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PREFACE

This book is the result of many years’ experience in attempting
to teach biometric methods to biologists and medical men. Its
faults and its merits, if any, both derive mainly from that experi-
ence. Perhaps nearly, if not quite, every traditional canon of sup-
posedly sound pedagogy in the teaching of mathematics is done
more or less violence to in the pages that follow. For this, as an
admirer in some degree of tradition in general, I am sorry. My
only plea in extenuation is a merely pragmatic one. The mode of
exposition of the subject followed in this book works. I know be-
cause I have tried it, many times and on many people. Our students
seem to like the subject, and to feel that they get something of value
out of our presentation of it. Perhaps a teacher ought not to ask
any more than this. Certainly I am not disposed to of men and
women whose primary interest is, and will continue to be, in biology
and medicine, and most certainly not in mathematics.

And there is this further to be said on the point: whether the
mathematician likes it or not, there are now and there will continue
to be, many biologists and medical men who are going to use
biometric methods in their work whether they have had any special
mathematical training or not. If we, who are charged with the
elementary teaching of these persons, insist on a rigorous mathe-
matical approach to the subject at every point, with complete
analytical proofs of every step, the net result with the vast major-
ity of students will simply be to disgust them, and drive them
away from such sound elementary training as they might other-
wise be willing to accept, and from which they, my colleagues,
and I, at least, agree that they do profit. In writing this book,
therefore, I have tried to present the mathematical matters neces-
sarily involved in a language and with a logical method of ap-
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proach which is not only capable of being understood by the
primarily biologic or medical reader, but to which persons of this
type of mind and training are sympathetic.

This book, as its title indicates, is and is intended to be, only
an introduction to the subject. Many matters are omitted which
might properly find a place in it. It is my belief, however, that
in the present state of development of biometry itself, and in the
use which is actually being made of its principles in biology and
medicine by those who are not, and never will be, primarily
specialists in this field, there is more need for a simple exposition
of the basic elements of the subject than for an exhaustive treatise.
The latter will, of course, come in time (indeed, I hope myself to
follow this with a more advanced treatise later) but for the present
it seems to me better to ground the student in elementary prin-
ciples, and give him an introduction to the original sources, which
he may follow up then for himself, to any degree he likes. In
this connection there may be some inclined to criticize because of
the brevity, and sometimes derivative character, of the reading
lists at the ends of the chapters. The proper policy to pursue in
this matter has greatly puzzled me. I have in manuscript a toler-
ably extensive and penetrating bibliography of vital statistics and
biometry. I might easily have printed the whole of it herein.
But again, the policy I have actually chosen to follow, after much
deliberation, is based upon my teaching experience, which is to
the effect that one can cajole a busy student into only a definitely
limited amount of collateral reading. It is my conviction that it is,
in a practical sense, better to recognize this fact frankly, and
choose carefully a limited list of references, than to incorporate
into a book which is not in any sense an original source an ex-
tensive bibliography. I am, in this particular case, the more
happily led to this conclusion because of the splendidly thorough
bibliography of the important original sources which already exists
in Yule’s “Introduction to the Theory of Statistics,” which is, of
course, the classic, model text-book of modern statistical methods,
and is available to everyone.

This book is written for the medical reader primarily. The
illustrations of method are mainly chosen from that field. Bio-
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metric methods already have a secure place in general biology.
Their use is developing in the medical field with extraordinary
rapidity just now. It has seemed to me on this account that an
elementary introduction to the subject designed primarily and
directly for medical readers might be found particularly useful at
this time.

I am indebted to various persons in many ways for help in the
making of this book, though for its defects I am alone responsible.
First of all, to my colleagues in this laboratory, who have loyally
helped in the organization and development of our teaching work
to its present stage, I owe a debt which I cannot adequately de-
scribe. We have worked out together our present method of teaching
the subject. More specifically, I am deeply grateful to Professor
Lowell J. Reed for reading critically the manuscript and catching
up a number of errors which otherwise might have slipped by, and for
discussing with me the most appropriate methods of presentation of
many points, both in this book and in our courses of instruction.
To Dr. John Rice Miner, Miss Agnes Latimer Bacon, and Dr.
Flora D. Sutton I am indebted for the arithmetic work on many
of the numerical illustrations of method. The wisdom and sagacity
of Dr. William Travis Howard, Jr. in the broad fields of pathology,
public health administration, and vital statistics have been freely
at my disposal, and of inestimable aid in the whole development
of the Department of Biometry and Vital Statistics of the School of
Hygiene and Public Health, of which development this book is an
integral part.

Finally, I wish most sincerely and gratefully to acknowledge
something of what I owe to the great master and creator of biom-
etry, Professor Karl Pearson. When, nearly twenty years ago now,
I spent a winter in his Biometric Laboratory at University College,
London, I got a fund of inspiration from first-hand contact with
the working of his mind, which the passing years have never
lessened or dimmed, and which I have tried to pass on to my
students. If we have sometimes differed on biologic matters in
these years, it has meant no slightest diminution of my deep and
sincere admiration for one whose sheer intellectual power has
rarely been equaled in the whole history of science. Feeling this
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way it is a great gratification and pleasure to me that Professor
Pearson has allowed me to present to the readers of this book the
splendid portrait which appears on page 43.

In the little verse on page 16 the “file” which Robert Recorde
was writing about was “geometrie.” Such a “fresshe fine witte”
as that old worthy’s, however, would perceive and enjoy, I am
sure, the peculiar aptness of the application of his lines to biometry
today.

Raymond Pearl.
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An Introduction to

Medical Biometry and Statistics

CHAPTER I

PRELIMINARY DEFINITIONS AND ORIENTATION

To an ever-increasing degree modern science is becoming
quantitative in its methods of thought and activity. The history
of science from the beginning shows that the earliest development
of any discipline is purely qualitative, and that only as it emerges
from this state and passes over into the quantitative phase, in
greater or less degree, does it begin to take an assured place in the
hierarchy of the established sciences. Recent examples of this
change from a qualitative to a quantitative point of view are found
in psychology and sociology. With the development of knowledge
and of an appropriate technic eventually any natural phenomenon
which can be observed can also be quantitatively measured. The
entire history of medicine shows that there has been almost from the
first an earnest desire and effort, on the part of some of its leaders,
to develop quantitative modes of thought and methods of work.
The large measure of progress which has been made in this direction
is sufficiently evidenced by the number of items of diagnostic and
clinical significance which are measured and recorded in quantita-
tive terms.

In the ever-increasing specialization which occurs in science,
and the multiplication of technical journals which such differentia-
tion of interest necessarily entails, it is difficult, not to say impossi-
ble, for one to keep abreast of all the newer developments even in
his own science, to say nothing of cognate subjects. This is
particularly true for the practitioner and investigator in the field
of medicine. The consequences are unfortunate. One often fails
to get the benefit of applying, in his own subject, what might be



18 MEDICAL BIOMETRY AND STATISTICS

very useful methods or ideas from another science. This lack of
familiarity with even the simplest technical terminology of one of
the newer special fields may be so complete as to be embarrassing
in a general scientific gathering or discussion of any sort. It is
only fair that any one proposing to set out the bearings of one of
the newer and somewhat highly specialized branches of science
upon an older and established field and to discuss its methods,
should begin by clearly defining at least the more general technical
terms he intends to use.

DEFINITIONS

Biometry is a term which came into general use in the late
nineties, to designate that branch of science which studies by
methods of exact measurement on the one hand, and precise and
refined mathematical analysis on the other hand, the quantitative
aspects of vital phenomena. It is a term co-ordinate with biology
in its comprehensiveness. Indeed, it may perhaps happen that
with the passage of time the term “biology” will be used to cover
only qualitative phases of vital phenomena, while biometry will
be the identifying term for all discussions of measurements or counts
of living things in the widest sense of the words. The general
tendency of all science is to proceed always toward greater and
greater precision of results and reasoning. It has elsewhere been
pointed out that “the real purpose of biometry is the general quan-
tification of biology. Its fundamental point of view is that, without
a study of the quantitative relations of biologic phenomena in the
widest sense, it will never be possible to arrive at a full and adequate
knowledge of those phenomena. This point of view insists that a
description which says nothing about the magnitude of the thing
described is not complete, but, on the contrary, lacks an element of
primary importance. It insists, also, that an experiment which
takes no account of the probable error of the results reached is
inadequate and as likely as not to lead to incorrect conclusions.”

Biometry, as a definitely recognized branch of biologic science,
owes its origin and establishment primarily to the efforts of two
men—the late Sir Francis Galton, and Karl Pearson, Galton
Professor of Eugenics in University College, London. In a later
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chapter the part played by each of these men will be set forth with
greater particularity.

The definitions of statistics given by Yule, in his well-known
Introduction to the Theory of Statistics, which is by all odds the best
general elementary introduction to the subject, are extremely
clarifying and helpful. He says: “By statistics we mean quan-
titative dataaffected to a marked extent by a multiplicity of causes.

“By statistical methods we mean methods specially adapted to
the elucidation of quantitative data affected by a multiplicity of
causes.

“By theory of statistics we mean the exposition of statistical
methods.

“The insertion in the first definition of some such words as
To a marked extent’ is necessary, since the term ‘statistics’ is not
usually applied to data, like those of the physicist, which are
affected only by a relatively small residuum of disturbing causes.
At the same time ‘statistical methods’ are applicable to all such
cases, whether the influence of many causes be large or not.”

There is another way in which we may define statistics, which
has important bearing upon the logical development of the subject.
It may be said that:

Statistics is that branch of science which deals with the frequency
of occurrence of different kinds of things, or with the frequency of
occurrence of different attributes of things.

If we discuss the case incidence of typhoid fever we are dealing
with the frequency of occurrence of things, for what we say is that
of N people constituting a population or group, a certain number,
A,

have typhoid fever within a given interval of time, while during
the same interval another number, B — N — A, do not have
typhoid fever. Here, then, are two kinds of things, namely, people
who have typhoid fever and people who do not. And so similarly
for all other cases where the figures with which we are presented
are simple counts of the number or frequency of occurrence of
physically discrete entities.

Let us now look at the other side of the case. Stature is one at-
tribute of a man, in the sense that the word “attribute” is here used.
Suppose we measure carefully the stature of each of 1000 men.
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We can then sort these measures (the attributes) into a series of
groups such that each group shall contain only statures which are
very nearly alike, say differing by not more than 0.5 cm. Then, if
we count the number of cases in each group, we shall have the
frequency of occurrence of each particular kind of attribute ( i . e.,
particular stature) within the original group of 1000. From these
frequencies we may then calculate, by simple processes to be fully
explained farther on, certain derivative constants like the average
stature, etc. But these derived functions are all implicit in the
frequencies, and have no validity beyond that which inheres in the
original counts.

All statistics are comprised within one or the other of these two
categories, frequencies of things themselves, or of the attributes of
things.

The differences in things for purposes of statistical reasoning
may be a function of discrete separation in either time or space, or
both. If, upon the same day, as in a census, we count the number
of cases of typhoid fever existing in a city, we shall have gathered
statistics of the frequency of persons with typhoid fever, upon a
space base. The underlying differential factor which makes these
cases countable is that each is, at the same instant of time,
located at a particular and unique region in space. Suppose, on
the other hand, we consider as a universe of discourse 1000 par-
ticular persons and observe these same persons every day for a
year to see whether typhoid occurs among them, it being premised
that they do not move about at all. We shall then have at the end
of the year the frequency of occurrence, within the group, of persons
with typhoid fever, upon a time base. Another example may perhaps
help to clarify the point. We may study, as the writer once did,
the variation of milk production by dairy cows in two ways. If
we examine the differences in amount or quality of milk produced
by each individual cow in a large herd on the same day, we shall be
studying the variation in milk production on a space base, since
each cow is a spatially separate entity. But suppose, with this
same herd, we pour each cow’s milk each day into one big vat, mix
it thoroughly with the milk of all the other cows in the herd, and
then weigh or measure the whole amount of milk in the vat each
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day, and by drawing a sample from it determine the butter-fat
percentage, etc. The amount and quality of this herd’s milk,
the herd now being one single spatial entity, will vary from day to
day throughout the year. If now we examine this daily variation,
we shall be studying the variation of milk production upon a time
base.

The statistical method is essentially a technic
, which finds its

justification in its usefulness in helping to solve the problems of the
basic sciences, physics, chemistry, biology, etc. Statistics, in any
proper sense, has no, or at best few, problems of its own. Its
technical problems are really problems of mathematics. The
statistical method is, or should be, a working tool of science, just
as is the microscope or the kymograph. But it is probably of wider
utility than any other single tool which science has discovered or
devised. For it has an applicability and a usefulness, direct or
indirect, in virtually every problem. It is, in short, a fundamental
element of scientific methodology.

Biometry deals with statistics derived from living things, or
things which have at some time been living, and applies statistical
methods, in the broadest sense, to such data.

“Vital statistics,” for which a better term is biostatistics, is the
special branch of biometry which concerns itself with the data
and laws of human mortality, morbidity, natality, and demography.

In this book the attempt will be made to show, by concrete
examples, how the point of view of biometry, and the application
of modern statistical methods, may be of use to the medical man
in helping him to draw correct conclusions from his facts, and to
solve problems constantly arising in his work, which he cannot
possibly hope to solve correctly without such methods. It is not
to be expected, or perhaps even desired, that every medical practi-
tioner or investigator shall be an accomplished mathematician.
But it is evident enough to every thoughtful observer that clinical
medicine is proceeding by great strides along the quantitative,
scientific pathway. Every step in this direction adds to the
necessity of the medical man having at his command the necessary
elementary principles for dealing easily, confidently, and accurately
with quantitative data.



22 MEDICAL BIOMETRY AND STATISTICS

IMPORTANCE OF BIOMETRIC IDEAS AND METHODS IN MEDICINE

The growing recognition by medical men themselves of the
importance of modern biometric methods and viewpoint for work
in medicine was forcibly expressed a few years ago by the dis-
tinguished clinician, Dr. Lawrason Brown, in the following words*:

“None of you will contradict me when I say that statistics are
very dry, but some of you may dispute me when I say that only
by the world, lay or medical, advance. Consider
what knowledge is and you will see how inseparable it is from
statistics. Medicine is no exact science, and diagnosis rests largely
upotff the law of probability which, in turn, is statistical. All
scientific experiments are statistical arguments in favor of or in
opposition to certain inductions or deductions. Further, statistics
lend the authority that is necessary for their acceptance.

“The trouble in medicine does not lie with the statistical
method, but with the medical men who do not know how to use
it. I regret to state that I belong to this class and have felt keenly
that in medical school I did not have an opportunity to attend a
course on medical statistics. The day will come, gentlemen, when
such courses will be given, when the law of probability will help in
diagnosis, when the coefficient of correlation, now explained by
most authorities in such terms that in a few minutes my idea of
my relation to my surroundings has become totally insufficient—
when, I say, all these things will be understood by the medical
graduate. At that time medical men will cease to do such foolish
things with statistics as to try to add cabbages and cows, or, what
is nearly as bad, to try to solve problems in heredity by finding how
many parents had the disease from which the offspring suffers
without due respect to many other very important and possibly
contradictory details. What would you think of a bookkeeper
who after years of personal experience would gather up the bills
in the cash drawer and go to the bank with the statement that his
personal experience led him to believe that the roll of bills amounts
to $1000. The receiving teller would quickly apply the statistical
method and few would venture to side with the bookkeeper, no
matter how large his experience had been.

* Brown, Lawrason: American Review of Tuberculosis, September, 1920, vol. iv.
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“Do not misunderstand me. This is not an argument in favor
of dry statistical articles which we all prefer to avoid reading.
But if I can make you see how important it is for us to cease using
the pet phrase ‘my personal experience’ except when we have
sufficient data to support it, I shall have accomplished what I had
hoped for.”

The point of view from which medical problems should be
attacked by quantitative, biometric methods has been well set
forth by Greenwood6 in the course of a discussion of some animad-
versions of Sir Almroth Wright upon quantitative methods, when
he describes the method by which a therapeutic problem ought to
be investigated. Greenwood remarks:

“Let us suppose that the question is whether a certain treatment
is of advantage in acute lobar pneumonia. We must first inquire
whetner the morbid state connoted by the phrase ‘acute lobar
pneumonia’ is clinically recognizable. The question is answered
in the words of Sir William Osier: ‘No disease is more readily
recognized in a large majority of cases. The external characters,
the sputum, and the physical signs combine to make one of the
clearest of clinical pictures. The ordinary lobar pneumonia of
adults is rarely overlooked.’

“The next point to be investigated is the variation of fatality
in cases not treated by the method under investigation.

“(a) Influence of Age.—That the fatality increases with the age
of the patient is well known and evidence need not be quoted here.
Naturally, in comparing fatalities it will be necessary to correct
for age.

“(b) Sex.—The influence of sex is not so marked, but allowance
can similarly be made for it.

“(c) Secular Variations.—It would appear that these are of
minor importance. It also appears that the fatality of hospital
cases from different institutions in the same country during the
same period varies but little.

“(d) The Influence of Social Class.—Evidence capable of being
analyzed has been sparingly published. The 873 cases recorded
by the British Medical Association’s Collective Investigation
Committee in 1886 show a corrected fatality rate of 17 per cent.,
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which is below the London Hospital rate for the same period.
The results of Huss at Stockholm, more than forty years ago,
suggest that the fatality in the Military Hospital was about seven-
elevenths of the rate obtaining in the General Hospital.

“(e) Influence of Race or Climate. —We find striking differences
in the hospital fatality rates of different countries, the rate at the
Stockholm Hospital in the ‘fifties’ of last century being far below
that recorded for the same period at Vienna or Basel. There is a
less striking difference between the recent London figures and those
of Chatard from Baltimore.

“In view of what has been said, it will be plain that in comparing
a series of treated cases with ‘general experience’ attention will have
to be paid to the differences noted, all of which can be tested by the
statistical method. When a true control series is available, it will
still be necessary to allow for race and environment. An inquiry
into these points would seem a necessary prelude to an evaluation
of the effects of any specific treatment.

“These are all questions of great moment, and cannot be
answered by appeal either to authority or to the introspective
notions yielded by the ‘experiential method.’

“Having made due allowance for these difficulties, wr e shall
proceed to compare the rate of mortality in the treated and un-
treated cases. This will involve a careful sifting of the material,
since we must reject such cases as died in consequence of some
accident in no way connected with the evolution of the disease.
The criteria of exclusion must be defined, and no case excluded
without the grounds of such exclusion being clearly stated and the
particulars published in full to give others an opportunity of judging
the sufficiency of the criterion.

“Next, we shall in some cases be able to compare the percentages
and determine the probability that such difference as results might
be an ‘error of random sampling.’ This will by no means complete
the task, however, since it might happen that the treatment,
although not associated with a significant reduction of fatality,
did influence the course of the disease. The features which it is
desired to measure having been determined on, we can by the
method of multiple correlation endeavor to connect the variations
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of such features with each other and with those of the therapeutic
factor we are studying. Since in general it will be difficult to
secure controls and treated samples absolutely alike in other
respects, the method of correlation is likely to be required in most
cases. We shall, indeed, be fortunate if we are able to ‘express
the final result in the form of a percentage.’

“I have outlined the process by which, as I think, such a problem
may be investigated. The essence of the whole matter is to ask
ourselves at every turn, Is the control a real control? What is the
probability that such and such an event is due to such and such a
cause? There is no intrinsic merit in numbers and percentages
or in coefficients of correlation, their value is in aiding us to think
clearly and compelling us to express conclusions in a language
which all may master if they choose.”

General experience with other branches of science would make it
seem reasonable that the following propositions are true, and should
be emphasized in the teaching of medical students, and in the
practice and writing of medical men generally:

1. That there is no inherent reason why medicine in every one
of its phases should not ultimately become in respect of its methods
an exact science, in the same sense that physics, chemistry, or
astronomy are today exact sciences.

2. That this goal will be reached in exact ratio to the extent to
which quantitative methods of thought and action are made an
integral part of the training in every sort of medicine.

3. That no number or figure can be said to have any final
scientific validity or meaning until we know its probable error, the
“probable error” being the measure of the extent to which the
number will vary in its value as the result of chance alone.
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In lieu of any formal bibliography, there will be given at the end of each chapter

some suggestions as to further reading along lines touched upon in the text.
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CHAPTER II

SOME LANDMARKS IN THE HISTORY OF VITAL
STATISTICS

In the earlier volumes of the Journal of the Royal Statistical
Society—those mines of curious information—a favorite form of
contribution was the “tabular resume,” which presented a series
of more or less statistical facts on a chronologic base. So dis-
tinguished a precedent seems to justify the use of the same method
to furnish a bird’s-eye view of the development of biostatistics
itself. Consequently the table which follows has been prepared.
It has not been altered from its original form. 7

TABULAR REVIEW OF THE HISTORY OF VITAL STATISTICS

This ‘Tabular resume” attempts to set forth in chronologic
array what the passage of time has shown to be some of the most
important landmarks in the history of biostatistics. To disarm
in some measure criticisms, which from the standpoint of the pro-
fessional historian would otherwise be undoubtedly merited, it may
be said, first, that there has been no slightest thought of encom-
passing within this short table a complete history of the subject.
Historic completeness and the tabular form of presentation do
not go well together. The object of the present table is much
simpler. It is to get before the student the briefest conspectus of
the time relations of the development of the subject, on the one
hand, and of the personalities concerned in a large pathbreaking
way in this development, on the other hand. The precise manner
in which such a purpose will be carried out will obviously be different
for each person who attempts it. One person’s estimate as to the
relative historic significance of a particular event or personality
will differ from another’s. In presenting the matter to my classes
I have endeavored to justify in more detail than is possible in the
table itself the particular items which appear. In any event, it
seems clear that any historic review of vital statistics would be
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TABULAR REVIEW OF SOME OF THE IMPORTANT EVENTS IN THE
HISTORY OF VITAL STATISTICS

Year. Event. Personality concerned. Authority for record.

1532 First definitely known compilation of Hull, C. H., Econ. Writ, of
1539
1608

weekly bills of mortality in London.
Beginning of official registration of bap-

tisms, marriages and deaths in France.
Beginning of oldest parish register in

Sir Wm. Petty, p. lxxxi.
Faure, F. Hist. Stat.,

p. 242.
Arosonius, E. Hist. Stat.,

1662
Sweden.

Publication of first edition of “Natural Capt. John Graunt, Citi-
p. 537.

Hull, C. H., Econ. Writ, of
and Political Observations Mentioned zen of London (1620- Sir Wm. Petty, p. 315.

1666
in a following Index, and made upon the
Bills of Mortality.”

First Census of Canada (the earliest mod-

1674).

Godfrey, E. H. Hist. Stat.,
1669

ern census of population).
Application of mathematical theory of Christiaan Huygens

p. 179.
Stuart, C. A. V. Hist. Stat.,

probability to expectation ofhuman life.
Publication of “Estimate of the Degrees

(1629-1695). p. 430.
1693 Halley, the astronomer Hull, Loc. cit., p. Lxxvii.

1713

of Mortality of Mankind,” in thePhilo-
sophical Transactions of the Royal So-
ciety.

Publication of “Physico-theology; or a

(1656-1742).

Rev. William Derham Hull, Loc. cit., pp. lxxvii
demonstration of the Being and Attri- (1657-1735). and lxxviii.

1718
butes of God from his Works of Crea-
tion.”

Publicationof the “Doctrineof Chances.” A. DeMoivre (1667-1754). Art. DeMoivre, Encyc.

1735 Registration of vital statistics begun in
Brit.

Kiaer, A. N. Hist. Stat.,
1741

Norway.
Publication of “Die gottliche Ordnung in Johann Peter Siissmilch

p. 447.
Hull,Loc. cit., p. Lxxviii.

1746

den Veriinderungen des menschlichen
Geschlechts aus der Geburt, dem Tode
und der Fortpflanzung desselben er-
wiesen, etc.”

Publication of the first French tables of

(1707-1767).

Deparcieux. Faure, F., Loc. cit., p. 265.

1748
1749

mortality under the title “Essai, sur les
probabilites de la duree de la vie bu-
maine.”

Beginning of Swedish official vital sta-
tistics.

First complete Census of Sweden.

Arosonius, E., Hist. Stat.,
p. 540.

Rossiter, W. S., Cent. Pop.

1753
1769
1790
1795

First Census of population in Austria
ordered.

First population Census of Denmark and
Norway.

First federal Census of the United States.
First Census of the Netherlands.

Growth, p. 2.
Meyer, R., Hist. Stat., p.

85.
Jensen, A., Hist. Stat., p.

201.
Stuart, C. A. V., Hist.

1797
1798
1801
1801

Establishment of Danish-Norwegian
Tabulating Office.

First complete Census of Spain.

First complete Census of Great Britain.
First complete Census of France.

Stat., p. 43.
Jensen, A., Loc. cit., p. 201.

Rossiter, W. S., Cent. Pop.Growth, p. 2.
Rossiter, W. S., Loc. cit.
Rossiter, W. S., Loc. cit.

1805 Formation of first statistical state office — Wiirzburger, E.,Hist. Stat.,

1810
within boundaries of German Empire.

First complete Census of Prussia.
p. 3.

Rossiter, W. S., Loc. cit.
1812 Publication of “Theorie analytique des Pierre Simon Laplace Encyc. Brit. Art., Laplace.

1812

1812

probabilites.”
Inauguration of civil registration of
births, marriages and deaths in the
Netherlands.

Publication of “Theoria combinationis

(1749-1827).

Karl Friedrich Gauss

Stuart, C. A. Y..Hist. Stat.,
p. 432.

Encyc. Brit. Art., Gauss.

1815
observationum erroribus minimis ob-
noxia” (Least squares).

First complete Census of Norway.

(1777-1855).

Rossiter, W. S., Loc. cit.
1815 First complete Census of Saxony. — Rossiter, W. S., Loc. cit.
1816 First complete Census of Baden. — Rossiter, W. S., Loc. cit.
1818 First complete Census of Austria. — Rossiter, W. S., Loc. cit.
1818
1825

First complete Census of Bavaria.
Publication of “Memoire sur les lois des Lambert Adolph Jacques

Rossiter, W. S., Loc. cit.
Lottin, Quetelet, p. xx.

naissances et de la mortalite a Brux-
elles,” Quetelet’s first statistical paper.

Quetelet (1796-1874).
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TABULAR REVIEW OF SOME OF THE IMPORTANT EVENTS IN THE

HISTORY OF VITAL STATISTICS—Concluded

Year. Event. Personality concerned. Authority for record.

1826 Establishment of statistical commission Ed. Smits. Julin, A., Hist. Stat., p.

1829
in Belgium.

First official Census of Belgium. Ed. Smits.
126.

Julin, A. Hist. Stat., p.
128.

Lottin, Loc. cit., p. xxi.1832 Publication of “Recherches sur la repro- Quetelet and Smits.

1834
1835

duction et sur la mortalite de l’homme
aux different ages et sur la population
la Belgique d’apres la recensement de
1829 (premier recueil officiel des docu-
ments statistiques).”

Royal Statistical Society (London)
founded-

Publication of “Sur l’homme et le devel- Lambert Adolph Jacques

Title page of Journal.
Lottin, Loc. cit., p. xxi.

1836
1837

1838

oppement de ses facultes, ou Essai de
physique sociale.”

First complete Census of Greece.
Civil registration of vital statistics in

England. Establishment of office of
Registrar-General.

Publication of “Essay on Probabilities”

Quetelet (1796-1874)'.

Augustus DeMorgan

Rossiter, W. S., Loc. cit.
Baines, A., Hist. Stat., p.

370.
Encyc. Brit. Art.,

in Lardner’s Encyclopedia. (1806-1871). DeMorgan.
1839 Appointment of William Farr as com- William Farr (1807- Farr’s Vit. Stat., Edit.

piler of abstracts in the Registrar- 1883). Humphrey.

1839
General’s Office.

Organization of American Statistical As- Hist, of Stat., p. 3.

1846
sociation.

Publication of “Analyse mathematique A. Bravais. Yule Introd., p. 188.

1848

sur les probabilites deserreurs de situa-
tion d’un point.” Acad, des Sci. Mem.
par div. sav. lie. Ser. t. ix (Correlation).

Foundation of the Institute of Actuaries Encyc. Brit. Art.,
“Actuary.”

Rossiter, W. S., Loc. cit.1860
of Great Britain and Ireland.

First complete Census of Switzerland.
1861 First complete Census of Italy. Rossiter, W. S., Loc. cit.
1863 Austria establishes Central Statistical Count Mercandin. Meyer, R., Loc. cit., p. 89.
1865

Commission.
Publication of “Historyof Mathematical Isaac Todhunter Encvc. Brit. Art., Tod-

Theory of Probability from theTime of (1820-1884). hunter.

1867
Pascal to that of Lagrange.”

First creation of independent official sta- Buday, L. von., Hist. Stat.,

1869
tistical organization in Hungary.

Publication of “Hereditary Genius.” Sir Francis Galton
p. 395.

Art. Galton, Encyc. Brit.
1869 Foundation of Societe de statistique de

(1822-1907).
Title page of Journal.

1872
Paris.

Opening of German Imperial Statistical Wurzburger, E. Hist. Stat.,

1881
Office.

First general Census of India.
p. 337.

Baines, A., Hist. Stat., p.
421.

Title page of Journal.1887 Royal Statistical Society incorporatedby

1890
Royal Charter.

First Census in which mechanical meth- John S. Billings and Her- Rept. Supt. Census 1889,
ods of tabulation were used. man Hollerith. p. 8.

1894 Publication of first of “Contributions to Karl Pearson. Title page.

1897

the MathematicalTheory of Evolution”
in Phil. Trans. Roy. Soc.

Publication of paper “On the Theory of G. Udny Yule. Jour. Roy. Stat. Soc., vol.

1897
1900

Correlation” in the Jour. Roy. Stat. Soc.
First Census of Russia.
First year of separately published official

lx, p. 812.
Kaufman, A., Hist. Stat.,

p. 481.
Title page of “Mortality

1901

mortality statistics for Registration
Area of United States.

Publication of firstnumber of Biometrika. Francis Galton, Karl Pear-
Statistics.”

Title page.

1902 Creation of permanent Census Bureau in
son, W. F. R. Weldon,
C. B. Davenport.

Cummings, J., Hist. Stat.,

1915
the United States.

First year of separately published official
birth statistics for Registration Area of
United States.

p. 682.
Title page of “Birth Sta-

tistics.”
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bound to contain at least a good many of the items of the present
table. More than this in the way of agreement among scholars
on a historic matter it is doubtless idle to hope for.

In the second place it should be said that if the sources chosen
for statement of reference as to the facts are obviously in some cases
second-hand, and perhaps somewhat casual, this is so of deliberate
purpose. I am hopeful that by so choosing them I may perchance
entice an unwary student or so to do a little reading about the men
who have helped to develop modern statistics. I am quite sure that
this will not happen if I refer him straight off to a ponderous and
deadly “Geschichte der Statistik.” Nor is there much chance
that the embryo health-officer or medical man would make any-
thing but heavy weather if he essayed a voyage into the “Theorie
analytique.” But if he will read the article in the Encyclopedia
Britannica on Laplace he will tend to have a measure of wholesome
respect for a great man, and will know a little at least of what that
man meant in the history of science.

CAPTAIN JOHN GRAUNT

Vital statistics, in the modern sense of the term, may be said
to take its origin from the publication, in 1662, of a remarkable
book for any age, but particularly so for that time, entitled, Natural
and Political Observations Mentioned in a Following Index, and
Made upon the Bills of Mortality', by John Graunt, Citizen of
London (1620-1674). Bills of mortality, consisting of lists of
burials, marriages, and baptisms, had been compiled by the parish
clerks for upward of a century before Graunt’s time, but no one
before him had conceived the idea of making an analytical study
of these observations to the end of determining the basic laws of
human mortality, natality, and movement of population. From
his inadequate and meager material, as measured by present
standards, Graunt successfully demonstrated four of the most
important facts which the study of vital statistics to this day has
disclosed. First, he made clear the regularity of certain vital
phenomena which appear to be merely the play of chance in their
individual occurrence. Second, he first pointed out the excess of
male over female births, and the approximately equal numbers of
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Fig. 1.—Facsimile (actual size) of the title-page of the first treatise on vital statistics.

the sexes in the population. Third, he demonstrated the relatively
high rate of mortality in the earliest years of life, and finally he dis-
covered that the urban is higher than the rural death-rate normally.
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Besides the intrinsic value of its results, Graunt’s book served
for many years as the stimulator of other work in the same general
field. In particular it is probably safe to conclude that Graunt’s
book was the inciting agency which led the astronomers and mathe-
maticians, Huygens in Holland and Halley in England, to take up
the problems of determining by appropriate mathematical methods

Edmundvs Malleu s r. s.s.
. Stn/4/M c/ tyfrmntrrtr i \mr » //hy/mw/s.

Fig. 2.—Portrait of the eminent astronomer and mathematician, Edmund Halley
(1656-1742), who was the first person to construct a life table on sound principles.

the probable expectation of human life at any given age. Halley
constructed the first really significant mortality table.

THE MOST ANCIENT BILL OF MORTALITY

The earliest known bill of mortality is an interesting document.
It was in manuscript form, and is preserved among the Egerton
MSS. at the British Museum. It is shown in facsimile in Fig. 3.
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Fig. 3.—Photographic reproduction of the earliest known bill of mortality: A,
obverse; B, reverse. Reduced to about one-half actual size. (For permission to
publish the photographic reproduction of this interesting document I am obliged to
Sir Frederick Kenyon, Director of the British Museum. The photographs were pro-
cured for me by Mrs. Onera A. Merritt Flawkes, to whom I am greatly indebted for
this service.—R. P.)
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Creighton8 believes its date to be 1532 (week of November 16th
to 23d), and gives evidence for his belief as to the year (Vol. I,
p. 295). This earliest of official reports of vital statistics to be
preserved is transcribed by Creighton (retaining the original
spelling) as follows:

Syns the xvxth day of November unto the xxm day of the same moneth ys dead
within the cite and freedom yong and old these many folowyng of the plage and other
dyseases.

Inprimys benetts gracechurch i of the plage
S Buttolls in front of Bysshops gate i corse
S Nycholas flesshammls i of the plage
S Peturs in Cornhill i of the plage
Mary Woolnerth i corse
All Halowes Barkyng ii corses
Kateryn Colman i of the plage
Mary Aldermanbury i corse
Michaels in Cornhill iii one of the plage
All halows the Moor ii i of the plage
S Gyliz iiii corses iii of the plage
S Dunstons in the West iiii of the plage
Stevens in Colman Strete i corse
All halowys Lumbert Strete i corse
Martins Owut Whiche i corse
Margett Moyses i of the plage
Kateryn Creechurch ii of the plage
Martyns in the Vintre ii corses
Buttolls in front Algate iiii corses
S Olavs in Hart Strete ii corses
S Andros in Holburn ii of the plage
S Peters at Powls Wharff ii of the plage
S Fayths i corse of the plage
S Alphes i corse of the plage
S Mathows in Fryday Strete i of the plage
Aldermary ii corses
S Pulcres iii corses i of the plage
S Thomas Appostells ii of the plage
S Leonerds Foster Lane i of the plage
Michaels in the Ryall ii corses
S Albornes i corse of the plage
Sywtthyns ii corses of the plage
Mary Somersette i corse
S Bryde v corses i of the plage
S Benetts Powls Wharff i of the plage
All halows in the Wall i of the plage
Mary Hyll i corse.
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Sum of the plage xxxiiii persons
Sum of otHfer seknes xxxii persons

XX
The holl sum iii & vi.

XX
And there is this weke clere iii and iii paryshes as by this bille doth appere.

The
execn

of
corses buryed

of

the
plage within

the
cite
of London syns&c.

SUSSMILCH, QUETELET, AND FARR

The next considerable contribution to vital statistics, as such,
was the publication of Die gottliche Ordnung in den VerUnderungen
des Menschlichen Geschlechts aus der Geburt, deni Tode und der
Fortpjlanzung desselben erwiesen, etc., by the Reverend Johann
Peter Sussmilch (1707-1767). Sussmilch was stimulated by
Graunt’s Observations to apply the same general sort of method to
the development of natural theology. This book exerted a great
influence in fields other than theological, and was the logical fore-
runner of the great work of the famous Belgian vital statistician,
Lambert Adolph Jacques Quetelet (1796-1874), entitled Sur Vhomme
et le developpment de ses facultes, ou Essai de physique sociale,
published in 1835. Quetelet is the first great outstanding figure
in the development of modern vital statistics. Trained as a mathe-
matician, he brought to bear upon the data of human vital phenom-
ena a more adequate methodology than had before been applied.

The present-day procedure in official vital statistics undoubtedly
owes more to William Farr (1807-1883) than to any other person.
Besides this he may fairly be regarded as the greatest medical
statistician who has ever lived. Greenwood 11 says: “But if
ultimately Graunt has a worthy disciple in the medical profession,
it was not until he had been in his grave more than a century. He
died in 1674 and William Farr was born in 1807.”

In this paper just quoted Greenwood gives the best existing
brief estimate of the significance of Farr in the history of medicine,
and it may properly be reproduced here in full. He says:

“The real revolutionary was a licentiate of the Society of
Apothecaries, a ‘Mr. Farr, a gentleman of the medical profession,’
who was appointed Compiler of Abstracts in the General Register
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Fig. 4.—Portrait of Lambert Adolph Jacques Quetelet (1796-1874).

Fig. 5.—Portrait of Dr. William Farr (1807-1883).
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Office on July 10, 1839. Although Mr. Noel Humphreys earned
the gratitude of all medical men by his collection of Farr’s writings,
published in 1885, a really adequate edition of Farr has yet to be
produced. We sometimes dream of such an edition; we picture it
with an introduction by Farr’s worthy successor, Dr. Thomas
Stevenson, and with footnotes and appendices by Dr. John Brown-
lee. But it is an idle dream; governments in England, so the
newspapers tell us, often spend money in odd ways, but at least
they have never been so eccentric as to waste it on the publication
of the collected works of great Englishmen. Farr was a very great
F'.nglishman, and the characteristics of his genius were precisely
those which, in moments of self-esteem, we like to fancy are typ-
ically English. We can make our point clear by contrasting him
with two great men who were at their prime when he was young,
and both made important contributions to statistical knowledge,
Simeon Poisson and George Boole. Poisson wrote a large treatise
upon ostensibly the most practical of subjects, the best way to
secure just verdicts in courts of law; Boole dealt with the very
matter-of-fact problem of numerical approximation. But the most
superficial reader of Poisson or of Boole —not that their works are
very attractive to a hasty reader—will at once realize that the
authors are far more interested in algebra than in the concrete
applications of their algebra. Farr has left many pages which,
to the aforementioned hasty reader, will offer almost as many
algebraical difficulties as even Boole; but in the densest forest of
symbols Farr never loses sight of, and never allows his companion to
lose sight of, some perfectly definite and concrete end which he
proposes to reach.

“No branch of medical or vital statistics needs for its cultivation
a greater variety of algebraical tools than that concerned with the
production of complete life tables; the natural faculty which
characterizes the born mathematician is not, indeed, essential,
but skill in the manipulation of symbols is. To Farr a life table
was—

‘An instrument of investigation; it may be called a biometer,
for it gives the exact measure of the duration of life under given
circumstances. Such a table has to be constructed for each dis-
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trict and for each profession, to determine their degree of salubrity.
To multiply these constructions, then, it is necessary to lay down
rules, which, while they involve a minimum amount of arithmetical
labour, will yield results as correct as can be obtained in the present
state of our observations.’*

“This was the spirit of all his work. He faced mathematical
difficulties with a courage which nothing could daunt—it takes
some courage for a self-taught man to venture upon original re-
search within the province of the oldest of the sciences—when they
obstructed his progress toward a practical end. He never at-
tempted to compete with the masters of pure analysis on their own
ground. We have been the gainers. The greatest mathematical
statisticians of the first half of the nineteenth century were not
Englishmen; we have not to our credit any theoretical work of that
date which will compare with the researches of Laplace and of
Poisson in France or of Gauss in Germany; but of no civilized
country can a record of fatal disease be constructed with the pre-
cision which appertains to the medico-statistical history of England
and Wales since 1840.

“The practical advantages to the physician and the sanitarian
are enormous. Matters which our great grandparents fiercely
debated, topics respecting which only a very shrewd and experienced
physician of 1820 could form an opinion, are now within the compass
of a junior medical student. If Farr had been born a generation
earlier and the General Register Office had been founded in 1807
instead of in 1837, the sanitary history of our manufacturing towns
might have been different. If even the lessons he taught year by
year had sunk into the minds of all members of our profession,
many disappointments would have been spared and perhaps some
false apprehensions quieted. The curious reader of old blue-books
will find much of interest in the census reports of Lamb’s friend
Rickman, but Rickman was not a Farr. Rickman, for instance
(in 1831), commented upon the apparent unhealthiness of the
northern manufacturing districts, but he could not speak with much
authority, for his basis of facts was no more than an abstract of

* From a paper contributed to the Proceedings of the Royal Society in 1859.
(See Farr’s “Vital Statistics,” ed. Humphreys, London, 1885, p. 492.)
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burial and baptismal registers. These are the words of Farr (from
the supplement to the thirty-fifth Annual Report):

‘Take for example the group of 51 districts called healthy for
the sake of distinction, and here it is found that the annual mor-
tality per cent, of boys under five years of age was 4.246; of girls,
3.501. Turn to the district of Liverpool, the mortality of boys
was 14.475; of girls, 13.429. Here it is evident that some pregnant
exceptional causes of death are in operation in this second city of
England. What are these causes? Do they admit of removal?
If they do admit of removal, is this destruction of life to be allowed
to go on indefinitely? It is found that of 10,000 children born
alive in Liverpool 5396 live five years, a number that in the healthy
districts could be provided by 6544 annual births/

“The ‘dear old doctor’—as Mr. Humphreys called him—could
round a period in the early Victorian style with the best; the classical
quotations in his reports might have tempted William Pitt or
Charles Fox to become statisticians; but he could also use very
plain English indeed. Statistics with plain English as a propellent
are formidable missiles.

“We could fill many columns with examples, but we must take
leave of the greatest of medical statisticians with one observation.
Farr’s work has on it the seal of all supreme achievements; it is
indestructible. It was, of course, a piece of good luck that his
three successors, the late Dr. William Ogle, Dr. John Tatham, and
Dr. Thomas Stevenson, were men having the same ideals and zealous
to build higher upon his foundations. The nation, we hope, will
always be fortunate enough to secure equally worthy spiritual
descendants of the founder. But no weakness of human instru-
ments or credible deteriorations of the system could ever take from
the General Register Office the power of ‘rendering immense
service to sanitary science by enabling it to use exact numerical
standards in place of the former vague adjectives.’* So far as
records of mortality are concerned, the real reformer is one who
treads accurately in the footprints of William Farr.”

* Simon: English Sanitary Institution, p. 212.
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THE HISTORY OF BIOMETRY

In discussing the development of biometry the writer will follow
closely an account which he gave of the same matter some time
ago.9 The application of statistical methods to the study of
biologic problems other than those of anthropology, and of vital
statistics in the narrower sense, may be said to have begun with
the work of the late Sir Francis Galton. Galton was a born statis-
tician. He tells in his Memories10 of the instinct, which he inherited
from his father, to arrange, classify, and collect statistics about all
sorts of things. At the same time he was deeply interested in
problems of biology, particularly those having to do with inher-
itance. His interest in this direction crystallized into definite
activity at about the time that his cousin, Charles Darwin, was
elaborating his theory of heredity, which was called pangenesis.
Galton instantly realized that this conception of the physiology
of the hereditary process was essentially statistical in character,
and that statistical methods were demanded to test and broaden
it. Upon this work he therefore embarked with the vigor and
ardent enthusiasm which characterized all of his scientific work.
His results found expression in a series of memoirs and books which
have become classics in biologic science. Of these the most
important is perhaps Natural Inheritance

,
since in it are brought

to a focus a number of different lines of work which engaged Gal-
ton’s thought and energy for many years. In this book the attempt
is made for the first time to determine, on a statistical basis, the
degree of resemblance, in respect of bodily, mental, and tem-
peramental traits, which obtains between relatives of different
degrees. Previously no attempt had been made to measure
precisely these resemblances, which were, of course, a matter of
common observation, though not of precise definition, to everyone.

In order to make the desired analysis of this problem it was
necessary for Galton to devise new methods of dealing with statis-
tics. The genera] mathematical foundations of statistical science
had, to be sure, been laid by the mathematicians Laplace and
Gauss, and some progress in the application of these methods had
been made by Quetelet. But none of these men had dealt specifically
with the measurement of what are now known as correlated varia-
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tions. From Galton’s point of viewing the problem of heredity
such a measure was an absolute necessity. He, therefore, devised
one. It was not altogether a perfect one, but was practically usable,,
and led very shortly to developments which furnished the entirely
adequate measure which he had sought.

To the end of his life Sir Francis Galton retained his interest in
the science of biometry, of which he may truly be said to have been

Fig. 6.—Portrait of Francis Galton (1822-1907). (For permission to publish this
portrait here I am indebted to Dr. G. H. Shull, Editor of Genetics.)

the founder. His keenness of interest served in great part as the
primal inspiration and stimulus which led two other distinguished
English workers to enter this field and begin to rear the super-
structure on the foundation already laid. These were Professor
Karl Pearson of University College and the late Professor W. F. R.
Weldon. To Professor Pearson belongs the very great credit of
developing adequate and general mathematical methods for the
analysis of biologic statistics. Statistical mathematics in the main
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fall within the realm of the calculus of probability. The founda-
tions of that calculus were laid by Laplace and Gauss, as has already
been pointed out. Since their day the most notable fundamental
advance in the mathematical theory of probability has, in the
writer’s judgment, been due to the genius of Karl Pearson. Until he
began his work, nearly all statisticians, astronomers, and physicists
who had anything to do with the theory of probability, either from
the standpoint of statistics or that of the theory of errors of observa-

Fig. 7.—Portrait of Pierre Simon Laplace (1749-1827).

tion, had been content to use the so-called “normal” curve of
errors to describe the distribution of chance-determined events.
One of the characteristics of this curve is that it is symmetric.
According to it events above the mean are as likely to happen as
events below the mean. Observed statistics of natural phenomena
were found, as a matter of fact, to give in many cases asymmetric
distributions. Indeed, some of the very examples used in the
text-books to illustrate the normal curve do not accord with it
when tested by an accurate measure of goodness of fit (for which
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extremely valuable instrument of statistical research we are again
indebted to Pearson). Starting from the sound position that the
facts of nature are of more importance than any theory, even though
it be one beautiful enough to excite worship, Pearson in three
classic memoirs, in the series of Mathematical Contributions to the

Fig. 8.—Portrait of Karl Pearson, F. R. S.

Theory of Evolution
, developed a theory of skew frequency curves,

and skew correlation, which took account of the asymmetry so
frequently seen in chance-determined phenomena. This system
of skew frequency curves has now had the test of more than twenty-
five years’ usage. Every attempt at destructive criticism which
has been made against it has failed. None of the substitutes,
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some of which have been proposed by eminent mathematicians, has
shown any approach to the generality and elegance of these curves.

Few biologists have an adequate conception of the extent to
which biometry is indebted to Professor Karl Pearson. If, as has
been maintained, every real advance in science depends upon the
discovery and perfection of a new technic, then, for whatever
advance in biology may come through biometry, the debt to that
distinguished investigator will be large for many years to come.

In the application of biometric methods to specifically medical
problems, English workers, notably Dr. Major Greenwood of the
Ministry of Health, from whose work we have already quoted, and
Dr. John Brownlee have taken a leading part. These workers and
their associates have made notable contributions to the under-
standing of some of the most difficult problems of etiology and
epidemiology.
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CHAPTER III

THE RAW DATA OF BIOSTATISTICS

Broadly there are three ways in which statistical data are
accumulated in the realm of human biology. These are:

1. The census method.
2. The registration method.
3. The ad hoc or case record method.
Of these the first two are the methods of official vital statistics ,

while the third is par excellence the method of medicine.
In the present chapter we shall discuss some aspects of the first

two methods, while in Chapter V a more detailed discussion of the
third method will be undertaken.

THE CENSUS METHOD

Theoretically a census is a count, made at a single specified
instant of time, of a population in respect of certain attributes of
the persons composing the population, or of things. Practically,
of course, the “instant of time” is rather stretched out, but the
endeavor is always made, and with a fair degree of success, to have
the information gleaned referable to a single day.

All living things and all their affairs and concerns and attributes
are continually changing with greater or less degrees of rapidity.
The living world, in short, is in a state of continuous flux. It may
be thought of as a vast stream, constantly added to by births, and
subtracted from by deaths, diverted (but only slowly) from its
previous pathway by divers impinging forces, but always and
above all, moving, flowing.

Now a census attempts to acquire knowledge of the composition
and characteristics of this great stream by examining carefully, at
regular intervals of time (usually ten years apart), an instantaneous
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cross-section of it. What happened before the cross-section was
taken, or what will happen after it is taken, can only be in-
ferred, when the census method of acquiring statistical informa-
tion is employed, from the characteristics of the cross-section
itself.

Censuses are taken either (a) by enumerators, (b) by question-
naires filled up by the victims themselves, or (c) by the two means
in combination. The first method is the one chiefly employed in
the United States. A person visits every household in a limited
area on or near census day, and by personal inquiry elicits the
desired information. The second method is the one chiefly em-
ployed in England, where there is placed in the hands of each
householder a little time before census day a questionary form
which he must truthfully and promptly fill in, under rather heavy
penalty of the law for failure.

The data of value in biostatistics for which dependence is
chiefly put on the census method at the present time are those
relating to the living population, its age, sex, occupation, race, etc.

THE REGISTRATION METHOD

The theory of this method is to record or register each event
in the ceaseless flow of the stream of life as, and when, it happens.
A mechanism is created in the body politic which makes certain
individuals responsible for the prompt recording of each event
when it happens. In the field of our present interest it is the
physician who is thus held primarily responsible for the recording
or registering with some central authority of the facts about births
and deaths. If a person dies and no physician has been in attend-
ance, the record is caught up through the necessity of a burial
permit. The corpus of every deceased human being must be some-
how disposed of. The central registration authority in each lo-
cality is the only person qualified to permit legal disposal. There-
fore substantially all deaths must get registered. In the case of
birth, the attending physician or midwife again is required by law
to report the fact. Unfortunately, if the birth has not been attended
by anybody but the mother and infant, it is not so easy as in the
case of death to catch the record. There are growing up, however,
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various legal necessities for the possession of a birth certificate,
so that ultimately the registration of births should become some-
thing like as accurate as the registration of deaths.

The heuristic advantages of the registration over the census
method are apparent. The course of events can be followed.
Registration gives us such knowledge as we have of births, deaths,
sickness, marriages, divorces, etc., so far as concerns population
aggregates.

THE AD HOC OR CASE RECORD METHOD

This is the ordinary method of science in general for getting a
collection of pertinent quantitative data. In a defined universe
of interest cases are recorded in respect of the points or attributes of
interest. Thus some may record in all cases of typhoid fever the
age, stature, body weight, daily temperature, etc., of the individual.
Logically considered, it is a combination of the essential features
of the census and the registration method confined to a particular
universe of interest. In a later chapter more will be said of the
making of medical records.

OFFICIAL REGISTRATION RECORDS

There are reproduced below in reduced facsimile the standard
birth and death registration certificates as used in the United States
Registration Areas. They are introduced here in order that the
reader may understand clearly what information is basically
available in official vital statistics in the United States. In actual
practice the extent to which the different items on the certifi-
cates are filled out depends upon the force and vigilance of the
registration officials. In some communities there is a good deal
of laxity inregard to such items as occupation, birthplace of parents,
etc. But if the registration officials are sufficiently active and
painstaking in their duties, all of the information called for on the
certificates can be had.
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BEVISED UNITED STATES STANDARD CEBTIFICATE OF DEATH

[Approvedby U. S. Census andAmerican PublicHealth Association]

Statement of occupation.—Precise statement of occupa-
tion is very important, sothat the relative healthfulness of
various pursuitscan be known. The question applies to
each and every person, irrespective of age. For many
occupations a single word or term on the firstline will be
sufficient, e. g., Farmer or Planter, Physician, Compos-
itor; Architect, Locomotiveengineer, Civil engineer,Stationary
fireman, etc. But in many cases, especially in industrial
employments, it is necessary to knew (a) the kind of
workand also (6) the nature of the business or industry,
and therefore an additional line is provided for the latter
statement; it should be used only when needed. As
examples: (a) Spinner, (b) Cotton mill; (a) Salesman, (6)
Grocery; (a) Foreman, (b) Automobile factory. The ma-
terial worked on may form part of the second statement.
Never return “Laborer,” “Foreman,” “Manager/*
“Dealer/* etc., without more precise specification, as
Pay laborer, Farm laborer, Laborer—Coal mine, etc.
Women at home, who are engaged in the duties of the
household only (not paid Housekeepers who receive a
definitesalary), may be entered as Housewife, Housework,
or At home, and children, not gainfully employed, as At
school or At home. Care should be taken to report spe-
cifically the occupations of persons engaged in domestic
service for wages, as Servant, Cook, Housemaid, etc. If the
occupation has been changed or given up on account of
the diseasecausing death, state occupation atbeginning
of illness. Ifretired from business, that factmay be indi-
cated thus: Farmer (retired, 6 yrs.). For persons who
have no occupation whatever, write None.

