unequal densities. But the prob-
lem can be solved more simply in one
operation. Suppose y to be the heavi-
ness of covering material, and y' the
heaviness of core material. Now con-
sider at once the polygon ABCDEFGHI
JIHGA, regarding the ordinates of I and

y' y'H, the second time used, as — i, —h.y V
To obtain the ordinate of c. of g. of

whole dam, consider the same complete
polygon, but regard the abscissae, when
used second time, of all the vertices be-
longing to the core [J, I, H, G], as if they
were longer in ratio of y' to v-

If it be desired to ascertain the com-
mon c. of g. of the water resting on
slope, and the dam itself, consider the
polygon, AA'A"CBA, BCDEFGHIJ, JI
HGA, and regard, when determining the
abscissa, the ordinates between first and
second commas as multiplied by y, and
those after second comma, as multiplied
by y\ When determining the ordinate
of c. of g., multiply the corresponding
abscissae by same quantities.

For the determination of the statical
moment, or the c. of g., of any series of
trapezoids, formula (32) or (33) is pre-
ferable to formula (16) or (1), when the
lengths are all different. This is very
apt to be the case in that particular ar-
rangement of trapezoids which forms the
polygon. (32), (33) are, therefore, emi-
nently suitable to this shape. When-
ever a majority of the trapezoids have
equal lengths, as in Fig. 2, formula (1)
is to be preferred.

As it usually happens that the areas
and volumes of practical shapes are cal-
culated for other purposes in advance of
the determination of centers of gravity,
formula (33) is generally in simplest
form. When the area of polygon is
neither known nor required, expression
(33) can be always reduced by cancela-
tion of common factor \, and frequently
can be much further simplified, as in case
of triangle, and to form expressions (37),
(38a).

The denominator of (33), when that
formula expresses the abscissa, is equal
with in value, though different in form
from, the denominator of (33) when it
expresses the ordinate of c. of g. There-
fore, the denominator need be calculated
once only. Thus the denominators of
(35), (36) are the same in value, each
representing the area of the polygon.

hM(d+d'\ + (w'-d) (cl+d' + >(■'}]
*,= 6

-r (37)
A, ,,-_(w + w )_d d+d')+h'(w'-d){d+d'+ w')~\x ~ ~~l[hd'+ h\w ,-d)']~

(35)
_\\_-dh\h+ h') + d'h(h + ti) + w'hn y\

V ~ ll-dh' + d'h+ w'h ']
(36)

1T (w-w')h? /00v

■V, i 1'- i joy S (38)

or, from (36), when h=h',
2w + w' h .

y — r — (38a)
w+ w 3
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