Statement of cause of death.—Name, first, the disease*
causing death (the primary affection with respect to time
and causation),using always the same accepted term for
the same disease. Examples: Cerebrospinalfever (the only
definite synonym ia “Epidemic cerebrospinal menin-
gitis”); Diphtheria (avoid use of “Croup”); Typhoidfever
(never report “Typhoid pneumonia”); Lobar pneumonia;
Bronchopneumonia (“Pneumonia,” unqualified, i3 indefi-
nite); Tuberculosis oflungs, meninges, peritoneum,etc., Car-
cinoma, Sarcoma, etc., of (name origin; “Can-
cer” is less definite; avoid use of “Tumor” for malignant
neoplasms); Measles; Whooping cough; Chronic valvular
heart disease; Chronic interstitial nephritis, etc. The con-
tributory (secondary or intercurrent) affection need not
be stated unless important. Example: Measles (disease
causing death), 29 ds.; Bronchopneumonia (secondary),
10 ds. Never report mere symptoms or terminal condi-
tions, such as “Asthenia,” “Anemia” (merely symptom-

atic), “Atrophy/* “Collapse,” “Coma/* “Convulsions,”
“Debility’* (“Congenital/* “Senile/* etc.), “Dropsy/*
“Exhaustion,” “Heart failure/* “Hemorrhage/ 3 “Inani-
tion/* “Marasmus/* “Old age/* “Shock/* “Uremia/*
“Weakness/* etc., 'when a definite diseasecan be ascer-
tained as the cause. Always qualify all diseases result-
ing from childbirth or miscarriage, as “Puerperal septi-
cemia,’’ “Puerperal peritonitis/* etc. State cause for
which surgical operation was undertaken. For violent
deaths6tate means op injury and qualifyas accidental,
suicidal, or homicidal, oras probably such, if impossible
todetermine definitely. Examples: Accidental drowning;
Struck byrailway train—accident; Revolver wound of head—-
homicide;Poisoned bycarbolic acid—probably suicide. The
nature of the injury, as fracture of skull, and consequences
(e. g., sepsis, tetanus) may be stated under the head of
‘‘Contributory.” (Recommendations on statement of
cause of death approved by Committee on Nomenclature
of the American Medical Association.)

Note.—Individual offices mayadd to above listof undesirableterms
andrefuse to acceptcertificatescontaining them. Thus theform in usa
in New York City states: “Certificates will be returned foradditional
informationwhich give anyof the following diseases, without explana-
tion, as thesole cause of death: Abortion, cellulitis, childbirth, convul-
sions, hemorrhage,gangrene, gastritis,erysipelas, meningitis, miscar-
riage,necrosis, peritonitis,phlebitis,pyemia, septicemia,tetanus." But
generaladoptionof the minimumlistsuggestedwillwork vastimprove-
ment,and itsscope can be extendedat a later date.

11—3184

Additional space for further statements
BY PHYSICIAN.

THE INTERNATIONAL LIST OF THE CAUSES OF DEATH

If the statistics of mortality are to be comparable from locality
to locality, it is plain that a uniform system of nomenclature of the
causes of death must everywhere be used. Similarly, if hospital
records are to be comparable, a uniform system of nomenclature
of morbid conditions and of treatments and results must be in
operation.

The science of nosology, or the classification of disease, attracted
a great deal more attention from medical men a century ago than
it does now. The predominant system in vogue for a long time was
due to Cullen. The first attempt to adapt it specifically to statis-
tical uses was due to William Farr. In the First Annual Report
of the Registrar-General of England and Wales Farr said:
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“The advantages of a uniform statistical nomenclature, however imperfect, are
so obvious that it is surprising no attention has been paid to its enforcement in Bills of
Mortality. Each disease has in many instances been denoted by three or four terms,
and each term has been applied to as many different diseases; vague, inconvenient
names have been employed, or complications have been registered instead of primary
diseases. The nomenclature is of as much importance in this department of inquiry
as weights and measures in the physical sciences, and should be settled without delay.”

The First Statistical Congress, held in Brussels in 1853, selected
Farr and Marc d’Espine of Geneva to draw up a report upon a
classification adapted to international use. It is interesting tonote

Fig. 9.—Portrait of Dr. Jacques Bertillon. (Reproduced through the kindness
of Dr. Frederick L. Hoffman, to whom the original belongs, and Brig.-Gen. Robert E.
Noble, Librarian of the Surgeon-General’s office.)

that the resolution to this end was introduced in the Congress by
Dr. Achille Guillard, who was the maternal grandfather of Dr.
Jacques Bertillon. In the last quarter of a century Bertillon has
been perhaps more active than anyone else in perfecting and
extending the use of the International Classification.

The classification prepared by Farr and d’Espine adopted
in Paris in 1855, in Vienna in 1857, and was translated into six
languages. It was revised in 1864, 1874, 1880, and 1886. With



THE RAW DATA OE BIOSTATISTICS 5 1

further revision it was adopted by the International Statistical
Institute in Chicago in 1893, and provisions were made for de-
cennial revisions. The first of these was made in 1900, and the
second in 1909, and the most recent one in 1920.

The present form of the International List, after its latest
revision, is as follows (kindly provided by Doctor William H.
Davis, Chief for Vital Statistics, United States Census Bureau):

INTERNATIONAL LIST OF CAUSES OF DEATH
(Third Decennial Revision by the International Commission, Paris, October 11-15,

1920.)
(The lines preceded by a star indicate certain additional subdivisions which the

Census Bureau intends to use to facilitate comparisons with statistics of previous
years.)

I. Epidemic., Endemic, and Infectious Diseases
1. Typhoid and paratyphoid fever:

(a) Typhoid fever.
( b) Paratyphoid fever.

2. Typhus fever.
3. Relapsing fever (Spirillum obermeieri).
4. Malta fever.
5. Malaria.
6. Smallpox.
7. Measles.
8. Scarlet fever.
9. Whooping-cough.

10. Diphtheria.
11. Influenza:

(a) With pulmonary complications specified.
(b) Without pulmonary complications specified.

12. Miliary fever.
13. Mumps.
14. Asiatic cholera.
15. Cholera nostras.
16. Dysentery:

(a) Amebic.
(b) Bacillary.
(c) Unspecified or due to other causes.

17. Plague:
(a) Bubonic.
(.b) Pneumonic.
(c) Septicemic.
(.d) Unspecified.

18. Yellow fever.
19. Spirochetal hemorrhagic jaundice.
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20. Leprosy.
21. Erysipelas.
22. Acute anterior poliomyelitis.
23. Lethargic encephalitis.
24. Meningococcus meningitis.
25. Other epidemic and endemic diseases:

*(a) Chickenpox.
*(b) German measles.
*(c) Others under this title.

26. Glanders.
27. Anthrax.
28. Rabies.
29. Tetanus.
30. Mycoses.
31. Tuberculosis of the respiratory system.
32. Tuberculosis of the meninges and central nervous system.
33. Tuberculosis of the intestines and peritoneum.
34. Tuberculosis of the vertebral column.
35. Tuberculosis of the joints.
36. Tuberculosis of other organs:

(a) Tuberculosis of the skin and subcutaneous cellular tissue.
( b) Tuberculosis of the bones (vertebral column excepted).
(c) Tuberculosis of the lymphatic system (mesenteric and retroperitoneal

glands excepted).
(d) Tuberculosis of the genito-urinary system.
(e) Tuberculosis of organs other than the above.

37. Disseminated tuberculosis:
(a) Acute.
( b) Chronic or unspecified.

38. Syphilis.
39. Soft chancre.
40. Gonococcus infection.
41. Purulent infection, septicemia.
42. Other infectious diseases.

II. General Diseases Not Included in Class I
43. Cancer and other malignant tumors of the buccal cavity.
44. Cancer and other malignant tumors of the stomach, liver.
45. Cancer and other malignant tumors of the peritoneum, intestines, rectum.
46. Cancer and other malignant tumors of the female genital organs.
47. Cancer and other malignant tumors of the breast.
48. Cancer and other malignant tumors of the skin.
49. Cancer and other malignant tumors of other or unspecified organs.
50. Benign tumors and tumors not returned as malignant (tumors of the female gen-

ital organs excepted).
51. Acute rheumatic fever.
52. Chronic rheumatism, osteo-arthritis, gout.
53. Scurvy.
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54. Pellagra.
55. Beriberi.
56. Rickets.
57. Diabetes mellitus.
58. Anemia, chlorosis:

(a) Pernicious anemia.
( b) Other anemias and chlorosis.

59. Diseases of the pituitary gland.
60. Diseases of the thyroid gland:

(a) Exophthalmic goiter.
( b) Other diseases of the thyroid gland.

61. Diseases of the parathyroid glands.
62. Diseases of the thymus gland.
63. Diseases of the adrenals (Addison’s disease).
64. Diseases of the spleen.
65. Leukemia and Hodgkin’s disease:

(a) Leukemia.
( b) Hodgkin’s disease.

66. Alcoholism (acute or chronic).
67. Chronic poisoning by mineral substances:

*(a) Chronic lead-poisoning.
*(b) Others under this title.

68. Chronic poisoning by organic substances.
69. Other general diseases.

III. Diseases of the Nervous System and of the Organs ofSpecial Sense
70. Encephalitis.
71. Meningitis:

*(a) Simple meningitis.
*(b) Non-epidemic cerebrospinal meningitis.

72. Tabes dorsalis (locomotor ataxia).
73. Other diseases of the spinal cord.
74. Cerebral hemorrhage, apoplexy:

(a) Cerebral hemorrhage.
( b) Cerebral embolism and thrombosis.

75. Paralysis without specified cause:
(a) Hemiplegia.
(b) Others under this title.

76. General paralysis of the insane.
77. Other forms of mental alienation.
78. Epilepsy.
79. Convulsions (non-puerperal; five years and over)
80. Infantile convulsions (under five years of age).
81. Chorea.
82. Neuralgia and neuritis.
83. Softening of the brain.
84. Other diseases of the nervous system.
85. Diseases of the eye and annexa.
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86. Diseases of the ear and of the mastoid process
*{a) Diseases of the ear.
*(b) Diseases of the mastoid process.

IV. Diseases of the Circulatory System
87. Pericarditis.
88. Endocarditis and myocarditis (acute).
89. Angina pectoris.
90. Other diseases of the heart.
91. Diseases of the arteries:

(a) Aneurysm.
(b) Arteriosclerosis.
(c) Other diseases of the arteries.

92. Embolism and thrombosis (not cerebral).
93. Diseases of the veins (varices, hemorrhoids, phlebitis, etc.).
94. Diseases of the lymphatic system (lymphangitis, etc.).
95. Hemorrhage without specified cause.
96. Other diseases of the circulatory system.

V. Diseases of the Respiratory System
97. Diseases of the nasal fossae and their annexa:

*(a) Diseases of the nasal fossae.
*(b) Others under this title.

98. Diseases of the larynx.
99. Bronchitis:

(a) Acute.
( b ) Chronic.
(c) Unspecified under five years of age.
(d) Unspecified five years and over.

100. Bronchopneumonia:
*(a) Bronchopneumonia.
*(b) Capillary bronchitis.

101. Pneumonia:
(a) Lobar.
(b) Unspecified.

102. Pleurisy.
103. Congestion and hemorrhagic infarct of the lung.
104. Gangrene of the lung.
105. Asthma.
106. Pulmonary emphysema.
107. Other diseases of the respiratory system (tuberculosis excepted):

(a) Chronic interstitial pneumonia, including occupational diseases of the
respiratory system.

(b) Diseases of the mediastinum.
(c ) Others under this title.
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VI. Diseases of the Digestive System

108. Diseases of the mouth and annexa.
109. Diseases of the pharynx and tonsils (including adenoid vegetations):

*(a) Adenoid vegetations.
*(£>) Others under this title.

110. Diseases of the esophagus.
111. Ulcer of the stomach and duodenum:

(a) Ulcer of the stomach.
(b) Ulcer of the duodenum.

112. Other diseases of the stomach (cancer excepted).
113. Diarrhea and enteritis (under two years of age).
114. Diarrhea and enteritis (two years and over).
115. Ankylostomiasis.
116. Diseases due to other intestinal parasites:

(a) Cestodes (hydatids of the liver excepted).
(b) Trematodes.
( c) Nematodes (other than ankylostoma).
(<d ) Coccidia.
( e) Other parasites specified.
(/) Parasites not specified.

117. Appendicitis and typhlitis.
118. Hernia, intestinal obstruction:

(a) Hernia.
(b) Intestinal obstruction.

119. Other diseases of the intestines.
120. Acute yellow atrophy of the liver.
121. Hydatid tumor of the liver.
122. Cirrhosis of the liver:

(a) Specified as alcoholic.
(b) Not specified as alcoholic.

123. Biliary calculi.
124. Other diseases of the liver.
125. Diseases of the pancreas.
126. Peritonitis without specified cause.
127. Other diseases of the digestive system (cancer and tuberculosis excepted)

VII. Non-venereal Diseases of the Genito-urinary System and Annexa
128. Acute nephritis (including unspecified under ten years of age).
129. Chronic nephritis (including unspecified ten years and over).
130. Chyluria.
131. Other diseases of the'kidneys and annexa.
132. Calculi of the urinary passages.
133. Diseases of the bladder.
134. Diseases of the urethra, urinary abscess, etc.:

(a) Stricture of the urethra.
(ib) Others under this title.

135. Diseases of the prostate.
136. Non-venereal diseases of the male genital organs.
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137. Cysts and other benign tumors of the ovary.
138. Salpingitis and pelvic abscess (female).
139. Benign tumors of the uterus.
140. Non-puerperal uterine hemorrhage.
141. Other diseases of the female genital organs.
142. Non-puerperal diseases of the breast (cancer excepted).

VIII. The Puerperal State
143. Accidents of pregnancy:

(a) Abortion.
(b) Ectopic gestation.
(c) Others under this title.

144. Puerperal hemorrhage.
145. Other accidents of labor:

*(a) Cesarean section.
*(b) Other surgical operations and instrumental delivery.
*(c) Others under this title.

146. Puerperal septicemia.
147. Puerperal phlegmasia alba dolens, embolus, sudden death.
148. Puerperal albuminuria and convulsions.
149. Following child-birth (not otherwise defined).
150. Puerperal diseases of the breast.

IX. Diseases of the Skin and of the Cellular Tissue
151. Gangrene.
152. Furuncle.
153. Acute abscess.
154. Other diseases of the skin and annexa.

X. Diseases of the Bones and of the Organs of Locomotion
155. Diseases of the bones (tuberculosis excepted).
156. Diseases of the joints (tuberculosis and rheumatism excepted).
157. Amputations.
158. Other diseases of the organs of locomotion.

XI. Malformations
159. Congenital malformations (still-births not included):

*(a) Congenital hydrocephalus.
*(b) Congenital malformations of the heart.
*(c) Others under this title.

XII. Early Infancy
160. Congenital debility, icterus, and sclerema.
161. Premature birth; injury at birth:

*(a ) Premature birth (not still-born).
*(b) Injury at birth (not still-born).

162. Other diseases peculiar to early infancy.
163. Lack of care.

XIII. Old Age
164. Senility.
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XIV. External Causes

165. Suicide by solid or liquid poisons (corrosive substances excepted).
166. Suicide by corrosive substances.
167. Suicide by poisonous gas.
168. Suicide by hanging or strangulation.
169. Suicide by drowning.
170. Suicide by firearms.
171. Suicide by cutting or piercing instruments.
172. Suicide by jumping from high places.
173. Suicide by crushing.
174. Other suicides.
175. Poisoning by food.
176. Poisoning by venomous animals.
177. Other acute accidental poisonings (gas excepted).
178. Conflagration.
179. Accidental burns (conflagration excepted).
180. Accidental mechanical suffocation.
181. Accidental absorption of irrespirable irritating or poisonous gas.
182. Accidental drowning.
183. Accidental traumatism by firearms (wounds of war excepted).
184. Accidental traumatism by cutting or piercing instruments.
185. Accidental traumatism by fall.
186. Accidental traumatism in mines and quarries:

*(a) Mines.
*(b) Quarries.

187. Accidental traumatism by machines.
188. Accidental traumatism by other crushing (vehicles, railways, landslides, etc.):

*(a) Railroad accidents.
*(b ) Street-car accidents.
*(c) Automobile accidents.
*(d) Aeroplane and balloon accidents.
*(e) Motorcycle accidents.
*(/) Injuries by other vehicles.
*(g) Landslide, other crushing.

189. Injuries by animals (not poisoning).
190. Wounds of war.
191. Execution of civilians by belligerent armies.
192. Starvation (deprivation of food or water).
193. Excessive cold.
194. Excessive heat.
195. Lightning.
196. Other accidental electric shocks.
197. Homicide by firearms.
198. Homicide by cutting or piercing instruments.
199. Homicide by other means.
200. Infanticide (murder of infants less than one year of age).|
201. Fracture (cause not specified).

t This title to be omitted when homicides are shown by ages under Titles 197-199.
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202. Other external violence.
203. Violent deaths of unknown causation.

XV. Ill-defined Diseases
204. Sudden death.
205. Cause of death not specified or ill-defined:

*{a) Ill-defined.
*{b) Not specified or unknown.

THE OFFICIAL STATISTICAL TREATMENT OF JOINT CAUSES OF
DEATH

Few persons not professional vital statisticians understand the
real meaning of mortality statistics tabled under the International
Classification. The official charged with compiling such statistics
has to work under a set of essentially arbitrary rules. Otherwise
he never could make an intelligent compilation, because of two
important facts:

1. Some physicians all the time, and all physicians some of the
time, will use their own terminology instead of that of the Inter-
national Classification in reporting the cause of death on the
original death certificate.

2. Physicians will, quite properly, report more than one morbid
condition as a causal factor in the death.

What shall the vital statistician do under such premises?
What he actually does do is so important for a right understanding
of what official vital statistics of the present day really mean
medically ,

that it seems desirable to reproduce here, in part, the
excellent discussion of the matter contained in the last issued
“Manual of the International List.” This discussion shows the
general principles according to which causes of death are handled
in modern statistical offices. There have been some slight modifica-
tions in respect of details since this last manual was published in
1911. Discussions of these modifications and accounts of the
procedure under the rules are embodied each year in the textual
matter of the annual volumes of Mortality Statistics from the
Census Bureau. Here we are only concerned with general prin-
ciples.

The expression “joint causes of death” is a convenient one for
those cases in which the physician reports two or more causes or
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conditions upon the certificate of death of an individual. According
to the general practice of statistical compilation only one cause
can be tabulated for each death, consequently a process of selection
is necessary. The method employed for this purpose may have a
very considerable influence upon the resulting statistics. Dr.
Julius J. Pikler* has very forcefully directed attention to the impor-
tance of the study of contributory causes of death that usually are
lost entirely in compilation, but the full statement of such causes
would be difficult, especially for related tables and a detailed
classification, in a report dealing with large numbers of returns.

The International Commission did not give specia 1 consideration
to this subject in 1909, but at the suggestion of Dr. Bertillon it was
agreed that the rules employed since 1900 should be continued in
force and a special committee was appointed to report on the sub-
ject. Following are the rules in question as given in the French
edition of 1903:

1. If one of the two diseases is an immediate and frequent complication of the
other, the death should be classified under the head of the primary disease. Examples:

Infantile diarrhea and convulsions, classify as infantile diarrhea.
Measles and bronchopneumonia,classify as measles.
Scarlet fever and diphtheria, classify as scarlet fever.
Scarlet fever and nephritis, classify as scarlet fever.

2. If the preceding rule is not applicable, the following should be used: If one of
the diseases is surely fatalf and the other is of less gravity, the former should be
selected as the cause of death. Examples:

Cancer and bronchopneumonia, classify as cancer.
Pulmonary tuberculosis and puerperal septicemia, classify as tuberculosis.
Icterus gravis and pericarditis, classify as icterus gravis.

3. If neither of the above rules is applicable, then the following: If one of the
diseases is epidemic and the other is not, choose the epidemic disease. Examples:

Typhoidfever and saturnism, classify as typhoidfever.
Measles and biliary calculi, classify as measles.

4. If none of the three preceding rules is applicable, the following may be used:
If one of the diseases is much more frequentlyfatal than the other, then it should be
selected as the cause of death. Examples:

Rheumatism (without metastasis) and salpingitis, classify as salpingitis.
Pericarditis and appendicitis, classify as pericarditis.

* Das Budapester System der Todesursachenstatistik, 1909.
f Apart from all treatment. This provision is necessary to assure stability in the

application of the rules. Otherwise a therapeutic discovery, for example, that of the
antidiphtheric serum, would modify the tables and injure the comparability of the
statistics.
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5. If none of the four preceding rules applies, then the following: If one of the dis-
eases is of rapid development and the other is of slow development, the disease of rapid
development should be taken. Examples:

Diabetes and icterus gravis, classify as icterus gravis.
Cirrhosis and angina pectoris, classify as angina pectoris.
Pleurisy and senile debility, classify as pleurisy.

6. If none of the above five rules applies, then the diagnosis should be selected
that best characterizes the case. Example:

Saturnism and peritonitis, classify as saturnism.
Precise diagnoses should be given the preference over vague and indeterminate

ones, such as “Hemorrhage,” “Encephalitis,” etc. Arbitrary decisions should be
avoided as much as possible by the use of the preceding rules. None of them is
absolute, but all are subject to exceptions which may vary according to local usages.*
In practice the first rule, which is the most logical of all, is the one of most frequent
application. The others have been formulated only to prepare for all cases and to
treat them with system and uniformity.

These rules differ but slightly from those given in the Manual of
1902, which were based upon the French edition of 1900. They
are a development of practical experience, as shown by the forms
in which they have appeared in various editions of the International
Classification, and may be compared with the rules given in the
introductory text of the Alphabetische Liste von Krankheiten und
Todesursachen, Kaiserliches Gesundheitsamt, Germany, 1905:

When several diseases are reported as causes of death, the following rules should
be observed:

1. The death is, as a rule, to be assigned to that number which represents the
probable primary cause (Grundleiden). For example, when nephritis and valvular
heart disease are returned, the death should be classified under the heart disease as
the probable primary cause. Only when the primary cause is not a real disease may
it be disregarded. For example, with “senile debility and bronchitis” or “debility
and intestinal catarrh,” the deaths should be classified not as senile debility or con-
genital debility, but as chronic bronchitis and as intestinal catarrh.

2. With two independent diseases, the more severe should be chosen.
3. With an infectious disease and a non-infectious disease, the former should be

chosen. Example: Insanity and typhoid fever, classify as typhoid fever.
4. If acute diseases are reported with chronic diseases, the acute diseases are to

be preferred. Example: Gastric ulcer and croupous pneumonia, classify as croupous
pneumonia.

* Particularly we should note the impropriety of certain expressions. For example,
if a physician writes Typhoid fever, chronic nephritis, it is almost certain that he in-
tended to indicate typhoid fever complicated with albuminuria and not a patient
with Bright’s disease attacked with typhoid fever.

When a disease ordinarily rare or absent undergoes a large extension (e. g., cholera,
yellow fever, etc.) the total deaths should be noted without any exception whatever.
For such cases it is necessary to waive all ordinary rules.
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5. If two infectious diseases are reported as causes of death, then smallpox, scarlet

fever, measles, typhus fever, diphtheria and croup, whooping-cough, croupous pneu-
monia, influenza, typhoid fever, paratyphoid fever, Weil’s disease, relapsing fever,
cerebrospinal fever, erysipelas, tetanus, septicemia, puerperal fever, plague, Asiatic
cholera, dysentery, anthrax, glanders, rabies, and trichiniasis should have the pref-
erence over tuberculosis, malaria, or a venereal disease.

6. Causes of death from violence are usually preferred.
7. Such returns as heart weakness [“heart failure”], cardiac paralysis, paralysis

of the lungs, pulmonary edema, coma, and the like, should be disregarded if other
causes are named.

8. With tuberculosis of several organs, including that of the lungs, tuberculosis
of the lungs should be selected.

It will be interesting also to compare the rules published by the
Society of Medical Officers of Health of England*:

Rules as to Classification of Causes of Death
With the following exceptions the general rule should be to select from several

diseases mentioned in the certificate the disease of the longest duration. In the event
of no duration being specified, the disease standing first in order should be assumed
to be the disease of longest duration.

Exceptions to the Above Rule
Any one of the chief infective diseases should be selected in preference to any other

cause of death. If two infective diseases in succession be specified, the disease of
longer duration should be selected.

Thus scarlet fever should be selected in preference to bronchopneumonia, and
phthisis in preference to bronchitis.

Definite diseases, ordinarily known as constitutional diseases, should have pref-
erence over those known as local diseases.

Thus cancer should be selected in preference to pneumonia, and diabetes in
preference to heart disease.

When apoplexy occurs in conjunction with definite disease of the heart or kidneys,
the heart disease or the kidney disease, as the case may be, should be preferred.

When hemiplegia is mentioned in connection with embolism, the embolism should
be selected.

When embolism occurs in connection with childbirth, the death should be referred
to accidents of childbirth.

In calculating the death-rate from “diarrhea,” deaths certified as due to diarrhea,
either alone or coupled with some ill-defined cause (such as “atrophy,” “debility,”
“marasmus,” “thrush,” “convulsions,” “teething,” “old age,” or “senile decay”),
epidemic or summer diarrhea, epidemic or zymotic enteritis, intestinal or enteric catarrh,
gastro-intestinal or gastro-enteric catarrh, dysentery or dysenteric diarrhea, cholera (not
being “Asiatic cholera”), cholera nostras, cholera infantum, and choleraic diarrhea
should be included.

* The New Tables Issued by the Local Government Board and the Schedules of
Causes of Death issued by The Incorporated Society of Medical Officers of Health,
London, 1901.
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The following miscellaneous examples are given as indicating the method of
classification in cases of difficulty that frequently arise:
Causes of Death in Order Given in Death

Certificate
Whooping-cough, bronchopneumonia,

scarlet fever.
Scarlet fever six months, otitis media,

abscess of brain.
Laryngeal and pulmonary phthisis.
Pneumonia, old age.
Old age, bronchitis.
Phthisis, diabetes mellitus.
Diphtheria nine months, paralysis.
Puerperal perimetritis.
Cerebral embolism.
Spasmodic croup.
Acute hydrocephalus.
Bronchitis, phthisis.

To be Classified Under—

Whooping-cough, if of longer duration
than scarlet fever.

Scarlet fever.

Phthisis.
Pneumonia.
Bronchitis.
Select disease of longest duration.
Diphtheria.
Puerperal fever.
Embolism.
Laryngismus stridulus.
Tubercular meningitis.
Phthisis.

Through the kindness of Dr. John Tatham, formerly Medical
Superintendent of the Registrar-General’s office, England, a copy of
the Instructions to Abstractors, as employed in that office in 1909,
was supplied to the Bureau of the Census. Certain decisions of
special interest are taken therefrom:

1. Any general disease (except pyrexia, premature birth, congenital defects, want
of breast milk, teething, and chronic rheumatism) to be taken in preference to any
local disease except aneurysm and strangulated hernia.

2. Any of the following diseases are to be given preference over any other dis-
eases: Aneurysm, anthrax, Asiatic cholera, cancer, carcinoma, glanders, rabies,
industrial poisoning, malignant disease, opium or morphin habit, puerperal septic
disease, sarcoma, smallpox, strangulatedhernia, tetanus, and vaccination.

3. Any disease in this group is to be preferred over any other disease except those
named in the preceding group: Cerebrospinal fever, diphtheria, dysentery, typhoid
fever, German measles, malaria, measles, mumps, relapsing fever, scarlet fever,
typhus fever, and whooping-cough.

4. The following diseases to be preferred except for those named in the two
preceding lists: Acute hydrocephalus, alcoholism, influenza, lupus, phthisis, pul-
monary tuberculosis, rheumatic fever (acute and subacute rheumatism), scrofula, syph-
ilis, tabes mesenterica, tuberculous meningitis, tuberculous peritonitis, tuberculosis of
other organs, and general tuberculosis.

5. For the following list, prefer the disease of longer duration or the disease
first written: Carbuncle (not anthrax), diabetes mellitus, epidemic diarrhea, epi-
demic enteritis, enteritis, diarrhea due to food, erysipelas, gout, hemophilia, infective
endocarditis, infective enteritis, pernicious anemia, phagedena, phlegmon (not an-
thrax), pneumonia (all forms), purpura haemorrhagica, pyemia (not puerperal), rheu-
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matoid arthritis, rheumatic gout, rheumatism of heart, rickets, scurvy, septicemia,
other septic diseases, septic infections, starvation, and varicella.

6. Premature birth and congenital defects (malformations) to be preferred for
decedents under three months of age to other causes except those of groups 2 and 3.

7. Chlorosis and anemia (not pernicious) only when alone.
8. For combinations of local diseases, usually select disease of longer duration or

that first written.
9. Any definite disease accelerated by violence is to be classed to the disease.

10. Tetanus, septicemia, blood-poisoning, pyemia, or erysipelas following violence
to be classed to tetanus or the septic disease if the injury is slight; but if severe enough
tokill by itself, the death should be classed to the form of violence.

For returns upon the Standard Certificate of Death, and espe-
cially for those returns in which the instructions have been regarded
by the reporting physicians, the following suggestions are made by
the United States Bureau of the Census:

1. Select the primary cause, that is, the real or underlying cause of death. This is
usually—-

(a) The cause first in order.
( b) The cause of longer duration. If the physician writes the cause of shorter

duration first, inquiry may be made whether it is not a mere symptom,
complication, or terminal condition.

(c) The cause of which the contributory (secondary) cause is a frequent com-
plication.

( d) The physician may indicate the relation of the causes by words, although
this is a departure from the way in which the blank was intended to be
filled out. For example, “Bronchopneumonia following measles” (pri-
mary cause last) or “Measles followed by bronchopneumonia” (primary
cause first).

2. If the relation of primary and secondary is not clear, prefer general diseases,
and especially dangerous infective or epidemic diseases, to local diseases.

3. Prefer severe or usually fatal diseases to mild diseases.
4. Disregard ill-defined causes (Class XIV), and also indefinite and ill-defined

terms (e. g., “debility,” “atrophy”) in Classes XI and XII that are referred, for cer-
tain ages, to Class XIV, as compared with definite causes. Neglect mere modes of
death (failure of heart or respiration) and terminal symptoms or conditions (e. g.,
hypostatic congestion of lungs).

5. Select homicide and suicide in preference to any consequences, and severe
accidental injuries, sufficient in themselves to cause death, to all ordinary conse-
quences. Tetanus is preferred to any accidental injury, and erysipelas, septicemia,
pyemia, peritonitis, etc., are preferred to less serious accidental injuries. Prefer
definite means of accidental injury (e. g., railway accident, explosion in coal mine,
etc.) to vague statements or statement of the nature of the injury only (e. g., accident,
fracture of skull).

6. Physical diseases (e. g., tuberculosis of lungs, diabetes) are preferred to mental
diseases as causes of death (e. g., manic depressive psychosis), but general paralysis
of the insane is a preferred term.
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7. Prefer puerperal causes except when a serious disease (e. g., cancer, chronic
Bright’s disease) was the independent cause.

8. Disregard indefinite terms and titles generally in favor of definite terms and
titles. The precise line of demarcation is difficult to lay down, but may be indicated
broadly by the kinds of type employed in the International List in the form distrib-
uted by the Census to all physicians in the United States.*

From these suggestions and from the instructions employed in
various offices it will be apparent that there is a considerable factor
of uncertainty in the results when a large proportion of joint causes
is involved. No rules yet formulated will insure absolutely iden-
tical compilations from the same material, and the methods em-
ployed in the same office may vary from year to year. The most
efficient editor is not the one who follows any set of listed arbitrary
decisions, but rather the one who is constantly on the lookout for
cases in which it should not be followed, and who calls attention to
such cases. A list of this kind cannot incorporate considerations
of duration, sex, place of death, age, occupation, etc., any or all of
which may have an important bearing upon the classification of
deaths, and in individual cases such data on transcripts often
indicate an assignment contrary to the listed one.

RELIABILITY OF STATISTICS OF SEPARATE CAUSES OF DEATH

Philosophically considered a true determination of the “cause
•of death” is in a great many cases, indeed the majority probably of
all cases, an extraordinarily difficult matter. This every patho-
logic anatomist knows. The difficulty arises from many different
circumstances. Some illustrations will make the point clear. A
person has cancer of the breast, is operated upon in the hope of
curing this disease, develops a postoperative pneumonia, and dies.
Now if the person had not had the cancer and had therefore not been
operated on for its relief, she would not have died when she did.
This way of looking at the matter plainly suggests that the cancer
is fundamentally the cause of this death. But, on the other hand,
if she had not been operated on, even though she still had the
cancer, she would not have died when she did, but at some later
time. This view rather tends to make the operation the cause of
■death, at least at the particular time and place at which it occurred.

* See Physicians’ Pocket Reference to the International List of Causes of Death.
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Again, suppose she had been operated on, and had not developed
the postoperative pneumonia. Then she might have been per-
manently cured of the cancer (many are) and lived to a ripe old age.
This view of the case truly makes the pneumonia the cause of death.
Which of the three things—cancer, operation, or pneumonia—is to
be charged as the primary cause of death plainly depends upon the
point of view, or, put in another way, upon what definitions or
rules are set up as to what shall be called the cause of death.

As has already been shown, official vital statistics operate under
such a set of rules. In the case cited, cancer would be given as the
primary cause of death, and the postoperative pneumonia as the
secondary or complicating cause. To the philosophic mind this is
probably the least satisfactory solution of the three. Why it is the
officially chosen one is because of an often overlooked, and in some of
its aspects quite vicious, underlying concept in official vital statistics.
There is ever present in vital statistics, and from the beginning always
has been, an attempt to make the incidence of mortality a measure or
index of the incidence of morbidity. Mortality is not and never can
be a good index of morbidity, generally speaking. What actually
is done is to weaken and impair the value of the statistics for the
study of mortality in the hope to make them a little better indices of
morbidity. This tendency is apparent in the illustration given
above. It is thought desirable to get as complete records as
possible of the prevalence of cancer in the population, as a disease.
Therefore, the rule is that, in general, if a person dies who is known
to have had cancer prior to death, the death is to be charged to
cancer. In consequence, it results that no one can get from the
official statistics an accurate answer to the question: “How many
persons per 1000 living did cancer kill in 1920?” Instead, what he
gets is information as to how many persons died per 1000 living in
1920, who had had cancer before they died. The latter information,
as anyone witha logical mind will at once perceive, is quite different
from the former.

Now if all secondary and complicating conditions were accu-
rately reported and compiled, the case would be far better in respect
of the objection just discussed. But this is an unattainable counsel
of perfection. Even if it were accomplished there would still
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remain a large source of error in statistics of the causes of death.
This arises from the fact that all physicians are not equally intelli-
gent or clever diagnosticians. Clinical diagnosis is not yet an
exact science. A person dies: the attending physician quite
honestly thinks he knows what this patient died of, and registers
his conviction on the death certificate. Actually, the physician
may have been mistaken in his diagnosis, too often grossly so.
But his error gets embalmed in the official vital statistics.

This phase of the problem has lately been the subject of careful
study by a committee of the American Public Health Association. 5

Every student of vital statistics should study and ponder over this
committee’s report. He will be bound to reach the conclusion that
there are but few indeed of the rubrics of the International List
whose figures can be unreservedly accepted at their face value.

The following classes of official vital statistics alone can, in the
writer’s opinion, be subjected to analysis as scientifically accurate
records of natural phenomena:

1. Deaths from all causes (either for all ages together or for
separate age groups, as, for example, ‘‘infant mortality”
(deaths under one year of age).

2. Suicide.
3. Traumatism (Rubrics 178 to 191 inclusive and 195 and 196).
4. Homicide (Rubrics 197 to 200 inclusive).
This is neither a long nor, except in its first item, a specially

important list. But personally I cannot but feel that when we deal
with other rubrics we are dealing with mixtures of unknown com-
position, and with data of a wholly different order of accuracy than
those, for example, of the physicist or the chemist. We are forced,
of course, in the practical conduct of a statistical business to deal
with other rubrics, but, at any rate, one should, when so doing,
always remember that his material is fundamentally of a dubious
character.

CLASSIFICATION OF THE CAUSES OF DEATH FOR RESEARCH
PURPOSES

It may fairly be said that at least one of the purposes underlying
the routine official collection and publication of vital statistics is
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the hope that from the analysis and subsequent synthesis of the
mass of data so accumulated may come an increased knowledge
of the fundamental biologic laws of mortality and natality. But
plainly no such enhancement of knowledge is going to come if no
one does anything with the statistics after they are gathered. Yet
such is the inhibition engendered by the inherently official character
of official statistics, on the one hand, and of any large ordered mass
of figures, on the other hand, that very little has in fact been done
with official vital statistics which in any way corresponds intellec-
tually with what an ingenious boy does when he takes a machine
to pieces and puts it together again in conformity with his ideas,
at the moment, as to how it ought to be put together. Yet just
this process of taking a nicely co-ordinated machine to pieces and
putting it together again in a novel way may yield results which
are not only potentially entertaining, but may be highly illuminat-
ing. It will, of course, always encounter the violent opposition of
those minds which dislike to see the established disturbed, or old
things looked at in new ways. Many reasons why such pernicious
activity should not be indulged in can always be adduced. But
the true philosopher will be undisturbed by these considerations.

Some time ago I made an essay at taking apart that piece of
mechanism which is called the International List of the Causes of
Death and putting it together in a new way. It seems appropriate
to include some account of it here, if for no other reason than that
it may stimulate some other student to embark upon the same
enterprise with other and more valuable results.

In recording the statistics of death the vital statistician is
confronted with the absolute necessity of putting every death
record into some category or other in respect of its causation.
However complex biologically may have been the train of events
leading up to a particular demise, the statistician must record the
terminal “cause of death” as some particular thing. The Inter-
national List of the Causes of Death is a code which is the result
of many years’ experience and thought. Great as are its defects
in certain particulars, it nevertheless has certain marked advantages,
the most conspicuous of which is that by its use the vital statistics
of different countries are put upon a uniform basis.
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The several separate causes of death were grouped in the In-
ternational List into the following general classes when this study
was made:

I. General diseases.
II. Diseases of the nervous system and of the organs of spe-

cial sense.
III. Diseases of the circulatory system.
IV. Diseases of the respiratory system.
V. Diseases of the digestive system.

VI. Non-venereal diseases of the genito-urinary system and
annexa.

VII. The puerperal state.
VIII. Diseases of the skin and of the cellular tissue.
IX. Diseases of the bones and of the organs of locomotion.
X. Malformations.

XI. Early infancy.
XII. Old age.

XIII. External causes.
XIV. Ill-defined diseases.

It is evident enough that this is not primarily a biologic classi-
fication. The first group, for example, called “General diseases,”
which caused in 1916, in the Registration Area of the United States
approximately one-fourth of all the deaths, is a curious biologic
and clinical melange. It includes such diverse entities as measles,
malaria, tetanus, tuberculosis, cancer, gonococcus infection, alcohol-
ism, goiter, and many other equally unlike causes of death. For
the purposes of the statistical registrar it perhaps has useful points
to make this “General diseases” grouping, but it clearly corresponds
to little that is natural in the biologic world. Again, in such part
of the scheme as does have some biologic basis, the basis is different
in different rubrics. Some of the rubrics have an organologic base,
while others, as “Malformations,” have a causational rather than
an organologic base.

Altogether it is evident that, if any synthetic biologic use is
to be made of mortality data, a fundamentally different scheme of
classification of the causes of death will have to be worked out.
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For the purposes of this study* I 1 developed an entirely different

general classification of the causes of death on a reasonably con-
sistent biologic basis. The underlying idea of this new classification
is to group all causes of death under the heads of the several organ
systems of the body, the functional breakdown of which is the
immediate or predominant cause of the cessation of life. All except
a few of the statistically recognized causes of death in the Inter-
national List can be assigned to places in such a biologically grouped
list. It has a sound logical foundation in the fact that, biologically
considered, death results because some organ system, or group of
organ systems, fails to continue its function. Practically the
plan involves the reassignment of all of the several causes of death
now grouped by vital statisticians under heading “I. General
diseases.” It also involves the re-distributing of causes of death
now listed under the puerperal state, malformations, early infancy,
and certain of those under external causes:

The headings finally decided upon for the new classification are
as follows:

I. Circulatory system, blood, and blood-forming organs.
II. Respiratory system.

III. Primary and secondary sex organs.
IV. Kidneys and related excretory organs.
V. Skeletal and muscular systems.

VI. Alimentary tract and associated organs concerned in
metabolism.

VII. Nervous system and sense organs.
VIII. Skin.

IX. Endocrinal system.
X. All other causes of death.

It should be emphasized before presenting the statistics on
this new classification that the underlying idea of this rearrange-

* It should be clearly understood that this phrase “For the purposes of this
study” means precisely what it says. I am not advocating a new classification of the
causes of death for statistical use. I should oppose vigorously any attempt to sub-
stitute a new classification (mine or any other) for the International List now in use.
Uniformity in statistical classification is essential to usable practical vital statistics.
Such uniformity has now become well-established through the International List
It would be most undesirable to make any radical changes in the List now.
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ment of the causes of death is to put all those lethal entities
together which bring about death because of the functional or-
ganic breakdown of the same general organ system. The cause
of this functional breakdown may be anything whatever in the
range of pathology. It may be due to bacterial infection; it may
be due to trophic disturbances; it may be due to mechanical dis-
turbances which prevent the continuation of normal function;
or to any other cause whatsoever. In other words, the basis of the
present classification is not that of pathologic causation, but it is
rather that of organ breakdown. We are now looking at the
question of death from the standpoint of the biologist, who con-
cerns himself not with what causes a cessation of function, but
rather with what part of the organism ceases to function, and
therefore causes death.

The data given are in the form of death-rates per hundred
thousand living at all ages from various causes of death, arranged
by organ systems primarily concerned in death from the specified
disease. The statistics presented are from three widely separated

TABLE 1
Showing the Reiative Importance of Different Organ Systems in Human

Mortality

Group
No. Organ system.

Death rates

Registration area,
U. S. A.

per 100,0(

England
and

Wales.

0.

Sao
Paulo.

1906-10. 1901-05. 1914. 1917.

II Respiratory system 395.7 460.5 420.2 417.5
VI Alimentary tract and associated organs.. . . 334.9 340.4 274.1 613.8
I Circulatory system, blood 209.8 196.8 208.6 254.8

VII Nervous system and sense organs 175.6 192.9 151.9 124.3
IV Kidneys and related excretory organs 107.2 107.4 19.4 83.4
III Primary and secondary sex organs 88.1 77.4 95.4 103.2

V Skeletal and muscular system 12.6 13.7 18.2 6.8
VIII Skin 10.1 13.3 12.0 7.9

IX Endocrinal system 1.5 1.2 1.9 1.1
Total death-rate classifiable on a biologic

basis 1335.5 1403.6 1201.7 1612.8

X All other causes of death 171.3 211.9 141.4 109.8
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Fig. 10.—Diagram showing the relative importance of the different organ systems of
the body in human mortality.

localities and times, viz.: (a) from the Registration Area of the
United States; (b ) from England and Wales; and (e) from the City
of Sao Paulo, Brazil. The first two columns of each table give the
death-rates, arranged in descending order of magnitude in the first
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column, for the Registration Area of the United States for the two
periods, 1906-1910 and 1901-1905. The third column of each
table gives the death-rate from the same causes of death for England
and Wales in the year 1914. The fourth column gives the rates for
Sao Paulo for the year 1917. The data for the United States
Registration Area were extracted from the volume of Mortality
Statistics for 1916, issued by the Bureau of the Census. The Eng-
lish data were extracted from the Report of the Registrar General of
England and Wales for 1914. The Sao Paulo rates were calculated
from data as to deaths and population given in the “Annuario
Demographico” of Sao Paulo for 1917.

In Table 1 (p. 70) the totals are arranged in descending order of
magnitude. The results are shown graphically in Fig. 10 (p. 71).

The results of this classification have been discussed in detail
elsewhere and need not be gone into here. The curious reader
can follow the matter up in the references at the end of this chapter.
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CHAPTER IV

TABULAR PRESENTATION OF STATISTICAL DATA

The raw material of statistics consists of individual observations
of phenomena. The simplest way to tabulate such material is, of
course, to make a list of the observations, in which each single one
constitutes an item of the table. But this can scarcely be called
tabulation, because it does not perform the essential function of that
operation.

The purpose of tabulation is so to arrange observations that like
cases shall be put together and their frequency of occurrence in the
whole group thus be made apparent.

The degree of likeness of the cases to be put together may be
defined quantitatively in any way one likes. For example, it may
be decided for purposes of tabulation to call all men whose
stature falls anywhere between 65.00 and 65.99 inches, alike in
stature, and put them in the same class. Evidently, then, the first
necessary step in tabulating observations after they have been
collected is to classify them, quantitatively if possible.

DICHOTOMOUS CLASSIFICATION

Logically considered, classification is the process of partitioning
a universe into mutually exclusive categories or compartments. The
number of such compartments may be anything from two up. If
it is exactly two, the classification is called dichotomous. This is
the alternative category type of classification. At the moment of
this writing:

Either has smallpox
Or does not have smallpoxEvery living person in the world

So then it is possible to put every person into his proper com-
partment relative to this classification.

But this process can be continued indefinitely:
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Has an automobile, n\

orHas a fever and
Has no automobile, no
Has an automobile, m3

or
Has no automobile, n\

Has smallpox and or
Has no fever and <

Every living person
either or Has an automobile, n&

or
Has no automobile, n$

Has a fever and
Does not have

smallpox and or Has an automobile,
or

Has no automobile, n»
Has no fever and •

If at the end of such a process of dichotomizing the number of
cases in each of the final classes be counted, we shall have the
frequency of occurrence of individuals alike in the respects indicated
by the line of the classification back to the start. Thus in the ex-
ample given above we may contrast the n\ persons in the condition
of having smallpox, and fever, and an automobile, with the ns in-
dividuals who have wholly escaped this concatenation of disasters.

An example of a table of this sort is presented as Table 2. It is
based upon data collected to determine the incidence of influenza
among tuberculous and non-tuberculous persons in the same family
during the influenza pandemic of 1918 (cf. Pearl 2).

TABLE 2
Showing the Incidence of Influenza Among Tuberculous and Non-tuber-

culous White Individuals, Arranged by Presence or Absence of Other
Cases of Influenza

From Table 2 we note that of the 2375 tuberculous persons,
595, or 25 per cent., had influenza, while 1780, or 75 per cent., did
not have this disease during the epidemic. Of the 8820 non-
tuberculous individuals living in the same households as the tuber-
culous, 1971, or 22.3 per cent., had influenza, and 6849, or 77.7 per
cent., did not have it. It therefore appears that, under the same
environmental conditions of living, only 2.7 per cent, more of the

Tuberculous, 2375. Not tuberculous, 8820.

Influenza, 595. No influenza, 1780. Influenza, 1971. No influenza, 6849.

Other No other Other No other Other No other Other No other
cases in

household,
460

cases in
household,

135
cases in

household,
533

cases in
household,

1247
cases in

household,
1788

cases in
household,

183

cases in
household,

2568

cases in
household,

4281
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tuberculous individuals than of the non-tuberculous contracted
influenza during the epidemic.

Of the 595 tuberculous persons who had influenza, 460, or 77.3
per cent., were in households where at least one other person also
had influenza during the epidemic. Of the 1971 non-tuberculous
persons who had influenza, on the other hand, 1788, or 90.7 per
cent., were in households where at least one other person also had
influenza. Or, in other words, 22.7 per cent, of the tuberculous
who had influenza were the only cases of the latter disease in their
households, while only 9.3 per cent, of the non-tuberculous who had
influenza were the sole cases in the household.

Of 1780 tuberculous persons who did not have influenza during
the epidemic, only 533, or 29.9 per cent., were exposed to influenza
infection in the household, whereas of the 6849 non-tuberculous
persons who did not have influenza, 2568, or 37.5 per cent., were
exposed to infection within the household.

These examples will suffice to show how a simple dichotomous
statistical table is to be read.

Now instead of dividing the residual universe into just two
parts each time we may equally well divide it into a number of
parts. This leads to some sort of linear classification. An example
of a statistical table based upon such a classification is seen in
Table 3.

TABLE 3
Frequency Distribution of Systolic Blood-pressures in 102Men Aged Seventy-

five and Over. (From Thompson and Todd, Lancet, 1922, II, 503.)

In this table the observed, systolic blood-pressures are divided
into seven mutually exclusive classes. Each class includes an
elemental range of 20 mm. pressure. This classification says that
systolic pressures of between say 130 and 150 mm. may be regarded

Systolic pressure Absolute
(mm. hg.). frequency.
110-129 18
130-149 31
150-169 23
170-189 20
190-209 7
210-229 1
230-249 2

Total 102
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for practical purposes as alike. The correct way to state class
limits in setting up a frequency table is that followed in Table 3.
The class range 110-129 means theoretically that all pressures are
included which are equal to or greater than 110.0000 . . . and are
equal to or less than 129.9999. . . .

Another model form of such a table on a linear classification is
shown in Table 4, taken from a paper by Doctor Huntington
Williams on “Epidemic Jaundice in New York State, 1921-1922.”*

TABLE 4
Age Distribution of 700 Cases of Epidemic Jaundice

A linear classification and tabulation based thereon may be
combined terminally with a preceding dichotomous table, and this
often furnishes a useful form of statistical tabulation. An example
is given in Table 5, which is an expansion of Table 2.

It will be noted at once that this expansion by size of household
throws interesting and significant light upon the results stated
above from the more meager distributions of Table 2. The manner
in which this is accomplished I shall not develop, but leave to the
reader to work out for himself as a useful exercise in getting familiar
with the reading of statistics.

The principle of dichotomous classification, with expansion of
terminal classes linearly, may be applied to both sides of a table.
There will then result what may be called a double dichotomous
table, which is fundamentally the most useful form of tabulation
for raw, basic statistical data. Why it is the most useful is because
it permits the greatest freedom and variety in the subsequent
constructive and derivative use of the material.

* Jour. Amer. Med. Assoc., vol. 80, pp. 532-534, 1923.

Years. Number. Per cent.
0 to 4 46 6.6
5 to 14 362 51.7

15 to 24 127 18.2
25 to 34 50 7.1
35 to 44 59 8.4
45 to 54 23 3.3
55 to 64 20 2.9
65 to 74 3 0.4
75 to 84 2 0.3
85 to 94 1 0.1
Age not recorded 7 1.0

Total 700 100.0
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TABLE 5

Showing the Incidence of Influenza Among Tuberculous and Non-tuber-
culous White Individuals, Arranged ( A) by Number of Persons in House-
hold, and (B) by Presence or Absence of Other Cases of Influenza

Table 6 is a simple example of a double dichotomous table.
This table presents certain information derived from the autopsy
protocols of 358 persons found at autopsy in the Johns Hopkins
Hospital to have miliary tuberculosis of some organ or organs of
the body. There are 8 X 12 = 96 elemental cells in this table.
Each cell tells the number (i. e., the frequency) of individuals in the
total universe of 358 who were alike in the following respects:

1. Color.
2. Sex.
3. Age (in broad classes).
4. Presence (or absence) of tuberculous lesions in lungs.
5. Presence (or absence) of tuberculous lesions in heart.
6. Presence (or absence) of tuberculous lesions in kidneys.

Tuberculous. Not tuberculous.

Number
in

Influenza. Noinfluenza. Influenza. No influenza.
house-
hold. Other

cases in
house-
hold.

No other
cases in
house-
hold.

Other
cases in
house-
hold.

No other
cases in
house-
hold.

Other
cases in
house-
hold.

No other
cases in
house-
hold.

Other
cases in
house-
hold.

No other
cases in
house-
hold.

1 14
2 4 io 12 108 4 15 7 100
3 46 39 38 161 76 22 118 292
4 72 28 81 255 168 37 243 696
5 89 27 78 221 262 21 363 749
6 73 16 96 210 303 29 419 822
7 71 9 83 123 358 18 480 636
8 51 2 68 82 257 24 414 446
9 22 3 40 33 117 8 188 246

10 18 1 16 20 114 3 138 170
11 8 12 12 49 5 91 43
12 3 5 5 36 1 63 43
13 2 3 2 32 28 24
14
15 i i i 12 16 14

Totals... 460 135 533 1247 1788 183 2568 4281

595 1780 1971 6849

2375 8820
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Original
Data

on
Color,
Sex,
Age,
and

Location
of

Lesions
of

358
Persons
Found

at
Autopsy
to

Have
Miliary
Tuberculosis

TABLE
6

White

Colored

Totals

Males

Females

Males

Females

Under 20

20 to 49

50 and over
Under 20

20 to 49

50 and over
Under 20

20 to 49

50 and over
Under 20

20 to 49

50and over

Tuberculouslesions

Notpresentinlungs

Notpresent inheart

Not
present inkidneys

1

3

1

12

6

1

4

3

2

33
55

59
358

Present inkidneys

1

1

1

1

6

8

3

1

22

Presentin
heart

Not
present inkidneys

1

2

1

4

4

Present inkidneys

0

Presentinlungs

Notpresent inheart

Not
present inkidneys

8

25

7

16

9

16

38

6

32

13

4

174
269

299

Present inkidneys

4

17

5

7

5

1

7

28

6

12

3

95

Presentin
heart

Not
present inkidneys

2

3

5

2

12
30

Present inkidneys

2

1

2

2

6

3

1

1

18

Totals

14

49

15

25

19

1

46

92

19

52

20

6

Grand Total 358

78

45

157

78

123

235

358
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Furthermore, the frequency of every possible combination of
these categories is stated in Table 6.

This table will repay careful and detailed study from the stand-
point of statistical methodology. First, let us see by some examples
how it is to be read.

(.Single cell reading). There was 1 colored male with miliary
tuberculosis, falling in the age class twenty to forty-nine years, who
had no tuberculous lesions in either kidneys or lungs, but did have
a tuberculous lesion of the heart.

(.Primary subtotal reading ). There were 15 white males aged
fifty or over among the 358 persons who had miliary tuberculosis.

(.Secondary subtotal reading). There were but 4 persons, in the
358 who had miliary tuberculosis, who had a tubercluous lesion
of the heart, but at the same time lacked any such lesion of the
lungs.

(Tertiary subtotal reading). There were 123 white and 235
colored persons in this experience of miliary tuberculosis.

It is obvious that this form of table may be expanded to any
desired degree. The ideals always to be kept in mind in tabulating
raw statistical data as a matter for reference and possible future
synthetic or derivative use are:

1. Make the information in each cell exclusive relative to as
many different categories as is possible, while still conforming to the
ideal of

2. Making a tabulation, not a mere list.
The first of these ideals perhaps needs a little further illustration

to make its meaning entirely clear. The records of the Baltimore
Health Department for 1917 show that in that year there died
223 bookkeepers and clerks and 124 drivers and hostlers.

The same records also show that in the same year there died
1213 persons of tuberculosis of the lungs.

But it is impossible to determine from the records how many
of the bookkeepers or of the hostlers died of tuberculosis of the
lungs. Some part surely of the 223 bookkeepers and the 124
drivers and hostlers had tuberculosis. Why it is impossible from
the published tabulations to find out how many were in this part,
is that the elemental cells of each of the published tables are too
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inclusive. Two hundred and twenty-three and 124 are elemental
cell frequencies of the published table of deaths by occupations,
and 1213 is an elemental cell frequency in the published table of
deaths by causes. But the 223 persons of the first mentioned cell
are alike in only one respect

,
namely, that they were all either clerks

or bookkeepers. They included males and females, whites and
colored, persons dying of tuberculosis, cancer, etc. In short, the
information is exclusive relative only to one single category. This
may be satisfactory or desirable in derivative tables of constants
and the like, but it is eminently unsatisfactory in original tables
of the raw statistical material.

CLASS LIMITS

A practical question which frequently arises to vex the beginning
statistician in making tables is as to how fine the grouping shall be
in a tablebased upon a linear classification. Or, to put it in another
way, shall the class limits be narrow or broad? The only general
statement which can be made on this point is this: The degree of
fineness of grouping which is permissible depends upon the total
magnitude of the experience. It is idle to expand a small observed
universe into fine categories, leaving many cells with no frequency
or a frequency of only 1. A safe working rule in setting up tables of
frequency is: (a) to arrange the class limits so as to have from 8 to 15
classes, depending upon the absolute magnitude of the total expe-
rience, and (b) never to have fewer than 5 classes or more than 20
to 25. Asa matter of fact the coarseness or fineness of the elemental
class units of grouping makes (within wide limits) extremely little
difference in the values of derived biometric constants.

The statement is frequently made, either in comment or criticism
upon biometric work, that such work is often caused to take on an
unwarranted appearance of precision and exactness by the keeping
of a larger number of decimal places in the tabled constants than
the character of the original data justifies. The contention is made
that under no circumstances whatsoever can any statistical con-
stant be more accurate than the data on which it is based. It is
held that if one makes a series of measurements accurate to a tenth
of a millimeter, it is a logical absurdity to table the mean and
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standard deviation deducedfrom these measurements to hundredths
of a millimeter. Not only is this contention made from time to
time by biologists, but occasionally even by a mathematician who
ought to know better, a fact which, of course, tends strongly to
confirm the biologist in his opinion.

The reply which the statistician makes to the criticism that
constants cannot be more accurate than the data on which they
are based is, in general terms, that the accuracy of a statistical
constant depends not alone on the accuracy of the original measure-
ments but also upon the number of such measurements. Further,
it is pointed out that, because of this fact, it is possible to deduce
from measurements known to be individually inaccurate constants
of a high degree of accuracy, provided that the errors in the measure-
ments are unbiased (that is, as often in excess as in defect of the
true value) and that there are enough of the data. Finally the
statistician contends that the only proper measure of the accuracy
of a statistical constant (always assuming that the original data
are not collected in a deliberately dishonest or biased manner) is
its “probable error.” Unfortunately this statement of the case
appears not to carry conviction to the non-statistical worker. It
has seemed to the writer that if the assertion made by the statis-
tician regarding the point under discussion is true, it ought to be
possible to demonstrate it in such a manner as to carry conviction
to anybody.

With this object in view the experiment to be described was
tried. 3 Some time ago the writer measured for another purpose
the lengths of 450 hens’ eggs. The measurements were made with
a large steel micrometer caliper manufactured by Browne-Sharpe
& Co., reading directly to hundredths of a millimeter. The utmost
care was exercised in the making of the measurements; they were
all made under the same conditions as to light, temperature, etc.;
the caliper was held in a specially constructed stand to get rid of
the error arising from expansion and contraction if it is held in the
hand; the micrometer screwhead was fitted with a ratchet which
mechanically insures that the same pressure shall be exerted on the
object in every case; all measurements were made by the same
observer who had had considerable experience in close micrometer
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measuring. The maximum length was the thing measured. There
is every reason to believe that these measurements to hundredths
of a millimeter are as accurate as it is possible to make them with
the instrument used. This being the case all will agree that any
statistical constant deduced from them can be held to be accurate
to hundredths of a millimeter at least. Now let it be supposed
that these eggs had been measured only to the nearest millimeter
instead of the nearest hundredth of a millimeter. By how much
would the statistical constants deduced from the “millimeter” data
differ from those deduced from the “hundredth millimeter data”?

It will be recognized that the problem involved in this question
is identical with that of the influence of fineness of grouping in
statistical series upon the values of derived constants.

To answer this question it is necessary to calculate some statis-
tical constant for the two sets of data. The mean was chosen as
the simplest possible constant. The actual measurements to
hundredths of a millimeter were used as one set of data. The
“millimeter” data were obtained by discarding the decimals of the
original measurements. In this discarding a record was raised
1 mm. whenever the decimal portion of the original figure was .51
or greater. When the decimal part of the record was .49 or less
the integral part stood unchanged. In the 450 measurements
there were 6 cases in which the decimal portion of the record was
exactly .50. In one-half of these cases the record was raised 1 mm.
and in the other half was left unchanged, when the decimals were
discarded. This is obviously the only fair way of dealing with
such cases since, for example, 51.50 is exactly as near 51 as to 52.

The original measurements and the “millimeter” data after
discarding the decimals were then each added and re-added with a
calculating machine. The resulting sums were:

When the measurements were kept to
the nearest hundredth of a mm.

25,341.95

When the mensurements were kept to
the nearest whole mm.

25,346

Dividing each of these figures by the total number of cases,
450, we get for the means the following:

Mean from “hundredth mm. data”
56.3154

Mean from “millimeter data”
56.3244



84 MEDICAL BIOMETRY AND STATISTICS

The difference between these two figures is .009. That is, there
is no difference between the two averages until the third decimal
place is reached. To two places of figures both means are 56.32.
But this can only mean that the mean or average obtained when
the records are made only to the nearest millimeter is more
accurate, by two places of decimals, than the data on which it is
based.

In interpreting this statement of fact it must not be held to
signify that biometric measurements should not be made with the
greatest attainable degree of accuracy. Because statistical con-
stants, when the number of cases dealt with is large, are more
accurate than the data on which they are based gives no excuse for
rough measuring. The reason for this, of course, lies in the princi-
ple which actual experience shows to be correct, that the finer and
more accurate the measuring, the less chance of the data being
unconsciously biased. Statistical constants can only be more
accurate than the original data when the data are strictly unbiased.
The “applied psychology” of practical measuring teaches that
unconscious bias goes out of the records just in proportion as the
measurements are made finer.

ARRANGEMENT OF STATISTICAL TABLES

Much of the cogency and force of statistical tables, otherwise
correct, depends upon their arrangement. This is a subject about
which it is difficult, if not wholly impossible, to state general
principles, yet in no other respect is it easier to distinguish the
performance of the experienced professional statistician from that
of the amateur. One may say: “Make a clear, concise, easily
read table, which bears directly upon the subject under discussion,
and upon no other subject,” but obviously this counsel is rich in
why-ness and poor in how-ness. Perhaps an illustration may be
helpful.

In the excellentpaper by Dr. Huntington Williams on “Epidemic
Jaundice in New York State, 1921-1922” already referred to, the
table here reproduced as Table 7 appears.

Now let us examine the first purpose of this table. It is stated
in the original that: “Each of eighteen common symptoms is
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TABLE 7

Original Form of Table on Symptomatology of Epidemic Jaundice

recorded in Table 1 (Table 7 here) for every case in the series of
700 that were studied. Symptoms are reported [on the physician’s
original case reports presumably] positive, negative, or not re-
corded.” Now, plainly, the purpose of the tabulation is to show the
relative and absolute frequency of each of the symptoms taken by
itself. But, plainly, “not recorded” furnishes no information about
symptoms. It only tells the reader that no record was made of
symptoms. Hence its inclusion in a table which only purports to
tell us about symptoms is superfluous and wholly beside the point.
But since the “not recorded” cases are included in the percentages
(which add to 100 across the table, and therefore include the whole
of each universe), the percentages defeat the main purpose of the
table, which is to inform us as to which symptoms are relatively
most frequent. Furthermore, even if this difficulty were corrected,
we should still have to search laboriously down the list to find
which was the most frequent symptom, the next most frequent,

Symptom.

Cases positive. Cases negative. Not recorded.

Num-
ber.

Per
cent.

Num-
ber.

Per
cent.

Num-
ber.

Per
cent.

Jaundice 647 92.4 11 1.6 42 6.0
Anorexia 574 82.0 68 9.7 58 8.3
Nausea 619 88.4 46 6.6 35 5.0
Vomiting 503 71.9 169 24.1 28 4.0
Headache 488 69.7 139 19.9 73 10.4
Constipation 463 66.1 110 15.7 127 18.2
Prostration 211 30.1 81 11.6 408 58.3
Clay-colored stools 558 79.7 46 6.6 96 13.7
Bile-stained urine 617 88.2 10 1.4 73 10.4
Abdominal pain 417 59.6 211 30.1 72 10.3
Fever 524 74.9 105 15.0 71 10.1
Chills 334 47.7 293 41.9 73 10.4
Limb pains 235 33.6 297 42.4 168 24.0
Diarrhea 106 15.2 442 63.1 152 21.7
Conjunctival congestion.. . 66 9.4 103 14.7 531 75.9
Epistaxis 61 8.7 525 75.0 114 16.3
Herpes 28 4.0 536 76.6 136 19.4
Hiccup 98 14.0 478 68.3 124 17.7
Unusual prevalence of rats

on premises 167 23.9 262 37.4 271 38.7
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and so on, owing to the fact that no attention is paid to the order
of arrangement of the symptoms.

Let us then examine the table (now Table 8) in rearranged
form, to fulfil in maximum degree possible from the published data
the fundamental purpose for which it was tabulated.

TABLE 8
Showing the Absolute and Relative Frequency of Occurrence of Different

Symptoms in So Many of 700 Cases of Epidemic Jaundice as Furnished
Definite Records of Presence or Absence of Each of the Indicated
Symptoms

Table 8 tells the story of symptomatology much more simply,
directly, and accurately than does Table 7, of which it is merely
a rearrangement. It is seen at a glance, for example, that more
than 90 per cent, of the cases about which anything definite as to
the symptoms was known, exhibited at least one of the four following
symptoms: jaundice, bile-stained urine, nausea, clay-colored stools.
Fewer than 20 per cent, of the cases had either diarrhea or hiccup,
or epistaxis, or herpes, each taken by itself.

Order. Symptom.
Symptom present. Symptom absent. Total

cases with
any record
about this
symptom.No. Per cent. No. Per cent.

1 Jaundice 647 98 11 2 658
2 Bile-stained urine 617 98 10 2 627
3 Nausea 619 93 46 7 665
4 Clay-colored stools 558 92 46 8 604
5 Anorexia 574 89 68 11 642
6 Fever 524 83 105 17 629
7 Constipation 463 81 110 19 573
8 Headache 488 78 139 22 627
9 Vomiting 503 75 169 25 672

10 Prostration 211 72 81 28 292
11 Abdominal pain 417 66 211 34 628
12 Chills 334 53 293 47 627
13 Limb pains 235 44 297 56 532
14 Conjunctival congestion. . . . 66 39 103 61 169
15 Unusual prevalence of rats

on premises 167 39 262 61 429
16 Diarrhea 106 19 442 81 548
17 Hiccup 98 17 478 83 576
18 Epistaxis 61 10 525 90 586
19 Herpes 28 5 536 95 564
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In making this rearrangement three changes were made from

the original table:
(a) The percentages were calculated on the basis of the known

universe of discourse. To do otherwise in this case makes the
percentages virtually meaningless.

(■b ) Percentages were tabled only in whole numbers. No
derivative calculations will be made from these percentages. Their
sole purpose is quickly and simply to inform the reader of the
relative frequencies of certain conditions. Decimals are only an
annoyance under such circumstances.

(c) The symptoms are arranged in descending order of relative
frequency. This makes rapid and intelligent reading, and evalua-
tion of the table as a whole, easy of accomplishment. What could
be more desirable if the author wishes to instruct and entertain
his reader?

The percentage figures of Table 8 are shown graphically in
Fig. 18 of Chapter VI on p. 109.

It will be good practice for the reader, in developing for himself
skill in the planning and arrangement of tables, mentally to criticize
statistical tables as he encounters them in his general medical
reading, and try whether he could re-arrange the same data into
more accurate, intelligible, or simple form. This particular process
will be materially aided, to say nothing of the general training in
accuracy and precision of mental processes which will incidentally
accrue, if one approaches a statistical table in some such manner
as this:

What is the purpose of this table? What is it supposed to
accomplish in the mind of the reader?

Does it? Well? Indifferently? Badly? Not at all?
Wherein does its failure of attainment fall?
When this last question has been analyzed and settled, the

process of making a satisfactory table to accomplish the purpose is
much more than half finished.

SUGGESTED READING

1. Yule, G. U.: Introduction to the Theory of Statistics. Chapters I-V inclusive.
(A detailed and important treatment of the statistical consequences which flow
from dichotomous and other forms of classification. The student should work
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through the practical exercises given at the end of each of these chapters in
Yule.)

2. Pearl, R.: Preliminary Note on the Incidence of Epidemic Influenza Among the
Actively Tuberculous, Quart. Publ. Am. Stat. Ass., vol. 16, pp. 536-540, 1919.

3. Pearl, R.: A Note on the Degree of Accuracy of Biometric Constants, Amer. Nat.,
vol. 43, pp. 238-240, 1909.

4. Watkins, G. P.: Theory of Statistical Tabulation, Quart. Publ. Amer. Stat. Ass.,
vol. 14, pp. 742-757, 1915.
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CHAPTER V

MEDICAL RECORDS AND THEIR MECHANICAL
TABULATION*

THE COMMONEST DEFECTS IN MEDICAL RECORDS

The fundamental and basic medical record is the individual case
history. Upon it depends any and all useful information, whether
statistical or otherwise in character, which may be wanted for any
purpose whatever. It is, therefore, of the highest importance that
case histories conform to the best standards of scientific record
making, on the one hand, and of modern business office practice on
the other hand. There are relatively few hospitals where the
highest standards in either of these respects are even approximated.

From the standpoint of scientific record taking, case histories
are most glaringly defective in what they fail to record about the
patient. It is by no means impossible to find case histories that
fail to record the sex of the patient, while any indication of what
kind of person he was, in the common sense of the word, whether
fat or lean, white or colored, rich or poor, young or old, etc., is all
too frequently kept a deep secret from any subsequent reader of the
history. Again, even in the special medical portions of the history
the writer forgets, with almost unbelievable frequency, to make
any record of highly important facts.

The root of the difficulty apparently lies in the method by which
case histories are written. The general scheme or outline which a
history is to follow resides, far too often, in the head of the par-
ticular writer, and there only. And heads, especially of human
beings, do vary so! The remedy is patent. Any investigator or
administrator who desires to put his clinical records on the most
scientific basis will, as a first step, draw up and have printed a

* This chapter follows closely a paper by the author entitled “Modern Methods
in Handling Hospital Statistics,” Johns Hopkins Hospital Bulletin, vol. 32, pp. 184-
194, 1921.
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series of standardhistory forms, which will cover not merely general
routine facts common to all diseased conditions, but special forms
as well, for at least all of the more frequently occurring conditions.
These blank forms will contain definitely indicated spaces in wdiich
some statement of fact absolutely must be recorded in every single
case. If on the case record form for gall-stone cases, for example,
there is printed the question, “Did this patient ever have typhoid?”
or the equivalent of this question, and if, furthermore, every worker
in the service clearly understands that any history for which he is
responsible that comes into the history department, with any blank
spaces in its standardized portion, will not be accepted for filing,
but will be forthwith returned to him for completion, future students
will not be under necessity of having a “No information” column
in their statistical tabulations relative to this point.

One realizes perfectly that any suggestion in the direction of
standardizing case history writing, by the process of putting into
operation methods which have been found sound and useful in other
branches of science and in modern business, will at once be scorn-
fully or even derisively received by some. It will be argued that
any such process tends to cramp the individuality of great or
potentially great men. This argument is perfectly valid. It will
inordinately cramp such portion of their individuality as finds its
expression in carelessness, inaccuracy, forgetfulness, and inattentive
observation. In so far as it is desirable to foster and preserve
these intellectual qualities, and embalm their results in the perma-
nent archives of a hospital, clinicians and surgeons should be
encouraged to go on writing histories in the old, more or less hap-
hazard way.

Furthermore, the argument will be made that no other than the
particular clinician or surgeon who is making the records has the
competency or right to discuss at all the manner in which case
histories are written. But here a little clear thinking is needed.
The science and art of making accurate, comprehensive, and es-
sentially complete records of natural phenomena is not exclusively
nor even particularly a branch of the science or art of medicine.
It is much broader and more basic and is, in every one of its logical
principles, common to all sciences. To these principles of scientific
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record making many persons have devoted many years of study
and thought. And it is just precisely that field, not medicine, that
we are talking about when we are discussing the method of writing
case histories.

It is, of course, to be understood that no blank form, however
carefully it may be devised, can ever suffice for the recording of the
whole history. There must be some portions written or dictated
with entire freedom from Procrustean rigidities. The reason why
this is so is plain. One of the chief characteristics of living things,
whether men or mice, is that they vary individually. But formal
blanks do not vary. An invariable phenomenon cannot fit a
variable one. But this is no valid argument against having certain
essential parts of the history recorded in standardized form. There
are some facts that everyone will agree ought to form a part of
every case history which is to be permanently preserved. It is that
class of facts which shouldbe recorded upon standardized formalized
sheet or sheets incorporated into each history. Then, in addition,
the clinician may write or dictate as much more as he likes in an
entirely free untrammeled style. The formalized portion merely
serves as the schema of the whole, to make sure that no point of
importance for future students is left out, because forgotten, in the
greater present interest of other more immediately exciting features
of the case.

It is particularly important that a definite statement or record
be made that a structure or function is normal when it is so. In the
minds of many persons, perhaps particularly in the field of medicine,
there has grown up the notion that what is normal is of no interest
and, therefore, nothing needs to be said about it in the record.
Later on someone comes to study the record. Let us say, to take
a concrete example, that this subsequent student wants to know
definitely whether the tonsils in this particular case were diseased
or not. No mention of tonsils can be found. Two alternatives
then present themselves to the second student:

1. The tonsils were not diseased, and on that account the
original recorder said nothing about them.

2. The original recorder forgot to look at the tonsils or forgot to
make a record of his findings.
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Either horn of the dilemma is equally unfortunate. “No infor-
mation” is the sad, but only possible conclusion.

THE PRESERVATION OF CASE HISTORIES

Turning to the question of the way case histories are handled
after they are written, which is essentially a matter solely of business
or office management and not of medicine, there are two glaring
defects in the common practice. These relate, first, to the fixation
of responsibility for the recording of each item in the history, and,
second, to the filing of the completed histories. From every point
of view, whether of administration, research or other, it is of the
highest importance that future students of a hospital’s records
should know who is responsible for statements appearing in a
history. How often has one heard long and inconclusive debates
as to what interpretation was to be put upon some statement in a
history as to a clinical finding? The decision all depended upon
who originally was responsible for the statement. If it were the
considered verdict of the wise and experienced old professor, it was
one thing; if it were the snap judgment of the latest intern, it was
quite another. All this difficulty can be removed by inaugurating
and practising the principle that every sheet of a history shall bear
upon its face the names of the person or persons responsible for
what appears upon that page. Perhaps a word of caution needs
to be added lest there should be some misunderstanding. Fixation
of responsibility is not to be construed as an excuse for any weaken-
ing of the rigid canons of extreme objectivity in history or protocol
writing, now generally taught in all first-class medical schools.

The purpose of filing case histories is twofold: first, to preserve
them, and, second, to do it in such a way as to make them most
readily accessible to anyone who may in the future want to consult
them. There can be no question that this latter purpose will best
be served by the so-called “unit system” of case histories, in which
the hospital’s complete record about any one individual forms one
separate and distinct volume. The advantages of this method of
preserving histories over the far more common system of binding
them up in great volumes in numerical or temporal sequence, are
so obvious as not to need detailed exposition. Such a method of
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handling the completed records is really essential to their most
efficient utilization, whether for statistical, investigational, or any
other purpose.

THE ORGANIZATION OF THE ROUTINE STATISTICAL RECORDS OF A
HOSPITAL

There are certain items of information which ought to be and
generally are intended to be included in every case history. Some
of these routine items are:

1. Case number.
2. Service number.
3. The patient’s name.
4. Diagnosis.
5. Sex.
6. Social status (single, married, widowed, divorced).
7. Age.
8. Occupation.
9. Body weight.

10. Stature.
11. Race.
12. Birthplace.
13. Service under which patient was treated.
14. Date of admission to the hospital.
15. Duration of stay in hospital.
16. Time from onset of diagnosed condition to admission to

hospital.
17. Condition at admission.
18. General health of patient prior to present illness.
19. Whether there is any family history of the diagnosed disease.
20. Whether a first entry or a readmission.
21. Whether a free, a paying, or a part-paying case.
22. Condition at discharge.
23. Whether or not an autopsy was performed.
24. Autopsy number, if any.
25. Nature of treatment.
26. Complicating pathologic conditions, additional to the one

diagnosed.
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In an ideal system of handling hospital records each history
should be cross-indexed under each one of the following items in the
above list at least: 1 to 18 inclusive, 21, 22, 23, 24, 25. Of course,
nothing like such complete cross-indexing as this is even attempted,
not to say accomplished.

There is only one method now known, whereby in a practical
way such an amount of cross-indexing can possibly be accomplished.
That method is to handle the routine information by ihe modern
system of mechanical tabulating and indexing. On this system the
original records are transferred, by means of a machine called a
“key punch” (cf. Fig. 11*), to cards, the record on the card appear-
ing as a series of punched holes. Then, by means of another

Fig. 11.—Key punch for transferring written records to cards to be used in mechan-
ical tabulation and indexing.

machine, known as a “sorter” (cf. Fig. 12), the punched cards
can be mechanically sorted, at a rate of about 250 cards per minute,
into any desired arrangement relative to any rubric or item of
information recorded upon the cards.

Let us suppose, for example, that someone wishes to assemble

* The most generally useful and flexible system of mechanical tabulation now
available is that known as the Hollerith system, from its inventor, Mr. Herman
Hollerith. The machines of that system are the ones illustrated here. Further in-
formation about these machines may be obtained from the manufacturers, The Tabu-
lating Machine Co., 50 Broad St., New York City. It may be of interest to medical
readers to know that a distinguished physician, the late Dr. John S. Billings, had a
great deal to do with the initiation and early development of this invention. He
was a close friend and adviser of Mr. Hollerith all through the early stages.
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for study all the cases of lobar pneumonia which have been treated
in the hospital. Suppose the diagnostic code number for lobar
pneumonia is 102. One has then only to run the cards through the
sorter relative to the field designated “diagnosis” and pick out,
after the cards have been mechanically arranged in numerical order,
all those bearing the punched number 102 in the diagnosis field.
These 102’s will all be together in one bundle, and they will be all

Fig. 12.—Mechanical sorter.

the lobar pneumonia cases in the hospital’s records. Each card
will bear the case number, from which, of course, the original
histories can be consulted if one desires. If one particularly wishes
to study the lobar pneumonia of negroes, he need only take his
bundle of “diagnosis 102” cards, run through the sorter again
relative to “race” and he will in a few moments have all the cases
of this disease in negroes separated out by themselves. Suppose
he is further only interested in lobar pneumonia in negro children
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under live years of age, say. He need only take his bundle of
negro lobar pneumonia cases and put them through the sorter
again, retaining this time only those falling into ages under five.
He gets his results at the rate of 250 a minute. Compare this with
the laborious process that would be involved in assembling by
hand from an ordinary card catalogue of hospital case records the
case history numbers of all the cases of lobar pneumonia in negro
children under five ever treated in the hospital. The comparison
is as of hours with weeks or even months if the histories be numer-
ous.

Fig. 13.—Mechanical tabulator.

Again, suppose that a complete group of like case histories has
been assembled by painfully laborious hand processes, and one
wishes then to make a statistical tabulation of the facts they con-
tain. Weeks or months may easily be, and often are, spent upon
the process. But if the records are upon punched cards, the
pertinent cards, which have been mechanically assembled, need
only be run again through another machine, known as a “tabulator”
(cf. Fig. 13), and the results relative to any desired category of
information will be mechanically counted with great rapidity and
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absolute accuracy, and the columns of figures will at the same time
be added.

Examples of the usefulness of this method of handing a hos-
pital’s statistics could be multiplied indefinitely. But instead of
further considering hypothetic cases, let us proceed specifically
to the concrete problem of the organization of card forms for the
routine statistics of a hospital.

Figures 14 and 15 (pp. 98, 99) show the necessary card forms.
A detailed explanation of these forms and the manner in which

they will operate is necessary.

A. The Primary Card

Taking first the primary card form, it may be said that this will
presumably be printed upon manila stock. Each group of num-
bered columns lying between vertical rules is technically known as a
“field” of the card.

Across the top of the primary card is written or typewritten:
(a) the full name of the patient, (b) a letter or number designating
the service—whether medical, surgical, obstetric, etc.—in which
the patient was admitted; and (c) the number of the case in that
service, on the assumption that in addition to the general hospital
serial number of each case there is also a special identifying service
number. If a particular service does not specially number its
cases, this space will be left blank.

1. The first field is a six-column one and in it is punched the
general serial number of the case history. This number identifies
the history and the card, and enables one to pass directly from the
card to the original history. If a case, for example, is number 12,347
in the hospital’s series, this field will be punched 012,347. A six-
column field permits the separate serial numbering of 999,999 cases.
When this number is passed, presumably the cards for the second
million would be printed upon stock of another color, or else a
wholly new scheme for handling records will have appeared, as
much ahead of punched cards as these are in advance of clay
tablets incised with cuneiform characters

2. The second field of five columns records the diagnosis of the
patient’s chief or primary ailment. This result is attained by the
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PRIMARY CARD

Fig.
14.

—First
or

face
card
form
for
mechanical
tabulation
and
indexing
of

routine
medical
statistics.

/
Lost
Nnnif

D
First
and Following

Names

Service
Service
Case
No.

Diagnosis
S«x

ADMITTI'.D
N

Ststare

Onset
to

Admission

Ad.
Dis.

Year
Day

Ho.

Dm.

Yr.

Da
ys

X

0
0
0
0
0
0
0
0
0
0
0
M

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
A

1

0

1

1

1

1

1

1

1

1

1

1

1

F

1

1

1

1

J

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

C

u
F

2
2

2
2
2
2

2
2
2
2

2
s.s. S

2
2

2
2

F

2
2

2
2
2
2

2
2
2
2
2

2
2
2
2

2
2
2
2

2
2
2
2
2
2

E

D
YG

CD n
3
3
3
3
3

3

3
3
3
3

3

M

3
3

3
3
M
3

3

3
3
3

3

3

3

3

3

3
3

3

3
3

3

3

3
3
3

3

3

3

3
3
D

T

G

cn o
4
4
4
4
4
4
4
4
4
4
4
W
4
4
4
4
A

4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
N

B

F

5
5
5
5
5
5
5
5
5

5

5
D

5

5

5

5

H

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5
5

F

M

P

6
6
6
6
6
6
6
6
6
6
6
C

6
6
6

6
J

6
6
6
6
6
6

6
6
6
6
6
6
6
6
6

6
6

6
6
6
6
6

6

6
6

P
N

YP

7
7

7
7
7
7
7
7

7
7
7

NC
7
7
7
7

J

7
7
7

7
7
7

7
7
7
7
7

7
7
7
7
7
7
7

7
7
7
7
7

7
7
PP
S

P

8
8
8
8
8
8
8
8

8
8
8

Ki
8
8
8
8
A
8

8
8
8
8

8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8

8
8
8
8

Re
W

9
9
9
9
9
9
9
9

9
9
9
A
9
9
9

9
S

9

9

9
9
9

9
9
9
9
9
9
9

9

9

9

9
9
9
9

9

9

9

9
9
9

Fi

F

l

»

3

4

S

6

7

8

9

10
u
Aut.
No.

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45



MEDICAL RECORDS AND THEIR MECHANICAL TABULATION 99

COMPLICATION CARD
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use of a code of diseases, each pathologic condition it is desired
to distinguish being given a separate number. A five-column field
permits of 100,000 different discriminatory pathologic statements.
It is to be understood clearly that in this field on the primary card
is recorded only what the case history states to be the primary or
fundamental pathologic condition which the patient presents.
The question of the recording of associated and complicating
conditions is dealt with below (p. 103). In preparing the noso-
logic code the best advice of the clinicians, surgeons, etc., will,
of course, in all cases be taken.* The field is made larger on the
card than there is any present need for, to allow for development
of the subject and consequent changes in viewpoint.

3. The third field of one column is a “split field,” so-called, and
records the following information:

(a) Sex of the patient, male (M) or female (F).

(b) Social status, whether single (5), married (.M), widowed
W), or divorced (D).

(c) Whether (C) or not ( N. C.) there were complicating patho-
logic conditions in this case besides the primarily diagnosed
condition given in the second field. The presence of this
information makes it possible by a single run of the cards
through the sorter to separate the uncomplicated cases
of a particular disorder from the complicated ones.

(d) Whether (A) or not ( N . A.) there was an autopsy made in
this case. At the bottom of the card is written under
this field, in the event that an autopsy was made, its
serial number.

4. In the fourth field of five columns is punched the year,
month, and day of admission of this patient to the hospital.

5. In the fifth field is punched the patient’s age in years.
6. In the sixth field is punched, according to a code, the patient’s

occupation.
7. In the seventh field is recorded the patient’s race, according

to the ethnologic code used by the U. S. Bureau of Immigration,
or according to some other code if preferred. This information as
to race necessarily also covers color.

* A disease code for use in mechanical tabulation has been very carefully worked
out in the Surgeon-General’s Office by Major Albert H. Love and his associates.
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8. The eighth field of three columns records the weight of the
patient on admission, in kilograms (or, of course, if one prefers, in
pounds). The most progressive of modern hospitals record weight
on admission as a routine procedure.

9. In the ninth field of two columns the stature is punched in
dekameters (as close as will ever be used in statistical groupings) or
inches, if one prefers as a routine to use common rather than metric
measures. The stature in centimeters may be written at the top
of the field if the more exact record is desired.

10. The tenth field of three columns records the duration of
the patient’s stay in the hospital in days.

11. In the eleventh field of two columns is punched the pig-
mentation of the individual on a combined eye-color and hair-color
code.

12. In the twelfth, four-column field, is recorded the duration
of time in years and days as stated in the history, between the
first onset or appearance of the diagnosed condition and the admis-
sion of the patient to the hospital for treatment.

13. The thirteenth field of five columns is a very important one.
It records, according to a code which can be made as elaborate and
detailed as is desirable, the nature of the treatment given in the
hospital to this particular case. Five columns permit of 99,999
separate discriminatory items to be recorded in this field. Suppose,
for example, one wishes to study the pneumonia cases in which
digitalis was administered, in comparison with those in which this
therapeutic measure was not employed. To pick out by hand
from all the pneumonia cases the material according to this arrange-
ment would involve an amount of labor which would deter the most
enthusiastic young intern. But, mechanically, through the me-
dium of this field, it can be very easily and quickly accomplished.

14. The fourteenth is a split single-column field. It records the
following information:

(a) The nature of the case upon admission, whether an acute
illness a chronic (C), an emergency or accident case
(E ), a case admitted for purpose of diagnosis (D ), or a
normal person ( N), as, for example, a normal pregnant
woman admitted to the obstetrical service for deliverv.



MEDICAL BIOMETRY AND STATISTICS102

(b ) The financial arrangements of the patient with the hospital,
whether a free patient (F), paying (P), or partly paying
(P. P.).*

(c) Whether this case represents the first admission of the
patient to the hospital, or whether it is a readmission.

15. The fifteenth field is also a single column split, and records:
(a) The condition at discharge, whether improved (/), un-

improved (U), dead (D), or transferred to some other
service or hospital ( T).

(b) The location of the patient’s residence, whether in Balti-
more (B), or in Maryland outside of Baltimore (M), or
in the Atlantic seaboard states north of Maryland (Penn-
sylvania, Delaware, New Jersey, New York, and New
England States) ( N ), or in the Atlantic seaboard states
south of Maryland (District of Columbia, Virginia, the
Carolinas, Georgia, Florida) (5), or in some other part
of the United States not specified above {W), or in a
foreign country (F).f

16. The sixteenth and last field on the card is again a single
column split field. It records the following information:

(a) Whether or not (P and O) there is any statement in the
written history as to family history of any particular
disease in the patient’s family. The information enables
one interested in the influence of heredity on disease to
pick out quickly the cases likely to be of any value to him.

(b) The general health of the patient prior to the present illness,
as recorded in the written history. This information is
punched according to the following or similar code:

Very good never ill
Good minor ailments only
Fair average amount of sickness
Poor frequently ill
Very poor an invalid throughout life

* In some hospitals, of course, this information under Item 14b would not be
pertinent and could be omitted or replaced by something else.

t The 15& field is obviously drawn up solely for the Johns Hopkins Hospital and
would require modification for any other hospital. Some institutions may not desire
statistical information as to place of residence, in which event this portion of the
card may be used for recording something else.
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(c) Whether this card is a primary card. This is a technical
point of interest only in connection with the filing of the
punched cards.

This completes the description of the primary card. It records
31 different kinds or items of information.

B. The Secondary Card

The basic purpose of the secondary card shown in facsimile in
Fig. 15 is to take care of the complicating diseases. An illustration
from an actual case history will make the point clear;

A patient, X, was admitted under the primary diagnosis of
hyperthyroidism and adenoma of the thyroid. A double lobectomy
was done. A postoperative bronchopneumonia developed, and
the patient died fourteen days after the operation. At autopsy
besides the bronchopneumonia there were found clear evidences
of (1) a cerebral embolus with softening, (2) chronic and acute
verrucose mitral endocarditis, (3) multiple myomata of the uterus,
(4) cystitis, and (5) fibrous pleurisy.

Now the primary card discussed in the preceding section would
carry in the “Diagnosis” field only the adenoma of the thyroid.
Yet clearly for any adequate statistical records there must be in-
cluded some account of the other complicating conditions disclosed
by the history. This is done by punching as many of the secondary
cards, shown in Fig. 15, as there are separate and distinct complica-
tions (that is, in the present case, one secondary card for broncho-
pneumonia, one for cerebral embolus, one for endocarditis, one for
myomata of the uterus, one for cystitis, and one for pleurisy).
Each secondary card carries the same case number in the first
field as the associated primary card, and will therefore automatically
file with it. The “Complication” field on the secondary card
registers with the “Diagnosis” field on the primary card. There-
fore, when all the cards, both primary and secondary, are run
through the sorting machine relative to this field, all identical
diseased conditions, whether primary or complicating, will be
brought together. Then by a second sorting of the cards the cases
in which any particular disease, say bronchopneumonia, was the
occasion of admission to the hospital, can be separated from those
cases in which this disease was a secondary complication.
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The remaining fields on the secondary card are used to record
additional information for which there was not space on the primary
card. These include: (1) the ordinal number of the complication as
recorded in the history, (2) the service letter and the number of the
case in that service which was written but not punched on the
primary card, the purpose of the letter column being to enable the
ready assembling, for any desired purpose, of all the cases in a
particular service, and (3) autopsy number, which also was written
but not punched on the primary card.

MECHANICAL TABULATION IN VITAL STATISTICS

In the statistical offices of up-to-date departments of health,
and in census offices, the mechanical system of tabulating the data
from birth and death certificates is employed. The economies so
effected, both in time and money, are very great. The student
interested in this aspect of the subject should get and study the
card forms and codes used in representative health departments.

SUGGESTED READING

The student who wishes to become familiar with the scope and
possibilities of modern mechanical tabulating will do well to apply
to the Tabulating Machine Co., 50 Broad St., New York, for
literature regarding its application in various fields.

The following references to particular applications of mechan-
ical tabulation, or to its development historically, will be found
useful:
1. Hollerith, H.: An Electric Tabulating System, School of Mines Quarterly (Colum-

bia Univ.), April, 1889. (Contains an account of the plans and machines as
originally developed for the 1890 census of the United States.)

2. Hollerith, H.: The Electrical Tabulating Machine, Jour. Roy. Stat. Soc., vol. 57,
pp. 678-682, 1892. (An early account of the system by its inventor.)

3. Knight, F. H.: Mechanical Devices in European Statistical Work, Quart. Publ.
Am. Stat. Ass., vol. 14, pp. 596-598, 1915. (A survey of the extent to which
mechanical tabulation has become established in European statistical offices.)

4. Menzler, F. A. A.: The Census of 1921; Some Remarks on Tabulation, Jour. Inst.
Actuaries, vol. 52, pp. 341-384, 1920-21. (An account of the mechanical tabu-
lation of the 1921 census of England and Wales.)

5. Health Report of the Royal Air Force for 1920, Lancet, March 25, 1922, pp. 598-
601, and April 1, 1922, pp. 655-657. (An account of the punch-card tabulation
of their medical data.)
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CHAPTER VI

GRAPHIC REPRESENTATION OF STATISTICAL DATA

VALUE OF STATISTICAL DIAGRAMS

Diagrams properly constructed and intelligently used con-
stitute one of the most potent tools in the statistician’s armamen-
tarium. Even the most seductively constructed and arranged
table of statistics will not convey the story which inheres in the
figures with anything like the neatness and despatch attainable by
graphic presentation.

The graphic side of statistical work has received a great deal of
attention in recent years and there are several excellent treatises
available, dealing solely with this subject (see reading list at the
end of this chapter). Any detailed treatment of the subject is
impossible in the space available here. I shall attempt only to set
forth a few of the most elementary principles, and to introduce the
reader to the more detailed literature.

GENERAL CHARACTERISTICS

Before developing the structure and uses of different types of
statistical diagrams it is desirable to say a word about their under-
lying general characteristics.

All statistical diagrams are representations of points, lines, sur-
faces or solids, the positions of which in space are quantitatively de-
fined by a system of co-ordinates.

These co-ordinates may be of various sorts. The most common
sort are rectangular co-ordinates. Here a point p in a plane
(Fig. 16) has its position defined (as indicated by the dotted lines)
in terms of the x and y axes of reference.

The distance from o to the dotted line on the horizontal axis is
known conventionally as the abscissa of the point p. The distance
on the vertical axis from o to the dotted line is known as the ordinate
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of the point p. The horizontal or x axis is the abscissa! axis. The
vertical or y axis is the axis of ordinates, or the ordinal axis. Gen-
erally and usually in plotting statistical data to rectangular axes
the classes of things are laid off as abscissae, and the frequencies of
these classes as ordinates. This, however, is only a convention,
and not a law of nature.

Tig. 16.—Diagram to illustrate rectangular co-ordinates, o is the origin. The
arrows indicate the conventional directions relative to algebraic signs.

Besides rectangular co-ordinates, there are sometimes used in
statistical diagrams:

{a) Angular co-ordinates (as in “pie” diagrams).
(b) Polar co-ordinates.
(c) “Geographical” co-ordinates (as in a statistical map, where

latitude and longitude are the axes of reference, really
angular co-ordinates which may become rectangular by
projection to a plane).
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TYPES OF DIAGRAMS

The first question which anyone should ask himself who feels
an impulse to make a statistical diagram is this: What is to be
the fundamental purpose of this diagram? What is the essential
point that it is intended to convey to the viewer? The answer to
this question virtually settles the type of diagram to be employed,
because there is a rather definite adaptation of diagram types.
Some types of diagrams are much better fitted than others to the
telling of particular kinds of statistical stories.

Consider the following scheme:
A. Purpose: To represent frequencies of things or events.

1. Things which vary discontinuously.
Type of diagram: (a) Bar diagram (cf. Figs. 17 and 18).

( b ) “Pie” diagram (cf. Fig. 19).
2. Things which vary continuously.

Type of diagram: (a) Histogram (cf. Figs. 20-22).
(b) Frequency polygon (cf. Figs. 23, 24).
(c) Ogive curve (cf. Fig. 25).
(d) Integral curve (cf. Figs. 26, 27).

B. Purpose: To represent trends of events or things.
1. In Time. Non-cyclic.

Type of diagram: (a) Line diagram on arithlog grid (cf. Figs. 31, 32).
(b) Line diagram on arithmetic grid (cf. Figs. 28-30).

2. In Time. Cyclic.
Type ofdiagram: (a) Line diagram on arithmetic grid (cf. Fig. 33).

( b) Polar co-ordinates (cf. Fig. 34).
C. Purpose: To show geographic distribution of things or events.

Type of diagram: (a) Spot map (cf. Fig. 35).
(b) Shaded map (cf. Fig. 36).

D. Purpose: To facilitate or replace computation.
Type ofdiagram: (a) Nomogram (cf. Figs. 37-39).

Bar Diagrams

The bar diagram is the simplest possible picture of a statistical
situation. Figure 17 is a bar diagram* showing the proportion
which each of the more important foods contributes to the total
protein consumed in the United States by human beings.

From this diagram one sees at a glance the relative significance
of the great staple foods in furnishing protein for human consump-
tion. Wheat stands first. Beef contributes roughly one-half as

* From R. Pearl, The Nation’s Food, Philadelphia, 1920, p. 237. Data on which
diagram is based are there given.
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much protein to the national dietary as wheat, and poultry and
eggs about half as much as beef, etc. The whole story of the

PERCENTAGE CONTP/BUT/ON TO TOTAL PROTEIN CONSUMED
Pp-R CE/YT

WHEAT

PARTY PRODUCTS

BEEP

PORK

POULTRYaEGOS

CORN

POTATOES

E/SH

LEGUMES

NUTS

MUTTON

OTHER CEREALS

OTHER l/ECETA$LES

R/CE

RYE

COCOA

APPLES
'finr/UAL AVERAGE e YEARS

5OTHER FOODS
COMB/NED Z9/7-/8

Fig. 17.—Diagram showing the percentage of the total protein consumed in
the United States contributed by each of 23 commodities. The solid bars denote
the average consumption in the six years preceding our entry into the war. The
cross-hatched bars denote the consumption in 1917 and 1918.

sources of the protein we, as a people, consume is accurately
visualized.
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The percentage columns of Table 8 in Chapter IV make the bar
diagram shown in Fig. 18. This is a slightly different form of bar
diagram from that shown in Fig. 17.

Percentage

Jaundice
Bile - stained

urine
Nausea
C/ay- colored

stools
Anorexia
Fever

Constipation
Headache

Vomiting

Prostration
Abdominal

pain
Chills

Limb pains
Conjunctiva/

congest
Unusual prev
of rats on prem
D/orrhea

Hiccup

Epistax/s
Herpes

Symptom
present

Symptom
absent

Fig. 18.—Bar diagram based upon data of Table 8, Chapter IV, showing the relative
frequency of different symptoms in epidemic jaundice.

Bar diagrams find perhaps their most appropriate field of use-
fulness in the graphic representation of discontinuous variates,
as is illustrated in the two examples here given. Wheat and dairy
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products are discontinuous, discrete entities; one cannot start from
wheat and by a series of minute continuous steps or gradations
pass to dairy products. Similarly, jaundice and nausea are phys-
ically discontinuous phenomena. Hence it is appropriate to
represent them graphically by physically separate bars. The case
is quite different with continuous variates. It is possible to pass
continuously by successive, unbroken small steps from a height of
60 inches say to a height of 65 inches. Hence it is proper to repre-
sent such phenomena graphically by continuous lines. One
frequently sees bar diagrams in which each bar represents a phys-
ically discrete phenomenon or entity, but in the diagram the ends
of the bars have been connected by a line. This is bad practice.
Its absurdity is evident if one tries to read a point on the line in
terms of abscissal or ordinal units. What is the meaning of some-
thing half-way between wheat and dairy products?

“Pie” Diagrams

For a reason which will be perfectly obvious to all American
readers, and which foreign readers have no occasion to be interested
in, sector diagrams plotted to angular co-ordinates are called
colloquially “pie” diagrams. An example of such a diagram is
seen in Fig. 19.

While this form of diagram is extremely popular, especially in
exhibit work, I agree entirely with Brinton that it is a far less
desirable type than the simple bar diagram. Its use should proba-
bly be confined strictly to popular presentation, as in exhibit and
propaganda work.

Histograms, Frequency Polygons, Ogives, and Integral Frequency Diagrams

It will be desirable to consider this group of graphic forms
together, and because of their importance and frequent use the
methods of their construction from the original data will be treated
in detail. As material for this study of graphic representation the
data of Table 9 may be used. This table gives the head heights
in millimeters of 68 male inmates of the Haddington District
Asylum in Scotland, as reported by Tocher* (p. 39).

* Tocher, J. F.: Anthropometric Survey of the Inmates of Asylums in Scotland,
Henderson Trust Reports, vol. i, Edinburgh, 1905.
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USE OF THE LAND
PRESENT AND

POTENTIAL

LAND AREA OF UNITED STATES 1,903,000,000 ACRES

Fig. 19.—Example of diagram to angular co-ordinates. (Reproduced by per-
mission of Dr. O. E. Baker and the editor of the Geographical Review from an article
by Dr. Baker entitled “Land Utilization in the United States: Geographical Aspects
of the Problem,” published in the Geographical Review, vol. 13, January, 1923.)

The data of Table 9 (p. 112) are simply a list of observations
just as originally presented by Tocher. To make them into usable
statistics they must first be converted into a frequency distribution
in which like head heights will be brought together. This is done
in Table 10 (p. 113).

It is evident that the extent of variation is so great in this
character height of head that a class unit of 1 mm. is too fine. It is
necessary to group the material into larger class units. T his is
done in the third column of the table, headed “Frequencies grouped
in 5 mm. classes.” The class limits are taken to begin on the even
5 and 10 mm. points.

“Histogram” is the name given by Pearson to the correct
graphical representation of frequency distributions. In these
diagrams the class limits are laid off on the abscissal axis, and the
frequencies over each abscissal element are given as the areas of
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TABLE 9
Tocher’s Data on Head Height of Male Inmates of Haddington District

Asylum

rectangles erected on these base elements. So long as the base
elements (that is, sizes of the classes into which the material is
grouped) are all equal, then obviously the heights of the rectangles
will be proportionate to the frequency.

Suppose now we plot as a histogram the data of the first (un-
grouped) half of Table 10. The result will be that shown in Fig. 20.

Now it is at once evident that Fig. 20 is an inadequate and
misleading graphical representation of the important facts about
variation in head height in this group of people. It is a long, flat

Patient
No.

Head height,
mm.

Patient
No.

Head height,
mm.

1 137 35 142
2 144 36 139
3 132 37 138
4 131 38 129
5 131 39 139
6 144 40 137
7 145 41 139
8 155 42 126
9 125 43 145

10 146 44 143
11 143 45 133
12 152 46 137
13 137 47 143
14 134 48 125
15 140 49 139
16 137 50 131
17 142 51 119
18 138 52 134
19 150 53 143
20 141 54 149
21 129 55 136
22 137 56 150
23 129 57 141
24 140 58 131
25 130 59 143
26 143 60 129
27 141 61 131
28 126 62 145
29 134 63 133
30 138 64 134
31 139 65 125
32 144 66 138
33 128 67 130
34 138 68 134
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TABLE 10

Frequency Distribution of Head Heights from Table 9

thing with many gaps and only roughly indicates what general
sorts of head heights occur most frequently. The grouping, in
short, is too fine for so small a sample as 68. A much clearer and
more adequate idea of the real state of the case is given in Fig. 21,
which is a histogram plotted from the grouped data of the latter
half of Table 10.

Head heights,
mm.

Ungrouped
frequencies.

Frequencies grouped
in 5 mm. classes.

Class limits for
group frequencies,

mm.

119 1 1 115-119
120
121
122 120-124
123
124
125 3
126 2
127 10 125-129
128 1
129 4
130 2
131 5
132 1 15 130-134
133 2
134 5
135
136 1
137 6 17 135-139
138 5 ,

139 5
140 2
141 3
142 2 [ 16 140-144
143 6
144 3
145 3
146 1
147 \ 5 145-149
148
149 1
150 2
151
152 1 [ 3 150-154
153
154
155 1 1 155-159

Totals 68 68 —
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FREQUENCY
MEAD MDI6MT mm.

Fig. 20.—Histogram of ungrouped frequencies of head height from Table 10.

FREQUENCY
HEAD HEIGHT mm.

Fig. 21.—Histogram of grouped frequencies of head height from Table 10.

From this diagram an adequate picture is obtained of the real
distribution of head heights in this group. The skewness of the
distribution is apparent. Other examples of histograms are seen
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in Figs. 60, 63 infra. A method of drawing a histogram which
is preferred by some statisticians is that shown in Fig. 22. It
will be seen to consist simply in the omission of that part of the
vertical grid work of the drawing which lies below the top of the
lower of each pair of adjacent rectangles. It is an attempt to
realize the advantages, for comparative purposes, of the frequency
polygon without at the same time sacrificing the complete math-
ematical accuracy of the histogram.

FREQUENCY
HEAD HEIGHT mm.

Fig. 22.—Alternative form of histogram shown in Fig. 21.

While the histogram is, on theoretic grounds, the most ac-
curate method of graphically representing frequency distributions,
it is sometimes more practically useful to represent them as fre-
quency polygons.

A frequency polygon is the result that one gets by assuming
that the total frequency in any given class is concentrated at the
center of that class, and then plotting ordinates of height pro-
portionate to the frequencies supposed concentrated at those
midpoints. The histogram of Fig. 21 is shown plotted as a fre-
quency polygon in Fig. 23.
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The frequency polygon is less accurate than the histogram
because it does not truly represent the frequency areas over the
base elements. But it is an extremely useful form of frequency
diagram for comparative purposes. It may be employed freely
in place of the histogram where the only object is to give a general
picture to the eye of a series of overlapping frequency distributions.
An example of such comparative use is shown in Fig. 24.

Another method of representing frequency distributions graph-
ically was devised by Galton, and the resulting type of curve was

FREQUENCY
MEAD HEIGHT mm.

Fig. 23.—Frequency polygon of grouped frequencies of head heights from Table 10.

called by him the “ogive.” It is the sort of curve which would
be got if 1000 men taken at random were arranged in a row in
order of their heights, beginning with the shortest at one end,
and ending with the tallest at the other. If now a smooth line be
imagined just touching the top of the head of each man in the
row, this line would be an ogive curve, in Galton’s sense. The
data of Table 10 are plotted as an ogive curve in Fig. 25.

It is seen that in this curve the head heights in millimeters
are now taken as ordinates, and at equal intervals along the abscis-
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sal axis there is erected an ordinate for each of the 68 individuals.
If a larger number of individuals were involved the curve would
be smoother. The curve is seen to be like the mirror image of an
enormously stretched out and elongated S, or an integral sign,
lying on its back.

FREQUENCY
INDIVIDUAL DEAD
MOTHER DEAD

Fig. 24.—Frequency polygons showing the age distribution of dead mothers of
dead (a) tuberculous (solid line) and ib) non-tuberculous (broken line) individuals.
(Reproduced from Pearl, R., “The Age at Death of the Parents of the Tuberculous
and the Cancerous,” Amer. Jour. Hygiene, vol. 3, pp. 71-89, 1923.)

So far in the discussion of the graphic representation of fre-
quencies, we have plotted the value of each single frequency, by
itself, against its proper abscissa. Let us consider now the integral
or accumulated diagram of frequency. In this case the frequency
is successively accumulated, class by class, from the lower range
end on. The integral curve for the data of Table 10 is shown in
Fig. 26.
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Head
Height

mrr).

Order of the Individual
Fig. 25.—Ogive of ungrouped frequencies of head height, from Table 10

Absolute
Frequency

head Height mm
Fig. 26.—Integral curve of ungrouped frequencies of head height from Table 10,

This form of diagram shows the number of individuals having
a head height greater or smaller than any assigned value. This
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property is often useful. This integral form of diagram may, by
a simple device discussed in detail by von Huhn 3 be made to show
relative as well as, and along with, absolute accumulated fre-
quencies. In Fig. 26, 68 individuals are 100 per cent, of this par-
ticular group or sample. Suppose, then, there is set up on the
right-hand margin a division of the ordinal distance (=68 in-
dividuals = 100 per cent.) into 10 equal parts. This scale will
then be a percentage or relative scale, while that on the left-hand

Percentage
Frequency

Absolute
Frequency

head height mm.
Fig. 27.—Like Fig. 26, but with added scale of relative or percentage frequencies,

margin still remains an absolute scale for frequencies in the same
group. The resulting diagram is shown as Fig. 27.

The advantages of this form of diagram are at once apparent.
It is seen, for example, that 90 per cent, of the group had head
heights under 143 mm.; 10 per cent, were under 128 mm. in head
height, etc. In a wide range of cases plotting in this manner
will obviate all necessity of calculating percentages.

The student will note that the ogive and integral forms of
plotting a frequency distribution are fundamentally the same.
The only difference is that in the case of the ogive frequencies are
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plotted along the abscissal axis, and in the integral along the y
axis as usual.

Non-cyclic Time Trend Diagrams

One of the commonest uses of the graphic method in statistics
is to show the trend of events in time. The obviously simple way
to do this is to make a line diagram with time as abscissa and the
frequency of occurrence of the event in question as ordinate. Thus
suppose it is desired to show the decline in the death-rate in Balti-

TYPHOID FEVER DEATH RATE FOR BALTIMORE 1889-1919

RATE
PER

100.000

YEAR
TOTAL
TOTAL FEMALES
TOTAL MALES

Fig. 28.—Death-rate from typhoid in Baltimore 1889-1919 inclusive for males,
females, and total population. (From Howard, W. T., “The Natural History of
Typhoid Fever in Baltimore, 1851-1919,” Johns Hopkins Hospital Bulletin, vol. 31,
pp. 276-286, 319-334, 1920.)

more from 1889 to 1919 inclusive. A diagram like that shown in
Fig. 28 may be prepared.

Now it would appear at first glance that this diagram gave an
adequate representation of the facts. We see the line indicating
a decline in the rate from about 55 tounder 10 in the period covered.
But actually the diagram is visually misleading. Why and how
it is so will now be shown. Suppose we wish to compare the decline
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in the death-rate from tuberculosis of the lungs with that in the
death-rate from typhoid fever. Let us transfer from Baltimore
as a universe of discourse to the United States Registration Area.
In Table 11 are given the death-rates per 100,000 in the original
registration states (Connecticut, Indiana, Maine, Massachusetts,
Michigan, New Hampshire, New Jersey, New York, Rhode Island,
and Vermont, and the District of Columbia) for each year from
1900 to 1920 inclusive, for the causes of death (a ) tuberculosis
(all forms) and (b ) typhoid fever. The data are taken from Mor-
tality Statistics, 1916, p. 21 (rates for years 1900 to 1909 inclusive),
and 1920, p. 19 (rates for years 1910 to 1920 inclusive). The
reason for confining attention to the original registration states is
that the area and population at risk may be comparable throughout.

TABLE 11
Death-rates per 100,000 Population in the Original Registration States,

1900 to 1920 Inclusive

Using the same graphic methods as in Fig. 28 and the data
from Table 11 we get the result shown in Fig. 29.

Year.
a

Tuberculosis
(all forms).

b
Typhoid

fever.

1900 195.2 31.3
1901 189.8 27.5
1902 174.1 26.3
1903 177.1 24.6
1904 188.5 23.9
1905 180.9 22.4
1906 177.8 22.0
1907 175.6 20.5
1908 169.4 19.6
1909 163.3 17.2
1910 164.7 18.0
1911 159.0 15.3
1912 149.8 13.2
1913 148.7 12.6
1914 148.6 10.8
1915 146.7 9.2
1916 143.8 8.8
1917 147.1 8.1
1918 151.0 7.0
1919 124.9 4.8
1920 112.0 5.0
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From this diagram the conclusion which one’s eye draws at
once is that the decline in the tuberculosis rate has been much
more rapid during this period than in the typhoid rate. The
tuberculosis line slopes downward much more steeply.

But is this conclusion correct? The diagram presented in
Fig. 29 does not enable an easy, direct answer to the question.
Why it does not will be perceived if the following considerations
are taken into account. Suppose that in each of a series of six
places in a period of time from a to b there occurred exactly 25

Death
Date
Per

tOOjDOO

Year
Fig. 29.—Death-rates from (a) tuberculosis (all forms) and ( b) typhoid fever in the

Registration Area, 1900-1920 inclusive. Arithmetic grid.

per cent, reduction in the number of deaths from a particular
cause. But suppose further that, owing to the different absolute
sizes of the places, the actual numbers of deaths which occurred
in each of the six places, at the beginning of the period (time a)
were respectively 5000, 4000, 3000, 2000, 1000, and 100. If then
there was, as premised above, a reduction in mortality in the time
period a to b of exactly 25 per cent., the numbers of deaths occurring
at time b would be for the six places as follows: 3750, 3000, 2250,
1500, 750, 75. Now suppose this hypothetic case to be plotted
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on an arithmetic grid as is Fig. 29. The result will be as shown in
Fig. 30.

Anyone looking at this diagram would surely conclude that the
decline in mortality had been much more rapid in the first com-
munity than in the last. Yet exactly the same rate of decline
(25 per cent.) was, by hypothesis, obtained in all the places. To
produce a result visually correct all the lines ought to be parallel.

25 PERCENT REDUCTION
ARITHMETIC SCALE

Fig. 30.—Diagram on arithmetic grid to show result of 25 per cent, reduction in
mortality in each of six places of different size. Hypothetic case.

But plainly such a result cannot be attained by plotting these
data on arithmetic grid.

Suppose now that the same data be plotted on a paper with a
grid ruling such that, while the abscissal scale is still graduated in
arithmetic progression (i. e., with equally spaced steps), the
scale of the ordinates is divided not in arithmetic progression,
but in proportion to the logarithms of numbers in arithmetic pro-
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gression. Such a ruling is called an arithlog grid. The result is
shown in Fig. 31.

It is evident that there has been an almost magical trans-
formation. The 25 per cent, reduction lines are now all parallel,
as they ought to be if the diagram is to tell a visually correct story,
and surely it is idle to plot diagrams if they are to tell a visually
incorrect story when finished. For a diagram is plainly some-
thing to be looked at. It produces its results visually.

25 PDECENT DEDUCTION
LOGA PITH MIC SCALE

Fig. 31.—Showing the result of plotting the data of Fig. 30 on an arithlog grid. Com-
pare with Fig. 30.

It will be well now to go back and replot the data of Fig. 29
on an arithlog grid. The result is that shown in Fig. 32.

The correct conclusion is now apparent. Typhoid fever mor-
tality has declined at a much more rapid rate in the period covered
than has tuberculosis mortality. And the fact is immediately ap-
parent visually, as it ought to be if a diagram is used at all.

The advantages of the arithlog grid when trends are to be
represented graphically has been emphasized by all recent American
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writers in this field, notably by Fisher, 4 Field, 5 and Whipple and
Hamblen.6 The papers of Fisher and Field especially should be
carefully read by the student for the full and scholarly discussion
of this matter which they give.

Fisher sums up the advantages of this method of plotting
trends (he calls a chart on an arithlog grid a “ratio chart”) as
follows:

Death
Date
Per

100,000

s/ear
Fig. 32.—Death-rates from (a) tuberculosis (all forms) and ( b) typhoid fever in

the original registration states, 1900-1920 inclusive. Arithlog grid. Compare
with Fig. 29.

“The eye reads a ratio chart more rapidly than a difference
chart or a table of figures. We may recapitulate what most easily
catches the eye as follows:

“1. If we see a curve ascending, and nearly straight, we know
that the statistical magnitude it represents is increasing at a nearly
uniform rate.

“2. If the curve is descending, and nearly straight, the sta-
tistical magnitude is decreasing at a nearly uniform rate.

“3. If the curve bends upward the rate of growth is increasing.
“4. If downward, decreasing.
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“5. If the direction of the curve in one portion is the same as
in some other portion it indicates the same percentage rate of
change in both.

“6. If the curve is steeper in one portion than in another portion
it indicates a more rapid rate of change in the former than in the
latter.

"7. If two curves on the same ratio chart run parallel they
represent equal percentage rates of change.

“8. If one is steeper than another the first is changing at a
faster percentage rate than the second.

“9. The imaginary straight line most nearly representing, to
the eye, the general trend of the curve, is its 'growth axis,’ and
represents the average rate of increase (or decrease); and the
deviations of the curve from this growth axis are plainly evident
without recharting.

'TO. The slope of the imaginary line between any two points
on a curve indicates the average rate of change between the two.”

Whipple and Hamblen particularly discuss the use of this type
of diagram in public health work.

Cyclic Time Trend Diagrams

A cyclic event is one whose frequency of occurrence varies in
an orderly recurring manner. An example is found in the seasonal
incidence of various diseases, as shown in Fig. 33 for whooping-
cough in Philadelphia and New York City.

This diagram shows clearly that whooping-cough reaches its
maximum incidence in the late spring months, and is less frequent
at other periods of the year.

A method of plotting such cyclic events sometimes used is
through the employment of polar co-ordinates. In this type of
diagram the frequencies corresponding to a given time are laid
off as ordinates radiating from a central, polar point. On account
of the greater familiarity which generally exists with regard to
diagrams of the type of Fig. 33 these are perhaps to be preferred
in ordinary statistical work to polar co-ordinate diagrams for
cyclic events.

An interesting and useful method of showing graphically the
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time relations of certain kinds of cyclic phenomena is presented
in Fig. 34. This diagram, taken from the Annual Report for 1922
of the American Sugar Refining Company, shows the time re-

Fig. 34.—Diagram showing time of harvesting of principal sugar crops of the world.
(Reproduced from source indicated in text, by permission of Mr. Earl D. Babst.)

lations of harvesting of the principal sugar crops of the world, the
sizes of the respective crops being plotted to polar co-ordinates.

Statistical Maps

Maps may be usefully employed for the graphic presentation
of certain types of data. Such maps are of two types in the main:
(a) Spot maps and (b ) shaded or colored maps.

In the spot map the locality of occurrence of an event is indicated
by a properly located dot on the map. This type of map is much
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Fig.
35.
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used in epidemiologic work. An example of such a map is given
in Fig. 35, showing the distribution of the different sorts of activities
of the International Health Board in 1920.
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iDepartments surveyed and organized in 1918-1919
JDepartments surveyed and organized in 1920iDepartments surveyed and in process of

organization
iDepartments in process of organization, partially
' surveyed or in correspondence
iDepartments surveyed and organized by the

medical bureau

Departments visited in 1918Departments visited in 1919
Department* visited in 1920
Department* unfinished in 1920

Dispensaries functioning onDec.31 1920
Dispensaries in processof organization
Dispensaries In project

Number of Dispensariesin each Department

Fig. 36.—Organization and activities of Commission for the Prevention of Tuber-
culosis in France: 1. Work of educational division, showing departments visited by
traveling exhibits during 1918, 1919, and 1920. 2. Work of division ofdepartmental
organization, showing departments in which antituberculosis organization has been
effected or is in progress. 3. Number of tuberculosis dispensaries in each department
co-operating with the Commission on December 31, 1920. 4. Total number of
tuberculosis dispensaries functioning, in process of organization, or in project at the
end of 1920. (Reproduced by permission of Mr. Wickliffe Rose from Seventh Ann.
Rept. International Health Board, 1921.)
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Figure 35 illustrates that by using different sorts of “spots”
one can indicate a number of facts and relations on the same spot
map. i

In shaded maps different types of shading or coloring of areas
are used to bring out statistical facts. Figure 36 gives examples
of such maps.

Nomograms

Up to this point in the discussion of graphic methods every
case has dealt with the plotting of but two variables. Nomography
is a development of graphic methods which permits the repre-
sentation of theoretically n variables upon a plane surface. The
invention of co-ordinate geometry was due to Descartes, who
developed the idea of representing graphically two variables in
a plane. Buache, in 1752, showed that a third variable could be
added by the use of contour lines. D’Ocagne 9 hit upon the idea
of collinear points as furnishing a method of dealing graphically
withn variables in a plane. To him is due the name “nomography,”
which is given to this branch.

The outstanding usefulness of nomography is to facilitate the
numerical solution of complex mathematical expressions and
relations. An example of a nomogram for this purpose is to be
found on page 34 of Pearson’s “Tables for Statisticians and Bio-
metricians.”

Space is lacking here for any detailed development of this
subject. The statistician and the medical man will, however,
do well to master it, because it has many important applications
in these fields. The best brief account in English is that of Hezlet. 7

Brodetsky’s 8 book is a sound, if pedagogically somewhat inept
introduction to the subject. D’Ocagne’s9 own writings are, of
course, the final authority, but not particularly adapted to the
medical man with a meager equipment of mathematics.

A single example, of the simplest possible character, may be
given here to indicate in some measure what a nomogram fun-
damentally is, and the logic underlying the construction of nomo-
grams. Suppose we wish tp set up a nomogram for the graphic
solution of the expression

x = a + b
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Lay off on two parallel lines scales with equally spaced divisions.
The scales may be divided with any desired degree of fineness,
may be of any length one pleases, and may be as far apart (or near
together) as one pleases. One of these scales will be the a scale
(i . e., that upon which values of a are to be read) and the other
the b scale. Now, plainly, it will be possible to draw somewhere

Fig. 37.—Construction of addition nomogram. See text.

between the a and b lines of Fig. 37 a third line parallel to the
other two, and so graduated that if a straight-edge connects any
value on a with any value on b the point where the straight-edge
crosses x will give a reading on x which will satisfy the relation
x = a + b. The problem is to find the location of the x line
and its graduation. To do this is very simple, as shown in
Fig. 37.
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We know that
when a — — 20 and b = +15, x = —5

a — +15 and b = — 20, x = —5

If then we draw straight lines connecting these two particular
values of a with the two connected values of b, the point where
these two lines cross each other must, in the first place, lie on the
x line, and in the second place must be the point on that line which
is to be graduated —5. Again, we know that

when a = + 5 and b = 0, x = +5
a = — 10 and b = +15, x — +5

Draw these lines, and we shall have determined a second point
on the x line. Two points being sufficient, we have now located
the position in space and the direction of the x line. Its further
graduation may be wrought out by continuation of the same
process, though to do it that way would be a highly unintelligent
procedure in the case of so simple a relationship.

Two examples may be given of nomograms for dealing with
medical problems. The first relates to the calculation of the surface
area of the human body from known height and weight. Feldman
and Umanski* have recently published a nomogram of the DuBois
equation g _ 7134 w°-42B H0 - 725

This is reproduced as Fig. 38.
The second example is Lawrence J. Henderson’sf nomogram

relating six variables in the physiology of the blood. It is shown
in Fig. 39.

The six variables involved in this nomogram are the free and
combined oxygen of the whole blood, [0 2] and [Hb02]; the free
and combined carbonic acid of the serum, [H2C03] and [BHCO3];
the hydrogen-ion concentration of the serum, expressed as [pH];
and the chlorid concentration of the serum, [BC1].

This nomogram expresses at once the results of Barcroft
upon the oxygen dissociation curve of blood, and of Christiansen,

* Feldman, W. M., and Umanski, A. J. V.: The Nomogram as a Means of
Calculating the Surface Area of the Living Human Body, Lancet, vol. 202, February
11, 1922, pp. 273, 274.

f Henderson, L. J.: Blood as a Physicochemical System, Jour. Biol. Chem.,
vol. 46, pp. 411-419, 1921.
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Douglas, and Haldane on the carbon dioxid dissociation curve,
as well as the peculiarities of the acid-base equilibrium, and of the

WelcjhT Surface. Heicjht

Square.
centrne.Tres.

'

Clenftrn&frcsFounds. K'toyoms. Inches

Fig. 38.—Nomogram for S = 71.84 W0 - 426 H0 -725 , where S = surface in sq.
cm., W = weight in kg., and H == height in cm. A straight line joining given
values of W and H cuts the middle scale at the correct value of S. Thus a line joining
the points 24 on the weight scale, with the point 110 on the height scale, will cut the
surface scale at a point corresponding to 8375, which means that the surface area of a
person 24 kilograms in weight and 110 cm. in height is 8375 sq. cm. (From Feldman
and Umanski.)

distribution of chlorids. Obviously it has theproperty that if values
are assigned to any two of the variables, all six are determined.
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Regarding the nomogram Henderson says (loc. cit.):
“The significance of the nomogram is most easily appreciated

by considering particular points, for example, A1 and Vi, which

Fig. 39.—Nomogram for certain physicochemical relations of the blood. (From
L. J. Henderson.) .

may be taken to represent the cases of arterial and venous blood
respectively. The co-ordinates of these points are as follows:

pH. [02]
mm.

[Hb02]
percent. [H2CO3]. [BHCOs]. [BC1].

Ai 7.488 56 90 12 X 10“4 N 295.4 X 10" 4 N 1,055.5 X 10~4 N
Vi 7.411 26 50 16 X 10“4 N 329.3 X 10“4 N 1,036.5 X 10-4 N
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Evidently these co-ordinates give a fair representation of the dif-
ference between arterial and venous blood.

“The difference between arterial and venous serum bicarbonate
concentrations is 33.9 X 10~4 N. This may be contrasted with
the difference between the bicarbonate concentration corresponding
to two points, SA and Sv,

which both fall upon the co-ordinate
1,046 X 10~4 N for [BC1], and which have the co-ordinates for
pH, 7 .488 and 7.411 respectively, of the points A\ and V\. Since
S A and Sv have the same co-ordinate for [BC1], it follows that in
passing from one to the other, and in general in passing from any
point to any other point with the same value of [BC1], there can
be no exchange of electrolyte between serum and corpuscles.
Therefore, the increase of [BHCO3] in passing from SA to Sv is
due to the reaction of the constitutents of the serum under the
influence of increasing concentration of carbonic acid. In short,
for such a case, the serum behaves as if isolated from the cor-
puscles.

“The co-ordinates of [BHCO3] for and are 310.6 X 10~4 N
and 314.4 X 10-4 N respectively. The difference between these
concentrations is 3.8 X 10-4 N, in contrast with 33.9 X 1CT4 N for
the difference between A 1 and V\. Thus it is evident that the
escape of carbonic acid in the lung and its absorption in the tissues
must depend chiefly upon the corpuscles. Even in the serum,
and presumably therefore in the plasma, much the greater part of
the variation in bicarbonate concentration is the result of a hete-
rogeneous reaction with the corpuscles, and only a small amount,
if the present estimate is quantitatively correct, approximately
10 per cent., of the loading and unloading of carbonic acid in the
serum depends upon a reaction exclusively within the serum.

“It remains to say a word regarding the general significance of
the nomogram. Previous investigations have led to the proof of
a relationship, in certain cases, between three of the six variables
in question. This relationship always has the character of an
ordinary algebraic equation in three unknowns, corresponding to
a contour line chart where all three variables are determined if

+

definite values are assigned to any two. Such is the case for [H],
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[H 2C03], and [BHC0 3]; for [02], [Hb02], and [H2C03 ]; or for
[H 2C03 ], [BHC03], and [Hb02]; and only lack of adequate ex-
perimental data has heretofore prevented the establishment of
such a relationship between [BC1], [H 2C0 3 ], and any of the other
four variables.

“All these relationships are expressed by the nomogram. But,
among six variables, taking three at a time, there are twenty dif-
ferent combinations. Hence, in addition to the three familiar
cases above mentioned, the nomogram expresses seventeen other
similar relationships.”

ELEMENTARY STANDARDS IN GRAPHIC WORK

In 1915 a widely representative joint committee of engineering
statistical, economic, biologic, and other societies, interested in
the promotion of sound methods of graphic presentation of

1 The general arrangement of a
diagram should proceed from left to
right.

Fig. I

Year Tons
1900. 270,588
1914. 555,031

Fig. 2

2 Where possible represent quantities by linear magnitudes as
areas or volumes are more likely to be misinterpreted.

3 For a curve the vertical scale,
whenever practicable, should be so se-
lected that the zero line will appear on
the diagram.

Fig. 3
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data, published 10 a preliminary report on standards. This re-
port is so valuable for the beginner in this type of work that,
with the permission of the Chairman of the committee, Mr. Willard
C. Brinton, its essential parts are here reproduced in full.

4 If the zero line of the vertical
scale will not normally appear on
the curve diagram, the zero line
should be shown by the use of a
horizontal break in the diagram.

Fig. 4

Fig. 5A Fig. 5B

5 The zero lines of the
scales for a curve should be
sharply distinguished from the
other coordinate lines.

Fig. 5C
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Fig. 6A Fig. 6B

6 For curves having a
scale representing percentages,
it is usually desirable to em-
phasize in some distinctive
way the 100 per cent line or
other line used as a basis of
comparison.

Fig. 6C

7 When the scale of
a diagram refers to dates,
and the period repre-
sented is not a complete
unit, it is better not to
emphasize the first and
last ordinates, since such
a diagram doesnot repre-
sent the beginning or end
of time.

Fig. 7
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8 When curves are drawn on
logarithmic coordinates, the limit-
ing lines of the diagram should
each be at some power of ten on
the logarithmic scales.

Fig. 8

Fig. 9A Fig. 9B
9 It is advisable not to show any more coordinate lines than

necessary to guide the eye in reading the diagram.

10 The curve lines of a
diagram should be sharply
distinguished from the ruling.

Fig. 10
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Fig. IIA Fig. I IB

11 Incurves representing a
series of observations, it is ad-
visable, whenever possible, to
indicate clearly on the diagram
all the points representing the
separate observations.

Fig. IIC

12 The horizontal scale for
curves should usually read from
left to right and the vertical scale
from bottom to top.

Fig. 12
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Fig. I3A Fig. I3B Fig. I3C

13 Figures for the scales of a diagram should be placed at
the left and at the bottom or along the respective axes.

Fig. I4B Fig. I4CFig. I4A

14 It is often desirable to include in the diagram the numer-
ical data or formulae represented.
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, —i
Year Population
"1840 17,069,455
1850 23,191.876
I860 31,443,321
1870 38,558,371
1880 50,155,783
1890 62,622,250
1900 75,994,575
1910 91,972,266

15 If numerical
data are not included
in the diagram it is
desirable to give the
data in tabular form
accompanying the-
diagram.

Fig.15

16 All letteringand all
figures on a diagram should
be placed so as to be easily
read from the base as the
bottom, or from the right-
hand edge of the diagram
as the bottom.

Fig 16

17 The title of a diagram should be
made as clear and complete as possible.
Sub-titles or descriptions should be
added if necessary to insure clearness.

Aluminum Castings Output of
Plant No. 2,byMonths, 1914.

Output is given in short tons.
Sales of Scrap Aluminum are not

included.

Fig. 17
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CHAPTER VII

RATES AND RATIOS

In Chapter III the raw materials of statistics, the absolute
frequencies of occurrence of events, were discussed. In many
sorts of problems absolute frequencies will not alone suffice for
the intelligent discussion of problems. The reason for this is
simple. To say that in one city 2596 persons died of tuberculosis
in a year, while in another city 1304 died in the same year of the
same disease conveys no particularly useful information. It is
essential to know, in addition, the populations of the two cities,
at least. Otherwise it is impossible to form any conception of
whether tuberculosis was more fatal in the one place than in the
other. In short, it is necessary to know the number exposed to the
risk of the happening of a particular event, before the full significance
of the statistics of that event can be appreciated.

The calculation of rates in statistical work consists in arriving
at frequencies of occurrence relative to the number exposed to
risk of the occurrence. Properly calculated rates are said to meas-
ure:

In the case of deaths, the, force of mortality.
In the case of births, the force of natality.
In the case of sickness, the force of morbidity.
The “force of mortality” is expressed as the proportion of

those exposed to risk who die. Thus, if 100 persons are truly
exposed to risk of dying within a given year, and 3 die, the
force of mortality within the time limit of that year is 3 per cent.

It should be noted at the outstart of the discussion of rates
that “number exposed to risk” does not always, or indeed usually,
mean the same thing as “number living.” For example, suppose
that in a particular community, say New York State in 1900,
452 persons died of puerperal septicemia, and in the same state
the same year there were living 7,284,461 persons. These facts
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do not imply that the true force of mortality of puerperal septicemia
was 452-=-7,284,461 = .00006, or 6 per 100,000.

The true force of mortality must be quite different from this
because:

(a) Males cannot have puerperal septicemia, and are, therefore,
not at risk of dying from this disease.

( b ) Females under ten or over sixty years of age are not exposed
to risk of dying from this disease, because they are outside the
reproductive period of life.

(c) Women not in the puerperium, i. e., who have not recently
been pregnant, are not exposed to risk of death from this dis-
ease.

So then it appears that from the figure of 7,284,461 living there
must be subtracted at the start all the males, and then all the
females except those in a certain physiologic state. The number
of live births in New York State in 1900 was 143,156. Now,
adding to this number 4 per cent, of itself, to correct roughly for
stillbirths, multiple births, etc., the number 148,900 may be taken
approximately to represent the number of women who during
that year were in the puerperal state. So then the figure for force
of mortality from this disease becomes roughly somewhere in the
neighborhood of 452 -f- 148,900 = .003, or 300 per 100,000, a
very different figure indeed from the 6 per 100,000 with which
we started.

My colleague, Dr. W. T. Howard, 1 has lately discussed in detail
the true risk of mortality in child-bearing, and his more precise
and thorough treatment of the matter should be read in connection
with the simple, rough example given above.

This same fallacy of using an incorrect figure for the exposed
to risk often appears in medical statistics. A recent example may
be cited.* Litchfield and Hardman report excellent results in the
treatment of laryngeal diphtheria by suction to remove the mem-
brane. They present a table, here reproduced as Table 12, to
contrast their results before and after the use of this treatment.

* Litchfield, H. R., and Hardman, R. P.: Suction in the Treatment of Laryngeal
Diphtheria, Jour. Amer. Med. Assoc., vol. 80, pp. 524-526, 1923.
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TABLE 12

Comparative Data on Treatment of Laryngeal Diphtheria (Litchfield and
Hardman’s Table 1)

Now, the mortality percentages given in the last line, 26 — per
cent, in 1921 (no suction treatment), and 13+ per cent, in 1922
(suction treatment in some cases), are reckoned on the basis 41/158
= .26, and 14/106 = .13. But it appears that in 1921 there were
43 cases so mild as to be given “no treatment” (text p. 526), and
in 1922 there were 21 cases of the same sort. Clearly these 64
patients were not a proper part of the “universe of discourse,”
if that universe, as is the fact, concerns itself with discourse about
different modes of treatment. They were not treated , therefore
they cannot possibly have any bearing upon the relative merits
of different kinds of local treatment, either one way or the other.
Furthermore, none of them died, as, of course, was to be expected.
Actually there were treated in 1921, 158 — 43 = 115 cases, and
in 1922, 106 — 21 =85 cases. Of these treated cases, 41 died
in 1921, and 14 in 1922. Hence the true comparative mortality
rates per cent, of the two modes of treatment, in this experience,
are

1no1 41 X 100For 1921, — = 36 per cent.

1fWl 14 X 100 „For 1922, -=■ = 16 per cent.o5

Or, in other words, calculated on a proper basis the results in
1922 were even better relatively than those stated by the authors.

DEFINITION AND CLASSIFICATION OF RATES AND RATIOS

The basic relative figures of vital statistics may conveniently
be divided into rates and ratios.

May-December .
1921. 1922.

Total cases of laryngeal diphtheria 158 106
No local treatment—mild cases 43 21
Applicator treatment 13 12
Applicator and intubation 18 0
Intubation 84 18
Suction 0 46
Suction and intubation 0 9
Total deaths 41 14
Mortality 26-% 13+%
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A rate has the following form:

which, expressed in words, means

The number of times the event actually occurs.
The whole number of exposures to risk of its
occurrence, i. e., the number of times it actually
occurs + the number of times it might occur, but
does not.

Rate = a constant (K) X

The part of the right-hand number of the rate equation which
is in brackets limits the universe of discourse to which the rate
applies in space.

A rate is also always limited to a particular universe of dis-
course in time. This is done by preliminary definition. Thus a
death-rate is “annual,” referring to the deaths in a specified year,
or “monthly” or “weekly,” etc.

The constant K is generally taken as some power of 10: either
102 or 103 or 104 or 105 or 106 . There is no reason for this except
convention. When K = 102 the rate is per centum; when K
— 103 the rate is per thousand, etc.

The commonly employed rates in biostatistical work may be
classified as follows:

A. Death-rates (Mortality rates).
1. Observed actual death-rates, obtained by the direct

application of equation (i), without assump-
tions:

(a) Crude death-rates.
(b) Specific death-rates.
(c ) Infant mortality rates.
(d) Case fatality rates.

2. Theoretic death-rates based upon certain assumptions:
(a) Standard (or standardized) death-rates.
(b) Corrected death-rates.

(These theoretic death-rates will be considered in detail in
Chapter IX, after certain requisite preliminaries have been ex-
plained in Chapter VIII.)
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B. Birth-rates (Natality rates).
1. Observed actual birth-rates obtained from equation (i):

(a) Crude birth-rates.
(b ) Specific birth-rates.

2. Theoretic birth-rates, based upon certain assumptions:
(a) Standardized birth-rates.
(b) Corrected birth-rates.

C. Morbidity Rates.
1. Observed, actual:

(a) Crude.
(.b ) Specific.

As these two categories fall, in actual
practice, rather in the field of demo-
graphic statistics than in that of med-
ical statistics, they will not be further
considered.

D. Marriage Rates

E. Divorce Rates

Each of the types above mentioned will be discussed in detail
farther on.

Before doing so, however, it will be well to define and classify
the ratios commonly used in biostatistics.

A ratio is a relative figure in fractional form, but distinguished
from a rate by the fact that the denominator does not denote the
number exposed to risk of occurrence of the event, whose fre-
quency of occurrence is given by the numerator.

r»
= k (tti) (ii)

where
R 0 = a ratio,
K = a constant,
a = the number of times an event of some specified kind occurs,
c + d = the number of times some other kind of event, in general different

from the a event, occurs, although in some cases c = a.

There are but two sorts of ratios at all commonly employed in
biostatistical work, viz.:

(a) Death ratios.
(&) Birth-death ratio (or Vital Index).

Each of these different sorts of rates and ratios will now be
discussed and illustrated in some detail. But before going on to
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this it is important to emphasize particularly one point. It is
this: As defined above, each of the rates and ratios mentioned is
mathematically an expression measuring a probability. When in
a later chapter the discussion of the theory of probability is under-
taken this fact about death-rates, birth-rates, etc., will be more
easily and fully appreciated. But it is desired to bring it out here
in anticipation of the more formal discussion of probability in
order that the reader may fully realize from the start that what
a death-rate or a birth-rate really measures, in a mathematical
sense, is always a probability. The conventional use of the con-
stant K in rate formulas tends somewhat to disguise (at least to
the unwary) this fact, but in the detailed discussion of rates pains
will be taken to state formally what probability it is that each
particular rate or ratio measures.

CRUDE DEATH-RATES

Here the fundamental equation (i) becomes

where
R c = crude death-rate,
D = deaths from all causes,
P = total population = D + (P — D) = P.

Nothing could be less refined than this. The deaths are not
separated as to cause, and the entire population is assumed to be
at risk of death. The annual crude death-rate measures the prob-
ability of a person, regardless of age, sex, race, or occupation,
dying within one year, from any cause whatever, in a population
constituted in respect of its age, sex, racial and occupational dis-
tribution, as the population under discussion happens to be. A
crude death-rate, in other words, is an absolutely accurate and
precise measure of something which, because of its heterogeneous,
composite, unanalyzed character, is not particularly worth while
measuring accurately. So many variables besides those essentially
lethal can (and do) influence the stated values of crude death-rates
as to make them rather untrustworthy for any but the broadest
and roughest conclusions and estimates. Taken alone and by
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themselves, in the complete absence of any other knowledge than
that furnished by the crude rates themselves, they must be em-
ployed with the utmost caution and reservation in comparisons of
one locality or one time with another. The reasons for the great
unreliability of crude rates for comparative purposes will more
and more clearly appear as we proceed.

Another class of crude death-rates is given by the expression

where D' = deaths from a particular cause or group of causes only?
and all the other letters have the same significance as before.
Thus we might have the crude death-rate for tuberculosis of the
lungs. This represents the first step in specification, but does not
go far. Indeed R'c may certainly be said in a good many cases to
give a wholly false measure. It does not measure any rational
probability, because P still is the total living population. But
as we have seen earlier not all P is exposed to risk of dying, for
example, of puerperal septicemia. Therefore the probability given
R'c is in that case a false one. Rc does measure a true prob-
ability, because all P is exposed always to the risk of dying of some-
thing or other, but it is not a very important or interesting prob-
ability. In short, Rc is rather a fool, while R'c is a knave.

The crude rate from all causes Rc may be used with a fair de-
gree of safety for comparing the relative mortality of the same place
(city, state, etc.) at different times, provided the periods com-
pared are not too far apart, and provided the place has not under-
gone rapid growth or decline in population during the period.
The reason for this is that in fairly stable, large communities
the age and sex constitution of the population changes only very
slowly. This fact is well illustrated by the figures of Table 13,
which shows the mean age of the living population of Amsterdam,
at nine consecutive census periods (1829 to 1909 inclusive), together
with the probable errors of these means (the meaning of probable
errors will be explained in a later chapter).

It is at once apparent that in this long period the age con-
stitution of the population of Amsterdam has changed but slightly-
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TABLE 13
Mean Age of Living Population of Amsterdam at Each of Nine Consecutive

Censuses, 1829-1909.

It has been shown analytically by Lotka 2 that, under certain
conditons not widely different from those which prevail in large
humanpopulation aggregates, the age distribution tends to converge
toward a stable normal condition or state.

The crude rate from all causes Rc is wholly unreliable as an
index of the relative mortality in different places, unless it be first
shown by a preliminary investigation that the populations of the
places compared are substantially identical in age and sex dis-
tribution, a condition which is usually not carried out.

SPECIFIC DEATH-RATES

Here the fundamental equation becomes

where
R s = specific death-rate,
De = deaths in a specified class of the population,
E = number exposed to risk of dying, in the same specified class of the

population from which the deaths come.

In actual statistical practice at the present time death-rates
are commonly made specific with reference only to age and sex.
This means a situation like the following: In a community A there
were living in a particular year say 100 males

, the age of each of
whom was between 12 and 12.99 years. Of these persons say

Census years.

Mean age.

Male,
years.

Female,
years.

Both,
years.

1829 27.820 ± .045 30.521 ± .041 29.318 ± .030
1839 27.120 ± .042 29.874 ± .040 28.637 ± .029
1849 27.352 ± .040 30.301 ± .038 28.963 ± .028
1859 27.469 ± .039 30.180 ± .037 28.944 ± .027
1869 27.891 ± .038 30.444 ± .037 29.268 ± .027
1879 27.445 =t .035 29.754 ± .034 28.674 =fc .024
1889 26.783 ± .030 28.901 ± .030 27.905 ± .021
1899 26.709 ± .027 28.682 ± .026 27.755 ± .019
1909 27.772 ± .025 29.639 ± .025 28.750 ± .018
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10 died within the year. Then R as = K which means that

the annual death-rate, specific for age and sex (R as) in this com-
munity was 0.1 K for males between twelve and thirteen years
of age.

Specific death-rates are the true and best measures of the
force of mortality. They furnish a real and meaningful measure
of the probability that certain specified kinds of persons will die
within the time period (usually one year) specified in forming the
rate. From age specific death-rates (which the English commonly
speak of as measures of “mortality at ages”) is derived all the
really fundamental knowledge which we have of the laws of mor-
tality.

It will be well at this point to put before the reader a definite
picture of the form of the specific death-rate curve from all causes.
This is done in Table 14 and Fig. 40, in which the rates are specific
for quinquennial age groups.

TABLE 14
Age and Sex Specific Death-rates, per 1000 Living, from All Causes for the

U. S. Registration Area (Exclusive of North Carolina) in 1910.
(Author’s Computation from Census Bureau Data.)

Ages. Males. Females.

Under 1 124.4 143.4
1-4 15.1 13.8
5-9 3.7 3.5

10-14 2.5 2.4
15-19 4.1 3.7
20-24 6.0 5.2
25-29 6.8 6.1
30-34 8.0 6.8
35-39 9.8 7.8
40-44 11.6 8.9
45-49 14.5 11.0
50-54 18.5 14.6
55-59 25.7 20.6
60-64 36.1 29.4
65-69 51.4 44.3
70-74 75.1 66.8
75-79 112.2 100.9
80-84 168.1 155.9
85-89 237.9 222.7
90-94 313.0 309.7
95-99 410.2 368.9

100 and over 494.2 471.7
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It will be noted that this specific death-rate curve has a char-
acteristic form. Starting at a high point in earliest infancy the
specific rate drops till it reaches a low point in the age group 10-14.

TOTALS

DEATH
PATE
PEP

1,000
LIVING
OF

EACH

SEX
AND
AGE

Fig. 40.—Age and sex specific death-rates from all causes for the U. S. Regis-
tration Area (exclusive of North Carolina) in 1910. Plotted from data of Table 14,
on an arithlog grid.

From that point on it rises steadily, though not entirely evenly
till the end of the life span. The specific death-rates are lower
in females than in males at every age period in life except the
first (under 1).
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Specific death-rates can obviously be calculated for each sepa-

rate cause of death, and will furnish exact and useful information
about comparative forces of mortality. In Appendix I there are
given age and sex specific death-rates (on a quinquennial age
grouping), for each statistically recognized cause of death, in the
United States Registration Area (exclusive of North Carolina)
in 1910. These tables the reader should study in order to get a
general understanding of mortality. They will be found useful
for reference in many connections.

It is apparent that the specificity of death-rates may be ex-
tended to any degree, provided the necessary data relative to
population and to deaths are available. For a really penetrating
insight into the forces of mortality, both for purposes of research
and the administration of public health, death-rates ought to be
made specific for the following factors:

1. Age.
2. Sex.
3. Race (or country of birth of person and parents at least).

Race will include color.
4. Occupation.
5. Locality of dwelling (urban or rural).
Each of these factors more or less profoundly influences the

force of mortality. Death certificates carry the necessary data
(at least theoretically, and actually if properly filled out) regarding
deaths. Every ten years the census collects the necessary data
regarding the population. If only these data could be properly
tabulated and published it would be possible to calculate in census
years the death-rates specific for the above five factors. Eventually
this will surely be done. The sciences of medicine and hygiene
will imperiously demand it. In the meantime we make shift to get
along by groping in the dark in respect of all factors except age, sex,
and urban or rural dwelling.

The sort of probability which a death-rate specific for the
above five factors would measure is, for example, the probability
that a male person, aged twenty, native born of native white
parents, living in the country and by occupation a farmer, would
die within one year.
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INFANT MORTALITY RATES

Here the fundamental equation (i) becomes
* -*{§)■

where
Ri = infant mortality rate,
D{ = deaths of infants under one year of age,
B = births.

The question which will inevitably occur to the reader’s mind
at this point is: Why not use the age specific death-rate for age
under one as the measure of infant mortality? To which the
answer is, Such would be the practice if it were not for the difficulty
of getting accurately (or annually) a count of the population
under one year of age. But because this is difficult and the results
are known to contain large errors, whereas the registration of births
is or can be made accurate, the form of death-rate given above is
generally used as the measure of infant mortality rather than the
simple age specific death-rate under one.

The theory on which the formula for Ri, given above, is based,
is obvious. The number of babies born in a given year is held to
be at least a fair index of the number of babies exposed to risk of
dying within the year under one year of age. Actually, of course,
it does not measure the exposed to risk of dying under one year.
Because, consider a given calendar year; the baby born on De-
cember 1st of that year is only exposed for one month to risk of
dying under one year of age within that calendar year. But, on the
other hand, given a fairly stable population, and accurate birth
registration, the error in the absolute value of the infant mortality
rate introduced by the relations just mentioned, will be a con-
stant one over fairly long periods of time, and, because constant,
negligible when the rates are used for comparative purposes.

In the present state of knowledge upon the subject it is im-
possible to state exactly what the probability is that is measured
by Ri.

The infant mortality rates, as defined by R;, for American
cities of 100,000 or more population in 1920 are given in Table 15.

It will be noted from this table that there is great variation
among the different cities in the rate of infant mortality. This
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TABLE 15

Infant Mortality Rates (Deaths Under One Yearof Age per 1000Live Births)
in Registration Cities of 100,000 Population or More in 1920. (Re-

arrangement of Data from Birth Statistics, 1920, p. 26.)

variation I have discussed biometrically elsewhere. 3 Its sig-
nificance, from the standpoint of public health and preventive
medicine, is very great. In the paper referred to it was pointed

Cities. 1920 rate.
Lowell, Mass
Fall River, Mass
New Bedford, Mass
Scranton, Pa
Richmond, Va
Pittsburgh, Pa
Kansas City, Kans
Baltimore, Md
Syracuse, N. Y.
Detroit, Mich
Buffalo, N. Y
Boston, Mass 101
Norfolk, Va
Hartford, Conn
Grand Rapids, Mich
Reading, Pa
Cambridge, Mass
Columbus, Ohio
Youngstown, Ohio
Milwaukee, Wis
Bridgeport, Conn
Omaha, Neb

... 92
Washington, D. C
Indianapolis, Ind
Philadelphia, Pa
Yonkers, N. Y
Toledo, Ohio
New Haven, Conn
Cleveland, Ohio
Louisville, Ky
Springfield, Mass
Worcester, Mass
New York, N. Y 85
Dayton, Ohio 85
Rochester, N. Y
Akron, Ohio 84
Cincinnati, Ohio 82
Albany, N. Y
St. Paul, Minn
Salt Lake City, Utah 72
Los Angeles, Calif
Oakland, Calif
Spokane, Wash
Minneapolis, Minn 65
San Francisco, Calif
Portland, Ore 60
Seattle, Wash 57
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out that the facts of variation make it clearer where the funda-
mental administrative problems of control of infant mortality lie
than perhaps could be done in any other way. The first step in
the solution of any problem is obviously a clear definition of the
problem itself. We see, as we pass from city to city, town to
town, or rural country to rural country, that the rate of infant
mortality varies greatly. In a hypothetic commonwealth where
the most perfect administrative control over infant mortality pos-
sible or conceivable had been attained this variation would to a
considerable extent disappear, the only residue of diversity be-
tween communities in respect of infant mortality being such as
arose either (1) purely by the operation of chance, that is, from
random sampling, and (2) from the racial composition of the
several populations, and (3) from fundamentally uncontrollable
environmental differences, such as climate, soil, etc. Now with
the actually existing condition of variation between different
communities in respect of infant mortality, it is obvious that there
must be particulate and presumably in large degree determinable
reasons for each particular difference which exists. Just as
obviously, before administrative control can effectively wipe out
these mortality differences and get all communities at or near the
level of the lowest, we must know something about the deter-
mining causes upon which they depend. Operating on a basis largely
of empiricism and a priori reasoning, efforts to reduce infant
mortality have in the past been attempted with considerable suc-
cess. Also, with the advance of general sanitation the death-rate
under one year of age has fallen enormously. Greenwood quotes
some interesting figures on the point from Farr, which we may well
reproduce here to show how enormous has been the improvement:

TABLE 16
Showing the Reduction in the Mortality of Infancy and Early Childhood.

(After Greenwood.)

Period. 1730-49. 1750-69. 1770-89. 1790-1809. 1810-29.

Percentagedeaths under five years. . . 74.5 63.0 51.5 41.3 31.8
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But after such a decline as these figures indicate, to continue
the reduction presents a difficult problem to the administrative
official. The easy part of the conflict has happened and is in the
past. To continue the good fight with the same relative measure
of success, one presently must needs know more precisely than is
now known the pattern of the causal nexus which controls and
determines the rate of infant mortality. The problem confronts
the administrative official or the altruistic organization in a specific
rather than a general manner. City A has a death-rate under
one year of age so low that even the most sanguine of hygienic
optimists would hardly undertake seriously to reduce it further by
any significant amount. In City B, on the other hand, babies die
like flies, only somewhat more rapidly. City B differs in many
respects from A. Some of these respects are such as to be easily
within the power of control of a health official. Others, such as
climate or the racial composition of the population, for example,
are obviously beyond the possibility of any control or modification.
Others lie between the two extremes, and offer practical diffi-
culties of varying degrees. What one needs to know is which
particular line of effort will in practice yield the largest return.
And it is real knowledge, not a priori logic, that is wanted. Let a
single example illustrate. It has been maintained that excessive
infant mortality is primarily the resultant of the so-called “de-
grading influence” of poverty, and such a contention stirs a warmly
sentimental feeling of agreement in the minds of a well-meaning
public, zealous to do good. This relationship obviously ought to
be true, therefore to a too-common type of mind it must be and is
true. But Greenwood and Brown, 4 in whatmay fairly be regarded
the most thoroughly sound, critical, and penetrating contribution
which has yet been made to the problem of infant mortality, are
unable “to demonstrate any unambiguous association between
poverty . . . and the death-rate of infants.”

The plain fact is that before control or ameliorative measures
can be applied with the maximum of efficient economy to the
general public health problem of infant mortality we must know
a great deal more than we now do about the quantitative influence
of the general factors which induce spatial and temporal differences
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in the rate of that mortality. But first we must get an adequate
conception of the magnitude and character of the differences them-
selves.

TABLE
17

Frequency
Distribution

Showing
Variation
in

Infant
Mortality
in

Birth
Registration

Area
of

United
States

The distribution of variation in infant mortality in cities and
rural areas in the United States is shown in Table 17, taken from
the paper cited.

Deaths per1000births
in specified years.

Total
population
cities

of
25,000
and
over.*

Total
population
cities

of
under
25,000
*

Total
population

rural
counties.

White
popu-lation cities

of

25,000
and

White
popu-lation cities under 25,000*

White
popu- lation rural counties.

Coloredpopulation cities
of

25,000
and

Coloredpopulation cities under 25,OOP-*
Colored population;rural counties.

1915
1916
1917
1918
1915
1916
1917
1918
1915
1916
1917

1918
1917
1918
1917
1918
1917
1918
1917

1918
1917
1918
1917
1918

0-
19

—

i

i

i

—

3

i

1

20-
39

—

i

—

—

—

2

i

—

2

9

33

32

—

—

—

—

i

9

—

—

—

—

2

1

40-
59

2

i

5

i

ii

4

12

6

49
45

152
174
i

—

—

i

30

33

—

—.—

i

8

5

60-
-79
16

18
22
17

25
27
49
37

130
125
396
342
4

i

6

3

71

63

—

i

i

—

26
22

80-
99
27
24
50
43
44

42
76
65

99
107
316
298
14

13

8

5

66
64

—

i

i

i

29

19

100-119
29
34
45
40
35
39

61

48
52
57

140
165
7

8

8

6

46

38

—

i

3

i

36
42

120-139
13

14
13
27
20

23

24-
38
17

21

59

64

1

5

3

4

13

16

3

i

.

4

40
37

140-159
9

5

7

13

11

7

13

15

6

15

18

31

—

—

1

5

3

8

1

2

3

1

28

30

160-179
1

2

1

1

3

5

5

15

1

2

4

11

—

—

—

2

1

2

6

2

1

2

21
19

180-199
•1

—

1

2

3

6

4

4

—

—

4

8

—

—

—

—

1

—

5

2

—

.

18

17

200-219

6

1

.

1

1

—

—

—

—

.
1

6

5

2

2

5

10

220-239

'
.

—

—

—

—

1

—

—

—

1

—

—

—

—

—

—

—

3

6

5

4

8

12

240-259

1

2’

2

3

1

4

8

260-279

2

1

1

4

280-299

2

4

2

2

300-319

1

1

1

2

-1-

1

320-339

1

1

1

1

—

340-359

1

1

—

—

—

•360-379

1

380-399

1

—

400-419

1

420-439

1

1

.

440-459

1

460-179

1

480-499 500-519

1

1

—

—

—

—

520-539 540-559560-579 580-599 600-619

1

—

98
99
144
144
153
156

236
236
358
381

1127
1127

27
27
26
26
232
234
27
27
26
26
232
234

*

In
1910.
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The infant mortality rates of various countries are given in
Table 18.

TABLE 18
Infant Mortality Rates (Deaths Under One Year Per 1000 Births) for

Various Countries. (Rearrangement of Data from Birth Statistics, 1920, p. 40.)

CASE FATALITY RATES

Here the fundamental equation becomes

where
Rf = case fatality rate,
Dc = deaths amongst recognized cases of the disease for which the rate is

calculated,
C = cases of the disease.

This is, provided age, sex, race, occupation, and locality of
dwelling are taken into account, the most refined form of a specific
death-rate. Because, in the most exclusive sense, those who have
a given disease are the most truly exposed to risk of dying of that

Country and year. Male. Female.
Hungary (1915) 281.9 244.6
Russia (1909) 264.9 236.9
Chile (1918) 260.9 248.2
Ceylon (1919) 227.8 217.3
Austria (1913) 204.2 174.6
Japan (1917) 181.8 164.2
German Empire (1914) 177.1 149.2
Prussia (1914) 177.1 150.2
Italy (1916) 174.5 157.7
Jamaica (1919) 167.7 155.4
Bulgaria (1911) 166.1 145.7
Spain (1917) 163.5 146.1
Serbia (1910) 144.7 132.4
Belgium (1912) 132.1 107.2
Uruguay (1920) 124.7 109.5
France (1913) 122.7 101.7
Finland (1918) 122.6 107.5
Scotland (1919) 112.9 89.6
Denmark (1919) 101.3 81.2
United Kingdom (1919)

....
101.3 79.0

England and Wales (1919) 100.0 77.6
Ireland (1919) 97.3 77.5
Switzerland (1918) 96.9 79.1
United States (registration area, 1920) 95.1 76.1
Australian Commonwealth ( 1920) 76.7 61.1
Sweden (1916) 76.6 62.5
Norway (1917) 70.6 57.0
The Netherlands (1919) 55.2 43.9
New Zealand (1918) 53.6 43.0
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disease at that time. The case fatality rate for typhoid, for ex-
ample, measures the probability that a person who has typhoid
will die at that time (i. e., within the course of the attack) of that
disease.

Unfortunately, our knowledge of true case fatality rates, even
for the commonest diseases, is very meager, because of the in-
adequacy of the reporting of morbidity. The case fatality rate is,
of all the data of biostatistics, the most interesting to the clinician,
because of its obvious bearing upon prognosis. The most reliable
data in existence on case fatality rates are those derived from the
experience of great hospitals. But these do not give a true scientific
picture of the situation for two reasons: First, a hospital popula-
tion is an adversely selected population. In the main, the cases
which get into a hospital are those in which the prognosis at a fairly
early stage of the disease is thought, often on the best of grounds,
to be in some degree unfavorable. Consequently, hospital case
fatality rates tend to be unduly high. This state of affairs becomes
grossly exaggerated when it is the practice for the hospitals of a city
to send to one particular hospital, usually that one supported by
the municipality, the greater part of their cases which upon entrance
are seen to be either moribund or of very bad prognosis.

In the second place, the treatment of a disease in a hospital may
significantly influence, either favorably or unfavorably, the course
of the disease, as compared statistically with the treatment given
on the average outside.

There is a wonderful field open to the quantitatively inclined
student of medicine, in the procuring and biometric analysis of
accurate case fatality rates.

BIRTH-RATES

The crude birth-rate is given by

r b = K ,

where
Rb = crude birth-rate,
B = number of births (but exclusive of still-births) in a given time, as a year
P = total living population.
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This rate is obviously a most crude measure of the reproductive

capacity of a population. To begin with, not all living persons are
exposed to the risk of having a baby. Only females, and those
between certain ages (roughly from ten to sixty as outside limits)
are liable to this occurrence. Furthermore, under existing con-
ditions of law and public sentiment, in the main the giving of birth
to babies is confined to married women within the age limits stated.
So then to arrive at anything like a true general measure of the
force of natality it will be essential first to differentiate between
legitimate and illegitimate births, and between living and still-
births, and in the second place, to use as the denominator of the rate
fraction for legitimate babies the number of married women between
the age limits ten and sixty.* For the illegitimate rate the denom-
inator must be, of course, the unmarried women within the same
age limits.

As to the reliability and significance of crude birth-rates, as
commonly calculated with the total population for denominator,
much the same considerations apply as have already been set forth
for crude death-rates. They can be used for comparison of different
places only with the utmost caution, because differences in the age
and sex constitution of the populations compared, quite regardless
of their true forces of natality may have most profound effects
upon the rates. So long as the population of a given place is
changing only slowly in its composition, its crude birth-rates are
fairly comparable inter se at different times, as, for example, in
successive years. In the routine official birth statistics of the
United States it is the crude birth-rate which is tabulated.

For a considerable number of years the crude birth-rate has been
falling in most civilized countries. A general conspectus of birth-
rate statistics for different countries is shown in Table 19, taken
from Knibbs.5

* The limits usually taken are 15 and 45, 50 or 55. Actually, however, there
are every year recorded births from mothers under fifteen and over fifty-five years of
age. There are not many such, of course, but still it is a physiologic fact that there
is a small risk that some women may become pregnant and bear a child at or very
near the extreme ages of ten and sixty that have been stated above.
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TABLE 19
Crude Birth-rates for Various Countries— 1860-1914—Per 10,000 of the

Population. (From Knibbs.)
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SPECIFIC BIRTH-RATES

Age specific birth-rates may be formed if the necessary statistical
data are available in accordance with exactly the same principle as
was used in forming age specific death-rates. The number of
women of a given age, or within a given small age group is used as
the denominator, and the number of babies born in a year to women
in this age group as the numerator of the rate fraction. Such
figures measure thefertility of women of the specified class. Mat-
thews Duncan long ago showed that the fertility rate varied in a
definite and lawful manner with age. Some recent statistics to the
same purpose are presented in Table 20, adapted from Knibbs. 5

TABLE 20
Age Specific Birth-rates Competed from Australian (1911) Data. (Data

from Knibbs,5 p. 325.)

It is to be understood that the figures in Table 20 do not refer
to first births only, but to all births regardless of their order. It is
seen that the age specific birth-rates are highest in the earlier years,
and decrease in value with advancing age. It will be remembered
that all Australian birth-rates are high as compared with other
countries.

There is a good deal of confusion in the use of the terms “fer-
tility” and “fecundity.” The writer some years ago discussedf
this terminology in the following words:

* Births per 1000 married women of indicated age.
f Pearl, R., and Surface, F. M.: Data on the Inheritance of Fecundity Obtained

from the Records of Egg Production of the Daughters of “200-egg” Hens, Maine
Agr. Exp. Sta. Annual Report, 1909, pp. 49-84.

Age of
mothers.

Total
married
women.

Number who bore
a child during

the year.

Specific birth-
(or fertility)

rate.*

19 and under 8,716 4,146 476
20-24 65,959 25,957 394
25-29 110,591 33,817 306
30-34 113,310 25,682 227
35-39 105,550 16,839 160
40-44 95,573 6,763 71
45 and over 82,933 713 9

Totals 582,632 113,917 196
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“We would suggest that the term ‘fecundity’ be used only, to
designate the innate potential reproductive capacity of the indi-
vidual organism, as denoted by its ability to form and separate
from the body mature germ cells. Fecundity in the female will
depend upon the production of ova and in the male upon the
production of spermatozoa. In mammals it will obviously be very
difficult, if not impossible, to get reliable quantitative dataregarding
pure fecundity. On the other hand, we would suggest that the
term ‘fertility’ be used to designate the total actual reproductive
capacity of pairs of organisms, male and female, as expressed by
their ability when mated together to produce (i. e., bring to birth)
individual offspring. Fertility, according to this view, depends
upon and includes fecundity, but also a great number of other
factors in addition. Clearly it is fertility rather than fecundity
which is measured in statistics of birth of mammals.”

Standardized and corrected birth-rates of populations may be
calculated on principles discussed in Chapter IX for death-rates.

MORBIDITY RATES

The fundamental equation for a crude morbidity rate is as
follows:

Ru ~ K (?)
where

Rm = crude morbidity rate,
M = number of persons sick, either from all causes together or from some

one particular cause (in the latter case the rate, of course, is the crude
morbidity rate for that disease) in a given stated time,

P = the total population.

Such a figure measures the incidence rate of sickness in the
population, either in general or for particular diseases. It is
subject to many, if not all, of the same difficulties that crude death-
and birth-rates are. Unfortunately, however, there exist so few
statistics relatively regarding morbidity that it is somewhat aca-
demic to be too critical regarding any morbidity rates. Any-
thing in the nature of age and sex specific morbidity rates is practi-
cally non-existent at the present time.

But there is no doubt that morbidity statistics are, by and
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large, of all statistics the most potentially valuable to the adminis-
trative public health official.

It is not fair to measure the effectiveness of public health work
entirely in terms of mortality, because much of its effectiveness in
actual fact has nothing to do with mortality, but with morbidity.
This fact shows itself in every-day language. We have boards of
health

,
not boards of mortality, and quite rightly so. Some of the

human ailments against which public health work directs its most
effective work are diseases which at the worst are not particularly
fatal. An example is uncinariasis—hookworm disease. It would
be folly to attempt to measure the social worth of the campaign
against this distressing ailment in terms of mortality. What this
work accomplishes is not primarily a reduction in mortality, but a
positive increase in the sum total of human happiness and well-
being, individual, social, and economic. The same considerations
apply to many other lines of public health work, indeed, to most of
them. The most important causes of death

,
taken by and large,

are not the ones against which hygiene and sanitation are, in the
present state of knowledge and of the organization of society,
particularly effective. But this fact should in nowise be taken to
mean that public health efforts have no great value.

DEATH RATIOS

A death ratio measures the probability that in a given total
number of deaths from all causes a particular one will be from one
particular cause, say tuberculosis of the lungs. The fundamental
equation is

where
RtD = the death ratio,
D' = deaths from a particular cause (or group of causes) in a specified time

interval,
D = total deaths from all causes in the same time interval.

This statistical constant has been much criticized, and has in
consequence largely fallen out of general use, on the ground that
both D' and D are variable quantities affected by the same bio-
logic forces, and that in consequence it is never possible to tell
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with any degree of accuracy what portion of the derived value
of Rtj) is due specifically to D' and what to D. Undue weight
has undoubtedly been given to this criticism. In principle the
same criticism applies to any rate, for P in a crude death- or birth-
rate, or any more precisely defined part of P, is not an invariable
quantity. As a matter of fact Rtj) may be a very valuable statis-
tical datum if used intelligently, and there is no statistical datum
whatever that can be relied upon to give correct results if un-
intelligently employed. The criterion as to the usefulness of
Rtr> is simply and solely whether the probability which it measures
is, in the particular premises set by the study in hand, an intelligible
probability. If it is, Rtp has validity and usefulness.

The death ratio has in recent years been most effectively em-
ployed in researches on tuberculosis by Greenwood and Tebb,6

and by Arne Fisher* as a basis for computing life tables from a
knowledge of deaths alone.

THE BIRTH-DEATH RATIO OR VITAL INDEX

The writer7 has elsewhere suggested that the term “vital index”
be used to designate that measure of a population’s condition which
is given by the ratio of births to deaths within a given time. It
may fairly be said that there is no other statistical constant which
furnishes so adequate a picture as this of the net biologic status
of a population as a whole at any given moment. If the ratio
100 Births/Deaths is greater than 100, the population is in a grow-
ing and in so far healthy condition. If it is less than 100, the popula-
tion is biologically unhealthy. Depopulation may not be actually
occurring if there is a sufficient amount of immigration to make up
the deficiency in births. But fundamentally and innately the
condition is not a sound one from a biologic standpoint, though
under certain circumstances it may be from a social standpoint.
It is curious, in view of the obvious significance of this constant,
the vital index of a population, that so little attention is paid to it
by demographers. After much study of it I am convinced that
no single figure gives so sensitive a measure of the vitality of a

* Fisher, A.: On the Construction of Mortality Tables by Means of Compound
Frequency Curves, Scandinavian Insurance Magazine, 1920, passim.
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nation or any subgroup of people as this does. There appears
to have been no adequate general discussion of it since that of
Wernicke* in 1889, and even he does not use it in the most effective
manner or form. Sundbargf proposed its use as a “measure of
civilization” of different peoples. RubinJ criticized Sundbarg,
but only in respect of technic, proposing as a measure of civilization
D2/B in place of D/B, where D = deaths and B = births. Re-
cently Pell§ has dealt with the idea implicit in the birth/death
ratio, but in a most inadequate manner.

In Table 21 are shown four vital indices for urban, rural, and
total births and deaths of each state in the Birth Registration Area
for the years 1915 to 1918 inclusive.

The significance of the several indices is as follows:
„ T .

,
.

,
, 100 (births of whites of native parents)Vital index A =

v ,c- v ,, tt rr~Deaths of all native whites

In this index the births and deaths come from an identical
group of the population. The children born were, of course, native,
and their parents were also native born. The deaths were of
native born, i. e., the same group as the parents of the births. All
racial elements (white) are included in births and deaths, but all
are Americans in the sense of nativity.

_
_. ,

. .
„ 100 (births of whites, both parents foreign)V.tal index B =

Deaths of foreign-born whites

Here again both births and deaths come from an identical group.
The births are children of foreigners in this country. The deaths
are of foreigners in this country.

TT ... „ 100 (births of negroes)Vital index C —
——— 5 9

Deaths of negroes

This needs no discussion.
TT., ,

.
. _ 100 (births of whites)

Deaths of whites
* Wernicke, J.: Das Verhaltniss zwischen Geborenen und Gestorbenen in his-

torischer Entwicklung und fur die Gegenwart inStadt und Land, Jena, 1889, vi, and
91 pp. 8vo.

f Sundbarg, G.: Dodstalen sassom Kulturmatare, Nationalokonomiska Foren-
ingens Forhandlingar, i Aaret, 1895, Stockholm, 1896.

t Rubin, M.: A Measure of Civilization, Jour. Roy. Stat. Soc., vol. 60, pp. 148-
161, 1897.

§ Pell, C. E.: The Law of Births and Deaths, London (Unwin), 1921, 192 pp.
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TABLE
21

Vital
Indices

of
Various

Elements
in
the

Population
of

Registration
States,

Cities
in

Registration

States,
and

Rural
Portions

of
the

Registration
States
in
the

Birth
Registration

Area

(1915-18
Inclusive)

This is for comparison with C. Both C and D are true vital
indices, in the sense that the parents of the births in the numerator
are drawn from the same population group as the deaths in the
denominator.

State
and

group.

1915
—Vital

Index.

1916
—Vital

Index

1917
—Vital

Index,

1918
—Vital

Index.

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

Connecticut
Cities
82.9
355.8
94.8

195.4
81.8

340.6
85.1

189.3
90.4
331.0
82.0

196.1
72.9
219.2
75.1

143.7

Rural
75.7
292.0

604
149.0

73.5
282.9
81.3

146.4
77.8
293.2
82.7

149.2
65.7
212.2
65.0

120.2

Total
&D.5
339.7

80.6
180.9

79.2
326.6
84.3

176.7
86.4
322.6
82.1

182.8
70.8
217.7
73.4

137.3

District
of
Columbia
Total'

117.0
97.5
85.2

123.0
119.7

93.5
87.3

125.9
126.6
103.7

85.5
131.7
102.1

78.5
64.7

104.2

Indiana

Cities
*

*

*

*

*

*

*

144.0
174.5

71.5
158.2
124.1
142.5

66.3
134.9

Rural
*

*

♦

*

*

*

172.5
54.3
59.1

166.3
153.2

53.1
53.8

149.0

Total
*

*

*

*

*

*

*

*

162.7
121.8

68.2
163.3
142.8
108.5

63.3
143.6

Kansas

Cities
*

*

*

*

*

*

*

*

149.8
103.6

70.6
150.0
116.2

72.3
65.6

114.7

Rural
*

*

♦

*

*

P

*

223.7
58.1
74.5
208.2

190.4
50.5
67.4

177.9

Total
*

*

*

♦

*

*

*

*

207.3
68.6
72.2

195.3
171.9

50.1
66.4

162.2

Kentucky
Cities
*

♦

*

*

*

*

*

*

135.8
26.6
47.4

123.1
105.6

25.1
34.7
98.5

Rural
*

*

*

*

241.4
35.9
91.0
236.4
203.1
38.6
74.5

199.6

Total
*

*

*

*

*

*

*

*

221.9
29.7
76.0

202.9
183.1

29.3
60.3

177.0

Cities
75.6

188.6
714

131.5
73.8

163.8
25.0

122.4
79.4

173.8
75.0

128.4
70.7

124.9
63.8

106.2

Rural
105.6

156.0
87.5

136.4
105.7
146.2
18.7
135.9
115.0
161.6

8.3
145.5

96.5
112.5
21.1

119.9

Total
98.8
169.0

80.0
135.1

98.1
151.3

21.9
132.3
106.3
166.7
35.0

143.0
90.2

117.8
344

116.2

Maryland
Cities
*

*

*

*

138.3
166.4

82.9
136.8
137.7
152.1

80.8
152.7

96.2
107.7

63.7
105.9

Rural
*

*

*

*

177.0
90.1

128.6
173.5
173.3

82.6
125.1
168.7

129.8
67.6
92.8

126.3

Total
*

*

*

*

157.5
144.9

106.8
164.6
155.1

132.2
103.1
160.1
111.9

96.8
78.8

114.9

Massachusetts
Cities
86.7

276.2
113.2
186.4

87.0
251.2
101.
1

176.3
92.1
246.5

111.3
179.7

70.1
171.5
97.0

129.6

Rural
80.5

226,4
70.6

145.1
79.0
202.1
73.5

135.3
77.4
207.4

128.4
135.6
63.0
147.8
86.2

104.8

85.1
267.1

105.8
177.0

85.1
242.3
96.0
167.2

88.5
239.6

113.3
169.9

68.5
167.4

95.4
124.5

Michigan

Cities
101.5

234.5
86.3

205.4
138.0

227.2
66.7

195.7
143.0

226.4
79.1

198.5
132.3
192.6

86.8
179.2

Rural
182.2
143.5

83.1
197.9
172.2
140.5

68.1
186.7

171.7
139.4

64.1
185.3
155.9
123.8

77.0
167.4

Total
165.0

187.8
85.2

201.2
157.2
184.4

67.1
190.9
158.8
184.2

74.5
191.5
145.2
159.7

84.1
173.0

Minnesota
Cities

173.0
166.3

59.9
211.5
163.2
148.2

51.4
194.5

170.8
136.3

67.7
194.5
137.0
105.1

61.1
156.4

Rural
282.0

118.1
18.1

264.2.
277.3
104.6
88.2
252.8

289.9
96.7
50.0

254.9
208.0
79.3
42.9

195.1

Total
240.7
134.9

51.8
244.9
232.1

120.2
55.3
230.5
242.1

111.2
66.1
231.5

181.3
88.7
59.2

180.7

New
Hampshire
Cities
70.3
293.7

150.0
163.0

72.4
248.4
200.0
153.9

69.2
239.5
m.s

147.1
60.9

164.1
100.0
113.7

Rural
90.9

172.0
50.0

124.7
90.0

150.3
30.0

121.3
87.4

133.3
60.0

113.3
69.7

101.0
20.0
89.3

Total
82.8

240.9
110.0

140.9
83.1
206.7
69.2

135.4
79.8

195.2
91.7

128.4
65.9

139.3
714

100.7

New
York

Cities
88.4

273.5
94.9
179.O'

88.5
255.4

101.6
172.5

95.6
246.0
96.3

175.2
79.4

187.1
84.5

137.1

Rural
109.6
140.7

85.3
128.1
107.4
138.5

79.7
125.6
105.1

128.8
69.9

121.4
88.5

106.6
54.8

101.2

Total
95.8

253.6
93.6
166.5

94.2
238.2
98.5

160.8
98.5
228.7
92.6

161.8
82.1

176.3
80.8

128.4



RATES AND RATIOS 171

TABLE
2t

—Continued

*

Not
in
the

Birth
Registration

Area
in

designated
year.

Unfortunately, on the basis of present published official com-
pilations of statistics, these four are the only significant vital indices
which can be drawn up. For any really deep understanding of
what the biologic effect is of racial fusion, and of a new environ-
ment, on the net vitality of populations we ought to have a whole

State
and

group.

1915
—Vital

Index.

1916
—Vital

Index.

1917—Vital
Index.

1918—Vital
Index.

A

B

C

D

A

B

C

D

A

B

C

D

A

B

c

D

North
Carolina
Cities
*

#

*

*

*

*

»

•

148.0
60.9
78.1

147.5
99.1
32.9
62.2
98.7

Rural
*

*

*

*

*

*

*

*

266.8
160.3
190.3

270.4
223.7
47.0

145.0
224.4

Total
*

*

*

*

*

*

*

*

255.4
106.3
173.1

258.2
209.2
41.6
33.8
209.3

Ohio

Cities
*

*

♦

*

*

♦

*

*

136.1
210.5
64.6

167.1
117.2
160.2

66.1
39.3

Rural
*

♦

*

*

*

♦

*

*

157.5
113.3

73.8
156.3
138.2

98.5
70.1

137.5

Total
♦

♦

*

*

*

*

♦

*

147.0
182.2

67.2
162.0
127.7
143.3

67.2
138.5

Pennsylvania
Cities

117.2
273.3
95.2

179.2
110.4

253.8
87.6
166.5
114.6

243.1
74.4

166.3
81.1

153.7
59.3

112.5

Rural
152.5

385.7
87.4
207.6

141.8
353.0
80.7

191.0
146.7

332.5
76.0

192.9
104.0
174.2

56.4
128.3

Total
135.7

314.9
93.3

193.1
126.7

290.4
86.0

178.4
130.9

276.3
74.7

179.0
92.6

162.2
58.6

120.0

Rhode
Island
Cities
74.3
219.5
83.2

158.3
72.5
216.4
76.1

152.7
79.2
217.8
89.5

159.2
64.0

172.5
91.6

126.0

Rural
70.5
319.4
65.8

157.4
79.7
331.9

113.6
175.2

84.0
358.7

123.8
182.9

63.8
207.5
29.8

127.7

Total
73.5
232.2
80.6

158.2
73.9
231.2
78.9

156.5
80.1
234.8
91.9

163.1
64.0

117.8
83.7

126.3

Utah

Cities
*

*

*

*

*

♦

♦

*

244.3
91.2
HO.O

227.3
186.0

79.4
75.0

181.0

Rural
*

*

*

*

*

*

*

*

390.7
97.1
83.3
338.9
312.7

71.6
66.7
274.2

Total
*

*

♦

*

*

*

*

*

339.4
94.7
81.8
297.8
265.4
74.8
72.4
238.5

Vermont
Cities

109.3
158.4
100.1
147.9
109.4

153.0
100.0
147.5
114.7
147.8
100.0
147.3

92.7
72.1

—

104.7

Rural
121.3
138.4
133.3
147.2
110.7
135.5

75.0
134.8
114.3
134.7
125.0
136.6

96.5
91.3

100.0
111.5

Total
119.9
142.5
120.0
147.3
110.5
139.0

77.7
136.7
114.4
137.3
116.7
138.2

95.9
86.5
66.7

110.4

Virginia

Cities
*

*

*

*

*

*

*

*

163.1
163.6

91.6
170.7
115.6
101.5

71.6
117.4

Rural
*

♦

*

♦

*

*

*

*

255.3
125.4
159.2

252.6
200.7

103.6
137.0

200.1

Total
*

*

*

*

*

♦

*

*

233.4
144.7
139.2

232.6
177.7
102.4
117.1
176.8

Washington
Cities
*

*

*

*

*

*

*

*

169.1
123.2

63.0
184.8
132.2
84.3
57.6

140.3

Rural
*

*

*

*

*

*

*

*

201.5
116.2

42.3
203.8

168.4
91.7
56.8

168.0

Total
*

*

♦

*

*

*

*

*

286.6
119.9

58.5
194.8
150.1

87.5
57.4

153.6

Wisconsin
Cities
*

•*

*

*

*

*

*

*

178.4
142.2

75.0
194.8
143.2
115.9

68.2
156.9

Rural
*

*

*

*

*

♦

*

*

266.0
57.6
37.1

209.1
217.9
57.5
65.2

186.9

Total
*

*

*

*

♦

♦

*

*

231.5
89.8
60.4
203.6

187.9
81.6
67.2

174.8

Totals

Cities
100.5

267.5
93.1
181.7

100.5
247.8
89.2

172.5
117.0

228.3
79.6

173.0
93.2

166.9
66.8

132.0

Rural
141.1

215.4
82.5

179.0
137.7
199.9

109.0
170.1
177.7
156.5
146.2
187.4
144.8
118.8
118.4
150.8

Total
117-.8

252.4
91.4

180.7
116.3

234.1
94.2

171.6
148.1

205.2
114.3
179.8
118.8
151.8

93.71
140.6
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series of racially specific vital indices. Here again there is no
practical hope of getting these from purely official sources. Some
one must come forward and finance a comprehensive and thorough
investigation along these lines from outside.

The facts about Indices A, B, C , and D are set forth in Table 21.
In this table a figure in italics indicates that the absolute number
of births and deaths on which the index is based is in each case
less than 100. It will be noted that there are few such cases, and
that they are practically all among the negroes of the northern
states.

This table presents many novel points of interest. We may
first compare vital indices A and B, which indicate the relative
biologic vigor of the native-born and the foreign-born populations
in this country. Taking totals first we note that for each grouping
and each year Index B is much larger than Index A. Except for
the rural population B is more than twice as large as A . Generally
speaking the foreign population produces in this country approxi-
mately two babies for every death. The native population (as
defined in Vital Index A) produces only a small fraction over one
baby for each death. In other words, the native population, even
when so broadly defined as by Index A ,

is in about the same state
as France before the war, and not in as vigorous a state as the
French population is now.

The vital indices of Table 21 are crude indices. We need
age-specific vital indices for native- and foreign-born populations.

Let us put the matter in this way: Suppose that a gigantic
corral were constructed with two compartments. Suppose that,
further, there were put into one of these compartments, on a given
date, all the native-born women aged twenty to twenty-four
inclusive say, while into the other compartment were put all the
foreign-born women in the country of the same ages. Suppose
them all to be told that they were to stay there for one year, but
that men could have free access to the corrals for purposes of repro-
duction. Finally, suppose that similar corrals were constructed,
and the women impounded in them, for each age group, from say
ten to fourteen at one extreme to fifty-five and over at the other
extreme.
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In any one compartment of any one corral during the year
(a) some of the women would have babies, and (b ) some of the
women would die. If we kept statistical record of these events we
could, at the end of the year, calculate the age specific vital index
for each group of women. It would not be the general population
vital index because no male deaths were included (and cannot be
because of lack of published data). But it would be an age-specific
vital index for the females as reproductive units.

TABLE 22
Age Specific Vital Indices for Native-born and Foreign-born Women in

B. R. A. 1919

The results of exactly such an experiment for the women of the
Birth Registration Area in the year 1919 are shown in Table 22.

The figures in Table 22 show plainly enough that at every age
between fifteen and fifty-four inclusive the foreign-born women
have higher specific vital indices than native-born women. How
much so is shown graphically in Fig. 41.

As a reproductive machine the foreign-born woman far excels
the native born. For each native-born woman dying between
twenty and twenty-four years of age, the native-born women as a
group produce approximately 22 babies. But for each foreign-
born woman dying between twenty and twenty-four, the foreign-
born women as a whole produce 35 babies. It is in these five

Ages.

Births
from

mothers
born

in U. S.

Deaths
of

native-
born

females.

Vital
indices

for
native

women.

Births
from

foreign-
born

mothers.

Deaths
of

foreign-
born

females.

Vital
indices

for
foreign
women.

10-14 391 5,002 7.82 15 268 5.60
15-19 77,048 7,763 992.50 10,768 759 1418.71
20-24 258,876 11,854 2183.87 74,247 2,120 3502.22
25-29 250,548 13,189 1899.67 102,429 3,317 3088.00
30-34 166,777 11,813 1411.81 83,326 3,583 2325.59
35-39 101,638 10,603 958.58 56,414 3,723 1515.28
40-44 33,832 9,511 355.71 18,878 3,566 529.39
45-49 3,202 10,092 31.73 1,866 4,120 45.29
50-54 68 10,926 .62 54 4,968 1.09
55 and over. . 26 96,919 .03 13 47,478 .02

Totals 892,406 187,672 348.010 73,902



174 MEDICAL BIOMETRY AND STATISTICS

years that women, under conditions of life as now socially
organized in the United States, do their best work biologically

BIRTHS
PER

100
DEATHS

AGE OF WOMEN
Fig. 41. —Showing the differences in specific vital indices for native-born and

foreign-born women in 1919. Solid line, native-born women; dash line, foreign-
born women.

for the race, “best” being taken here in the sense of biologic
efficiency and economy.
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So far as I am aware no attempt had been made before this

work7 to calculate age-specific vital indices. They picture, as
exhibited in Table 22 and Fig. 41, an extremely interesting biologic
fact. If we had such indices for populations of lower animals in
different environmental situations we should be in a position to
know a great deal more than we now do as to the method of evolu-
tion. For it is the net balance between births and deaths which is
the most significant information that can be had about the progress
of the struggle for existence.

It may be objected in Table 22 that we have put all births
(both male and female) against only female deaths. The thought
in doing this was that, after all, females have to produce all the
babies, whether the latter are boys or girls. If one wishes to
postulate the problem in this way: how many new reproductive
machines (females) do women of a specified age produce as a class
for each similar reproductive machine lost by death? then, of
course, one should take only female births in computing the specific
vital indices. The result would be, of course, that the births and
consequently the indices in Table 22 would be about one-half as
large absolutely as they really are in that table, but the general
form of the curve of Fig. 41 would be unchanged.

For further discussion of vital indices see Pearl and Burger, 8

Pearl* and Miner.f
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some of the underlying philosophy and technic of the mathematical treatment
developed by Knibbs, and believes that the beginner will do well to leave that
part of the work strictly alone, as being a somewhat unsound guide.)

6. Greenwood, M., and Tebb, A. E.: An Inquiry Into the Prevalence and Etiology
of Tuberculosis Among Industrial Workers, with Special Reference to Female
Munition Workers, Med. Res. Comm., Spec. Rept. Ser. No. 22, London, 1919.

(Excellent critical discussion of death ratios.)
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592-674, 1921.
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Wales, 1838-1920, Proc. Nat. Acad. Sci., vol. 8, pp. 71-76, 1922.
9. Farr’s Vital Statistics. (For complete reference see list at end of Chapter II,

Item 12.)
(To get a real grasp of the meaning and use of death- and birth-rates every

student should read and read again the writings of the great master, Farr. There
one will see how, by the use of such rates, most of what can now be regarded
as the laws of mortality and natality were worked out.)
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CHAPTER VIII

LIFE TABLES

A life table is a particular conventional method of presenting
the most fundamental and essential facts about the age distribution
of mortality. It has many points of usefulness. The chief one,
and the one which is mainly responsible for having secured for life
tables the position of respectability and importance that they now
enjoy, is that on them depends the successful operation of the great
commercial enterprise which is somewhat naively called “life
insurance.” But beyond all this commercial application life tables
have, in respect of their fundamental structure, an essential place
in vital statistics. It is impossible for the student fully to grasp the
significance of certain matters which will be discussed as we proceed
unless he knows beforehand the main features, at least, of the
anatomy of a life table. It is to furnish this background that the
present chapter finds a place in this book. I do not intend to go
at all into the details as to how life tables are constructed, for two
reasons: In the first place, there is an extensive and easily available
literature on the subject. In the second place, the details of
actuarial science are not likely to be of immediate interest or use
to the medical man.

THE ANATOMY OF A LIFE TABLE

Suppose one could so arrange affairs that 100,000 babies would
be born all at the same identical instant of time, and in such cir-
cumstances that each one could be observed then and subsequently
without break of continuity in the observations until the very last
one had died as a centenarian. If a record were kept of the course
of events, something like this would be bound to emerge. Some
of the 100,000 babies would die in the first day after birth. Let us
say there were observed to be di of these. Then on the morning
of the second day there would be surviving out of the original
100,000 who started life together the day before only

h = 100,000 - di.
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It is perceived that when this experiment started there were
exposed to risk of dying within thefirst day, or, in otherwords, within
the first twenty-four hours after birth, 100,000 individuals. Within
this time period there actually died di individuals. Therefore it
follows from the principles laid down in the last chapter that the
specific death-rate in this first day, provided we consider a day as a
not further divisible unit or instant of time, which is to say that
we consider the whole 100,000 to be exposed to risk over the whole
day*

= r d,
qi 100,000'

But both our observations and the babies are continuing. In
the second day d2 individuals were observed to die. Hence on the
morning of the third day there were surviving

h = (100,000 - di) - di

and the death-rate during the second day was, on the same assump-
tions as before,

_ jr di
Q2 ”

(100,000 - rfi)

We have postulated that these observations are to be carried
on without break until the last one of the original group has passed
away. If so, the bookkeeping at the end of the process will at least
contain columns as follows:

* This assumption is, of course, of an arbitrary character. Actually the exposed
to risk over the whole day is the integration of the number exposed to risk at each
infinitesimal instant of time in the whole day. But what I am trying to do is to
give the medical reader an understanding of the gross anatomy of a life table. If
he wants a knowledge of the microscopic anatomy he must get a text which treats of
that subject. References to such are given at the end of the chapter.

X X lx
(Age, in days, months,

years, or whatever
units one pleases, but
best stated as an in-
terval.)

(The number dying with-
in the age interval
stated in the* column.)

(The number surviving
at the beginning of the
age interval stated in
the x column.)

(The rate dx/lx ,i. e., the
numberdying in theage
interval given in the *

column divided by the
number of survivors at
the beginning of that
interval.)

0-1 100,000
etc.
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This is the skeleton of a life table. To this skeleton there are
sometimes added certain other functions derived from these three,
dx, lx, and qx. For the vital statistician two of these functions
only are of particular interest and importance. The first of these
is what is called the “expectation of life,” but in the interest of
accuracy should always be called the “mean after lifetime.” It is
designated as ex symbolically. It gives the number of years which
will, on the average, be subsequently lived by each person who has
attained any stated age. The expectation of life at birth is approxi-
mately the average age at death of all the 100,000 who start life
together. But it should always be kept in mind that the average
age at death of persons in the general population does not usually
give the expectation of life at birth of the same people. This would
only be true if the age distribution of the living population were
identical with that of the stable life table population Lx . Further-
more, the mean age at death of one population is not comparable
with the same constant from another population, unless the two
populations have identical age distributions of the living. This
fact was first pointed out by Farr many years ago.

The second important derived constant of a life table is Lx,

which gives, by age groups, the stationary living population, un-
affected by emigration and immigration, which, assuming the
mortality rates given by qx, would result if 100,000 persons were
born alive uniformly throughout each year. One important use
of this figure will appear in a later chapter.

HUMAN LIFE TABLES

In order that the reader may have a concrete realization of what
a life table looks like, Table 23 and Figs. 42, 43, and 44 are inserted.
The table is that portion of Glover’s 1 life table for both sexes in the
original registration states in 1910, which carries the constants in
which we are here interested.
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TABLE 23
Life Table for Both Sexes in the Original Registration States, 1910.

(Glover’s Table 2.)

INFANT MORTALITY—FIRST YEAR OF LIFE BY AGE INTERVALS OF ONE MONTH

LIFE TABLE FOR WHOLE RANGE OF LIFE BY AGE INTERVALS OF ONE YEAR

* Unaffected by emigration and immigration, which, assuming the mortality rates in column 4, would
result if 100,000 persons were born alive uniformly throughout each year.

Age
interval.

Of 100,000 personsborn
alive:

Rate of
mortality

per
thousand.

Complete
expectation

of life.

Stationary
population.*

Population in
current age

interval.

Period of
lifetime
between
two exact

ages.

Number alive
at beginning of
age interval.

Number dying
in age interval.

Number dying
in age interval
among 1000

alive at begin-
ning of age
interval.

Average length
of life remaining
to each one alive
at beginning of

age interval.

Including only
those in current
month or year

of age.

XtOX+ 1 lx dx oo8 ex

1 2 3 4 5 6

Months. Monthly rate. In years.
0-1 100,000 4377 43.77 51.49 8,060
1-2 95,623 1131 11.83 53.76 7,921
2-3 94,492 943 9.98 54.32 7,835
3-4 93,549 801 8.57 54.78 7,762
4-5 92,748 705 7.60 55.17 7,700
5-6 92,043 635 6.90 55.51 7,644
6-7 91,408 579 6.33 55.81 7,593
7-8 90,829 533 5.87 56.08 7,547
8-9 90,296 492 5.45 56.33 7.504
9-10... . 89,804 456 5.08 56.56 7,465

10-11... . 89,348 421 4.72 56.76 7,428
11-12... . 88,927 389 4.38 56.95 7,394

Years. Annua rate. In years.
0-1 100,000 11,462 — 114 62 51.49 91,853
1-2 88,538 2,446 - 27 62 57.11 87,095
2-3 86,092 1,062 12 34 57.72 85,529
3-4 85,030 666 - 7 83 57.44 84,683
4-5 84,364 477 5 65 56.89 84,116
5-6 83,887 390 - 4 66 56.21 83,692
6-7 83,497 327 3 91 55.47 83,333
7-8 83,170 274 v 3 30 54.69 83,033
8-9 82,896 234 2 82 53.87 82,779
9-10.... 82,662 204,' 2 47 53.02 82,560

10-11... . 82,458 187 2 27 52.15 82,365
11-12... . 82,271 180 2 19 51.26 82,181
12-13... . 82,091 182 2 22 50.37 82,000
13-14... . 81,909 193 2 36 49.49 81,812
14-15.... 81,716 210 2 57 48.60 81,611
15-16... . 81,506 232 2 84 47.73 81,390
16-17... . 81,274 256 3 16 46.86 81,116
17-18... . 81,018 285 3 52 46.01 80,875
18-19... . 80,733 315 3 89 45.17 80,576
19-20... . 80,418 344 4 28 44.34 80,246

20-21... . 80,074 375 4 68 43.53 79,887
21-22... . 79,699 398 5 00 42.73 79,50022-23... . 79,301 412 5 19 41.94 79,095
23-24... . 78,889 418 5 29 41.16 78,680
24-25... . 78,471 425 5 42 40.38 78,259
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TABLE 23 (Continued)

LIFE TABLE FOR WHOLE RANGE OF LIFE BY AGE INTERVALS OF ONE YEAR

* Unaffected by emigration and immigration, which, assuming the mortality rates in column 4, would
result if 100,000persons were born alive uniformly throughout each year.

Age
interval. Of i 00,000 persons born

alive:
Rate of
mortality

per
thousand.

Complete
expectation

of life.

Stationary
population.*
Population in
current age

interval.

Periodof
lifetime
between
two exact

ages.

Number alive
at beginning of

age interval.
Number dying
in age interval.

Number dying
in age interval

among 1000
alive at begin-

ning of age
interval.

Average length
of life remaining
to each one alive
at beginning of

age interval.

Including only
those in current
month or year

of age.

rrtos+l dx OOo ex L*
1 2 3 4 5 6

Years.
25-26... . 78,046 432

Annual rate.
5.54

Inyears.
39.60 77,83026-27... . 77,614 440 5.67 38.81 77,39427-28... . 77,174 451 5.85 38.03 76,94928-29... . 76,723 465 6.06 37.25 76,491

29-30.... 76,258 479 6.28 36.48 76,019

30-31.... 75,779 493 6.51 35.70 75,532
31-32.... 75,286 511 6.78 34.93 75,03032-33.... 74,775 530 7.09 34.17 74,51033-34.... 74,245 550 7.40 33.41 73,97034-35.... 73,695 568 7.72 32.66 73,411
35-36... . 73,127 588 8.04 31.90 72,83336-37... . 72,539 605 8.33 31.16 72,237
37-38... . 71,934 617 8.59 30.42 71,62638-39... . 71,317 631 8.84 29.68 71,00139-40... . 70,686 644 9.11 28.94 70,364

40-41... . 70,042 658 9.39 28.20 69,71341-42... . 69,384 674 9.72 27.46 69,047
42-43... . 68,710 693 10.09 26.73 68,36443-44... . 68,017 716 10.52 25.99 67,65944-45... . 67,301 740 10.99 25.26 66,931

45-46... . 66,561 766 11.52 24.54 66,178
46-47... . 65,795 795 12.08 23.82 65,39747-48... . 65,000 821 12.63 23.10 64,58948-49... . 64,179 846 13.18 22.39 63,75649-50... . 63,333 873 13.77 21.69 62,897
50-51... . 62.460 897 14.37 20.98 62,01251-52... . 61,563 929 15.08 20.28 61,09852-53... . 60,634 970 16.01 19.58 60,14953-54... . 59,664 1025 17.17 18.89 59,15154-55... . 58,639 1084 18.49 18.21 58,097
55-56... . 57,555 1153 20.03 17.55 56,97856-57... . 56,402 1225 21.72 16.90 55,790
57-58... . 55,177 1289 23.37 16.26 54,532 ,58-59... . 53,888 1346 24.97 15.64 53,21559-60... . 52,542 1404 26.73 15.03 51,840
60-61... . 51,138 1462 28.58 14.42 50,407
61-62 49,676 1521 30.62 13.83 48,915
62-63 48,155 1587 32.96 13.26 47,361
63-64... . 46,568 1656 35.55 12.69 45,740
64-65... . 44,912 1718 38.25 12.14 44,053

65-66... 43,194 1773 41.06 11.60 42,308
66-67... . 41,421 1826 44.08 11.08 40,508
67-68... . 39,595 1877 47.41 10.57 38,657
68-69... . 37,718 1928 51.12 10.07 36,754
69-70... . 35,790 1974 55.14 9.58 34,803
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TABLE 23 ( Concluded)

LIFE TABLE FOR WHOLE RANGE OF LIFE BY AGE INTERVALS OF ONE YEAR

* Unaffected by emigration and immigration, which, assuming the mortaity rates in column 4, would
result if 100,000 persons were born alive uniformly throughout each year.

Age Of 100,000 persons born
Rate of

mortality Complete
expectation

of life.

Stationary
population.*

interval. alive: per
thousand. Population in

current age
interval.

Period of
lifetime
between
two exact

ages.

Number alive
at beginning of
age interval.

Number dying
in age interval.

Number dying
in age interval
among 1000

alive at begin-
ning of age

interval.

Average length
of life remaining
to each one alive
at beginning of

age interval.

Including only
those in current
month or year

of age.

XtOX+ 1 dx 1000?* ex L x

1 2 3 4 5 6

Years. Annual rate. In years.
70-71... . 33,816 2013 59.52 9.11 32,810
71-72... . 31,803 2044 64.29 8.66 30,781
72-73... . 29,759 2065- 69.38 8.22 28,72673-74... . 27,694 2072 • ' 74.82 7.79 26,658
74-75.... 25,622 2070 — 80.78 7.38 24,587
75-76... . 23,552 2057 87.37 6.99 22,52376-77... . 21,495 2028 94.35 6.61 20,481
77-78... . 19,467 1981 v 101.74 6.25 18,47678-79... . 17,486 1920 109.78 5.90 16,526
79-80... . 15,566 1854^ 119.10 5.56 14,639
80-81... . 13,712 1786 / 130.28 5.25 12,819
81-82... . 11,926 1696 </ 142.17 4.96 11,078
82-83... . 10,230 1565 1 153.06 4.70 9,448
83-84... . 8,665 1409 •' 162.58 4.45 7,96084-85... . 7,256 1255 v7 172.97 4.22 6,628

85-86... . 6,001 1103 V 183.80 4.00 5,449
86-87... . 4,898 954 v 194.85 3.79 4,421
87-88... . 3,944 816 206.84 3.58 3,536
88-89...,. 3,128 689' 220.13 3.39 2,784
89-90.... 2,439 571 � 234.31 3.20 2,154
90-91... . 1,868 466 249.62 3.03 1,63591-92... 1,402 371 264.66 2.87 1,216
92-93... 1,031 289 279.90 2.73 88693-94... . 742 219 295.12 2.59 633
94-95.... 523 162 310.17 2.47 442

95-96... . 361 117 325.02 2.35 302
96-97... . 244 83 339.74 2.24 202
97-98... . 161 57 354.55 2.14 132
98-99... . 104 39 369.73 2.04 85
99-100... 65 25 385.46 1.95 53

100 101... 40 16 401.91 1.85 32
101-102... 24 10 419.14 1.76 19
102-103... 14 6 437.37 1.67 11
103-104... 8 4 456.77 1.59 6
104-105... 4 2 477.48 1.50 3

105-106... 2 1 500.22 1.41 2
106-107... 1 1 524.82 1.33 1
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The following diagrams illustrate the important functions of a

life table. The first (Fig. 42) shows the form of the life table

A«E IN YEARS

ANNUAL
RATE
OF

MORTALITY
PER

1,000

ANNUAL
RA.T5
9F
MORTALITY

PER
1.009

A6E IN YEARS

Fig. 42. —Annual mortality rate per thousand. The original registration states, both
sexes, 1910 (from Glover,1 p. 243).

specific death-rate curve (q x), being the plot of this column of
Table 23 above.

The next diagram (Fig. 43) shows the form of the lx curve.
Here the data for a number of different countries are included.
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The picture shows in a striking way the usefulness of the life table
method in the comparative study of mortality.

AGE IN YEARS

NUMBER
OF

SURVIVORS
NUMBER
OF
SURVIVORS

AGE IN YEARS

Fig. 43.—Number of survivors out of 100,000 born alive. Australia, England,
Germany, India, Italy, Sweden, and whites in the original registration states. Males,
1901-10 (from Glover,1 p. 260).

The next diagram (Fig. 44) shows the form of the dx curve, and
again the life tables of several countries are drawn upon for com-
parison.
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AGE IN YEARS AGE IN YEARS AGE IN YEARS

NU.

I
DEATHS

NUMBER
OF
OEATHS

AGE IN YEARS

Fig. 44.—Number of deaths out of 100,000 born alive. Australia, Germany,
England, India, Italy, Sweden, and whites in the original registration states. Males,
1901-10 (from Glover, 1 p. 270).

LIFE TABLES FOR LOWER ORGANISMS

Life tables can and should be computed for other forms of life
besides man. Their importance for the study of organic evolution
can scarcely be overestimated. Owing to the general lack in
biologic literature, however, of the basic observational data
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TABLE 24
Life Table for Drosophila—Long-winged Males

Age Observed Calculated

Days d z lz lz 4x ex

1 5 1,000 1,000 9.6 41.0
2 12 995 990 9.7 40.4
3 6 9831 981 9.7 39.7
4 13 977 971 9.7 39.1
5 10 964 962 9.9 38.5

6 10 954 952 10.0 37.9
7 15 944 943 10.1 37.2
8 9 929 933 10.3 36.6
9 9 920 924 10.4 36.0

10 9 911 914 10.6 35.4
11 12 902 904 10.8 34.7
12 8 890 895 11.0 34.1
13 8 882 885 11.3 33.5
14 11 874 875 11.6 32.8
15 8 863 865 12.0 32.2

16 14 855 854 12.2 31.6
17 8 841 844 12.6 31.0
18 13 833 833 13.0 30.3
19 10 820 822 13.4 29.7
20 11 810 811 13.9 .29.1
21 16 799 800 14.4 28.5
22 6 783 789 14.9 27.9
23 13 777 777 15.4 27.3
24 11 764 765 16.0 26.7
25 11 753 753 16.6 26.2

26 10 742 740 17.3 25.6
27 10 732 727 17.9 25.0
28. 14 722 714 18.7 24.4
29 11 708 701 19.4 23.9
30 15 697 687 20.2 23.3

31 13 682 673 21.1 22.8
32 11 669 659 21.9 22.3
33 15 658 645 22.9 21.8
34. .. 7 643 630 23.8 21.2
35 18 636 615 24.8 20.7
36 15 618 600 25.8 20.2
37 19 603 584 26.9 19.7
38 13 584 569 28.1 19.3
39 22 571 553 29.3 18.8
40 15 549 536 30.5 18.3
41 13 534 520 31.8 17.9
42 23 521 503 33.2 17.4
43 19 498 487 34.5 17.0
44 22. 479 470 36.0 16.6
45 18, 457 453 37.5 16.1

46 22 439 436 39.0 15.7
47 19 417 419 40.7 15.3
48 15 398 402 42.3 14.9
49 20 383 385 44.0 14.6

Age
in

Days

Observed Calculated

dx lx It Qx ex

50 15 363 368 45.8 14.2
51 20 348 351 47.7 13.8
52 19 328 334 49.6 13.5
53 22 309 318 51.6 13.1
54 16 287 301 53.7 12.8
55 13 271 285 55.7 12.4
56 19 258 269 57.9 12.1
57 12 239 254 60.2 11.8
58 19 227 238 62.5 11.5
59 13 208 224 64.8 11.2
60 12 195 209 67.3 10.9
61 18 183 195 69.8 10.6
62 8 165 181 72.4 10.3
63 13 157 168 75.2- 10.1
64 12 144 156 77.9 9.8
65 13 132 143 80.8 9.5
66 ;... 14 119 132 83.6 9.3
67 7 105 121 86.7 9.0
68 8 98 110 89.8 8.8
69 5 90 100 92.9 8.6
70 8 85 91 96.1 8.4
71 5 77 82 99.6 8.1
72. . 7 72 74 102.9 7.9
73 8 65 67 106.4 7.7
74 3 57 59 110.0 7.5
75 9 54 53 113.8 7.3
76 2 45 47 117.3 7.1
77 8 43 41 121.5 6.9
78 :. 4 35 36 125.4 6.8
79 4 31 32|129.2 6.6

80 3 27 28 133.6 6.4
81 3 24 24 137.5 6.3
82 4 21 21 142.0 6.1
83 2 17 18 146.4 5.9
84 1 15 15 151.0 5.8
85 2 14 13 156.2 5.7
86.- : 2 12 11 160.2 5.5
87 1 10 9 164.5 5.4
88 . . 2 9 8 170.6 5.2
89 2 7 6 175.6 5.1
90 0 5 5 180.4 5.0
91 1 5 4 185.0 4.9
92 1 4 3 189.7 4.8
93. 1 3 3496.3 4.6
94 0 2 2|201.8 4.5
95. 1 2 2 207.5 4.4
96 . . 0 1 1 212.8 4.3
97....... . 0 1 1 218.3 4.2
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necessary for the construction of a life table, only the merest
beginning has been made in this direction.

An example of a complete life table for another organism, the
fruit-fly, Drosophila melanogaster, is given in Tables 24 and 25, and
Figs. 45 and 46. These life tables were worked out in the author’s
laboratory. 4 The lx curves in the diagrams show the similarity
of the findings to those in man, remembering that the fly curves
are plotted on an arithlog grid and that they have no infant mor-
tality component. .

TABLE 25
Life Table for Drosophila—Short-winged Males

An interesting problem now presents itself. How shall one
compare the mortality of two organisms whose total life spans are
so widely different in extent of time that it is in practice quite
impossible to measure or express them in the same unit?

In a recent paper Pearl 5 has suggested what appears to be a
valid method of dealing with this difficulty, in making a comparison

Age
in

Days

Observed Calculated

dx l, l* Qs | ez

1 6 1,000 1,000 25.6 14.2
2 27 994 974 31.5 13.6
3 30 967 944 37.5 13.0
4 34 937 908 43.3 12.4
5 38 903 869 48.9; 12.0

6 36 865 826 54.6 11.5
7 85 829 781 60.o: 11.1
8 66 744 734 65.5 10.8
9 55 678 686 70.4' 10.5

10 52 623 638 75.2 10.2

11 44 571 590 79.8! 9.9
12 48 527 543 84.o! 9.7
13 21 479 497 87.9 9.5
14 49 458 454 91.5 9.3
15 53 409 412 94.8 9.1

16 43 356 373 97.7; 9.0
17 24 313 337 100.2 8.9
18 28 289 303 102.1! 8.7
19 22 261 272 104.l! 8.6
20 19 239 244 105.3; 8.5

21 24 220 218 106.3 1 8.4
22 17 196 195 106.8 8.3
23 28 179 174 107.2 8.1

Age
in

Days

Observed Calculated

dx lx ‘lx Qx ex

24 16 151 155 107.5 8.0
25 13 135 139 107.3 7.8
26 11 122 124 107.1 7.7
27 6 111 111 107.2 7.5
28 20 105 99 107.3 7.2

29 8 85 88 107.9 7.0
30 7 77 79 109.2 6.7
31 13 70 70 111.1 6.4
32 7 57 62 114.5 6.1
33 9 50 55 119.3 5.8

34 5 41 49 126.2 5.4
35 4 36 42 135.4 5.0
36 6 32 37 147.4 4.7
37 4 26 31 162.7 4.3
38 1 22 26 182.2 3.9

39 6 21 21 206.2 3.6
40 2 15 17 234.7 3.3
41 4 13 13 268.6 3.0
42 1 9 10 308.0 2.7
43 2 8 7 352.9 2.4

44 5 6 4 403.0 2.2
45 0 1 3 457.9 2.0
46 0 ' 1 1 516.0 1.8
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of the mortality of Drosophila with that of man. The nature of
the solution is indicated in the following quotation from that paper:

“Upon what basis shall any life table function, say lx , of the Drosophila life
table be compared with that of man? The life span of one of these organisms is best
measured in years; that of the other in days. This fact, however, offers no insuper-
able difficulty to the comparison. What is needed is to superimpose the two curves
so that at least two biologically equivalent points coincide. The best two points would
be the beginning and the end of the life span. But in the case of Drosophila our life
tables start with the beginning of imaginal life only. The larval and pupal durations
are omitted.

SURVIVORS

DAYS OF FLY LIFE

Fig. 45.—Diagram showing the observed and graduated lx points for long-
winged (normal wings) and short-winged (vestigial wings) males of Drosophila. The
small circles are the observations and the smooth lines the fitted curves. In order not
to overcrowd the diagram only every second observation is shown.

“I think we can get at this starting point ... by putting the human and
Drosophila lx curves together as a starting point at the age for each organism where
the instantaneous death-rate qx is a minimum. In the case of Drosophila I think we are
safe in concluding, on the basis of the work of Loeb and Northrop as well as from our
own observations, that this point is at or very near the beginning of imaginal life.
We shall accordingly take Drosophila age one day as this point. Our life tables show
that certainly after this time qx never again has so low a value.

“For the other end of the life span we may conveniently take the age at which
there is left but one survivor out of 1000 starting at age one day for Drosophila and
age twelve years for white males.”
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When the above was written we were aware of the existence of

complete life tables for only the two organisms, Drosophila and
man. Since then Dr. Carl R. Doering and the present writer have
published6 a life table for a third form, the rotifer Proales decipiens

,

on the basis of data as to its mortality recently furnished by Dr.
Bessie Noyes.*

SURVIVORS

DAYS OF FLY LIFE
Fig. 46.—Diagram showing the observed and graduated lx points for long-

winged (normal wings) and short-winged (vestigial wings) females ofDrosophila. The
small circles are the observations and the smooth lines the fitted curves. In order not
to overcrowd the diagram only every second observation is shown.

Miss Noyes provides in her paper, in two different but appar-
ently homogeneous series, data on the life history of 1454 individuals.
The observations were taken only once in twenty-four hours, an
interval far too long to give a smooth curve for an animal having a
maximum total life span of only about eight days. This fact
makes the construction of a life table more difficult and much less
accurate than if the observations had been more closely spaced.

* Noyes, B.: Experimental Studies on the Life History of a Rotifer Reproducing
Parthenogenetically (Proales decipiens), Jour. Exp. Zool., vol. 35, pp. 225-255, 1922.
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It is as though one tried to construct a life table for man from data
as to age at death recorded only to the nearest decade.

Taking the data as they stand, however, the central death-rates
were computed and graduated with the results shown in Table 26.

TABLE 26
Observed and Calculated qx Values erom Noyes’ Data on Proales

The next step was to calculate a Proales life table in terms of
centiles of the life span rather than in absolute age. This was
done.

In order that itmay be seen how the forces of mortality operate
in Proales as compared with man and Drosophila ,

the diagram
shown as Fig. 47 is presented.

Comparing the three curves, we note the following points:
1. The Proales curve lies above the other two at all parts of the

comparable life span. This means that out of 1000 individuals
starting together at biologically equivalent points in the life span
(•i. e., at the age when qx is a minimum for each organism) at any
subsequent age centile there will be more surviving rotifers than
men, and more surviving men than flies.

2. The median durations of life, or, put in another way, the ages
prior to which just 500 of the 1000 individuals starting together
will have died, are approximately:

For Proales, 74.0 per cent, of the equivalent life span.
For Man, 62.0 per cent, of the equivalent life span.
For Drosophila, 42.5 per cent, of the equivalent life span.

Days of life.
Observed death-rate

(per 1000)
within interval.

Calculated qx.
Calculated lx (number

living at beginning
of each interval).

0-0.9 0 .06 1000.0
1.0-1.9 1 4 1.39 999.9
2.0-2.9 9.6 9.99 998.5
3.0-3.9 47.3 44.98 988.5
4.0-4.9 136.5 144.60 944.0
5.0-5.9 393.9 349.90 807.5
6.0-6.9 575.9 653.50 525.0
7.0-7.9 1000.0 956.10 181.9
8.0-8.9 8.0
9 0 9.9 0
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suev/voes

CENTILES OF LIFE SPAN

Fig. 47—Showing survivorship distributions for (a) the rotifer Proales decipiens,
(b) man (males in original registration states, 1910), and (c) Drosophila melanogaster
(wild type males). The death-rates corresponding to given slopes of the lx line are
also given by the groups of fine lines at the two ends of the diagram. Age is measured
in each of the three organisms in terms of centiles of the equivalent life span.

3. The comparison the other way about indicates that when
50 per cent, of the equivalent life spans have been passed there are
still surviving:

In Proales, 93.0 per cent, of the individuals starting.
In Man, 68.5 per cent, of the individuals starting.
In Drosophila, 38.0 per cent, of the individuals starting.
The outstanding thing about the life curve for Proales is that it

approaches nearer to the theoretically possible right-angled form
in which all the individuals live to a given age x and then all die at
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once, than any other that has yet been observed. Whether this
is the result of (a) the greater uniformity of environment, on the
average, for the Proales under the experimental conditions than
for the other forms, or (b) the greater uniformity of the population
in genetic constitution, consequent upon the fact that Proales
reproduces parthenogenetically and that all of the cultures were
descended from at most not over six different individuals, or (c) a
combination of both, cannot be definitely stated. Both of the
factors mentioned undoubtedly do in some degree operate to produce
the form of life curve exhibited.

There is need for data regarding the mortality of other organ-
isms. It is an interesting commentary on the development of
biology that the distribution of mortality in respect of age is known
for only three species of animal life with sufficient accuracy to
permit the formation of age-specific death-rates, and hence of a
life table. Into every discussion of the problem of evolution, and
into every attempt to determine its causes, there must necessarily
enter the question of the mortality of the forms being dealt with.
There seems no good reason for indefinitely continuing to handle
the matter by the current methods, which are either to make large
a priori guesses about the distribution of mortality in the particular
case, or to assume that it is the same as that of man. In the nearly
universal neglect of the problem of mortality and duration of life,
biologists have missed an interesting and obviously important field.

STATIONARY POPULATIONS

The stationary population of a life table serves a useful purpose
as a standard in the computation of certain derived rates to be
discussed in the next chapter. For this purpose it is desirable to
have this function on the basis of a total population of 1,000,000
persons living. The necessary computations have been done for
three sizes of age classes and the results are presented in Tables
27, 28, and 29, on the basis of the Lx data of Table 23 above. This
then is the population derived from the life table for the original
registration states in 1910, both sexes together.
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TABLE 27

Stationary Life Table Population of 1,000,000 Persons. Number Living in
Each Yearly Interval of Age

It is important that the student should have a clear mental
picture of the age distribution of a stationary life table population,
and of the manner in which it differs from the actually existing
general population upon which the life table is computed. Accord-
ingly there is inserted here Table 30 (p. 196). Table 30 exactly
corresponds to Table 28 in arrangement, but gives the age dis-
tribution per million of the population of the United States of both
sexes actually living in 1910 by quinquennial age groups.

Age interval.
Persons per
million in

current age
interval.

Age interval.
Persons per
million in

current age
interval.

Age interval.
Persons per
millionin

current age
interval.

0- 1 17,841 35-36 14,146 70- 71 6373
1- 2 16,916 36-37 14,031 71- 72 5979
2- 3 16,612 37-38 13,912 72- 73 5579
3- 4 16,448 38-39 13,791 73- 74 5178
4- 5 16,338 39-40 13,667 74- 75 4776
5- 6 16,255 40-41 13,540 75- 76 4375
6- 7 16,186 41—42 13,411 76- 77 3978
7- 8 16,127 42-43 13,278 77- 78 3589
8- 9 16,078 43-44 13,141 78- 79 3210
9-10 16,036 44-45 13,000 79- 80 2843

10-11 15,998 45-46 12,854 80- 81 2490
11-12 15,962 46-47 12,702 81- 82 2152
12-13 15,927 47-48 12,545 82- 83 1835
13-14 15,890 48-49 12,383 83- 84 1546
14-15 15,851 49-50 12,216 84- 85 1287
15-16 15,808 50-51 12,045 85- 86 1058
16-17 15,761 51-52 11,867 86- 87 859
17-18 15,708 52-53 11,683 87- 88 687
18-19 15,650 53-54 11,489 88- 89 541
19-20 15,586 54-55 11,284 89- 90 418
20-21 15,516 55-56 11,067 90- 91 318
21-22 15,441 56-57 10,836 91- 92 236
22-23 15,363 57-58 10,592 92- 93 172
23-24 15,282 58-59 10,336 93- 94 123
24-25 15.200 59-60 10,069 94- 95 86
25-26 15,117 60-61 9,791 95- 96 59
26-27 15,032 61-62 9,501 96- 97 39
27-28 14,946 62-63 9,199 97- 98 26
28-29 14,857 63-64 8.884 98- 99 17
29-30 14,765 64-65 8,556 99-100 10
30-31 14,671 65-66 8,217 100- 101 6
31-32 14,573 66-67 7,868 101- 102 4
32-33 14,472 67-68 7,508 102-103 2
33-34 14,367 68-69 7,139 103-104 1
34-35 14,259 69-70 6,760 104-105 1
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TABLE 28
Stationary Life Table Population of 1,000,000 Persons. Number Living in

Each Five-yearly Interval of Age

TABLE 29
Stationary Life Table Population of 1,000,000 Persons. Number Living in

Each Ten-yearly Interval of Age

Figure 48 compares the life table standard million (from Table
28) with the standard million of the actual population.

Age interval. Persons per million in
♦ current age interval.

0- 4 84,155
5- 9 80,682

10- 14 79,628
15- 19 78,513
20-24 76,802
25-29 74,717
30- 34 72,342
35- 39 69,547
40- 44 66,370
45- 49 62,700
50-54 58,368
55-59 52,900
60- 64 45,931
65- 69 37,492
70- 74 27,885
75-79 17,995
80-84 9,310
85-89 3,563
90-94 935
95- 99 151

100-104 14

Age interval. Persons per million in
current age interval.

0-9 164,837
10-19 158,141
20-29 151,519
30-39 141,889
40-49 129,070
50-59 111,268
60-69 83,423
70-79 45,880
80-89 12,873
90-99 1,086

100 and over 14
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Thousands
of

Persons

Age

Fig. 48.—Diagram comparing the standard million of ( a) the life table stationary
population (stippled area), and ( b ) the actual population (cross-hatched area); both
for the year 1910, and for both sexes together. (Data of Tables 28 and 30.)

From this diagram it is apparent that the essential difference
between actual and life table populations in this country consists
in the former having an excess of persons in early life (up to age
thirty-eight years roughly) and a defect of persons of all ages
beyond that. This difference arises mainly from two causes:
excess of births over deaths and of immigration over emigration
in the actual population.
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TABLE 30
Standard Million of Actual Living Population (Both Sexes) in the United

States, 1910

THE CONSTRUCTION OF LIFE TABLES

I have already emphasized the fact that I do not intend to go
here into the methods actually employed in the construction of a
life table. It, however, seems only fair to outline the procedure in
general terms. The starting-point is the determination, from
recorded statistics of living population at ages, and deaths at ages
(and for the early part of life births, because of the inadequacy
at those ages of census counts of population, and because of the
rapidity of the flow of vital events in the first year of life) of the
specific death-rates at ages. From these specific death-rates (in the
sense of the vital statistician), which are symbolically designated
as mx values, the qx’s of the life table are derived. The qx values
are then subjected to a more or less elaborate process of graduation
or smoothing, the purpose of which is to eliminate such portion of
the minor fluctuations in their values as mayreasonably be supposed
due to chance. This smoothing process is where the heavy mathe-
matics of actuarial work comes in. Around this phase of the
subject a highly esoteric cult has grown up. In its fundamental
and essential principles the smoothing process is simple enough to
be grasped by any intelligent person, but, like many other things,
when finally dressed out in all its symbolic panoply it is forbidding.

Age interval. Persons per million.
0- 4
5- 9 106,321

10- 14
15- 19 98,728
20- 24
25- 29 89,104
30- 34
35- 39 69,672
40- 44 57,314
45- 49 48,682
50- 54 42,491
55- 59
60- 64 24,696
65- 69 18,294
70- 74 12,132
75- 79 7,269
80- 84 3,505
85- 89 1,338
90- 94 365
95- 99 80

100-104 39
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After the qx values have been graduated the rest of the work of
constructing a life table is simple, even if tiresome in its extent.
The qx s are successively applied to an lx group starting with 100,000
at age zero (birth) to determine the dx s. When this is done one
has, lx,

dx, and qx for each age interval. From the lx s and dx s
the Is’s are easily calculated.

Short methods for the construction of life tables in public
health work are discussed by Hayward. 3
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CHAPTER IX

STANDARDIZED AND CORRECTED DEATH-RATES

It has been seen in Chapter VII (Table 14 and Fig. 40) that
the specific death-rates are characteristically different at different
ages. The fact is also brought out strikingly by the qx curve of the
life table. Now this circumstance must obviously have important
consequences in regard to the use of general death-rates at all ages
to measure the comparative mortality in different communities.
For suppose two communities to have absolutely identical specific
death-rates at different ages. But suppose, further, that one of the
communities is primarily a manufacturing place, and in consequence
has a large excess of young adults in its population, whereas the
other is primarily a residence city for elderly, retired persons. The
former will have relatively few persons of advanced age where the
specific death-rates are high. The latter will have relatively
many of such persons. In consequence of this difference in the
age distribution of the living the two places are bound to have quite
different general death-rates at all ages, even though, as postulated,
all the specific death-rates are identical in the two places.

It therefore follows that crude death-rates at all ages should be
corrected to allow for differences in the age distribution of the general
population. This may be done by the use of what are called
standardized and corrected death-rates.

STANDARDIZED DEATH-RATES

A standardized death-rate is an abstract or theoretic figure
derived by applying the specific death-rates of the general popula-
tion, or of some standard imaginary population, to the actually
existing age and sex distribution of the living population of a
particular locality to determine what would be the number of
deaths in that locality if the specific death-rates of the standard
population prevailed there, and then dividing the number of deaths
so obtained by the actual total living population of the locality.
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In the calculation of the standardized death-rate the actual
deaths in the locality do not enter at all. Expressed in a formula
the case is like this:

Rst = K
2 (P *p qx)

z Px
where

Rst — a standardized death rate,
Px = actual living population of age x in the community for which the rate

is calculated,
qx = the specific death-rate at age x in the general population, or in the life

table population, or in some other arbitrarily chosen standard popula-
tion,

2 denotes summation over all values of x.

An example will make the case clear.
Suppose we take the life table population of the original Regis-

tration states in 1910, as determined by Glover, as a standard of
reference, and confine attention, for the sake of simplicity, to age
alone, dealing with both sexes together, we find the following
specific death-rates at ages in that population to be as given in
Table 31.

TABLE 31
Life Table Death-rates, from Table 23 Supra

Now an examination of the Mortality Statistics reveals that in
the year 1910 the crude death-rate was,

In Providence, R. 1 17.66 per thousand
In Seattle, Wash 10.05 “ “

But the census of 1910 revealed further that the living popula-
tions of these two cities were constituted in respect of age as shown
in Table 32.

Age interval. Rate of mortality per thousand
living in current age interval.

Under 5 37.19
5- 9.9 3.44

10-19.9 2.93
20-39.9 6.64
40-59.9 1.5.28
60-79.9 56.22
80 and over 190.61

All ages together 19.42
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TABLE 32
Actual Living Population in 1910 of Providence and Seattle

It is at once apparent that while these two cities were of about
the same total size in 1910, the age distributions of the two popula-
tions were widely different. Providence had a great many more
young people under twenty than had Seattle. Seattle, on the
contrary, had many more young adults (twenty to thirty-nine)
than had Providence. Plainly, Seattle would be bound to have a
lower crude death-rate than Providence, because there were in the
population fewer persons to whom high specific death-rates apply,
and more persons to whom low specific rates apply.

Now, according to the rule setforth above, to get the standardized
death-rate it is merely necessary to perform the operations shown
in Table 33.

TABLE 33
Expected Deaths in Providence and Seattle in 1910 if the Life Table Death-

rates Prevailed

Age interval. Population in thousands
of Providence, R. I.

Population in thousands
of Seattle, Wash.

Under 5 21.814 17.043
5- 9.9 18.707 15.123

10-19.9 38.315 32.666
20-39.9 83.563 109.340
40-59.9 46.482 49.817
60-79.9
80 and over

14.111
1.058

10.140
.590

Totals 224.050 234.719

Age interval.
Providence population

X Life table specific death-rates
( = deaths which would have occurred

in Providence if life table rate of
mortality had existed there).

Seattlepopulation
X Life table specificdeath-rates

( = deaths which would have occurred
in Seattle if life table rate of mor-
tality had existed there).

Under 5 811.26 633.83
5-9 64.35 52.02

10-19 112.26 95.71
20-39 554.86 726.02
40-59 710.24 761.20
60-79 793.32 570.07
80 and over 201.67 112.46

Totals 3247.96 = (Px X qx) 2951.31 = (Px X Qx)
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Hence
For Providence Rst = 1000 d2i = 14.50

/ 2951 SI\
For Seattle RSt = 1000 ( '334 719) = 12 57

These figures tell us that if identical forces of mortality had
operated in Providence and Seattle, the crude rates of the two places
would have been different in the ratio indicated, solely because of
differences in the age constitution of the living population. But
it cannot have failed to impress one that it is a curious use of words
to call this standardized rate a death-rate of Providence , for example,
because in its calculation no account whatever is taken of the deaths
which occurred in Providence. Providence’s statistics only enter
into the situation at all in respect of the living, not the dead. But
surely a death-rate may not unreasonably be required to have in
it something about the deaths which really occurred.

Can this be done on the basis of only such data as are now in
hand? It can, and in this way. It has already been seen from
Table 31 that, in the life table population which we are taking as a
standard, the death-rate for all ages together is 19.42 per thousand.
Now then it is obvious that the standardized rates which have been
obtained above for Providence and Seattle differ from the death-
rate for all ages in the standard population, only because of the
differences in the age distribution of the living in the actual popula-
tions of Providence and Seattle respectively, and of the living in
the standard population. Therefore it follows that the ratio

Death-rate in standard population
Standardized death-rate of local population

will give a correction factor which will measure the amount by
which the crude death-rate of the local population is altered from
the death-rate at all ages of the standard population, as a result
solely of the difference between the two populations in respect of the
age distribution of the living.

We then have
19 42Correction factor for Providence =
.
.' = 1.33914.50

19 42Correction factor for Seattle = JYpj = ' •
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These figures indicate that the crude death-rates of both cities are
lower than they would be if their living populations had the same
age distribution as the standard population, even though both
cities had the same specific forces of mortality that they actually do.
If the correction factor were less than 1 it would mean that the
crude death-rates were higher than they would be in a population
of the same age distribution as the standard.

Now, as has been seen, the crude death-rate of Providence was
17.66, and of Seattle 10.05. So then,
17.66 X 1.339 = 23.65 = a death-rate for Providence in which is included (a) the

specific forces of mortality peculiar to Providence (introduced implicitly in the
crude rate 17.66); and ( b) an allowance for the peculiar age distribution of the
living population of Providence, which brings it to identity with the age dis-
tribution of the standard population.

Similarly for Seattle, we have
10.05 X 1.545 = 15.53 = a death-rate for Seattle which has the same properties as

those described above for Providence.

CORRECTED DEATH-RATES

A corrected death-rate is an abstract or theoretic figure got by
applying the specific death-rates observed in a local population to
the age and sex distribution of some arbitrarily chosen standard
population. A corrected death-rate is, in short, just the reverse of
a standardized death-rate. It answers questions like the following:
What would be the death-rate of city A if instead of having the
actual age distribution of the population which it has, it had an
age distribution identical with that of the standard population?
How much of the difference in the crude death-rates of cities
A and B is to be attributed to the fact that the age distributions
of the populations are different in the two places?

The formula for a corrected death-rate is,
„

2 (Lx X Rsx)Rc°
= K S(«

where
Rco = a corrected death-rate,
Lx = the number of persons of age x in the standard population,
Rsx — the specific death-rate at age x observed in the particular locality for

which the corrected rate is being calculated,
2 denotes summation over all values of x.
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Coming back to theProvidence-Seattle example we have already
had given in Table 32 the populations of these two cities at ages.
Table 34 gives the deaths at ages in columns (1) and (2). By
dividing each figure in column (1) of Table 34 by the corresponding
population figure of Table 32, we shall get the specific death-rates
of Providence set down in column (3), and similarly for Seattle in
column (4).

TABLE 34
Specific Death-rates Per Thousand of Providence and Seattle

The next step is to multiply the appropriate standardpopulation
figures derived from Tables 27, 28, and 29 of the preceding chapter
by the specific death-rates of Table 34 above, to get the number of
deaths which would have occurred in Providence and Seattle had
their living population been that of our standard million, and their
specific forces of mortality as they were. This is done in Table 35.

Age interval.
Deaths

in
Provi-
dence.

Deaths
in

Seattle.
Specific death-rate

in Providence
(per 1000).

Specific death-rate
in Seattle
(per 1000).

(1) (2) (3) (4)

1175 453 1175 53.86 453 26.5821.814 17.043
5- 9 74 50 74 3.96 50 3.3118.707 15.123

10-19 144 107 144 3.76 1

c
3.2838.315 32.666

20 39 596 623
596 7.13 623 5.7083.563 109.340

40-59 854 625 854 18.37 625 12.5546.482 49.817
60-79 954 447 954 67.61 447 44.0814.111 10.140
80 and over 182 103 182

058 = 172.02 103
l90 174.58

Totals. 3979 2408
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TABLE 35
Deaths Expected in 1910 in Providence and Seattle if Their Populations

Had Had the Same Age Distribution as the Stationary Life Table Popu-
lation

Whence we have:
2S too

For Providence: Rco — 1000 - ’ = 23.10
l,UUU,uUU

For Seattle: R Co = 1000 =15.85

It will be noted at once that these corrected death-rates are
nearly the same as those got by the correction factor from the
standardized rates above. There are thus available two different
methods of computation for getting corrected death-rates. The
method given in this section is the more refined and exact.

The same principle as that which has been illustrated in Table
35 can be successively applied, provided the necessary data are at
hand, to correct death-rates for a whole series of variables. Actually,
the necessary data are usually not available, so that when a cor-
rected death-rate is spoken of, all that is commonly meant is a
death-rate corrected for the age and sex distribution of the popula-
tion.

THE SIGNIFICANCE OF STANDARD POPULATIONS IN CALCULATING
CORRECTED DEATH-RATES

It will have been perceived by the thoughtful that all that a
corrected death-rate is is a weighted average of the local specific death-
rates, the weighting being in proportion to the moieties in each age
group of the population chosen as the standard. Looking at a

Age interval.
Persons in
standard

population
in thousands.

(1)

(1) X Providence specific
death-rates per 1000.

(2)

(1) X Seattle specific death-
rates per 1000.

(3)

Under 5 84.155 84.155 X 53.86 = 4,532.6 84.155 X 26.58 = 2,236.8
5-9 80.682 80.682 X 3.96 = 319.5 80.682 X 3.31 = 267.1

10-19 158.141 158.141X 3.76 = 594.6 158.141X 3.28 = 518.7
20-39 293.408 293.408 X 7.13 = 2,092.0 293.408 X 5.70 = 1,672.4
40-59 240.338 240.338 X 18.37 = 4,415.0 240.338 X 12.55 = 3,016.2
60-79 129.303 129.303X 67.61 = 8,742.2 129.303X 44.08 = 5,699.7
80 and over.. . . 13.973 13.973 X 172.02 = 2,403.6 13.973X174.58 = 2,439.4

Totals 1,000.000 23,099.5 15,850.3
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corrected death-rate in this way one is led to ask the question:
What is the best system of weights to choose, or, in other words,
What shall be taken as the standard million of population?

The answer to this question depends in part, as do all similar
questions of weighting, upon what answer is given to the further
question: What do you want to do with the corrected death-rate
after you get it? If one’s point of view is to seek what would be
the value of a local death-rate if the locality had the average
population distribution of the whole country of which it is a part,
the standard population will be so chosen as to be nearly or quite
identical with the actually existing population of the whole country.
This is the usual procedure. The Registrar-General of England and
Wales uses as a standardof reference the age and sex distribution of
the actual population of England and Wales over a period of years.

If, on the other hand, one is interested in getting as stable a
standard, both in time and space, as he can, the Lx population of a
life table will be better than any actually existing population. This
will, however, just because it is not a growing population, be quite
different from most existing populations in respect of age distribu-
tion, as has already been seen in the preceding chapter. Table 36
shows a standard million of the population of the United States in
1910 distributed to the same age classes as used in the Providence-
Seattle example. It is obviously quite different from the life table
standard population given in Table 35 above.

TABLE 36
A Standard Million prom the Actual Living Population of the United States

in 1910

* This total does not include “ages unknown.”

Age interval. Populationboth sexes
U. S., 1910.

Population basis,
1,000,000.

0-4 10,631,364
9,760,632

115,806
106,3215-9

10-19 18*170,743
30,605,272
16,418,526
5,727,683

488,991

197^931
333,379
178,845
62,391

5,327

20-39
40-59
60-79
80 and over

Total 91,803,211* 1,000,000
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Suppose we calculate the corrected death-rates of Providence
and Seattle, weighting the specific death-rates with the million of
Table 36 as a standard. The result is that shown in Table 37.

TABLE 37
Expected Deaths in Providence and Seattle in 1910,on Basis of Actual United

States Population as Standard

Whence the
Corrected death-rate for Providence = 18.20
Corrected death-rate for Seattle = 11.90

These values, for perfectly obvious reasons, are smaller than
those got above on the basis of the Lx population and are much
nearer absolutely to the crude rates. The ratios of the death-rates
for the two cities are as follows:

_ .
17.66

.Cmde =—=1,76

23 10Corrected (Lx pop. standard) =
. ' c

= 1.4615. o5
18 20Corrected (actual pop. standard) = =1.53

It is seen that the judgment of the relative mortality rates of
Providence and Seattle is not sensibly altered if use is made of the
life table population or of the actually existing population of the
whole country as standard. The ratios are only .07 apart. But
both ratios are far from that derived from the crude rates.

Age interval.
Persons inactual pop-

ulation, both
sexes, in

thousands.
(1)

(1) X Providence specific
death-rates per 1000.

(2)

(1) X Seattle specific death-
rates per 1000.

(3)

0- 5 115.806 115.806X 53.86 = 6,237.3 115.806X 26.58 = 3,078.1
5-9 106.321 106.321 X 3.96 = 421.0 106.321 X 3.31 = 351.9

10-19 197.931 197.931 X 3.76 = 744.2 197.931X 3.28 = 649.2
20-39 333.379 333.379 X 7.13 = 2,377.0 333.379 X 5.70 = 1,900.3
40-59 178.845 178.845 X 18.37 = 3,285.4 178.845X 12.55 = 2,244.5
60-79 62.391 62.391 X 67.61 = 4,218.3 62.391 X 44.08 = 2,750.2
80 and over.. . . 5.327 5.327 X 172.02 = 916.4 5.327 X 174.58 = 930.0

Total 1,000.000 18,199.6 11,904.2
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One can obviously build up standard populations in various
ways. One which has been used is to take a million persons so
distributed as to age (and sex if one wishes) as to yield 1000 deaths
per year on the basis either of (a) the specific death-rates of the
actual population of the whole country, as (b) the specific death-
rates of the life table.

On the whole, the matter is really one of arbitrary choice,
governed essentially by taste and viewpoint as to purpose, rather
than strict logic. My own preference is for the L x population of
the life table as a standard, because of its inherent stability. If one
recognizes that any corrected death-rate is at best a purely artificial
figure, he will not worry over the artificiality of a life table popula-
tion as a standard.

From a purely biologic viewpoint probably the most significant
system would be one which weighted equally each specific death-
rate and averaged. This is the same as assuming an equal number
of persons in each age group of the standard population. This
idea is not likely to appeal to public health officials or to professional
official vital statisticians. It is based upon these considerations.
Provided the subsamples at ages are sufficiently large each to give
a reliable rate, having regard to the probable errors, any age and
sex specific death-rate is a definite quantitative biologic attribute
of the group to which it applies. It differs between group Ax and
group Bx because of one or the other or both of the following factors,
and for no other reason:

1. The organisms composing Ax are inherently different from
those composing Bx.

2. The environment of A x is different from that of Bx .

The simple, unweighted average of age specific death-rates
gives in a single numeric value not any measure of the public
health, but an excellent measure of a highly significant biologic
situation. It offers a method of getting a little nearer to an ade-
quate appreciation of the relative influence of constitution and
environment in determining mortality rates.

SUGGESTED READING
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CHAPTER X

THE PROBABLE ERROR CONCEPT

Perhaps the simplest and most direct way in which statistical
methods can be of practical use to the medical man in his every-
day problems is by giving him a means of measuring and stating
precisely the degree of reliability which attaches to any particular
set of results or conclusions he may reach. Only a little considera-
tion of the matter will be necessary to convince anyone that the
reliability or trustworthiness of any conclusion is in some way a
function of the number of cases upon which it is based. If the
number of cases determined forms but a small sample of all the
cases it would be possible to collect, it is probable that there will
be considerable fluctuation among the results given by such small
sampling.

As an illustration of the effect of random sampling, let us
consider the following case: In any large city, or a state, or indeed,
any large population aggregate, the average age at death of persons
dying at the same calendar date should be identical for all dates,
except for the influence of two factors, viz., (a) chance, or random
sampling, and (b) long seasonal waves arising from the fact particu-
larly that relatively more infants die in hot summer weather than
in the colder seasons of the year. In any short period, say ten
consecutive days, the second factor ( b ) would not operate in any
sensible degree, and we should expect the persons dying on each of
these consecutive ten days to show the same average age, except
for the fluctuations due to chance alone. How considerable these
fluctuations may be is shown in Table 38, which gives the number
of deaths and the age at death of those dying during ten consecutive
days in 1916 in Baltimore.

Here we have a fluctuation in the average, based on samples of
from 30 to 50 individuals, amounting to more than twenty-two
years, arising from random sampling alone. Such an illustration
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TABLE 38
Mean Age at Death of Those Dying in the Stated Days in Baltimore

emphasizes the fact that before conclusions can safely be drawn
from differences between numbers it is necessary to know something
about the “probable errors” of those numbers.

Another example of random fluctuations may be given: In
“Who’s Who” the names are entered in alphabetic order. If I
take five names in order as they are given and determine the
average age at which these five persons married, and then take the
next five names in order and do the same thing, and so on, there is
no reason why the average ages at marriage should not be identical
for all such groups of five, except for the operation of chance. Five
is a small sample, and we know from practical experience of life
that probably the first set of five ages at marriage so chosen will
not give quite the same average as the second set, and so on.

Table 39 gives the result of such an experiment with “Who’s
Who.” I opened Vol. X (1918-19) at random and the page chanced
to be 680. This is in the letter D and the first name on that page
is William Franklin Dana. I then calculated the age at marriage
for each person in order, without any omissions whatever, except
such as were occasioned by (a) failure of the person to have married,
or (b) absence of birth date or marriage date, or both. The figures
obtained are given in the upper half of Table 39. As soon as the
fifth age of each set of five was set down the average for that group
was calculated before going on to the next name. This was kept
up till ten groups or fifty names had been taken out.

Date. Number of
deaths.

Mean age at
death in
years.

January 13, 1916 31 30.16
January 14, 1916 40 43.80
January 15, 1916 27 40.59
January 16, 1916 48 48.21
January 17, 1916 32 48.34
January 18, 1916 41 51.90
January 19, 1916 39 46.82
January 20, 1916 31 52.39
January 21, 1916 39 51.62
January 22, 1916 57 39.40
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When this first series was done and the means plotted, I decided
to take a second fifty names from another part of the alphabet.
So I opened the book again at random and the page chanced to be
2486, with the first name Frederic Singer. The same procedure
as before for fifty consecutive names gave the bottom half of
Table 39.

TABLE 39
Showing the Average Age at Marriage of Ten Consecutive Groups of Five

Persons Each, Taken in Order from “Who’s Who” in Letter D
Beginning at p. 680.

A Second Group Like Above, but from Letter S
Beginning at p. 2486.

Age at Age at Age at Age at Age at
marriage. marriage. marriage. marriage. marriage.

22 ( 30 30 28 '31
34 30 39 38 28

i 35 III \ 26 V 28 VII 41 ix 33
34 | 26 30 46 30
25 [31 35 [38 28

Average 30.0 Average 28.6 Average 32.4 Average 38.2 Average 30.0

23 [ 29 [33 [32 28
30 1 26 45 27 25

II 33 IV \ 21 VI 23 VIII 24 X< 33
36 26 32 32 50

[33 [26 36 28 [28
Average 31.0 Average 25.6 Average 33.8 Average 28.6 Average 32.8

Age at Age at Age at Age at Age at
marriage. marriage. marriage. marriage. marriage.

33 32 28 [25 32
25 30 35 37 28

i\ 28 hi 28 35 VII 31 IX 28
31 27 29 32 27
28 36 22 32 32

Average 29.0 Average 30.6 Average 29.8 Average 31.4 Average 29.4

29 31 28 23 24
31 24 29 27 24

II 23 IV 26 VI 45 VIII 30 33
30 30 25 27 30
27 25 [35 31 29

Average 28.0 Average 27.2 Average 32.4 Average 27.6 Average 28.0
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The means of the two series are shown graphically in Fig. 49,
the solid line showing the group means for the 50 persons whose
names began with D, and the broken line the group means for
the persons having names beginning with S.

Table 39 and Fig. 49 show a number of interesting things about
random sampling and the phenomenon we call chance. In the
first place, the fluctuations of the group averages are large, con-
sidering the inherent stability of the phenomenon with which we

Mean
Age
at
Mat'riage
in

Years

Group
Fig. 49.—Group averages of age at marriage of persons taken at random. (Data

from Table 39 above.) The Roman numerals indicate the order of the groups from
the starting-points indicated in the text. Solid line = data from upper half of table.
Broken line = data from lower half of table.

are dealing. In the D series Group IV has a mean age at marriage
of 25.6 years, while Group VII has a mean of 38.2, almost thirteen
years higher. In the second place the means of the D series do not
fluctuate about a straight horizontal line. Instead there are three
more or less well-defined trends, downward from Group I to IV,
upward from Group IV to VII, and generally downward from Group
VII to the end.

In the third place, the S series does not show such extreme
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fluctuations of the group means, nor generally such high absolute
values of these means, as does the D group. In the fourth place,
there is apparently a curious approach to parallelism in the courses
of the lines of means for the D and S series. I think that most
non-statistically trained experimental investigators would be apt
to say, if they performed a series of 10 experiments and got results
like those shown in the D series, and then repeated the series and
got results like those shown in the S series, that the second series
confirmed the first. So it does in respect of everything except the
apparent trends in the D series, in respect of which the parallelism
is wholly illusory. The case well illustrates how easy it is to be
deceived by the general impression of parallelism of two lines known
each to be subject to chance fluctuations. As a matter of fact
if one counts the cases in Fig. 49 in which, between two consecutive
points, the lines have slopes in the same direction, and the cases in
which the slopes are in opposite directions, it is found that in four
out of the ten possible cases (I—II, II—III, VI-VII, and IX-X) the
D and S lines have opposite slopes, against six with similar slopes.

A conventional measure of the reliability of results, or put the
other way about, of their “scatter” due to the chance effects of
sampling, is used by statisticians and called the “probable error.”
It is a constant so chosen that when its value is added to and
subtracted from the result obtained, or the numeric conclusion
reached, it is exactly an even chance that the true result or conclu-
sion lies either inside or outside the limits set by the probable error
in the plus and minus direction. For example, if it is stated that
the mean age at death of persons dying in Baltimore is 39.83 =•= 2.60
years, it means that the mathematical probability that the true
average age falls between 37.23 years (39.83 — 2.60) and 42.43
years (39.83 + 2.60) is exactly equal to the mathematical proba-
bility that the true age falls outside those limits.

The significance of any result is to be judged by its relation to
its probable error. A simple theorem in probability tells us that
the probable error of the difference between any two independent
quantities ( i. e., quantities such that there is no correlation between
their errors) is equal to the square root of the sum of the squares
of the probable errors of the quantities entering into the difference.



214 MEDICAL BIOMETRY AND STATISTICS

Suppose, for example, that a physician found, after administering
a standard dose of a drug to a considerable number, say 150 people,
that the pulse rate was 81.12 ± .20 beats per minute, while the
normal condition in the same group was 79.68 ± .15 beats per
minute. Would he be justified in concluding that the drug signifi-
cantly increased the heart rate, or is the apparent increase simply
a result of chance, arising from sampling? We have the following
very simple calculation:

Difference = 81.12 - 79.68 = 1.44,
(. 20) 2 + (.15) 2 = .0400 + .0225 = .0625,
E 0625 = .25

Or we see that the difference in the two cases is 1.44 ± .25. The
difference, small as it is absolutely, is approximately six times its
probable error. Is a difference six times its probable error likely
to arise from chance alone, or does it represent a really significant
difference?

There has grown up a certain conventional way of interpreting
probable errors, which is accepted by many workers. It has been
practically a universal custom among biometric workers to say
that a difference (or a constant) which is smaller than twice its
probable error is probably not significant, whereas a difference
(or constant) which is three or more times its probable error is
either “certainly,” or at least “almost certainly,” significant.

Now such statements as these derive whatever meaning they
may possibly have from the following simple mathematical con-
siderations. Assuming that the errors of random sampling are
distributed strictly in accordance with the normal or Gaussian
curve, which will be discussed in some detail in the next chapter,
it is a simple matter to determine from any table of the probability
integral the precise portion of the area of a normal curve lying
outside any original abscissal limits, or, in other words, the proba-
bility of the occurrence of a deviation as great as or greater than
the assigned deviation. To say that a deviation as great or greater
than three times the probable error is “certainly significant”
means, strictly speaking, that the area of the normal curve beyond
3 P. E. on either side of the central ordinate is negligibly small.
As a matter of fact this is not true, unless one chooses to regard
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4.3 per cent, as a negligible fraction of a quantity. There are
certainly many common affairs of life in which it would mean dis-
aster to “neglect” a deviation of 4 per cent, of the total quantity
involved.

Lower
Quartile
lx RE

Upper
Quartile
lx P.E.

Fig. 50.—The area of a normal curve inside (blank) and the area outside (cross-
hatched) the lower and upper quartiles. The quartiles are the points on the abscissa
where perpendiculars to the base cut off just one-quarter of the total area of the
curve at each end. By definition of the probable error given above, it is seen that
the quartile distance on the x axis is 1 X P. E. The sum of the two cross-hatched
areas is exactly equal to the blank area in the center.

In order that a more adequate conception may be had of just
what the probable error, and various multiples of it, mean, Figs.

Ex RE.Ex RE.
Fig. 51.—The area of a normal curve inside (blank) and outside (cross-hatched) the

limits set by twice the probable error.

50 to 53 are inserted here. They show the areas of the normal
curve inside and outside certain limits.

From these diagrams one may perceive exactly what he means
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when he says, for example, that a difference which is three times its
probable error is certainly significant. He means that the sum of
the two cross-hatched areas in Fig. 52 is a wholly negligible quan-
tity in comparison with the blank area under the curve in the same

3x P-E.3xP.E.
Fig. 52.—The area of a normal curve inside (blank) and outside (cross-hatched) the

limits set by three times the probable error.

figure. Everyone will agree, after looking at Fig. 53, that a con-
clusion based upon a difference four or more times its probable
error is practically safe.

The following table (Table 40) sets forth, for a series of ratios
between a statistical deviation and the “probable error” of the

4x RE. 4-xRE.
Fig. 53.—The area of a normal curve inside (blank) and outside (cross-hatched) the

limits set by four times the probable error.

distribution, first, the probability that a deviation as great as or
greater than the given one will occur, and second, the odds against
the occurrence of such a deviation. The probabilities are expressed
on a percentage basis, on the ground that they will probably in this
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way make a more direct appeal to the average mind, since we are
more accustomed to thinking in terms of parts per 100 than per
any other number. A single example will indicate how the table
is to be used. Suppose one has determined the mean of each of two
comparable series of measurements. These means, which may be
called A and B, differ by a certain amount. The difference is found
to be, let us say, 3.2 times as large as the probable error of the
difference. Is one mean significantly larger than the other? Or,
put in another way, what is the probability that the difference arose
purely as a result of random sampling (as a result solely of chance)?
Under the argument 3.2 in the table we find the probability of the
occurrence of a deviation as great or greater than this to be 3.09.
This means that if, in the general population from which our
samples are drawn, the means A' and B' were truly and absolutely
identical

,
and we drew successively 100 pairs of samples of the size

which led to the two observed means, and took the difference
between the averages in case of each of the 100 pairs, there would
be about 3 cases in the 100 trials in which the difference would be
as great as or greater than that actually found between the two
observed means A and B with which we started this discussion.
Or, from the next column, the odds against the occurrence of a
difference as great or greater than this in proportion to its probable
error, are 31.36 to 1, if chance alone were operative in the deter-
mination of the event. If one wants to call this “certainty” he
has a perfect right to do so. The tablemerely defines quantitatively
his particular conception of certainty.

It will be noted that after the ratio, deviation P. E., passes
3.0 the odds against the deviation increase rapidly, reaching a
magnitude at 8.0, which is, practically speaking, beyond any real
power of conception. We have started the table at 1.0 because
this is the point where the chances are even. A deviation as large
as the probable error is as likely to occur as not.

From this table it is seen that a deviation of four times the
probable error will arise by chance less often than once in a hundred
trials. When one gets a difference as great or greater than this
he may conclude with reasonable certainty that it did not arise
by chance alone, but has significant meaning.
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TABLE 40
Showing the Probability of Occurrence of Statistical Deviations of Dif-

ferent Magnitudes Relative to the Probable Error

It is hoped that this chapter will have given the reader a general
idea of what a probable error is, and something of its purpose and
significance. Throughout the remainder of the book examples
will be given of probable errors, and the methods used in their
calculation described.

SUGGESTED READING

1. Brownlee, J.: The Theory of Probable Error and Its Application to Vital Statistics,
Transactions of the Royal Sanitary Institute, London, vol. 34, pp. 87-106, 1914.

(This reference may most profitably be read after the next chapter has been
studied.)

2. Yule, G. U.: Introduction to the Theory of Statistics, Chapters XIII and XVII
particularly.

Deviation
P. E.

Probable oc-
currence of
a deviation
as great as
or greater
than desig-
nated one in
100 trials.

Odds against
the occur-
rence of a
deviation as
great as or
greater than
the desig-
nated one.

Deviation
P. E.

Probable occurrence
of a deviation as
great as or greater
than designated
one in 100 trials.

Odds against the occurrence
of a deviation as great as
or greater than the desig-
nated one.

1 0 50.00 1.00 to 1 3.3 ... 2.60 37.42 to 1
1 1 45.81 1.18 to 1 3.4 ... 2.18 44.80 to 1
1 2 41.83 1 .39 to 1 1.82 53.82 11 3 38.06 1.63 to 1 3.5 ... to
1 4 34.50 1.90 to 1 3.6 ... 1.52 64.89 to 1

3.7 ... 1.26 78.53 to 1
1 5 31.17 2.21 to 1 3.8 ... 1.04 95.38 to 1
1 6 28.05 2.57 to 1 3.9 ... .853 116.3 to 1
1
1
1

7
8
9

25.15
22.47
20.00

2.98
3.45
4.00

to
to
to

1
1
1

4.0...
4.1 ...

4.2 .. .

.698

.569

.461

142.3
174.9
215.8

to
to
to

1
1
1

2
2

0
1

17.73
15.67

4.64
5.38

to
to

1
1

4.3 ..
.

4.4 ..
.

.373

.300
267.2
332.4

to
to

1
1

2 2 13.78 6.25 to 1 4.5 ..
. .240 415.0 to 12 3 12.08 7.28 to 1 4.6 .. . .192 520.4 to 12 4 10.55 8.48 to 1 4.7 ..
. .152 655.3 to 1

4.8 ..
. .121 828.3 to 12 5 9.18 9.90 to 1 4.9 ..
. .0950 1,052. to 1

2 6 7.95 11.58 to 1
2 7 6.86 13.58 to 1 5.0 ..

. .0745 1,341. to 1
2 8 5.89 15.96 to 1 6.0 . . . .0052 19,300. to 1
2 9 5.05 18.82 to 1 7.0 ..

. .00023 427,000. to 1
8.0 ..

. .0000068 14,700,000. to 1
3 0 4.30 22.24 to 1 9.0

..

. .00000013 730,000,000. to 1
3 1 3.65 26.37 to 1
3 2 3.09 31.36 to 1 10.0 . . . .0000000015 65,000,000,000. to 1
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3. Wilson, E. B.: The Statistical Significance of Experimental Data, Science, vol. 58,
pp. 93-100, 1923.

(To the reader with sufficient penetration to perceive and discount the
writer’s ironical method of presentation this will prove a valuable discussion.
By some it will be taken as a brilliant and irrefragable proof that all statistical
procedures are idle and futile, a result which the author probably did not fore-
see or desire.)
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CHAPTER XI

ELEMENTARY THEORY OF PROBABILITY

THE TOSS OF A PENNY

The tossing of a coin is a classical event in the discussion of
probability. Let us examine somewhat carefully what this event
consists of and involves. Consider first the penny. It is a simple
mechanism, but possesses two very important structural charac-
teristics. These are:

1. It is thin. By this we mean, more precisely, that it is a right
cylinder, having its height very small as compared with its diameter.

2. The two ends of the cylinder which we call a penny are so
marked as to be distinguishable from one another. One of these
ends is called the head, the other the tail.

Now the general experience of mankind with structures like a
penny, that is, with exceedingly short cylinders, is that only in one
or the other of two positions are they in stable equilibrium. These
positions are respectively, standing on the head end or standing
on the tail end. Everyone knows that a penny on its edge (which
is of course the side of the cylinder) is in a highly unstable position,
so much so in point of fact that, except by an excess of precaution
which would physically be exceedingly difficult and expensive of
attainment, a penny will not stand free of support on its edge for
more than an extremely short time. Why everyone knows this
is simply and solely because he has tried it. That is, his personal
and racial experience with machines or structures like pennies,
and this experience alone , has taught him that they will not stand
on edge. No amount of a priori reasoning, in the complete absence
of experience, could safely lead to this conclusion.

Since pennies then always do come to rest with either head or
tail uppermost following any disturbance of their previous state of
rest, we are led to a further question. Is there anything in the
structure of the penny which makes it any more easy for it to come



ELEMENTARY THEORY OF PROBABILITY 221

to rest after a disturbance of its prior state of equilibrium on its
head end than on its tail end, or vice versa? Again we call upon our
general experience of machines and structures, and conclude that
that experience gives us no warrant for believing that the slight
differences in relief at the two ends of such a cylinder as a penny is,
do in fact sensibly influence or determine which of the two possible
positions of equilibrium shall in a particular case eventuate.

We have now gained two important results, both based upon
general experience, personal and racial. They are that when a
structure like a penny comes to rest after a disturbance, the structure
itself determines that there are only two possible positions of stable
equilibrium, and that there is nothing in the structure itself which
makes one of these any easier of attainment than the other.

So much for the structure of the penny. Now for its tossing.
Tossing can be interpreted as any disturbance of a prior state of
equilibrium. Is there anything in the tossing which makes it easier
for the penny to come to rest, when it does so come, with one end
rather than the other uppermost? Plainly this depends upon how
the tossing is done. Suppose a penny to be sitting on its tail end
(that is, head up) on the desk before me. If I carefully grasp two
opposite points of its periphery between my thumb and forefinger
and raise it just one millimeter from the table, and then let go, it
will again come to rest with head up. I can repeat this performance
industriously forever, and it will always come to rest head up.
The same result will happen if I raise it just two millimeters before
I let go. How do I know this? From past experience of falling
bodies in air, and in particular from experience of excessively short
cylinders falling distances less than their diameter in air. So then
we see that it is possible to disturb the stable equilibrium of a
penny at rest, and have it always return to the same position of
rest. Equally it is possible so to disturb the penny that it will
always return to the opposite position of equilibrium to that which
it had before. I have only to give it a sufficiently strong flip at
the start of a fall through a distance a little more than its own
diameter to turn it over just once in the course of that fall.

But now suppose I drop the penny from a much greater height
than those we have spoken about; or literally toss it, that is, pick it
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up from the table and throw it into the air; or set it spinning like
a top on its edge; or roll it across the table or floor on its edge.
Then I have fundamentally altered the situation. No longer have
I disturbed the equilibrium in such a way as to make it easier for
the penny to come to rest on one of its ends rather than the other,
as was the case in the examples discussed in the previous paragraph.
On the contrary, by these operations of tossing described in this
present paragraph, I have in each case lost control of the future
movements of the penny as soon as it leaves my hand. An indefi-
nitely large number of circumstances can influence its course before
it comes to rest. But since I cannot control these circumstances,
I call them random. So long as I could control the circumstances
I could predict with positiveness and certainty the final position
of rest of the penny, knowing what I did about its structure. Still
knowing just as much as before about the structure of the penny,
and it being just as fixed and determinate as before, I have lost my
power of prediction because I have introduced, in the tossing, and
only in the tossing, an element of randomness.

What do we mean by randomness? Only this, that a penny
tossed at random is one tossed in such a way that the attainment of
one of the possible states of equilibrium is not more favored than the
other in or by the act of tossing. Therefore, since, as we have seen,
the structure of the penny does not favor one position of rest more
than the other, and the method of tossing does not favor one more
than the other, there is nothing so far to enable us to assert, on the
basis of what is known by experience, that the penny will more
often come to rest on one end than on the other end.

Can we then assert the opposite, namely, that the penny will,
under the conditions of structure and tossing named, come to rest
with the head end uppermost as often as with the tail end upper-
most? Here we come to a sharp division of opinion among students
of the foundation of the theory of probability. There are those
who maintain that solely on the basis of experience with structures
like pennies and random tossing, or even without experience by
pure induction from the structure of a penny and from the abstract
idea of randomness, we are able by a priori reasoning to assert that
the penny tossed at random will come to rest as often with head
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uppermost as with tail. These persons, in short, assert that fun-
damentally our notions of probability are purely a priori.

But this view overlooks, as it seems to me, a most important
consideration. How can one know that the only things concerned
in determining which of the alternative positions of equilibrium of
a penny shall eventuate, are things related solely to the structure
of the penny and the randomness of the tossing? Plainly he cannot
know a priori. In fact this is one of the most important things he
wants to find out in a research on penny tossing. A priori one
could not possibly assert that there might not be some wholly
unknown and unperceived cosmic principle influencing the coming
to rest of pennies. At not so remote times in the history of human
thought it might easily have been solemnly asserted that a demon,
or some other supernatural agent, interested himself in penny
tossing.

And today the only way to prove that a demon is not involved
in the affair is to try the case. Now what is found when one tries
it, by tossing a normal penny a great many times in a random way,
is that in fact the penny comes to rest in the long run just about
as many times, and no more, with head uppermost as with tail
uppermost. But this is just what would be expected if the only
things concerned were the structure of the penny and therandomness
of the tossing. Hence it may reasonably be concluded, on the basis
of this experience

,
and on this basis alone, that there are no super-

natural agencies involved, and that in these two factors of structure
and randomness we have the sole essential elements.

By this long argument I hope it has been made clear that the
only basis we have for saying that when a penny is tossed at random
it is as likely, or probable, that it will come to rest with the head
up as with the tail up, is the basis of experience. This experience
is of three sorts:

A. Experience of machines or structures like pennies, namely,
cylinders excessively short in proportion to their diameter.

B. Experience of random tossing; namely, of uncontrolled
phenomena, in which because of the lack of control one
outcome is not more favored than another.

C. Experience of tossing pennies many times.
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THE MATHEMATICS OF SIMPLE PROBABILITY

A penny can by virtue of its structure come to rest either head
up or tail up. Suppose we call the times it happens the first of
these ways a, and the times it happens the second b. Therefore
the total possible times it can come to rest will be a + b. If the
penny is tossed at random it is as likely to fall the a way (i. e., H)
as the b way (i. e., T). In any one toss but one actual occurrence
can happen (namely, the penny must come to rest on an end, not
on the edge), though there are two possible ways in which the
occurrence can happen (namely, it may come to rest on either the
H or the T end). The mathematical measure of simple probability
is taken as the ratio in which (I) the number of times a particular
specified event occurring at random in a class of events either has
happened, or by inference from actual experience of similar events
could have happened, is to (2) the whole number of times all kinds of
events possible in the class either have happened, or, by inference from
experience of similar events, could have happened.

The numerical appreciation or determination of actual occur-
rences and of possible ways is, and must always be, based upon
experience; but this experience may be of either of two sorts,
namely, general experience of particular structures (as in the case
of the penny), or particular statistical experience of events. But,
however the numerical determination is derived, the form of the
probability statement remains the same, a ratio or fraction; and
no greater validity necessarily or absolutely inheres in the one
method of arriving at the numerical determination than in the
other, so far as the resulting probability is concerned.*

To return now to the penny:
The probability that after any one particular random toss a

penny will come to rest with the head end up is, upon the reasoning
given above,

* The expert in the theory of probability will have perceived by this time that
my position is as far as possible antipodal to that of Keynes in his recent book, “A
Treatise on Probability.” This is intentional and deliberate. I am only interested,
and I think the audience for which this book has been written is also only interested,
in the theory of probability as a working tool of science. From this point of view
a more unsafe and unreliable guide than Keynes I have never chanced upon, whatever

.metaphysical merits (?) his lucubrations may have.
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u _

a
a + b

In any one particular toss of one penny clearly either
0=1,

or b = 1

and the whole number of possible ways in which the event can
happen is 1 + 1, whence

l
= rTi = i

Similarly, the probability that after any one particular toss it will
come to rest with the tail end up is

b
_

1
_

xq a+b 1+1 2

P + q = 1.

These results tell us that on any given single random toss of one
penny it is an even or equal chance (or probability) that the penny
will come to rest with head up. It is a certainty (p + q = 1) that
it will come to rest with either head or tail up.

Thus in the numerical expression of the probability of resting
with head up after one random toss, the numerator of the fraction
must be 1 because the specifications are that it shall be head up,
and not otherwise. The denominator must be 2 because the whole
number of possible ways is either head or tail ( = 2).

Suppose the penny to be tossed at random n times. How many
times out of the n will it probably come to rest head up (H) ?

Plainly pn, because one toss does not influence the next, nor the
next, nor any other toss whatever. Therefore the number of H’s
in n trials must be n times the probability of H on one trial, which
is |, as we have seen.

Now suppose we are dealing not with a particular structure
like a penny, but a series of events and wish to know the probability
of occurrence of a particular kind of event in this series. Following
the rule that the probability is the ratio of the frequency of actual
occurrences of the specified sort to the total number of possible
ways, we count in the statistical experience the occurrences of the
specified kind and make the result thenumerator of the probability
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fraction, and count the total number of all occurrences in the
universe under discussion and put this result as the denominator.

Example: On the basis of the experience of the U. S. Birth
Registration Area in 1919, what is the probability that any indi-
vidual baby born in that area will be a male?

In 1919 male births = 705,593 = a
In 1919 total births = 1,373,438 = a + b

Therefore the probability that a given birth would be male is
_

705,593
_P ~

1,373,438
“ - 5137

The chance that a given birth would be a female is
q=l-p=l - .5137 = .4863

Or there were about fifty-one chances in a hundred that a given
birth would be of a male.

The principles stated above regarding the fraction which
measures probability may be extended to any number of mutually
exclusive events equally capable of happening. Thus

b =

a
a -f- b -f- c -)-

_

b
a, b c

_

c
a b -\- c

etc.
P + q + r + =1

Example: What is the probability of drawing any number of
just three figures from the entire list of numbers which can be
formed from the first seven digits, it being specified that any digit
can be used but once in forming any number?

The number of different three figure numbers which can be
formed from the first seven digits is

210 = a

The whole number of different numbers (of 1 digit, 2 digits, etc.)
which can be listed from the first seven digits is

13,699 = a + £>-|-c-|-<2 + e-|-/ + g
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Therefore
210

_

l
P ~

13,699
~

65

The probability of drawing any one particular three figure
number, say 123, is

lP ~

13,699

But at this point some one will say: How do you know that
just 210 different three figure numbers can be made up from the
first seven digits? Or that the total of different numbers of all
sizes from these seven digits is just 13,699?

To answer these pertinent questions it will be necessary to ask
the reader to review briefly, as a digression from the main proba-
bility argument, which under all the circumstances will perhaps be
pardoned, a small portion of his elementary college algebra, which
the medical man has no doubt forgotten.

PERMUTATIONS AND COMBINATIONS

The number of different ways in which the three letters a, b,
and c can be arranged (or permuted) in groups of three is plainly

a b c
a c b
b a c
b c a
cab
c b a

These six different arrangements are the permutations of three
things taken three at a time.

Generally we may write
I n

nPr = n (n — .1) (n - 2) [n — 3) (« — r + 1) =

_ r )

which means that the number of permutations of n things taken r
at a time (wPr) is equal to factorial n, divided by factorial
n minus r , (I ("-*•))•

From this it will be perceived that

nPn — | w
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which in the case of our three letter example becomes
3?3 = 3 X 2 x 1 = 6,

just precisely the result we got experimentally.
The total number of permutations of n things taken singly,

by twos, by threes, etc., is found by summing nPr for all values of
r from 1 to n.

Call this sum 2 nPr-
Then it can be proved that

„ „ I n In I n I n
2 nPr = I ft T — T -— T T T It re'—1 1.2 1.2.3 1 (>’ - 1)

It can further be shown that the series in the parenthesis
approximates more and more closely in value the longer it is, to a
number conventionally called e, which is the base of the Napierian
system of logarithms, and has the value

e = 2.7182818

Hence it follows that for large values of n
2 nPr ~ e \ n approximately.

The question at once arises: How large does n have to be to
make this approximation close enough for practical statistical
purposes? The answer can be given by an example.

When n = 9, obviously not an excessively large number,
2 nPr = 986,410, by the e \ approximation,
2 nPr = 986,409, exactly.

For the convenience of the reader a brief table of permutations
and their sums is given as Table 41.

How many different combinations of three letters each can be
made from the four letters a, b, c, and d? This is not the same
problem as before. Now each combination of three letters must
merely be different, not in respect of the order of the letters, but
of the letters themselves. Thus onlv one of the combinations
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TABLE 41
Values of Permutations

Permutations of

abc and cab can be used, because each contains the same letters,
a, b, and c.

Writing down the possibilities we get
abc
a b d
a c d
bed

No other combination can be written which will not contain,
in some arrangement, the same three letters that are in one or
another of the four groups above.

Using a similar notation to that of permutations we have
| n

nCr | r_ | in — r)

which tells us how to find the number of different combinations of
n things taken r at a time. The example of the letters becomes,

4 X 3 X 2 X 1 24
43 ‘ (3 X 2 X 1) X (1) 6 %

which again coincides with the experimental result. In passing
it may be noted that if r be put equal to n we have

I n
nCn = = 1

which again is reasonable, since obviously only one combination of
n things taken all together can possibly be made.

10 9 8 7 6 5 4 3 2 1

i.. 10 9 8 7 6 5 4 3 2 1
2.. 90 72 56 42 30 20 12 6 2
3.. 720 504 336 210 120 60 24 6

£ 4.. 5,040 3,024 1,630 840 360 120 24
5.. 30,240 15,120 6,720 2520 720 120
6.. 151,200 60,480 20,160 5040 720
7.. 604,800 181,440 40,320 5040
8.. 1,814,400 362,880 40,320
9.. 3,628,800 362,880

10.. 3,628,800
2 nP r 9,864,100 986,409 109,600 13,699 1956 325 64 15 4 1
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For the sum of combinations, that is, the total combinations of
n things taken singly, by twos, etc., we have

V ..,»•(»- 1) , »■ (» - 1) (» - 2) , ,
..

, ,2 nCr = n + 12 + H2T3 + + n + 1

But the right-hand side of the equation is plainly
(1 + l) n

- 1.
Hence

2 nCr = 2™ - 1.

Again, for the sake of convenience, a brief table of combinations
is inserted as Table 42.

TABLE 42
Valves of Combinations

Combinations of

It will be noted from this table that in each column the values
rise to a maximum and then decline.

| n
The maximum nCr =

/, “T w when n is even.

©
\n

The maximum nC, = ■ ■. 1
“ fT——when n is odd.j n l I n — i1 2 j 2

Approximations to | n

In all practical work with probability it is useful to have an
easily computed approximation to the value of \n_ in cases when
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n is large. In Pearson’s “Tables for Statisticians and Biometri-
cians” a table of log | n_ for n = 1 to 1000 is given. But for still
higher values an approximation is needed. A number of such
formulae are available.

Stirling’s:

IJL - x X jl+ jV + _l_
+ j

Forsyth’s:

|V’>, + " + *T + t

This is accurate to 24^3-
To indicate the closeness of these approximations we may

calculate \n_ for n = 2.
The result is

| n = 1.999479 (Forsyth)
Actual error = .000521

= .00052083240m 3

Hence it may be concluded that for all practical purposes
Forsyth’s approximation is sufficiently accurate. It is, in the
opinion probably of most computers, somewhat easier and quicker
of calculation than Stirling’s approximation.

THE PROBABILITY OF CONCURRENT EVENTS

Suppose this question is put: If two pennies are tossed at
random together, what is the probability that both will show heads
when they come to rest?

What are the possibilities? Let us call one of the pennies A
to distinguish it from the other B. Then we have, as possibilities,

AH, BH
AH, BT
AT, BH
AT, BT.

From this it appears that the favorable event AH, BH, can
occur in but one way, out of a total of four ways in which any event
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may happen under the specifications (namely, of two pennies tossed
together). Hence

P = i
The probability that the pennies will fall one head and one tail

is evidently,
P = !•

Now let us consider these results analytically. Any one throw
of the two pennies must necessarily result in a combination of the
character A —, B —, where the dashes may be either H or T.
But considering the A penny alone, the probability that it will be
AH after any particular toss is, as we have already seen, This
means that in n successive tosses of the A penny alone it will come
AH approximately one-half of the times and AT one-half of the
times. This fact will not be altered by virtue of the fact that B is
tossed with A, because if the tossing is random neither penny affects
the other. Consequently itmust happen that in about one-half of
n tosses of the two together the constitution of the result must be
of the form AH, B —, or numerically the result will be | n AH,
B —. But now the B penny, which is associated with each of these
AH pennies in the | n throws, will be subject to the same influences
as though it were tossed alone. Consequently we shall have in
these | n tosses these results:

h (i n) AH, BH, and
| (§ n) AH, BT.
But h (| n) AH, BH — J n AH, BH.

Continuing, let us consider next the one-half of the n tosses in
which the A penny falls T. By the same reasoning as before, we
shall get

I (| n ) AT, BH, and
5 (I n) AT, BT.

But the l n AH, BT, and \ n AT, BH clearly must be added
together, since they are the cases in which head and tail occur
together, and it makes no difference which penny is head or which
tail, so that we have for the probability of the two pennies falling
one head and one tail,

1 n /AH, BT or
2 n \AT, BH.
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So, then, the complete result is,
1 n AH, BH = 2 heads,
AH, BT

or
AT, BH

I n = 1 head, 1 tail,

\ n AT, BT = 2 tails.

Whence we arrive at the rule:
If the separate probabilities of each of several independent events

are respectively pi, pi, pz ,
the probability of their all occur-

ring together is
P = pl X p2 X p3

The concurrence of events implied in this rule and the discussion
which has led up to it may be either in time, or in space but not in
time, or in both space and time. Thus in the case of tossing two
pennies together, the probability of f that they will fall HH would
plainly not be affected in any way if one of the pennies were tossed
say a fraction of a second later than the other, nor, indeed, if it
were tossed several seconds, or minutes, or days, or any other
time unit, later, provided, as always that all the tossing was random
in character. Hence it is seen that the probability of HH with two
pennies is the same, \, whether they are tossed together or suc-
cessively.

The simple theorems in probability so far developed have many
practical applications in medical work. An example from actual
experience may be given in illustration.

A physician has seen in the whole of his lifetime’s practice
23,464 patients. Of these patients, 1474 had some disease of the
gall-bladder or ducts. Also of the same 23,464 patients 454 had
glycosuria from some cause or other. Of the 454 patients ex-
hibiting glycosuria, 372 were cases of diabetes mellitus. Now in
the whole experience 24 patients exhibited both disease of the gall-
bladder and glycosuria, and 13 had both gall-bladder disease and
diabetes mellitus.

The question now is: Were gall-bladder disease and glycosuria
more or less often associated together in this series than would be
expected if chance or random association were the only influence
bringing them together?
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In the experience of this physician the probability that a patient
had disease of the gall-bladder and ducts was:

1474
* -

23464
“ -°628

The probability that a patient had glycosuria was

*-2m -- 0193

The probability of a patient having both gall-bladder disease
and glycosuria was

P = pi X p> = .0628 X .0193 = .001212

There would then be expected, from random assortment of
diseases alone, in this series a total of

23,464 X .001212 = 28.4

patients showing both these morbid conditions. Actually there
were 24 such patients. Whence we may at once conclude that the
association of the gall-bladder disease and glycosuria observed
in this series of 23,464 patients was approximately what might
have been expected from the operation of chance alone.

The case for diabetes mellitus and gall-bladder disease is some-
what different.

Here
pi = . 0628 as before
* '- M*-
P = Pi X p\ = .000999

and the number of cases expected is

23,464 X .000999 = 23.4

while actually only 13 occurred with the combination. Hence it
may be concluded that in this series diabetes mellitus and diseases
of the gall-bladder and ducts actually occurred together in the same
patients only slightly more than half as often as they would be
expected to from chance alone.
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THE POINT BINOMIAL

Let us now consider what will happen in n trials regarding an
event for which the probability of occurrence is p, and the proba-
bility of failure is q = 1 — p.

1. The probability that the event will occur at every trial is
evidently

P X p X p X p ...
= p n

Thus if we toss together at random four pennies the probability
that they will fall all heads HHHH is

lylylyl—: _
l

2 2 2 2 — \2/ — 16

2. The probability that in any one throw n — 1 particular
pennies will give successes (say heads) and one particular penny a
failure (tail) is

pX PX pX X q = pn ~ l .q

But this result can occur n different ways, as is plain from the
four pennies, which may give three heads and one tail, as follows:

HHHT
HHTH
H T H H
T H H H

Hence the complete probability that the event will occur
n — 1 times and fail once is

n pn ~ x .q
or in the penny case

4 (*)s (*) = tb

3. The probability that in any one throw n — 2 particular
pennies will give successes and 2 particular pennies failures is

PX PX X?X? = p n~ 2.q 2

But again this may happen in

n {n — 1)
_

(remembering that in the formula given above for nCr some factors
1.2 n r cancel in numerator and denominator).

different ways, as can be seen from the example of tossing four
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pennies, where the combination of two heads and two tails may
occur as follows:

H H T T
H T H T
HTTH
T H H T
T H T H
T T H H

Hence the complete probability of the event occurring n — 2
times and failing twice is

\ 2
- P n~ 2-q\

which in the penny example is

4 3
(!A2 (1\2 — _6_

2 \2/ 10

4. And so the same process may be continued. But enough
detail has been presented to make it evident that:

If n trials be made of an event for which the probability of occur-
rence is p and the probability of failure is q, the probability of each of
the several possible occurrences is given by the appropriate term in the
expansion of the binomial

(P + ?)”•

5. If p = q = as in the case of the penny, the point binomial
will be symmetric, as shown in Fig. 54, which gives the results for
the four-penny example.

But within fairly wide limits p and q may have any values.
Thus consider the results of throwing four dice together. In the
case of dice the probability of any particular face of the die coming
up after one random throw of one die is

P = l
whence

<7 = 1?= the probability that this particular face will not come up.

Hence for the probabilities of getting different numbers of 6’s
with 4 dice thrown together at random we require the successive
terms of

(i + I)4
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Frequency
in
16

Fig. 54.—The results of tossing four pennies together at random, as given by the
binomial (| + |) 4.

These are:

p n = j-—: = probability that all 4 dice will fall with the 6 face up.

20npn —lq = = probability that 3 dice will fall 6’s and 1 die something other than 6.

n (n — 1) ,
_

150
_

probability that 2 dice will fall 6’s, and the other 2 some-
1.2 1296 thing other than 6.

n [n — 1) (n — 2)
3 _

500 _ probability that 1 die will fall 6 and the other
1.2.3 1296 three something else.

n {n — 1) (n — 2) {n — 3) .
, 625 . , ... , .. .pn-iq* = —— = probability that no die will fall 6.

This distribution is shown graphically in Fig. 55, and its asym-
metry or skewness is apparent.

The student must bear always in mind in connection with the
graphical representations of the point binomial in this section and
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Frequency
in

12-96

Fig. 55.—-The probability of getting different numbers of 6’s in the throws of 4 dice
together, as given by (§ + f) 4

.

elsewhere, that the terms of the binomial are true ordinates', and not
frequency areas. Consequently the lines connecting the circles
to form a polygon are not a correct representation of actuality.
Theoretically the circles in such a diagram as Fig. 55 stand alone
by themselves. The lines are put in simply as a convenience, to
enable the eye to get the sweep of the ordinates as a whole.

6. The probability of an event occurring t or more times in n
trials is the sum of the terms of (p + q) n from pn up to the term
in pt .qn ~ t

.

The consequences and usefulness of this proposition are far
reaching and will bear careful examination.

Let us start withan example. Suppose ten pennies to be tossed
together at random. For the results we have

„ , „ in 1 + 10 + 45 + 120 + 210 + 252 4 210 4 120 + 45 + 10 + 1
(2 + 2) -

1024
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These fractions are reduced to decimals in Table 43.

TABLE 43
Successive Terms of (5 + f) 10

frequency
in
I0Z4-

Fig. 56.—The binomial (5 + |) 10
. The meaning of the cross-hatched area is explained

in the text.

Ordinal number of term. Value of term.
Term measures the proba-
bility that there will be,
in any one throw

1 .000977 10 heads, 0 tail
2 .009766 9 heads, 1 tail
3 .043945 8 heads, 2 tails
4 .117187 7 heads, 3 tails
3 .205078 6 heads, 4 tails
6 .246094 5 heads, 5 tails
7 .205078 4 heads, 6 tails
8 .117187 3 heads, 7 tails
9 .043945 2 heads, 8 tails

10 .009766 1 head, 9 tails
11 .000977 0 head, 10 tails

Total 1.000000
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There is then about one chance in a thousand that on any one
throw the 10 pennies will all fall head. There is approximately
one chance in four that there will be 5 heads and 5 tails on any one
throw, and so on.

The ordinates of Table 43 are plotted in Fig. 56.
What, now, is the probability that on any one throw there will

fall six or more heads? By the rule given above, and obviously
from general principles discussed earlier, this probability is:

The probability for 6 heads = .205078
+ The probability for 7 heads = +. 117187
-j- The probability for 8 heads = + . 043945
+ The probability for 9 heads = +.009766-j- The probability for 10 heads = +.000977

Complete probability of 6 or more heads on one throw = .376953

Or, it appears that there are approximately thirty-eight chances
in one hundred, or a little more than one in three of throwing 6 or
more heads at one toss of the 10 pennies. In the diagram the
cross-hatched portion shows the ordinates summed. The ratio of
the area of the cross-hatched portion to the total area is, for reasons
which will appear in the next section, approximately that of the
total probability of .38 given above.

7. In all of the discussion of the point binomial so far nothing
has been said specifically about abscissas. The discussion has been
wholly about ordinates, and in the tables and diagrams we have
simply named in words the situation relative to the pennies at
each point at which an ordinate was erected. But this is plainly
not a neat or complete procedure. It is time now to see if some-
thing different cannot be done relative to abscissas.

Consider the symmetric binomial, where p = q = The
structure resulting from its expansion is a series of points, which
if connected by lines as we have done, form a polygon, shaped like
a cocked hat or a sugar loaf,* the line rising from each end to a
peak in the middle. Now suppose instead of designating each
abscissal point at which an ordinate is erected by a descriptive term.

* Both somewhat mythical objects which scarcely any living American can ever
have seen, but of such hoary antiquity in the literature of probability as terms for
the description of the shape of curves such as we are talking about, that I feel com-
pelled to use them. One should not lightly break with ancient traditions!
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such as “6 heads, 4 tails,” we measure the distance of each such
point from the center of the polygon where the highest ordinate is
(or, when n is odd, from a point half-way between the two equal
central ordinates), using as the yardstick for the measurement
some function of the shape of the curve, or of the spread of its two
limbs. Every one is bound to agree that such a procedure would
be fair enough, provided the yardstick were at hand.

Now several such yardsticks are available, and have, indeed,
been used at different times in the history of the subject. The
one which has at the present time come to be almost universally
used, because of its significance in the higher mathematical de-
velopment of the subject, is

a = 's/n p q

This quantity, which is perceived to be easily calculated, and
which for the present we shall call simply by its symbol sigma, will
be more fully discussed in a later chapter, and its mechanical and
geometric meaning explained. Here I only wish to point out that
every point on the abscissal axis can be numerically defined as
some multiple of a since it itself is a distance along that axis.

So then we may set up Table 43 in another form, as shown in
Table 44.

TABLE 44

Abscissa in Terms of x/a , and Ordinates of (| + £) 10

x j& y
- 3.162278 000977
- 2.529822 009766
- 1.897366 043945
- 1.264911 117187
- .632456 205078

0 246094
+ .632456 205078
+ 1.264911 117187
+ 1.897366 043945
+ 2.529822 009766
+ 3.162278 000977

Normally, of course, one would never carry so many places of
decimals in x/a - But this example will indicate that the position
of any abscissal point can be expressed in terms of a with any de-
sired degree of accuracy.
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THE NORMAL CURVE

It has been pointed out that to get the probability that an
event will occur t or more times in n trials it is necessary only to
sum the terms of the binomial up to the one in p t.qn ~t

. This is
a simple enough matter when n is small or, at any rate, not very
large. But how if one is confronted with this problem? Suppose
a city to have 10,000 births per annum, and further suppose that
long experience of that city has demonstrated, on the average,
that the probability of any given birth being of a male is p — .52.
What is the probability that in a given year, say next year, there
will be born 5300 or more male babies? To answer this by the
point binomial route requires the calculation and summing of the
successive terms in the binomial (.52 + .48) 10,000 from the end
of the curve to the term in which p has the exponent 5300. Plainly
the labor involved in this procedure would far outweigh any possible
significance which could attach to the result.

Let us examine what happens as the exponent n of the binomial
increases in value. Figure 57 shows this graphically for a small
range of values of n, but a sufficient number to bring out the point.
In plotting this diagram all the deviations are taken in the form
4(x/o), and the sums of the ordinates of all the polygons are made
the same.

Now what this diagram shows is that, as n increases, the polygon
got by connecting the tops of the ordinates of the binomial in-
creases its number of sides as would be expected. Furthermore,
the binomial approaches in its form closer and closer to the smooth
curve as n increases. Now suppose n to increase indefinitely in
value. The resulting polygon would come closer and closer to the
smooth curve, but would never quite reach it because, after all,
however large n might be, if it were still finite, the resulting figure
would still be a polygon, that is, made up of many short but still
straight sides, whereas the curve is everywhere curving.

But suppose we went on to the binomial
(I + ■§) 00

Then each side of the “polygon” would be infinitely short,
corresponding to a point in a smooth curve, and each such point
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Fig. 57.—Point binomials for several values of n, and a superimposed normal curve.
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may be thought of as a straight line of infinite shortness. Further-
more, each ordinate of this “polygon” would be infinitely close to
the next one. This “polygon” would then have come to coincide
exactly with the smooth curve, and, in short, have become identical
with it.

In other words, the smooth curve is what is known mathematic-
ally as the limit of the point binomial, as n of the binomial increases.
But this result opens out wonderful possibilities. For, plainly, if
we know the equation to the smooth curve we can integrate it over
any portion of its range. These integrations may be performed
once and for all, for this curve reduced to standard area of say 1,
and tabled. Then, in so far as the curve is a good approximation to
the binomial

, these integrations can be used in place of the tedious
finite summation of the terms of the binomial, and our derived
probabilities read off from the table of these integrations, without
any work at all. Now it is apparent from Fig. 57 that with n no
larger than 50 the smooth curve is a quite sufficiently close approxi-
mation to the binomial for all practical statistical purposes, and
we shall be quite justified in so using it in practical work.

All this has been done. The integrals of the smooth curve,
which has the equation

ny =

/o
e 2 <r*y/2 5T a

have been calculated and tabled. Such tables are known as tables
of the probability integral. A short table of this kind, but quite
extensive enough for most practical statistical work, is given in
Appendix III of this book. It carries the argument—the deviation
from the center measured on the x/a yardstick—to two places of
figures, and the function to four places. Besides the area the
individual ordinate corresponding to the same argument is given
in each case.

The curve itself is known as the normal curve, or from its dis-
coverers, the Gauss-Laplace curve of error. It has many and
varied properties and uses in statistics, space for the discussion
of which is lacking in this book. It may truly be said to be
the very corner-stone of the foundation of the statistical treat-
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ment of observational data, whether quantitative or qualitative
in character.

As an example of the use of the probability integral to replace
finite summation of the terms of the point binomial we may take
the case propounded above regarding the sex ratio of births.

Here
n = 10,000, p = .52, q = .48

- Hence
c = -y/n p q = ■yj 10,000 X .52 X -48 = 49.96
* = 5300 - 5200 = 100

Thus we have the situation depicted graphically in Fig. 58.

Sco/e of x/cr
Fig. 58.—Diagram of probability example given in the text.

Now in the table in Appendix III there is found against the
argument 2.00 the figure .4772. This means that, taking the total
area of the curve as 1, the area of that part of the curve (A) between
the mid-ordinate {x/a = 0) and the ordinate where x/a = 2, is
.4772. Therefore the fraction of the area of the whole curve up
to the ordinate where x/a — 2 will be B + A = .5 -f .4772 =

.9772. Hence the area of the rest of the curve, which measures the
probability of deviations of 2 x/o and greater, will be 1 — .9772 =

.0228. Or we say that the chances are about 2J in a hundred that
in any given year in our hypothetic city there will be 5300 or
more male babies born. Or, put in another way, we should not
expect, on the premises stated in the example, 5300 male births
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in a year to be equalled or exceeded oftener than between two or
three times in a century.

THE RELATION BETWEEN G AND THE PROBABLE ERROR

We have used in the discussion in this chapter a as the yardstick
to measure deviations. In an earlier chapter the probable error
has been used for the same purpose, though that phase of the
matter was not then emphasized. What is the relation between
the two? It is a simple one, that given by the following equation:

P. E. = .6744898 ...a.
Because there is frequent use for this knowledge Table 45 is

presented, giving the relations between certain multiples of a
and the probable error.

TABLE 45
Multiples of a and the Probable Error

a times any number in Column A is the same as the probable error times the corre-
sponding number in Column B.

SUGGESTED READING
1. Peirce, C. S.: A Theory of Probable Inference. In Studies in Logic by Members

of the Johns Hopkins University, Boston, 1883, pp. 126-181.
(This is a classic. No student of probability or statistics can be properly

said to have laid his basic foundations until he has mastered this essay.)

A. B. A. B.

.5 .741 2.3 3.410

.6 .890 2.4. 3.558

.7 1.038 2.5. 3.707

.8 1.186 2.6 3.855

.9 1.334 2.7. . 4.003
1.0 1.483 2.8 4.151
1.1 1.631 2.9. 4.300
1.2 1.779 3.0. 4.448
1.3 1 .927 3.1 4.596
1.4 2.076 3.2. 4.744
1.5. . . 2.224 3 3. 4.893
1.6 2.372 3.4 5.041
1.7 2.520 3.5. 5.189
1.8 2.669 3.6 5.337
1.9 2.817 3.7 5.486
2.0 2.965 3.8. . 5.634
2 1 3.113 3.9. 5.782
2.2 3.262 4.0 5.930
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2. Venn, J.: The Logic of Chance, 3d ed., London, 1888 (Macmillan).
(Suffers from a curiously diffuse and wandering style, but sound as to doc-

trine.)
3. Laplace: A Philosophical Essay on Probabilities, New York (Wiley), 1902. (Trans-

lated by Truscott and Emory.)
4. Edgeworth, F. Y.: Methods of Statistics, Jour. Roy. Stat. Soc., Jubilee vol. 1885,

pp. 181-217.
5. Yule, G. U.: An Introduction to the Theory of Statistics, 6th ed., Chapter XV.
6. Galton, F.: Natural Inheritance, London, 1889 (Macmillan), Chapters IV and V.

(These two chapters contain' perhaps the clearest and simplest account of
the structure and significance of the normal curve anywhere to be found.)

7. Fisher, A.: The Mathematical Theory of Probabilities, vol. i, 2d ed., New York
(Macmillan), 1922, Chapters I-VI, inclusive.

(This book brings a fresh and original viewpoint and modes of expression
to the old problems. It will probably be found rather difficult by most medical
readers.)
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CHAPTER XII

SOME SPECIAL THEOREMS IN PROBABILITY

In this chapter will be discussed some special developments
and applications of the theory of probability likely to be of par-
ticular use to the medical worker.

PAST EXPERIENCE AND FUTURE EXPECTATION

A theorem in probability which is likely to be most useful to
medical men is one enabling us to measure the reliability of pre-
dictions of future results on the basis of past experience. This
theorem is due to Pearson. 1 It should be understood that this
section is merely a refinement of the methods dealt with in Chapter
XI. It has significance, as distinct from those methods only
when meticulous accuracy is desired.

Let it be supposed that a first sample of n = p + q be drawn
from the population, p denoting the number of times the event
dealt with occurs in the n trials, and q the number of times it fails.

Write
. P - qP — ——> q =

n n

whence, of course,
P + q = 1-

We then have for the chief constants of the error distribution
for a second sample, of magnitude m, drawn from the same popula-
tion the following values:

Mean = mp + (q - p) (i)
n + L

Mode = the integral portion of mp + p

Standard deviation

- {“ (p + »-ri) (? -Lpi) (‘ + irfi)}’ (ii>
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The last mentioned constant, the standard deviation, is needed
because the probable error of the number of occurrences is related
to it in the following way:

P. E. = ± .67449 Standard Deviation

The writer* has applied this theorem to a problem in the treat-
ment of pneumonia. In a certain camp 966 acute pneumonia
patients were treated on the open ward plan. Of these so treated.
135 died. The treatment was then changed to the closed wr ard
plan, and 435 were so treated, with a mortality of 14. From these
figures we may state the problem in the following terms: If, under
the open ward treatment, out of a sample of 966 patients with
acute pneumonia 135 died, what would be the probable number to
die in a second example of 435 acute pneumonia patients from the
same population, given the same treatment?

We have here, in our mathematical notation,

n = 966
m = 435
p = 135
q = 831

135 831
f =966= - 1397 « =

966
“ 8603

Whence, from the equation given earlier, we readily deduce

Mean deaths expected in second sample = 61.12 ± 5.88.
Modal, or most probable number of deaths in second sample = 60.
Standard deviation = 8.72.

But the actually observed number of deaths in the second sam-
ple, under the close ward treatment, was 14 instead of 60. Hence
we may safely conclude that under the close ward treatment
significantly fewer persons died than would have been expected to
die on the basis of chance, if the same force of mortality had pre-
vailed in the latter period as did in the former.

But can it be assumed that the same force of mortality was
impinging, and its results were mitigated only by the new method
of treatment? In order to settle this question we must use data
from a comparable outbreak of post-influenzal pneumonia where

* Pearl, R.: A Statistical Discussion of the Relative Efficacy of Different Methods
of Treating Pneumonia, Arch. Int.. Med., vol. 24, pp. 398-403, 1919.
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the same treatment was followed throughout the outbreak. Would
there be in such a case a falling off of the case fatality rate in the
latter part of the epidemic corresponding entirely or in some degree
to that observed above? Such data were obtained, and may be
put in the following way:

In the same notation as before
Cases of pneumonia through October 6 = n = 1000.
Deaths from pneumonia throughout October 14 = p = 364, whence q = 636, and

p = .364 and q = .636.
Cases of pneumonia beginning October 7 and going to end of the epidemic = m =

499.

The problem, then, may be stated in this way: If, with no
change of treatment, 364 patients died out of a sample of 1000,
what is the probable number of deaths in a second sample of 499
cases? By the same method as before the data give

Mean deaths expected in second sample = 181.77 =±= 8.87.
Modal, or most probable number of deaths in second sample = 182.
Standard deviation = 13.15.

Now, the actual number of deaths in the last 499 cases of this
second epidemic was only 77 instead of the expected 182. But
there had been no change in method of treatment. Hence, it is
clear that fewer deaths in proportion to cases occur in the later
as compared with the earlier portion of these epidemic outbreaks,
quite without change of treatment.

This result obviously tends to cast reasonable doubt on the
efficacy of the closed ward as compared with the open ward treat-
ment of these epidemic pneumonias. It is necessary, however, to
make a further quantitative comparison before drawing any final
conclusion. In the second sample (latter part) from the second
epidemic the actual deaths formed 42 per cent, of the deaths
expected on the basis of chance from the results shown in the first
sample from the same epidemic

”_Xi«?
= 42perce„,.

In the first epidemic the actual deaths under the close ward
treatment formed only 23 per cent, of the deaths expected on the
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basis of chance from the results shown in the first sample from the
same epidemic, under the open ward treatment

14 x 100
77 = 23 per cent.60

This result gives the significant comparison. The whole matter
may be summarized in this way. While it is true that the case
fatality rate tends under a constant form of treatment to be mark-
edly lower in the later portions of epidemic outbreaks of pneumonia,
nevertheless the data show, when given proper mathematic
analysis, that under the closed ward treatment only about half
(23 versus 42 per cent.) as many deaths occurred relatively in the
latter part of the particular epidemic studied, as would prob-
ably have occurred if the open ward method of treatment had
been used in this epidemic, and worked the same way that it did in
the one to which it was applied throughout, after making allowance
for the normally diminishing case fatality rate of later portions of
epidemics.

An interesting special case of the theorem just discussed some-
times has application in practical problems, notably in Mendelian
experiments.

The case is this: Suppose p — 0. This means that the event
did not occur at all in the first sample. Ordinarily, on long current
views of the theory of probability one concludes, either that the
population from which the sample is drawn does not contain that
which would make the event capable of happening, which makes
the probability of its occurrence in second or other samples always
equal to zero, or else, falling back upon a supposed applicability
of Bayes’ theorem, it is concluded that, having no knowledge of
the population, the event at the next trial is as likely as not to
occur, whence the probability equals Obviously neither of
these conclusions is true. The first, because neither (i) nor (ii)
vanishes when p = 0, the second, because the first sample does, in
fact, give us some knowledge of the constitution of the population.

Putting p = 0, q = 1, we have, for the expectation of occur-
rence of the event, in the second sample

Mean = m —7—— (iii)
n + 2
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and

”*" ” (;rh) (' - (‘ + »ri) (iv)

Equation (iii) shows that the expectation of the occurrence of
the event in a second sample m if it did not happen at all in the first
sample, n, varies from just over zero if m is very small as compared
with n, through 1 if m = n + 2 to any number whatever when
m > n + 2.

To take an example: What is the probability that the sun will
fail to rise tomorrow? Here n = 36,500,000,000, on Lord Kelvin’s
estimate of one hundred million years for the age of the earth, and
on the assumption that the rising of the sun has been observed
(or could have been) on each of the days in this period, and m = 1.
Hence expected mean number of occurrences tomorrow of failure
of the sun to rise = 36,500,000,002-

This is admittedly a small number, but not precisely equal to
zero. Which means that we cannot be quite sure that the sun will
rise tomorrow, on the basis of our past experience with that useful
body.

THE CHI-SQUARE TEST

Another theorem in probability which we owe to Pearson 2

should be widely useful to medical men. Problems of the following
sort arise constantly: Given two frequency distributions of
phenomena, what is the probability, on the one hand, that the two
can be regarded as random samples from the same population,
whose characteristics are known only from the samples; or, put the
other way about, what is probability that the one distribution is
really different from the other to a greater degree than could reason-
ably be supposed to have arisen by the operation of chance alone?

Pearson shows that if we let the population from which the two
samples, if undifferentiated, are supposed to be drawn be given by
the class frequencies

mi, m2, m3, m\ mp, mq ms

the total population being M, and let the samples be given by the
frequencies in the same classes:

Total.
First sample I /1 i /2 I /3 I ... I fp I f q I ... j fs I N
Second sample | f\ \ f2 | f\ \ ■. \ f'p I fq \ ... I fs I N'
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where the totals N and AT/ differ widely or little, and then form a
quantity

, fp + f'p
A 2 = 51

where 51 denotes summation of like quantities from 1 to s, that
then the required probability that the two samples are undifferen-
tiated, i. e., did come as random samples from the same population,
may be found by looking out the value of P corresponding to the
ascertained %

2 and n' (the number of classes) from the tables given
on pp. 26-29 of Pearson’s “Tables for Statisticians and Biometri-
cians.”

Let an example make the theorem plain. MacDonald* gave
the following distributions of hair color of children attacked (a)
with scarlet fever and (b ) with measles, from data collected in the
Glasgow Corporation Fever Hospitals.

The question is: Do scarlet fever and measles attack indi-
viduals indifferently and at random so far as concerns hair pigmen-
tation? Or, in other words, are the scarlet fever and measles
distributions, in respect of hair color, different from each other
only by so much as might arise by chance in samples of the size of
these?

TABLE 46
Data on the Incidence of Scarlet Fever and Measles in Relation to Hair

Pigmentation

(MacDonald’s Data)

* MacDonald, David: Pigmentation of the Hair and Eyes of Children Suffering
from the Acute Fevers; Its Effect on Susceptibility, Recuperative Power, and Race
Selection, Biometrika, vol. 8, pp. 13-39, 1911.

Hair color.
Number of cases of

Scarlet fever. Measles.

Black 12 0
Dark 289 85
Medium 1109 367
Fair 360 184
Red 94 25

Totals 1864 661
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The distributions are shown graphically in Fig. 59. The
numerical work is set forth in Table 47.

NUMBER
OB
CASES

HAIR COLOR ■
Fig. 59.—Distribution of scarlet fever and measles in respect of hair color of those

attacked.

Therefore
X2 = NN' X .000,0211 = 1864 X 661 X .000,0211 = 26.00

P from the tables is about .000,03. In other words, the odds
are more than 33,000 to 1 against the occurrence of two such diver-
gent samples of hair color if they were random samples from the
same population. We can conclude that they are really differen-
tiated samples, or that scarlet fever and measles do not attack
indifferently all individuals whatever their hair pigmentation; or,
that scarlet fever and measles are differential in their selection.
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Numerical
Work
to

Calculate
Probability

That
the

Measles
and
Scarlet

Fever
Distributions

or
Table
46
Are

Random

Samples
of
the

Same
Population

TABLE
47

Black.

Dark.

Medium.
Fair.

Red.

Totals.

(i)

12

289

1109

360

94

/S'f+rf/Nf'/N'f/N-f/N'(f/N-f/N
r

(f/N
-f/NT

1864

(ii)(iii)(iv)(v)(vi)(vii) (viii)

0

85

367

184

25

661

fi)
+

(ii)

12

374

1476

544

119

2525

(ij/1864

.0064

.1551

.5950

.1931

.0504

1.0000

(iij/661

.0000

.

1286

.5552

.2784

.0378

1.0000

(iv)-
(v)

+
.0064 .000,041 .000,0034
+
.0265 .000,702 .000,0019
+
.0398 .001,584 .000,0011
—.0853
+
.0126 .000,159 .000,0013

.007,276 .000,0134

.000,0211
/+/'
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It will be seen that the arithmetical work is not difficult, and
the usefulness of the method in drawing correct conclusions from
many classes of medical data is great. One caution must always
be kept in mind. The validity of the method depends upon the
data tested being frequencies. It is not directly applicable to
rates, indices, or true ordinates.

PRACTICAL PROBLEMS OF SAMPLING

In the practical affairs of life perhaps the most frequent use of
the statistical method which is made, either consciously or uncon-
sciously, is to form a judgment of the probable constitution of an
unknown universe, on the basis of the constitution of a sample of
known constitution drawn at random from it.

For example, suppose it to be assumed that, in order to justify
mass treatment for hookworm infestation in a population, 70 to
80 per cent, of the people must harbor the worms. How, by a
process of sampling in making examinations, shall it be ascertained
that this proportion of the people does, in fact, probably harbor
the worms?

This is not an easy or simple problem. Much research still
needs to be done on the general problem of which the one cited is a
particular case, before we shall be able to proceed with entire
precision, and certainty of the validity of all the methods employed
in its solution. But in the meantime the problem is of such great
practical importance to every scientific worker that it seems
desirable to discuss it in some detail here.

In the first place it can be seen at once that an adequate judg-
ment of the constitution can only be arrived at if:

(a) The sample is a good one.
(■b ) The sample is an adequate one.
By a “good” sample is meant one which is fairly representative

qualitatively of the universe from which it is drawn. By an
“adequate” sample is meant one which is large enough in point of
numbers to satisfy the requirements of the theory of probability.

To get a good sample, if we are working in the realm of living
things, is a biologic problem primarily and fundamentally. How
shall it be gone about? Evidently the general criterion is that the
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sample should contain at least one individual from each of the
classes of the universe known from prior experience to be differen-
tiated in any important particular from all other classes in the
universe. Thus, to consider the hookworm case. We know,
quite apart from hookworm problems at all, that mankind is
differentiated everywhere into classes in respect of

(a) Age.
(ib) Sex.
(c) Race (or color).
(d) Geographic location.
That is to say, at any given instant of time it is known that a

human population contains a number of people forming a class
ranging in age from birth to nine years, another class aged ten to
nineteen years, etc. It contains a class of persons like each other,
but different from all the rest, in respect of being males. It con-
tains perhaps a class of persons who are white, and another class
who are colored. It contains a class of persons who all live in
town A, another class of persons who live on farms in county B, etc.

These are all perfectly well-known and certain differentiations
of the population. Whatever else may be peculiarly distributed
among the individuals of our universe, it is certain that any universe
of human beings from which it is proposed to draw a sample will
contain some or all of these four differentiations which have been
mentioned. Plainly, then, any sample, to be qualitatively repre-
sentative of the universe, must contain some individuals from each
of the differentiated classes. Thus, to take a representative sample
from the population of a given locality relative to our hookworm
problem, it would theoretically be necessary to take as a minimum
one person in each decade of age, or say 10 in all. But there should
also within each decade be one maleand one female, and one white
and one colored person, making 4 X 10 or 40 in all. Of course
practically there may be no negroes at all in the locality, or there
may be no persons ninety to ninety-nine years of age, and so on, in
any of which events the necessary sample will be, by so much,
reduced.

As regards geographic location the procedure must be in
principle the same. The whole universe dealt with covers a certain
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area. To get a representative sample it will therefore be necessary
to lay down over the whole area an imaginary network, in which
all the meshes are of equal and not too large area, and then draw a
sample relative to the other differentiations from within each mesh.

The meaning of all this discussion is that it is both practically
and theoretically wise to make all probabilities specific relative to
already known differentiations of the universe from which the sam-
ple is drawn. Crude probabilities for whole universes in which differ-
entiation is known to exist, rarely have any particular practical
Significance. Thus I might ask what is the probability that a
warm-blooded animal will shave tomorrow morning, and put into
the denominator of the fraction all the elephants, tigers, etc.; but
supposing I had accurate data to do all this, the resulting proba-
bility would have only a very academic interest, because I already
know before I begin that elephants do not shave.

This reasoning applies to the hookworm problem in this way.
In a county the situation actually may be this: On four or five
plantations in one corner of the county 90 per cent, of the negro
laborers are infested. Nowhere else in the county nor among the
whites is there more than 1 per cent, of infestation. This is the
real situation, but is unknown to the workers who come into that
county to clean up hookworm by an efficient campaign. By what
general procedure shall the real fact become most speedily known?
Now. plainly, a completely random sample of the county taken as a
whole, and the probability deduced therefrom would be quite
misleading, and of no practical use in bringing about the prompt
treatment of the negroes on the heavily infested plantations.
But suppose the imaginary network to have been laid down and
each mesh sampled, with due regard to the other differentiations
of color, age, and sex. Then it would at once appear that virtually
all the efforts should be directed to one mesh. Furthermore, if
the individuals to form the sample in each mesh were chosen
relative to the other differentials, color, sex, and age, so that the
sample should contain the two races, the two sexes, and the different
ages, in roughly the proportion that they existed in the population
of the mesh

,
then it would at once appear that it was the negroes

only who needed mass treatment.
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We now come to the question of how many individuals should
be included in the sample taken in the way indicated from each
mesh, or, in short, how large must a sample be to be adequate?
This is a mathematical problem, and, as will appear as we go on, a
problem to which no fixed or unique general answer can be given.
What size of sample is adequate depends in part upon the con-
stitution of the population. How this works out we may now
consider.

Suppose a population of any absolute size whatever, say N,
except for the restriction that it shall be at least ten times as large
as any sample m drawn from it.

Further, suppose that the proportion of hookworm infestation
in N is actually (though unknown to us):

(a) 10 per cent.
(b) 20 per cent.
(c) 30 per cent.
(d) 40 per cent.
(e) 50 per cent.
(f) 60 per cent.
(g) 70 per cent.
(, h) 80 per cent.
(i) 90 per cent.
Suppose now we take samples from N, of m individuals in each

sample, and examine certain consequences which flow from different
values of m.

We may then set up the following table (Table 48), which shows
in each cell two figures. These figures are the lower (light) and
upper (heavy) limiting whole numbers of individuals who will be
found to have hookworm infestation, on the average, in only one
sample of the size named out of every 200 such samples tried of
the same size, if the general population from which the sample is
drawn is actually infested in the degree indicated by the percentage
figure at the top of the column. That is to say, to take a concrete
example, if 90 per cent, of the population are really infested, in a
random sample of 100 from that population there will not be found
fewer than 82 persons showing infestation as often as once in 200
trials. Odds of 199 to 1 are sufficiently wide to constitute certainty
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in most practical statistical matters. These odds indicate a far
smaller fluctuation or error than inheres in the original observational
or experimental data of biology generally.

TABLE 48
Sampling Limits

The manner in which Table 48 was calculated needs some dis-
cussion. First, for each value of m and of the percentages of infes-

Size of
sample. Actual percentage of occurrence inpopulation N.

m 10. 20. 30. 40. 50. 60. 70. 80. 90.

10 0 4 0 6 0 7 0 8 0 10 2 10 3 10 4 10 6 10
15 0 5 0 7 0 10 1 11 2 13 4 14 5 15 8 15 10 15
20 0 6 0 9 0 12 2 14 4 16 6 18 8 20 11 20 14 20
25 0 7 0 11 1 14 3 17 6 19 8 22 11 24 14 25 18 25
30 0 8 0 12 2 16 5 19 7 23 11 25 14 28 18 30 22 30
35 0 9 0 14 3 18 6 22 9 26 13 29 17 32 21 35 26 35
40 0 9 1 15 4 20 8 24 11 29 16 32 20 36 25 39 31 40
45 0 10 2 16 5 22 9 27 13 32 18 36 23 40 29 43 35 45

50 0 11 2 18 6 24 11 29 15 35 21 39 26 44 32 48 39 50
60 0 12 4 20 8 28 14 34 20 40 26 46 32 52 40 56 48 60
70 0 14 5 23 11 31 17 39 24 46 31 53 39 59 47 65 56 70
80 1 15 6 26 13 35 20 44 28 52 36 60 45 67 54 74 65 79
90 1 17 8 28 15 39 24 48 32 58 42 66 51 75 62 82 73 89

100 2 18 9 31 18 42 27 53 37 63 47 73 58 82 69 91 82 98
110 2 20 11 33 20 46 30 58 41 69 52 80 64 90 77 99 90 108
120 3 21 12 36 23 49 34 62 45 75 58 86 71 97 84 108 99 117
130 4 22 14 38 25 53 37 67 50 80 63 93 77 105 92 116 108 126
140 4 24 15 41 28 56 41 71 54 86 69 99 84 112 99 125 116 136
150 5 25 17 43 30 60 44 76 59 91 74 106 90 120 107 133 125 145
160 6 26 18 46 33 63 48 80 63 97 80 112 97 127 114 142 134 154
170 6 28 20 48 35 67 51 85 68 102 85 119 103 135 122 150 142 164
180 7 29 22 50 38 70 55 89 72 108 91 125 110 142 130 158 151 173
190 8 30 23 53 40 74 58 94 77 113 96 132 116 150 137 167 160 182
200 9 31 25 55 43 77 62 98 81 119 102 138 123 157 145 175 169 191
300 16 44 42 78 69 111 98 142 127 173 158 202 189 231 222 258 256 284
400 24 56 59 101 96 144 134 186 174 226 214 266 256 304 299 341 344 376
500 32 68 76 124 123 177 171 229 221 279 271 329 323 377 376 424 432 468
600 41 79 94 146 151 209 209 271 268 332 329 391 391 449 454 506 521 559
700 49 91 112 168 178 242 246 314 315 385 386 454 458 522 532 588 609 651
800 58 102 130 190 206 274 284 353 363 437 444 516 526 594 610 670 698 742
900 66 114 149 211 234 306 322 398 411 489 502 578 594 666 689 751 786 834

1000 75 125 167 233 262 338 360 440 459 541 560 640 662 738 767 833 875 925
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tation the sigma (a) of the point binomial was calculated. Thus
for 60 per cent, of infestation and m = 100

<7 = V 100 x .6 x .4

The values so obtained were multiplied by 2.58, which is the
x/a value which cuts off just a little more than .005 of the tail area
of the normal curve. The value so obtained was then subtracted
from the mean number expected on each set of m, p, and q values,
to obtain the lower (light) entries in the table, and added to it to
obtain the upper (heavy) entries. The tabled values were adjusted
to whole numbers from the values computed to three places of
decimals by taking for each light entry the next lower whole num-
ber, and for each heavy entry the next higher whole number, regard-
less of the value of the decimal portion. This was, of course, to
create a margin of safety, beyond the strictly accurate decimal
values.

There may be some inclined to object to the procedure outlined
above, on the ground that in the case of the extremely skew bino-
mials, say where p = .9 and q = .1, there will be scant justification
for replacing the areas of the binomial with those of the normal
curve, as has been done in the formation of Table 48. Wishing
to see just how much there was in this objection, and also desiring
to give the reader of this book a concrete idea of the behavior of

TABLE 49
Ordinates of Point Binomial, When n — 10. Sum of All Ordinates = 1.00

Favorable
occurrences.

* - .5
q = .5

p = .6
q = A

t"
CO

II

II

00
<N

II

II

p = .9
q = i

10 .00 .01 .03 .11 .35
9 .01 .04 .12 .27 .39
8 .04 .12 .23 .30 .19
7 .12 .21 .27 .20 .06
6 .21 .25 .20 .09 .01
5 .25 .20 .10 .03 .00
4 .21 .11 .04 .01 .00
3 .12 .04 .01 .00 .00
2 .04 .01 .00 .00 .00
1 .01 .00 .00 .00 .00
0 .00 .00 .00 .00 .00

Sum 1.01 .99 1.00 1.01 1.00
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TABLE 50
Ordinates of the Point Binomial When n = 50. Sum of At,t, Ordinates =

1.000000

* Of all 51 terms.

binomials with different values of p and q, I asked my assistant,r
Dr. Flora Sutton, to calculate the ordinates of a series of binomials.
The results are given in Tables 49 and 50.

Consider the most unfavorable case in Table 48 where n = 10,

Favorable P = .5 p = .6 P = -7 P - .8 p = .9occurrences. g = .5 g = .4 g = .3 g = .2 ?
= .1

50 .000000 .000000 .000000 .000014 .005154
49 .000000 .000000 .000000 .000178 .028632
48 .000000 .000000 .000004 .001093 .077943
47 .000000 .000000 .000028 .004371 . 13856546 .000000 .000000 .000140 .012840 . 180904
45 .000000 .000002 .000551 .029531 .184925
44 .000000 .000011 .001771 .055371 .154104
43 .000000 .000047 .004770 .087012 .10762842 .000000 .000169 .010989 .116922 .064278
41 .000002 .000527 .021978 .136409 .033329
40 .000009 .001440 .038619 .139819 .015183
39 .000033 .003491 .060185 .127108 .006135
38 .000108 .007563 .083830 .103275 .002215
37 .000315 .014738 .105017 .075470 .000719
36 .000833 .025967 .118948 .049864 .000211
35 .001999 .041547 .122347 .029919 .00005634 .004373 .060589 .114700 .016362 .00001433 .008746 .080785 .098314 .008181 .000003
32 .016035 .098737 .077247 .003750 .000001
31 .027006 .110863 .055757 .001579 .00000030 .041859 .144559 .037039 .000612
29 •. . . .059799 .109103 .022677 .000218
28 .078826 .095879 .012811 .000072
27 .095962 .077815 .006684 .000022
26 .107957 .058361 .003223 .000006
25 .112275 .040464 .001436 .000001
24 .107957 .025938 .000592 .000000
23 etc. .015371 .000225
22 symmetrical .008417 .000079
21 to first .004257 .000026
20 half. .001987 .000008
19 .000854 000002
18 .000338 .000001
17 .000123
16 .000041
15 000012
14 .000003
13 .000001
12 .000000

Sum .9999997* .999999 .999998 .999999 .999999
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and the percentage of occurrence is 90. The table says, on the
basis of normal curve areas, that if 90 is the true unknown percent-
age, we shall not get, with samples of 10, fewer than 6 favorable
occurrences. Summing the ordinates of the binomial in the last

6
column of Table 49, we have 2 = 0.00. To more than the degree
of refinement that anyone ought to work with on the basis of
samples of 10, the normal curve area adequately approximates the
sum of the terms of the binomial, in the case which is of all in Table
48 most unfavorable to the normal curve.

We might let the case rest here, but it seems desirable to present
another table for the binomial having n = 50. This is done in
Table 50.

Again, let us test the worst case. Table 48 states that if the
true but unknown composition of the population is 90 per cent,
events of the favorable sort one will not expect to get in samples of
50 fewer than 39 favorable cases, oftener than five times in a
thousand. From the last column of Table 50 the sum of the terms
of the binomial up to 39 is .003220, or about 3 cases in 1000 trials.
Up to 40 the sum is .009355 or 9 cases in 1000 roughly. For all
practical statistical purposes it is apparent that Table 48 is a safe
guide. The bearing of these results on the first section of this
chapter should not be overlooked.

The refinement of the hypergeometric series over the binomial
will ordinarily not be required in practical work.

The practical uses of Table 48 are obviously manifold. It
enables one, either from direct reading or interpolation between
tabled values, to answer many questions which arise in experimental
work, in field work, in epidemiologic enquiries, and, indeed,
wherever in the whole range of scientific investigation a problem of
sampling confronts one.
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CHAPTER XIII

THE MEASUREMENT OF VARIATION*
THE FREQUENCY DISTRIBUTION

When one measures with a sufficient degree of precision a
number of occurrences of any natural event whatever, he encounters
the phenomenon of variation. No two occurrences are exactly
alike, whether we are concerned with a physiologic event, such as
pulse-rate or body temperature, or a morphologic matter, such as
brain weight or cephalic index, or what not. If one measures
exactly many events of the same kind and arranges the results in
progressive order he will form a frequency distribution of variation.
An example of such a distribution is given in Table 51 and is
exhibited graphically in Fig. 60.

TABLE 51
Frequency Distribution of Variation in Pulse Beats Per Minute in English

Convicts!

* The treatment of the [subject; in] this chapter follows essentially the account
given in an article by the present writer in the Nelson Loose-leaf Medicine, vol. 7,
entitled The Significance of Biometry and Vital Statistics to the Science of Medicine.

f Whiting, M. H.: A Study of Criminal Anthropometry, Biometrika, vol. 11,
pp. 1-37, 1915.

Pulse beats per minute. Frequency of occurrence.
44.5- 48.4 2
48.5- 52.4 5
52.5- 56.4 17
56.5- 60.4 57
60.5- 64.4 90
64.5- 68.4 150
68.5- 72.4 120
72.5- 76.4 131
76.5- 80.4 109
80.5- 84.4 86
84.5- 88.4 62
88.5- 92.4 42
92.5- 96.4 15
96.5-100.4 18

100.5 104.4 9
104.5-108.4 5
108.5-112.4 3
112.5-116.4 3

Total 924
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A word should be said about the designation of the class limits
in the first column of Table 51. The pulse rates, as actually
recorded by the physicians who took the data originally, which went
into the first class were rates of 45, 46, 47, and 48 beats per minute.
But looking at the matter from the viewpoint of exact measurement
a physician’s record of 45 beats per minute really includes on the
average all those rates which, with precise physical instruments for
timing and recording beats, would fall between 44.500 . . .

beats

Frequency

Pulse Beats Per Minute
Fig. 60.—Histogram showing frequency distribution of variation in pulse beats per

minute in English convicts. (Data of Table 51.)

and 45.499 . . . beats per minute. Consequently the class limits
are set down in the way shown in Table 51.

This distribution shows in a rather typical manner the general
characteristics of frequency distributions of variation, or variation
curves, as they may briefly, if less precisely, be called. We see the
“cocked hat” shape, with which we became familiar in Chapter XI,
indicating that the most frequent occurrence of variates is, in
general, near the middle of the distribution. Toward the ends the
requency becomes smaller and smaller till it disappears. The
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distribution has but a single peak. It might be thought, at first
inspection, that there were two peaks, one on the class 64.5-68.4,
and the other on the class 72.5-76.4 beats per minute. But the
depression on class 68.5-72.4, which gives rise to the impression
of two peaks, is not significantly different from the frequency on
the classes to either side of it, having regard to probable errors,
and consequently means nothing. It is, in fact, merely a result of
random sampling. How do we know this?

If, of N values, N i lie below X and Ni above it, the probable
error of Ni or Ni is

* .67449 iXlXi
\ N

It is an even chance that N times the true proportion of values
below X lies between Ni + .67449 -^j and Ni — .67449
(Cf. Sheppard, Biometrika, Vol. II, p. 178.) So then we have for
the data of Table 51 the results shown in Table 52.

TABLE 52
Probable Errors of Frequencies

We thus see that in the region from 64.5 to 76.4 pulse beats per
minute the probable error of the frequencies is about 10. None of
the differences between neighboring frequencies is of the order of
4 X 10 = 40, which would have to be the case to make any deflec-
tion in this region of the curve significant.

CALCULATION OF MOMENTS

Having in this way satisfied ourselves that we are dealing with
an essentially unimodal curve, we may proceed to its analysis,
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to the end that we may have precise quantitative expressions of
the characteristic features of variation in pulse-rate. The first
step in the mathematical analysis of any frequency distribution
is to calculate certain quantities known in theoretic mechanics as
“moments of inertia.” The arithmetic of this process for our pulse-
rate example is set forth in Table 53. We shall first calculate the
moments about an arbitrary origin, at the lower range end, and
then later transfer to the mean or center of gravity of the distribu-
tion. The first steps in the calculation are shown in Table 53.

TABLE 53
Calculation of Moments

For the moments about the arbitrary origin at a pulse-rate of
46.5, we have, 5 denoting summation.

S(Zx) 6399
- SW "

924
" 6 ' 925325

5 51,465 „ ,, „„“ Slzf = “92T “ 55698052

S(Zx>) 467,511
”• ’ S(2)

“ “mT - SO™6™6

v. - . 509S827922

Midpoint of
pulse-rate

class.
Frequency

Z.

X
Deviation
from origin

in class
units.

Zx Zx2 Zx 3 Zx 4

46.5 2 0 0 0 0 0
50.5 5 1 5 5 5 5
54.5 17 2 34 68 136 272
58.5 57 3 171 513 1,539 4,617
62.5 90 4 360 1,440 5,760 23,040
66.5 150 5 750 3,750 18,750 93,750
70.5 120 6 720 4,320 25,920 155,520
74.5 131 7 917 6,419 44,933 314,531
78.5 109 8 872 6,976 55,808 446,464
82.5 86 9 774 6,966 62,694 564,246
86.5 62 10 620 6,200 62,000 620,000
90.5 42 11 462 5,082 55,902 614,922
94.5 15 12 180 2,160 25,920 311,040
98.5 18 13 234 3,042 39,546 514,098

102.5 9 14 126 1,764 24,696 345,744
106.5 5 15 75 1,125 16,875 253,125
110.5 3 16 48 768 12,288 196,608
114.5 3 17 51 867 14,739 250,563

Totals 924 6399 51,465 467,511 4,708,545
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Since we shall have to use powers of these quantities in the
subsequent calculations, it will be well to keep six places of decimals
for thepresent, in order to ensure the degree of arithmetical accuracy
we shall want at the end. Keeping the decimals at this stage has
nothing whatever to do with the accuracy or reliability of the
original data. It is a purely arithmetical matter.

The next step is to determine, from these moments about the
lower range end as origin, the values of the moments about the
mean. Letting ir denote a moment about the mean, we have

tti = 0 (by definition of the mean)
= v2 ~ vl2

773
~ v3 — 3 V1V 2 T 2l'i3

"4 = 1-’4 — 4l’ll’3 + 6»12V 2 — 3V

For the pulse-rate example we have:
tt2 = 55.698052 - 47.960126 = 7.737926
tt3 = 505.964286 - 1157.181336 + 664.278920 = 13.061870
tt 4 = 5095.827922 - 14015.868476 + 16027.713552 - 6900.521118 = 207.151880

To the values of the moments given above it is necessary to
make certain corrections, to allow for the fact that individual ob-
servations have been grouped in forming the frequency distribution.
The corrections generally used, called after their discoverer, Shep-
pard’s corrections, are applicable when, as in our present example,
the curve has reasonably high contact at both ends of the range.
For corrections of the moments of entirely general applicability
see Biometrika, Vol. 12, pp. 231-258. Using fx to designate a
corrected moment about the mean as origin, Sheppard’s corrections
are:

/a = 0
= 772 — ih- (1*2 = .083333)

fh =

= tt4 — + 2f0 . ( 2 |(5 = .029167)

We then have, from the pulse-rate example
= 7.654593

fj3 = 13.061870
= 203.312084
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Besides the moments themselves, we shall need two simple

functions of them, viz.:
/jj

& -

«22

For the pulse-rate example these have values as follows:

0 _ 170.612448
' 1 448.503991 • 380403

_

_

203.312084
_

./?2 58.592794 3 469916

With the moments of the distribution in hand, the foundation
is laid for the determination of the various physical constants which
define and describe the several aspects of the phenomenon of
variation. These constants may conveniently be divided into
three groups as follows:

(1) Constants defining the type or center of variation.
(2) Constants measuring dispersion or degree of variation.
(3) Constants measuring the shape of the variation curve.

CONSTANTS DEFINING THE TYPE OR CENTER OF VARIATION

The first thing one wishes to know, when considering variation
philosophically, is something about the central or typical condition,
about which the variation groups itself. There are three constants
commonly used to define different aspects of type, and together
they give a sufficient picture of the central or typical condition.
They are the mean, the median, and the mode.

The Mean

The arithmetic mean or average is mechanically the center of
gravity of the frequency distribution. If the histogram of Fig. 60
were cut out of sheet metal of uniform thickness, and then exactly
balanced on a knife edge set at right angles to the base line or x axis,
the point where the knife edge intersected the base would be the
average or mean number of pulse beats per minute of the group of
924 observations included in the distribution. This being so, it



270 MEDICAL BIOMETRY AND STATISTICS

will be readily perceived from the most elementary mechanical
principles, the frequencies being regarded as masses concentrated
at the midpoints of the class sub-ranges on the x axis, that the
mean must be distant from the arbitrary origin, about which the
first raw moments are taken, by the amount of vlm

Thus in the pulse-rate example we have:
Pulse beats at point of arbitrary origin = 46.5
Number of class units, from origin to mean (vj) = 6.925
Number of pulse beats per class unit = 4
Number of pulse beats from origin to mean = 27.700

Mean number of pulse beats 74.200

The probable error of the mean, when n the number of observa-
tions (S (Z) in the notation used in our example) is 15 or more, is

P. E. Mean = =*=

where xi = . 6744898/ViV, and is tabled in Pearson’s “Tables for
Statisticians and Biometricians.” 6 a is the standard deviation,
a constant discussed below. When a mean or average is based
upon less than 15 observations, the paper of “Student” 3 should
be consulted for the method of procedure to determine thereliability
of the mean.

In our present case we have

Mean pulse-rate = 74.200 =*= .246 beats per minute.

The Median

The median is the value of the varying character (i. e., the point
on the x axis) above and below which exactly 50 per cent, of the
variates fall. In our present example 462 (i. e., | of 924) pulse-rate
observations fall below the median value, and 462 above it.

The arithmetic of determining the median is most simple. It
can best be illustrated by example. We have seen above that 441
observations show pulse beats of 72.4 per minute or less. One-half
of all observations is 462. Therefore it is clear that the median
valuemust fall somewhat in the 72.5 — 76.4 class, and the distance
into that class where it falls is evidently in the proportion which
462 — 441 = 21 is to the whole frequency in that class, which is
131. So then what is needed is to determine what 21/131 of 4
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pulse beats is, 4 beats being the class unit. This equals 0.641
pulse beat. Consequently, the median is 72.5 + .641 = 73.141
beats per minute. It is to be noted that the median is smaller than
the mean, i. e., lies to the left of it in the distribution. This means
that the curve as a whole is asymmetric or skew toward the right
end or large values of the pulse-rate. We shall return to this point
later.

The probable error of the median is:
P. E. Median = 1.25332 X P. E. mean.

So we have for a final result
Median pulse-rate = 73.141 =*= .308 beats per minute.

The Mode

The mode is the value of the varying character which, in the
theoretic, true variation curve, exhibits the maximum frequency
of occurrence. Owing to the probable errors of individual fre-
quencies arising from random sampling, to which attention has
already been called, the true mode may not coincide exactly with the
most frequent class in the observed distribution. This means
merely that the particular observed sample with which we are
dealing has, by chance, a particular class near the center of the
distribution occurring more frequently than it should, in relation
to all the other frequencies in the distribution. Mathematically,
the mode is the point on the theoretic curve which graduates the
observations, where = 0.

The mode is distant from the mean by a quantity

d = x X <s

X and <r are constants which will be explained below. Here they
may be taken as given. It should, however, be expressly noted
that this x is n°t the same thing as the %i discussed above. Then

Mode = Mean — d

The probable error of the modal distance d, in the general case,
may be found from Table 40 in Pearson’s “Tables for Statisticians
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and Biometricians.” For most practical statistical purposes what
one wishes to know is whether d is significantly different from zero,
i. e., whether the mode is separated from the mean by an amount
greater than might probably have arisen by chance. In the nor-
mal or Gaussian curve, which, as we have seen, is a symmetric
unimodal, “cocked hat” curve having the equation

Ny =
— ■ e 2 a 2y/2 7T G

the mean and the mode coincide, or d = 0, with a probable error of

P ‘ E ’ d (normal curve) = 67449

Consequently, unless d amounts to three or four times its probable
error, the mode cannot be regarded as significantly different from
the mean.

In our present example we have

d = .3289 X 11.0668 = 3.640
P. E. , / s

= ± 0.301.d (n. c.)

We see that d is more than ten times as large as the probable
error. Hence we may conclude that the point of maximum fre-
quency in the variation curve, the mode, is significantly different
from the mean. The value of the mode is

Mode = 74.200 — 3.640 = 70.560 beats per minute.

CONSTANTS MEASURING DISPERSION OR DEGREE OF VARIATION

After having defined and measured the typical condition about
which variation is occurring, the next thing wanted is a measure
of the degree or extent of the variation itself. In absolute terms the
best measure of variation will be one which describes with precision
the extent of the “scatter” of the variates about the mean. If
values of the varying character widely different from the mean or
typical condition are found to occur with considerable frequency,
it is common sense to say that the character shows a high degree of
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variation. In general, the more scattered the variates away from
the typical condition, the more variable is the character and vice
versa.

Thus from Fig. 61 it is apparent that the infant mortality rate
in rural areas varies much more in the colored than in the white

rERCCNTAGC
mQUCNCV

rate: or infant mortality

Fig. 61.—Frequency polygons showing variation in infant mortality rate in 1918
of (a) the white population and ( b) the colored population of rural coifnties.

population. The broken line polygon is much more “scattered”
or spread out than the solid line one.

THE STANDARD DEVIATION

The constant which has been adopted by biometricians to
measure in absolute terms the degree of scatter or dispersion of the
variates is called the standard deviation. It is the same quantity
which in theoretic mechanics is called the radius of gyration. It
is a parameter of the variation curve, representing a distance on
the x axis such that if the total frequency were concentrated at that
point and connected by a rigid bar with the mean, the system would
have the same rotational properties about the mean in a frictionless
medium as would the whole distribution in its actual form if it were
rotated in the same medium about the mean as an axis. Roughly,
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three times the standard deviation on either side of the mean will
include all the variates, as is shown in Fig. 58, Chapter XI. This
is the same quantity which in the discussion of the point binomial
was called a = Vw p q.

The calculation of the standard deviation is done from the fol-
lowing simple relation, a denoting the standard deviation.

= \/h-
The probable error of <r, in distributions of 15 or more indi-

viduals, is
P. E.<r = =*= Xia ,

where % 2 = .67449/\/2N, and is tabled in Pearson’s “Tables for
Statisticians and Biometricians.” Where the distribution contains
fewer than 15 individuals the same caution should be observed
in judging its reliability as has been emphasized for the mean
above.

For our pulse-rate example we have

a = V7 -654593 = 2.766694

in units of grouping.
The unit of grouping is 4 pulse-beats per class. Whence

S. D. = 4 X 2.7667 = 11.067 ± .174

pulse-beats per minute.

THE COEFFICIENT OF VARIATION

Since the standard deviation measures degree of variation in
concrete units, inches, pounds, beats, degrees, or whatever unit
the varying character is measured in, it is evident that its utility
for comparative purposes is much restricted. One cannot directly
compare inches and degrees of temperature. Obviously, there is
needed some comparative or relative measure of variation, which
will make it possible to discuss whether, for example, men are more
or less variable in respect of the weight of the brain than in respect
of pulse-rate. Such a relative measure is furnished by the constant
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called the coefficient of variation. It expresses the standard
deviation as a percentage of the mean. Symbolically we have

100 a
C' ofV'-Me^'

The probable error of the coefficient of variation is

{ 1 + 2 (ifio)V
P. E.c.v. = =■= .67449 —7=V 2 iV

= IiX v,

where both %2 and \f/ are quantities tabled in Pearson’s “Tables for
Statisticians and Biometricians.” Some caution, which will be,
and can only be, acquired by experience, needs to be used in inter-
preting coefficients of variation. In general, one should always
remember that this constant simply measures the degree of scatter
of the distribution in relation to the mean value of the thing varying.
Usually such a relation has real and significant meaning, but some-
times it does not for reasons inherent in the facts themselves.
While space will not permit of going into details here, it may be
pointed out that a chief source of the difficulty referred to arises
from the consideration that the mean and the standard deviation
are correlated. We have

~

=

/**

no ua ’

h M2

where r^2 denotes the coefficient of correlation between mean
and second moment, and ah is the standard deviation of the mean,
and o>2 the standard deviation of the second moment.

In our present example the coefficient of variation is

C. V. = = 14.915 =*= .239 per cent.

It is of considerable interest to see how this value measuring
the comparative variability of pulse-rate compares with coefficients
for variation in other characters of medical interest. To this end
Table 54 has been inserted. This gives, in descending order,
coefficients of variation for a wide range of physiologic, ana-
tomic, and pathologic characteristics. These records are taken
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from the general literature of biometry, as compiled in an earlier
paper by the writer.*

TABLE 54
Coefficients of Variation for Man

1 Greenwood, M: Biometrika, 3, 66, 1904.
2 Ibid., p. 67.
8 Pearson, Karl: The Chances of Death,

Vol. 1, 293.
4 Macdonell,W. R.: Biometrika, 3, 225,

1904.

s Ibid., p. 221.6 Ibid., p. 222.
7 Macdonell, W.R.: Biometrika, 1, 202,

1901-02.
8 Pearson, Karl, and Lee, Alice: Biometrika,

2, 370, 1902-03.
* Pearl, R.: Biometrical Studies in Man. I. Variation and Correlation in Brain-

weight, Biometrika, vol. 4, pp. 13-104, 1905.

<? ?
Weight of spleen (General Hospital population) 1

.. 50.58
Weight of spleen (healthy) 2 .. 38.21
Dermal sensitivity3 .. 35.70 45.70
Weight of heart (General Hospital population) 1

.. 32.39
Keenness of sight3 .. 28.68 32.21
Weight of kidneys (General Hospital population)1

.. 24.63
Weight of body (Bavarians) .. 21.32 24.715
Weight of liver (General Hospital population) 1 .. 21.12
Swiftness of blow3

..
19.4 17.1

Weight of heart (healthy)2
.. 17.71

Weight of kidneys (healthy)2
.. 16.80

Breathing capacity3 . . 16.6 20.4
Strength of pull3 .. 15.0 19.3
Weight of liver (healthy)2

.. 14.80
Height of mandible (English, both sexes) 4

.. 11.73 11.73
Weight of body (English) 3

.. 10.37 13.37
Skull capacity (Etruscan)5

..
9.58 8.54

Brain weight (French)3
..

9.16 9.14
Skull capacity (modern Italian)5

.. 8.34 8.99
Skullcapacity (English) 6

..
8.28 8.68

Skullcapacity (Egyptian mummies)5
.. 8.13 8.29

Brain weight (Bavarian)
..

8.118 8.340
Brain weight (Hessian) .. 8.096 8.125
Brain weight (Bohemian) .. 7.809 7.382
Skull capacity (modern German) 5

.. 7.74 8.19
Skull capacity (Naqada)5

.. 7.72 6.92
Brain weight (Swedish) .. 7.592 8.043
Skull capacity (Parisian, French) 5

.. 7.36 7.10
Skull capacity (Aino) 5

.. 7.07 6.90
Mandible, distance between foraminamentalia (English,both sexes)4 ... .. 6.23 6.23
Length of forearm8

..
5.24 5.21

Length of femur (French) 3
.. 5.05 5.04

Length of tibia (French)3
.. 4.975 5.365

Length of humerus (French) 3
..

4.89 5.61
Length of radius (French) 3

.. 4.87 5.23
Skull, height to breadth index (English)6

.. 4.86 4.16
Skull, breadth to height index (English) 6 .. 4.83 4.17
Length of finger (English criminals) 7

.. 4.74
Skull, ratio of height to horizontal length (English) 6

..
4.61 4.10

Length of foot (English) 7
.. 4.59

Skull,cephalic index for horizontal length (English) 6
.. 4.38 3.99

Length of cubit (English criminals) 7
.. 4.36

Skull, least breadth of forehead (English) 6 .. 4.29 4.55
Skull, height (English) 6

.. 4.21 3.96
Skull, length of base (English) 6

.. 4.07 4.11
Skull, cephalic index for greatest length (English) 6

.. 3.95 4.03
Stature (English) 8

.. 3.99 3.83
Skull, ratio of height to greatest length (English) 6

.. 3.80 4.21
Skull, greatest breadth (English) 6 . . 3.75 3.54
Skull, auricular height (English) 6

.. 3.73 4.12
Skull, face breadth (English criminals) 7

.. 3.707
Skull, cross circumference (English) 6

.. 3.70 3.97
Skull, sagittal circumference (English) 6

.. 3.63 3.90
Head, breadth (English criminals) 7

.. 3.333
Skull, length (English) 6

.. 3.31 3.45
Head, length (English criminals)7

.. 3.154
Skull, horizontal circumference (English) 6 . 2.87 2.92
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CONSTANTS MEASURING THE SHAPE OF THE VARIATION CURVE

The Skewness

So far as any a priori reason is concerned, it is obvious that
variation curves might be symmetric about the mean as a center,
or they might exhibit any degree of asymmetry, or skewness, the
variates tailing off farther and more gradually on one side of the
curve than on the other. As a matter of fact, a wide range of
asymmetry is found in the variation curves of actual natural phe-
nomena. It is important to have an exact measure of the degree
or kind of asymmetry exhibited by the curve. Such a constant
has been provided by Pearson and called the skewness. Its value,
X denoting skewness is

_

\//k(/h + 3)
*

2(5& - 6ft - 9)'

The larger the value of x, the greater is the departure of the curve
from the symmetric “cocked hat” type. The sign of the expres-
sion which indicates the direction of the skewness or asymmetry,
whether toward large or toward small values of the variates, is
determined generally by giving to V the same sign as that of ju3 .

There are certain rare types of curve, in which this rule fails, and
the sign of the skewness may be checked by the relations between
mean and median. If the curve is skew in the positive direction
(x +), the median will be smaller than the mean, that is lie to the
left of it as ordinarily plotted, and the curve will tail off more on
the side of high values. If, on the other hand, the median has
larger value than the mean, the curve is negatively skew (x — )
and tails off more on the side of low values.

In the case of the normal or Gaussian curve x = the curve
being symmetric about the mean. The probable error of x for
the Gaussian curve is

P. E. x (Normal curve) = =*= .67449 -.

Consequently, unless the skewness x has a value at least four
times as large as this probable error, it cannot safely be asserted
that the curve significantly departs from the symmetric Gaussian
condition. The probable error of the skewness in the general case
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may be calculated directly from tables given in Pearson’s “Tables
for Statisticians and Biometricians.”

For the pulse-rate example we have
.616768 X 6.469916 3.990437

* 2 (17.349580 - 2.282418 - 9) 12.134324 +

The probable error of the skewness for the normal curve of the
same area is

P. E. x (Normal curve) = =•= .0272.

The skewness is, therefore, more than ten times as large as the
probable error, and we may safely conclude that this curve of
variation in pulse-rate is significantly skew in the positive direction.

Kurtosis

It was shown by Pearson 5 that an important shape characteristic
of variation curves is the relative degree of flatness (or peakedness)
in the region about the mode, as compared to the condition found
in a normal curve. To this attribute of the curve he gave the name
kurtosis. A curve is said to be platykurtic when it is more flat-
topped (less peaked) than the Gaussian curve. It is said to be
leptokurtic when it is less flat topped (more peaked). The Gaussian
curve is mesokurtic. If 77 denotes kurtosis, then

v = 0t — 3.

If 77 is positive (i . e., fa > 3) the curve is leptokurtic. If 77 is nega-
tive (fa < 3) the curve is platykurtic. In the normal or Gaussian
curve (3-2 = 3 with a probable error.

P. E. 02 (normal curve) = ± .67449

An illustration of a leptokurtic curve is given in Fig. 62 in
order that the reader may grasp what is meant by the kurtosis of a
curve.

For our pulse-rate example we have:
V = 3.469916 - 3 = +.4699.

The probable error for a normal curve with 924 observations is
p. E. 02 = ± .1087.
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The kurtosis is, then, in this case more than four times the
probable error, and the curve of pulse-rate variation may be re-
garded as significantly leptokurtic.

We have now determined the chief physical constants which
describe variation. If it is desired to proceed further with the

FREQUENCY

STATURE IN INCHES ~ 391-5 FEMALES
Fig. 62.—Histogram and fitted curves for variation in stature of 3915 Scottish

females (insane). The solid curve is the skew curve appropriate to the distribution.
The broken curve is the corresponding normal or Gaussian curve. The skew curve
is leptokurtic. (Plotted from data of Tocher, Biometrika, 5, pp. 298-350.)

mathematical analysis what remains to be done is to fit a theoretic
curve to the observed distribution, and calculate the ordinates of
this curve. The methods for doing this are given in Pearson’s
“Tables for Statisticians and Biometricians,” or in more detail in
Elderton’s “Frequency Curves and Correlation.” Here space is
lacking to go further into this phase of the matter.
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THE FREQUENCY CONSTANTS OF A VARIABLE z = f{x h x2)*

It often happens in practical biometric work that one desires
to find the frequency constants of a compound character, from a
previous knowledge of the constants of the separate components.
Thus, for example, one measures the length, the breadth, and the
height of each of a series of skulls. He wishes to know at least the
mean and the standard deviation of the diametral product (L X
B X H). There are two ways open to find the values of these con-
stants. On the one hand, the length, breadth, and height may be
multiplied together for each individual skull, a frequency distribu-
tion of the products made, and the constants calculated in the
ordinary way; or, on the other hand, by the use of the appropriate
formulae one can deduce straight off the constants for the product
knowing those for the components which enter into the product.
The latter procedure will obviously effect a great saving of labor.

The formulae for determining the mean and standard deviation
of a character z = f (xi, x2 ) when the same constants and the
coefficient of correlation for Xi and x2 are known, are well known
to mathematicians. They are not so familiar to many of those
who have approached the field of biometry along the biologic
pathway.

The general method of deducing these formulae will be clear to
anyone who will carefully study Pearson’s paper “On a Form of
Spurious Correlation which may arise when Indices are used in

Xlthe Measurement of Organs,”} wherein the formulae for z =
—

X2

are discussed. The general formulae for z = / (x, y) will also be
found discussed in the Phil. Trans., vol. 187a, p. 278, 1896, and
by Reed (loc. cit.).

In the formulae given in Table 54 bis the various letters have the
following meanings:

Xi, x2, and Xz the separate characters involved in the compound
character z.

mi, m2,
and mz the means of the characters Xi, x2,

and x3.

* Cf. Pearl, R.: Eiometrika, vol. 6, pp. 437, 438, 1909; Reed, L. J.: Jour. Wash-
ington Acad. Sci., vol. 11, pp. 449-455, 1921.

t Proc. Roy. Soc., vol. 60, pp. 489-498, 1897.
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oh, c2 ,
and c3 the standard deviations of X\, x2,

and x3 .

02 C3
Vi = —, v2 = —, v 3 = —. (The v s are the ordinary coefficients

nix nh m3

of variation divided by 100.)
r denotes the coefficient of correlation (see next chapter) between

the two characters designated by the subscripts.
The table gives the formulae for the mean and standard devia-

tion of
{a) the sum of two and three variables,
(b) the difference of two variables,
(c) the product of two and of three variables,
(d) the quotient of two variables (index).

In certain of the cases the formulae are approximations, but very
close ones. The nature of the approximations made is indicated
in the table.

TABLE 54 bis
Constants of z = f (x\, x2 ).

* This formula, due to J. F. Tocher, depends on the assumption of normal correla-
tion, see Biometrika, vol. iv, p. 320. The approximate value depends on neglecting
higher powers of the coefficients of variation. The formula for the mean of the double
product (Tocher, loc. cit.) is exact. The formula for the mean of the triple product is
not exact, any more than the formula for the s. d. of the triple product (see Tocher,
loc. cit., p. 321). The formulae for the mean and s. d. of an index are only true to the
lowest powers in V\ and Vi, and must not be applied if Vi and % are large. The formulae
for z = x the sums or differences of any number of variables, are exact for both
mean and s. d.

Z=f(x 1, xj. Mean of z. Standard deviation of z.

Z = X1+X2 >»1+W2 \/('T i2 d_(7 22 d_ 2ri20'i<r2)
Z = X1+X2+X3 W1+OT2+W3 \/(ci2 d-<T22_l_<T 32 d_ 2ri2'ri'r2_ l_ 2ri30'1(T3-|-
Z = X1 — X2 mi—m2 2r23Ws) V ( ff i

2+cr 22
— 2ri20'iff2)

Z = X1 . X2 mi W2+fl2 ff lff 2 WlWtefal2+ 2 + 2r +fllV (1 +r 12)] ff , *
or approximately

Wl»M2?»s[l +
«im2 \vi2 + 1^22+2r i2»i»2] 4

Z = X 1 . X2 ■ X3 WHW2W3[Di2 +D22+% 2 +2ri2 z>iD2+2ri3i>iD3
+ +2r23Wa]i approximately

Xiz= —

X2 III + r *** §
mi ,

OT2V (i»i2 +i»2 2
- 2ri2Viv2 )
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AN EXAMPLE OF THE APPLICATION OF BIOMETRIC METHODS MEAS-
URING VARIATION TO A PARTICULAR PUBLIC HEALTH PROBLEM

By way of concrete illustration of the principles set forth in this
chapter it seems desirable to give the detailed results of their

Constants
of

Variation
in

Rate
of

Infant
Mortality

(Deaths
Under
1

Per
1000

Births)
Computed

from
Data

of
Table
17,

Chapter
VII

TABLE
55

*

In
1910.
t
In

concrete
units,

i.e.,
rata
of
deaths

under
1

per
1000

births.

application in a specific case, that of variation in infant mortality
in different places (cf. Pearl, R4 ).

Group.

Mean.f
Mode.f

1 Median,
t

Standard! deviation.
Coefficient
of

variation(per
cent.).

Skewness.
Kurtosis.

Cities
over

25,000,*
Total,

1915

104.49
±

1.78
96.26

102.76
26.14±1.26
25.02±1.28

+.3148±.0937
•

145±
.491

“

“

“

“

1916

102.53
±

1.67
104.47

103.24
24.69±1.18
24.09
±1.22
-.0786
±.0848
.224
±

.511

“

“

“

1917

99.58±
1.32

93.83
98.00
23.45
±

.93
23.55
±

.99
+.2455
±.0858

1.127±1.558

"

“

“

“

1918

107.78
±

1.41
99.66

105.50
25.07
±1.00
23.26
±

.96
+.3237±.0800
.271±
.471

Cities
under
25,000,*
Total,

1915

100.98
±

1.68
92.87
97.95

30.81±1.18
30.51
±1.28
+
.1934±.0657
.419
±

.603

“

“

“

“

1916

104.23±
1.75

97.05
101.03

32.38
±1.24
31.07

±1.30
+•2217
±.0678
.725±
.916

l<

“

“

“

1917

99.24±
1.32

84.74
94.74
29.94
±

.93
30.17
±1.02

+.4840±.1197
1.624

±1.197

“

“

“

1918....
111.61±

1.66
90.36

104.17
37.78

±1.17
33.85±1.13

+.5625
±.2647
3.212±2.945

Rural
counties,
Total,

1915

83.07
±

.85
75.40
79.54
23.95
±

.60
28.83
±

.79
+.3204
±.1454
2.200
±2.690

“

“

“

1916

85.28±
.90
76.10
82.15
29.94
±

.63
30.42
±

.81
+
.3536
±.0509
.362
±

.319

“

“

1917

82.01
±

.52
74.73
78.96
25.71
±

.37
31.35±
.49
+
.2833±.1157
2.392
±2.379

“

“

“

1918

84.43
±

.57

72.14
80.97
28.40
±

.40
33.64
±

.48
+.4328
±.0409

1.281
±

.482

Cities
over

25,000,*
White,

1917

92.22
±

2.02

92.14
15.60±1.43

16.91
±1.60

li

“

“

“

1918

102.59
±

2.00
—

99.23
15.42±1.42
15.03±1.41

—

—

Cities
under
25+00,*
White,

1917

98.46
±
2.75

97.50
20.82±1.95
21.15±2.06

-

-g

U

“

“

“

1918....
114.62±

4.17
—

113.33
31.49±2.95

27.47
±2.80

—

—

Rural
counties,
White,

1917

86.21
±

1.07
81.66
84.24
24.15±
.76
28.02
±

.99
+.1799
2.847

U

“

“

1918

85.90
±

1.27
77.80
83.75

28.90
±

.90
33.65±1.05
+
.2802
±.0650
.999
±1.055

Cities
over

25,000,*
Colored,

1917....
202.59
±
8.88

194.00
68.43
±6.28
33.78

±3.44

U

“

“

“

1918....
216.67±11,15

—

214.00
75.87
±7.88

39.63
±3.65

—

—

Cities
under
25,000,*

Colored,
1917
..

213.08±
9.92

228.00
74.96±7.01

35.18±3.68

-

1

“

“

“

1918..
217.69±11.46

•

225.00
86.65±8.10

39.80±4.27
—

—

Rural
counties,
Colored,

1917.......
134.76±

2.55
106.17
127.25

57.37±1.80
42.57
±1.56
+
.4984
±.5222
4.036
±6.
160

“

“

1918

147.26±
2.92

108.83
134.59

,66.
15

±2.06
44.92
±1.66
+.5819
±.4154
4.239
±4.998
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The original frequency distributions are given in Table 17,

Chapter VII. The simple biometric constants derived from these
distributions are presented in Table 55.

From the data presented in Table 55 the following points are
to be noted:

1. There is no certainly significant decline in the mean value
of the rate of infant mortality during the four years covered by
these statistics in any of the demographic units considered. In
the cities of over 25,000 the mean rate declined during the years
1915, 1916, and 1917, but the total amount of this drop cannot be

regarded as statistically significant, having regard to the probable
errors involved. In other words, the change from a mean rate of
104 in 1915 to a mean rate of 100 (99.58) in 1917 may easily have
been simply the result of chance.

2. In 1918 there was a general tendency toward an increase in
the mean rate of mortality over that which obtained in 1917.
This increase is unquestionably to be attributed to the influenza
epidemic of the autumn and winter of 1918. A careful examination
of the rates by months will convince one that the mortality of
infants increased very materially during the period of the epidemic.
Whether this increased number of deaths was truly to be charged
to influenza does not concern us here. The important fact is that
the rate of infant mortality markedly increased coincidently with
the existence of the epidemic. In a number of cases the increase
in the mean rate of 1918 over 1917 is probably statistically significant
having regard to the probable errors involved. Thus we have the
following large differences:

Cities under 25,000, Total, 1918 mean to 1917 mean = 12.37 ± 2.12
Cities over 25,000, White, 1918 mean to 1917 mean = 10.37 ± 2.84
Cities under 25,000, White, 1918 mean to 1917 mean = 16.16 ± 5.00

It is noteworthy that this increase in the infant mortality rate in
1918 is practically confined entirely to the cities. The rural coun-
ties, whether for white or colored or total population, show little or
no change in 1918 as compared with 1917.

3. There is no unequivocal difference in the mean rates of infant
mortality in the larger as compared with the smaller cities. Con-
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sidering the largest differences in mean rates for total populations
in cities of 25,000 and over, as compared with cities of under 25,000,
there is no difference which is as much as even three times its
probable error. This result, that there is no marked or striking
difference in the mean rate of infant mortality in large as compared
with small cities, is somewhat surprising. It suggests by inference
that when the matter is adequately investigated it will probably
be found that there is no definite or significant correlation between
the rate of infant mortality and the density of population in Amer-
ican cities. It should be understood, however, that this is here
suggested only as a probable inference. Positive statements on
the matter cannot be made until the point has been carefully
investigated by the method of multiple correlation.

4. The mean rates of infant mortality are notably smaller in
the rural than in the urban areas. The fact has, of course, long
been well known. The first writer on vital statistics, in the sense
in which we now understand that subject, Captain John Graunt
(1662), more than two hundred and fifty years ago pointed out
that rural communities exhibited generally a lower rate of mortality
than urban communities. We are still nearly as far as he was from
a scientific understanding of why this is so. There has long been
current a certain glib patter of explanation for the superiority of
rural communities over urban in rate of mortality, but the subject
still awaits careful analytic quantitative investigation, which will
measure the relative influence of each one of the considerable
number of factors which may be obviously directly concerned in
producing this difference. The difference between urban and rural
rates of infant mortality is reflected just as clearly in the high
absolute rates of the colored population as it is in the lower rates
of the white population.

5. The mean rates of infant mortality are, roughly speaking,
something like twice as high for the colored population as for the
white population in each of the demographic units considered, and
at all times. This, again, is a fact in general well known, but here
we have precise figures on the point, with probable errors, which
show definitely how tremendously poorer the negro baby’s chances
of surviving the first year of life are than the white baby’s.
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6. The mode is seen in every case but one (1916, cities over

25,000, total) to be smaller than the mean; that is, to lie to the left
of the mean in the distribution. The differences between mean
and mode are fairly considerable for most of the distributions.
They are largest in the case of the rural colored distributions.

7. The cities of over 25,000 exhibit distinctly less variation in
respect of infant mortality than do either the smaller cities (under
25,000) or the rural counties. This is true, however the variation
is measured, whether absolutely, in terms of standard deviation,
or relatively, in percentage terms. The smaller cities and the
rural counties exhibit about the same degree of variation relative
to their means, but absolutely, in terms of standard deviation, the
rural counties show less variability than the cities under 25,000.
It is probable that in this case the coefficient of variation represents
more truly the real biologic fact than the standard deviation.
The colored distributions exhibit a much higher degree of variation
in respect of infant mortality, however measured, whether absolute
or relative, than do the white populations. Probably part of this
greater variation in the colored population arises from the fact
that these populations are absolutely much smaller in size in every
case than the white populations of the same communities, and
therefore less likely to give steady and characteristic rates. How
much of the actually observed variation, however, is to be explained
in this way is at present undeterminable. In general, it may fairly
be assumed that the greater the variation exhibited by a given class
of the community in respect of infant mortality, the greater the
chance of effective control and reduction of the average infant
mortality by administrative measures. There can be no question
that there is no field which offers so great opportunities in this
direction as the colored population.

8. The skewness is seen to be positive in sign in every case
but one. In that case (1916, cities over 25,000, total) the skewness
is not significant in comparison with its probable error. With this
exception the curves tend to tail off more gradually and farther
toward the right end than toward the left end of the range, and
in consequence, as we have already seen, the mode lies to the left
of the mean. In many instances (notably in the distributions for
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the colored population of rural counties) the skewness values rise
to considerable magnitudes and may be regarded as significantly
different from zero, having regard to their probable errors. In
other words, the rate of infant mortality in these different American
demographic units tends generally to distribute itself in a sub-
stantially unsymmetric fashion about the mean, extremely high
rates occurring more frequently than correspondingly low rates.
This fact might perhaps be taken to indicate that the task con-
fronting the administrative control of infant mortality in certain
communities of the United States and yet to be accomplished is
even greater than what has already been accomplished in the past,
great and worthy of commendation as that is.

9. The kurtosis is seen to be positive in sign and relatively large
in amount in most cases. This confirms analytically the conclusion
already reached from mere inspection, namely, that the curves of
variation in infant mortality are, with great uniformity, lepto-
kurtic, that is, more sharply peaked than the corresponding normal
curve would be.

10. A noteworthy point is the remarkable similarity, evident
both from inspection and from the analytic constants, in all of
these frequency distributions. Evidently infant mortality varia-
tion curves are of a quite definitely characteristic and uniform type,
at least in this country. It will be interesting to examine similar
curves for other countries.

For the sake of further analytic work the moments and cer-
tain derived constants from the longer distributions are given in
Table 56.

It has seemed desirable, in the case of certain of the distribu-
tions, which may be fairly considered as typical representatives of
all, to go on and fit the appropriate skew frequency curves to the
observations. The results are shown in Figs. 63-67.

It is evident that the curves in general fit closely the observed
facts. The greatest discrepancy between theory and observation
is found in Fig. 67, the negro rates for rural counties. Here the
observations are obviously rough, and probably the curve given
is as satisfactory a result as could be obtained with such material.
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*

In
1910.
t
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should
be
expressly
noted
that
the
values
of
the
moments
v,

(about
arbitrary
origin
at
the
lower
range

end),
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ih,

H
3

and
/it

(about
the
mean)
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here
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arein
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grouping
,

and
not
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terms
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death
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unit
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can
be
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Table
17
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20
deaths
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are
the
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after

dropping
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single

aberrant
observation
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the
death
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class
600-619
deaths
per
1000
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Analytic
Constants
for

Infant
Mortality

Curves

TABLE
56

Group.

N

nt

Mat

e.t

«4t

0,

Vfli

0i

Cities
over

25,000,*
Total,

1915

98

2.7245
1.7081
1.1649

9.1772
.2723
.5218
3.1454

“

“

“

“

1916

99

3.6263
1.5245

.3296
7.4924

.0307

.1751
3.2440

“

“

“

“

1917

144

2.4792
1.3746
1.0234

7.7984
.4033

.6350
4.1274

“

“

“

“

1918

144

2.8889
1.5710
1.1084

8.0719
.3168
.5629

3.2706

Cities
under

25,000,*
Total,

1915

153

4.5490
2.2734

1.5528
19.2617

.1804

.4247
3.4194

“

“

“

“

1916

156

4.7115
2.6219
2.2304
25.6044

.2760

.5254
3.7246

“

“

“

“

1917

236
3.4619
2.2415
3.3963
23.2314

1.0243
1.0121

4.6218

“

“

“

“

1918

236
3.0805
3.5670
9.2407

79.0312
1.8302
1.3529

6.2116

Rural
counties,
Total,

1915

358
3.6536

1.4336
1.5898
10.6856

.8579

.9262
5.1995

“

“

“

1916

381

2.7638
1.6824
1.3432

9.5167
.3789
.6155
3.3623

“

“

“

1917

1127
3.6007

1.6525
1.8928
14.7237

.7939

.8910
5.3916

“

“

“

1918

1127
3.7214

2.0165
2.4618

17.4078
.7391
.8597
4.2810

Rural
counties,
White,

1917

232
2.8103

1.4583
1.2374

9.2685
.4937
.7027

5.8472

“

“

“

1918

234
2.7949
2.0883
2.0117

17.4371
.4444
.6666

3.9986

Rural
counties,
Colored,

1917

23U
5.2381

8.2279
33.3269
476.3210

1.9940
1.4121

7.0359

“

“

“

1918

234
6.8632

10.9407
54.8500
866.4468
2.2973

1.5157
7.2386



288

CITIES OVER 25.000
-TOTAL

number
of
cities
orcounties

Fig. 63.—Frequency histogram and fitted skew
curve for variation in the total rate of infant mor-
tality in 1918 in cities of over 25,000 population
(in 1910).

JDEATHS per 1000 births

C/T/ES UNDER 25.000
TOTAL

NUMBER
OF
CITIES
OR

COUNTIES
Fig. 64.—Frequency histogram and fitted skew

curve for variation in the total rate of infant mor-
tality in 1918 in cities of under 25,000 population
(in 1910).

DEATHS PER 1.000 BIRTHS
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A

IBER
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CITIES
OR

COUNTIES RURAL COUNTIES
TOTAL

Fig. 65.—Frequency histogram and fitted skew
curve for variation in the total rate of infant mortal-
ity in 1918 in rural counties of the Birth Registration
Area.

DEATHS PER 1.000 BIRTHS

RURAL COUNTIES
WHITE

'NUMBER
OF
CITIES
OR
COUNTIES

Fig. 66.—Frequency histogram and fitted skew
curve for variation in the rate of infant mortality
among whites in 1918 in rural counties of the Birth
Registration Area.

DEATHS PER 1,000 BIRTHS
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NUMBER
OF
CITIES
OR

COUNTIES RURAL COUNTIES
COLORED

DEATHS PER 1,000 BIRTHS
Fig. 67.—Frequency histogram and fitted skew curve for variation'in the rate

of infant mortality among negroes in 1918 in rural counties of the Birth Registration
Area.

The equations for the curves are as follows:
Cities over 25,000, total:

/ X \ 4.4296 / x \ 22.2126
(Type I) 46.5502 (l + (l -

Cities under 25,000, total:
(Type VI) y = 8.8238 X 1035 (* _ 18.4653)2.9924 x-26.7505

Rural counties, total:
(Type VI) y = 9.2560 X 1070 (* - 17.7766)8-9630 *-55.2026

Rural counties, white:

[r2 1 —12 5407 x1 +
(4 5Q95)2J 25 - 9862 tan-1 O095
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Rural counties, colored:
(Type VI) y = 4.2887 X 1027 (* - 20.9629)3-0627 19.9804
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CHAPTER XIV

THE MEASUREMENT OF CORRELATION

A phase of biometric technic which is of the highest importance
and usefulness is that of correlation in variation. By the use of this
technic complicated problems, which could be attacked in no other
way, may be solved. Pearson defines correlation in the following
terms: “Two organs in the same individual, or in a connected
pair of individuals, are said to be correlated when, a series of the
first organ of a definite size being selected, the mean of the sizes
of the corresponding second organs is found to be a function of the
size of the selected first organ. If the mean is independent of this
size, the organs are said to be non-correlated. Correlation is
defined mathematically by any constant, or series of constants,
which determine the above function.”

This definition will be more intelligible if we go back and look
at the matter a little from the standpoint of probability.

THE GENESIS OF CORRELATION

Suppose we carry out some experiments in tossing 12 pennies
together, in this manner; make a first toss and record the number
of heads, then pick up the pennies and make a second toss. Then
enter the results of both tosses in a double entry table. Thus if
on the first toss there fell 7 heads and on the second toss 5 heads,
these would be entered a frequency of 1 in the cell of Table 57
where the 7 column (first toss) crosses the 5 row (second toss).
Continue this process till 500 pairs of throws have been made.
The result will be like that exhibited in Table 57.*

* This and the following similar tables are taken from Darbishire. 1 His experi-
ments were actually made with dice, but the method of recording was such as to
make them precisely equivalent to penny-tossing, and they are capable of more
simple statement in the latter form.
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TABLE 57

Relation Between the Number of Heads Falling in Successive Random
Tosses of 12 Pennies Together

Heads infirst toss.

Heads
in

aaoond
toss

Now, plainly, any particular number of heads in the second toss
is in this table associated with any given number in the first toss
only about as frequently as would be expected from the proportion
of that number of heads in the whole experience of first tosses.
In other words, the distribution of second toss heads is about
random relative to first toss heads. This is what would be expected
a priori because there is no way in which the result of the first toss
can affect the result of the second. The two tosses are independent
random events. Therefore their results cannot show any sensible
quantitative association or correlation with each other.

But now suppose matters to be arranged so that the result of the
first toss can influence the result of the second. This can easily
be done by marking one of the pennies so that it can always be
recognized, and then after the first throw leaving this marked penny
on the table while the remaining 11 pennies are picked up and tossed
at random in order to give, together with the marked penny left
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undisturbed, the second toss. The consequence of this procedure
will be that one penny, the marked one, contributes the same
element (head or tail as the case may be) to both tosses. The
general result of proceeding in this way is shown in Table 58.

TABLE 58

Heads in Successive Tosses Where 11 Pennies Are Tossed in the Second
Throw and 1 Remains as it Fell in the First Throw of 12 Together

Heads in first toss.

Heads
in
seoond
toss

It is at once evident that this Table 58 is not quite like Table 57.
The frequencies are tending, very slightly but still evidently, to
concentrate along a diagonal from the upper left to the lower right
corners of the table.

If the process be now continued, leaving down successively
more and more of the pennies and having them pass over undis-
turbed from first to second toss, we shall get the results shown in the
tables which follow. Table 59 shows the result of marking 2
pennies and leaving them down; Table 60, of marking 3 pennies
and leaving them down, and so on up to all 12 pennies.



TABLE 59
Heads in Successive Tosses Where 10 Pennies Are Tossed in the Second

Throw and 2 Remain as They Fell in the First Throw of 12 Together

295

Heads infirst toss.

fleada
in

aeoond
toaa

TABLE 60
Heads in Successive Tosses Where 9 Pennies Are Tossed in the Second Throw

and 3 Remain as They Fell in the First Throw of 12 Together

Heada infirat toaa.

ifeado
in

aeoond
toaa
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TABLE 61
Heads in Successive Tosses Where 8 Pennies Are Tossed in the Second Throw

and 4 Remain as They Fell in the First Throw of 12 Together

Heads in first toss.

Hoads
in

sooond
toss

TABLE 62
Heads in SuccessiveTosses Where 7 Pennies Are Tossed in the Second Throw

and 5 Remain as They Fell in the First Throw of 12 Together

Hoads in first toss.

Hoads
in

aooond
toss.
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TABLE 63
Heads in Successive Tosses Where 6 Pennies Are Tossed in the Second Throw

and 6 Remain as They Fell in the First Throw of 12 Together

Heads in first toss.

Heads
in
second
toss.

TABLE 64
Heads in Successive Tosses Where 5 Pennies Are Tossed in the Second Throw

and 7 Remain as They Fell in the First Throw oe 12 Together

Heads in first toss,

Heads
in
second
toss.



TABLE 65
Heads in SuccessiveTosses Where 4 Pennies Are Tossed in the Second Throw

and 8 Remain as They Fell in the First Throw of 12 Together

298

Heads in first toss,

Heads
in

second
toss.

TABLE 66
Heads in Successive Tosses Where 3 Pennies Are Tossed in the Second Throw

and 9 Remain as They Fell in the First Throw of 12 Together

Heads in first toss.

Heads
in
second
toss.
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TABLE 67
Heads in Successive Tosses Where 2 Pennies Are Tossed in the Second Throw

and 10 Remain as They Fell in the First Throw of 12 Together

Heads in first toss.

Heads
in
second
toss.

TABLE 68
Heads in Successive Tosses Where 1 Penny is Tossed in the Second Throw

and 11 Remain as They Fell in the First Throw of 12 Together

Heads in first toss.

Heads
in
second
toss.
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TABLE 69

Heads in Successive Tosses Where No Penny is Tossed in the Second Throw
and 12 Remain as They Fell in the First Throw of 12 Together

Heads in first toss.

Heads
in
second
toss.

In this series of tables is seen the genesis of correlation. In
Table 57 the results of the first toss have no influence on the results
of the second. There is no correlation between them. In Table
69 the results of the first toss completely determine, or cause,

the
results of the second. This gives perfect correlation—or causation
•—between the two.

In all the tables the diagonal lines cut off the cells in which
events cannot possibly happen.

THE CORRELATION TABLE AND REGRESSION

Suppose one wished an answer to this question: What quan-
titative relation, if any, exists between brain weight and skull
length? One knows from general anatomic relations that there
must be some association between these phenomena. A long head
and a heavy brain are often observed together in the same individual.
But in a statistical sense, how close is this association in general?'
What is its quantitative degree of intensity?
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Quite obviously the way to start getting an answer to this
question is to collect information, on as many persons as possible,
as to the brain weight and the skull length in the same individual.
Having this information, one may set up a table like Table 70.
This table is taken from a paper by the present writer,* the original
data having been collected by Matiegka.|

TABLE 70
Correlation Between Brain-weight and Skull Length. Bohemian Males,

Twenty to Fifty-nine Years of Age

A table of this sort is known as a correlation table. It is a table
of double entry, which enables one to read off, for example, that
there were in the total experience 18 persons who had a brain-
weight of 1400-1499 grams, and a skull length of 165-169 mm.
It is made up of a series of rows and columns, each of which is, of
itself, a frequency distribution. Each row and each column is

* Pearl R.: Biometrical Studies on Man. I. Variation and Correlation in
Brain-weight, Biometrika, vol. 4, pp. 13-104, 1905.

f Matiegka, H.: Uber das Hirngewicht, die Schadelkapacitat und die Kopfform.
Sitzber. des kon. bohmischen Gesellsch. d. Wiss., Math.-Nat. Cl., Jahrg., 1902, No.
xx, pp. 1-75.

Brain-weight (grams).

Totals. Midpoints
of

class
rangesof

skull
length.

Means
of

brain-
weight

arrays.
1000-
1099

1100-
1199

1200-
1299

1300-
1399

1400-
1499

1500-
1599

1600-
1699

1700-
1799

1800-
1899

155-159.... 1 1 2 157.5 1300a 160-164 2 ■ 6 4 2 14 162.5 1393
b 165-169.... 1 9 10 18 3 i 42 167.5 1386

170-174.... 5 19 28 11 4 i 68 172.5 1440
175-179.... 4 19 29 23 4 79 177.5 1455

c 180-184.... 10 19 23 8 i 61 182.5 1502
185-189.... 1 2 12 4 19 187.5 1550
190-194 1 2 3 4 10 192.5 1650

in 195-199.... 1 1 2 4 197.5 1725
Totals. . 1 21 66 101 77 25 6 2 299

Midpoints
of class
ranges of
brain-
weight. . . 1050 1150 1250 1350 1450 1550 1650 1750 1850

Means of
skull
length
arrays 167.5 169.6 173.8 175.0 179.7 182.1 187.5 197.5
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called technically an array. Thus there is an array of skull lengths-
(a column) associated with a midrange brain-weight of 1450, and
similarly there is an array of brain-weights (a row) associated with
a skull length of 172.5, and so on.

Geometrically the table may be represented best as a surface.
Call brain-weight the x coordinate, and skull length the ycoordinate.
Then the frequencies in each cell must be represented by the
volumes (instead of areas as in simple frequency distributions) of
rectangular solids with one end of each one covering the cell on
which it stands, and their heights reading on the z coordinate.
Now suppose the tops of these cells to be connected with each other
and covered by a smooth surface. The general shape of the re-
sulting surface will usually be quite strikingly like that of the
“tin hats” worn by the United States soldiers in the late war.

Each array may be treated biometrically as an independent
frequency distribution, and the mean, standard deviation, etc.,
determined. The first step in this direction leads to the array
means given on the margins of Table 70. These array means,
taken in connection with the midpoints of the class ranges of the
other variable set next to them, at once bring out an interesting
point. It is that as the midpoints of the brain-weight class range
(let us say) increase as we pass from left to right, there is a slightly
irregular but still perfectly definite tendency for the means of the
corresponding skull length arrays to increase.

This fact can be made more apparent graphically as seen in
Fig. 68.

The lines formed by plotting the means of the arrays are
called observed regression lines, regression being a term intro-
duced int° statistical usage by Galton. The manner in which
the calculated regression lines are derived will be explained in the
next section.

It is apparent from Fig. 68 that the slope of the regression lines
gives a means of measuring the degree of correlation or association
of variation between the variables. For suppose AB to be rotated
about 0 as an axis until it exactly coincided with FT, and CD to be
rotated about 0 until it exactly coincided with XX. Then there
would be no increase in brain-weight associated with an increase in
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Skull
Length
(mm)

Brain Weight (grams)
Fig. 68.—Observed and calculated regressions for brain-weight and skull length

from Table 70. The crosses are the means of the observed skull length arrays (ob-
served regression of skull length on brain-weight). AB is the calculated regression
line of skull length on brain-weight. The circles are the means of the observed brain-
weight arrays (observed regression of brain-weight on skull length). CD is the cor-
responding calculated regression line. XX gives the location on the brain-weight
scale of the mean of all 299 brain-weights. YY gives the mean of all skull lengths
on the skull length scale.

skull length, or vice versa. Actually the method used for measuring
correlation, as will be shown in the next section, does make use of
just this principle.

THE MEASUREMENT OF SIMPLE CORRELATION WITH LINEAR RE-
GRESSION. THE CORRELATION COEFFICIENT

In the simplest and fundamental case correlation between two
variables is measured by a coefficient

_

S ( x\ xi )
rn ~

NOl *2 *
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where rX2 is the coefficient of correlation between the two variables
Xi and X2,

of which <ii and <r2 are the respective standard deviations
and N is the number of pairs of variates. 5 denotes summation,
and Xi and x2 are deviations from the means of X\ and X 2respec-
tively. This coefficient may take any value between 0, which is
the result when there is no correlation at all between the variables,
and either +1 or — 1. When either of the latter values occurs
it means that the correlation is perfect, i. e., for every change in
one of the variables there is a definite and constant proportional
change in the value of the other. A positive correlation means
that as one variable increases in value the other variable also
increases and vice versa. A negative correlation means that as one
variable increases the other decreases. The coefficient of correla-
tion has a probable error, which takes the following value:

When N is say 25 or more

1 —

P. E. f = .67449-—A.VN

For very small numbers (A < 25) special caution must be used in
estimating the reliability of a correlation coefficient.

The method of calculating the coefficient of correlation r will
now be described. The method here given is a short one worked
out as to its details in this laboratory. In principle it is the
same as short methods which have been described by other
workers, but possesses some advantages in practical computation
over any that have come to the writer’s notice. For a detailed
account of the arithmetic of the old direct product-moment method
of determining a coefficient of correlation, see Yule. 1

As an example we may take Table 70 giving the correlation be-
tween skull length and brain-weight. This table is repeated, with
the arithmetic of the first steps in the computations, as Table 71.

First we may consider the notation used, which is identical
with that in the preceding chapter on the measurement of varia-
tion. The marginal total arrays of the table are designated

Zx = frequency in the several brain-weight classes.
Zy = frequency in the several skull length classes.
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TABLE 71

Showing the Steps in the Calculation of a Correlation Coefficient

x denotes deviations, in class units of 100 grams each, of each
brain-weight class from the arbitrary origin (x = 0) at the mid-
point (1450) of the brain-weight class 1400-1499.

Y denotes deviations in class units of 5 mm. each, of each
skull length class from its arbitrary origin at 172.5 mm.

We need as the first step to get the means and standard devia-
tions for the two variables. Proceeding just as in Chapter XIII,
we have:

-S' (Zxx) 41
_Vlx S (Zx) 299

_

5 (Z xx2)
_

429
' 2* “ -Sjzj- ~ 199 “ 1 434783

Omitting Sheppard’s corrections for the sake of simplicity, we
then have

tt2x = 1.434783 - (. 137124)2 = 1.415980,
whence

ox = ■\Jnix = 1.189950 in class units.
We then have

Mean brain-weight = 1450 + (100 X .1371) = 1463.71 =*= 4.64 grams.
Standard deviation

= 1(X) x i mg5 = 119.00 ± 3.28 grams.(in brain-weight)

Brain-weight (grams). N

oH

y zyy V2 zxyx zxyxy
1000-
1099

1100-
1199

1200-
1299

1300-
1399

1400-
1499

1500-
1599

1600-
1699

1700-
1799

1800-
1899

155-159 1 1 2 -3 - 6 18 - 3 4_ 9
160-164 2 6 4 2 14 -2 - 28 56 - 8 + 16
165-169 1 *- 9 10 18 3 1 42 -1 - 42 42 -27 + 27£ 170-174 5 19 28 11 4 1 68 0 0 0 - 7 0
175-179 4 19 29 23 4 79 1 79 79 + 4 + 4

pC 180-184 10 19 23 8 1 61 2 122 244 +32 + 64
185-189 1 2 12 4 19 3 57 171 + 19 + 57
190-194 1 2 3 4 10 4 40 160 +20 + 80

s 195-199 1 1 2 4 5 20 100 + 11 + 55
C/3 Totalsv~ 1 21 66 101 77 25 6 2 299 +242 870 +41 +312

1

x H -3 -2 -1 0 1 2 3 *1
zxx -4 -42 -66 0 77 50 18 8 +41
V2 - • • 16 ...

84 66 0 77 100 54 32 429
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Similarly for skull length we have:

_

$ (Zyj)
_

242
_ oQQi/tr

S (Zy) 299 ■ 809365

S (Zyf) 870
=2y S (Z y) 299 909 "

7T2y = 2.909699 - (.809365) 2 = 2.254627
ay = -y/2.254627 = 1.501542 in class units.

Mean skull length = 172.5 + (.809365 X 5) = 176.55 =*= .29 mm.
S

(in
C
sku

d
ineng

athr = 5 X 1J501542 = 7.51 * .21 mm.

Now in proceeding to get the coefficient of correlation we may
first break it up into this form,

_

S (xy)
__

S (xy) _J_
12 Noi °2 N ffi ff2’

and determine first 5 (:xy)/N . Call = and ai <r2 = B.
Suppose the row designated x at the bottom of the table and

surrounded by a heavy line frame to be movable. Then suppose
it to be moved up on the table till it rests just under the first
brain-weight array (the first frequency row in the table, corre-
sponding to a skull length of 157.5). Then multiply each cell
frequency (zxy) in that array by the number in the x row which
falls directly under that cell, having regard to the sign of the x
always. We shall have

1 x (-2) = -2
1 x (-1) =

Sum - —3

This —3 is the first entry in the marginal column to the right
of the table headed zxyx.

Now slide the movable x row down one array till it is justbelow
the brain-weight array corresponding to skull-length 162.5, and
repeat the same process as before. We have:

2 X (-2) = -4
6 X (-1) = -6
4X0 =0
2 X (+1) =

Sum = — 8

This —8 is the second entry in the zxyx column.
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Let this process be repeated for each of the brain-weight
arrays. The results will be those seen in the zxyx column. When
completed the algebraic sum of this is found to be +41. This
will be seen to agree with the sum of the row at the bottom of the
table headed Zxx. This agreement between these two sums
must always be exact, and furnishes an important check on the
correctness of the work. If they do not agree a mistake has been
made and one should proceed no farther till it has been found
and corrected.

Now what we have so far is the product of each elemental cell
frequency (zx) by the deviation of its position from the arbitrary
origin of the x variable. The next step is to multiply in the
deviation of the cell from the arbitrary origin of the y variable.
This is done in the last column to the right, headed z xyxy.

Thus we have
(-3) X (- 3) = + 9
(-2) X (- 8) = +16
(-1) X (-27) = +27
0 x (- 7) = 0
(+1) X (+ 4) = + 4

The sum of this column (S (zxyxy) ) is the product moment of
the table, referred to the arbitrarily chosen axes of origin. We
need, just as with simple frequency distributions, to transfer this
to the mean as origin, and the method of doing so is in principle
just the same, namely, by shifting its value by an amount equal
to the product of the two first moments (v lX and viy) about the
arbitrary origin. Remembering that, in the notation used above,

5 (ry) _ A
Tn ~

N°i o2
~ iT*

we have the rule for transferring to the mean that
_

S (zX yXV)
_A ~

N lX tV

In the present example

A = - vlX viy = - (.137124 X .809365)

= 1.043478 - .110983
= + .932495
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Remembering always that we are computing in terms of class
units of grouping

B = a x at = 1.189950 X 1.501542 = 1.786760

Whence finally
_

+ .932495
_

, n9eYn 1.786760 +-522 °28 -

While it has taken a good deal of space to describe this process,
it is, in fact, a very simple matter to calculate a correlation coeffi-
cient, and by the method here described takes but a short time.

Let us consider now the regression coefficients. These are two
quantities defined as follows:

70i = rn —

02
7 0202 = ri2 —-

01

These quantities measure the slopes of the regression lines (cf.
Fig. 68 supra). That is

x = bi y

y = bi x

Let subscript 1 denote the brain-weight or x variable, and
subscript 2 denote the skull length or y variable, and x denote the
deviation of the mean of a brain-weight array from the mean
brain-weight of the whole sample, and y the deviation of a skull
length array from the mean skull length of the whole sample.

Then in our example

bi = f 12 — = .521892 = 8.272
ct2 7.508

Whence
* = 8.272 y.

But x and y are deviations from the means of brain-weight and
skull length respectively. We shall do better to work with abso-
lute values rather than deviations. Doing so, we have,

* = (X - 1463.7)
y = (F- 176.5)
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So then,
X - 1463.7 = 8.272 (F - 176.5).

Simplifying, we get
Brain-weight (in grams) = 3.7 + 8.272 skull length (in mm.).

This is the equation of the regression line CD of Fig. 68. It
expresses the regression of brain-weight on skull length.

Proceeding in the same way for the regression of skull length
on brain-weight we have

* = '»7T- ■ 52,892 03X

y = .033 x

Y - 176.5 = .033 (X - 1463.7)
Skull length (in mm.) = 128.2 + .033 brain-weight (in grams).

This is the equation of the line AB in Fig. 68.
This completes the essential mathematical treatment of simple

two-variable correlation with linear regression.

ILLUSTRATION OF CORRELATION IN HUMAN MATERIAL

In order to give some idea of the extent to which various
human characteristics are correlated Table 72 is presented. It
gives the values of the coefficient of correlation for a number of
representative characters. It represents only a small fraction of
the large number of correlations for human characters which are
now known. In considering the values in this table it must be
remembered, from principles already stated, that if a correlation
coefficient is not 4 or more times its probable error it cannot be
asserted to be certainly different from zero, though if it is 3 times
the probable error it is probably so.
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TABLE 72
Correlation in Man

1 Whiting, M. H.: Biometrika 11:11, 1915-17.
2 Brown, J. W., and Lai, Mohan: J. Hyg.

14:192, 1914.
3 Greenwood, M., and Wood, Frances: Proc.

Roy. Soc. Med. 8 (Sect. Epidemiology) :119, 1914.
4 Pearson, Karl: Proc. Roy. Soc. Lond. 66:25,

1899-90.
6 Whiteley, M. A., and Pearson, Karl: Proc.

Roy. Soc. Lond. 65:130, 1899.
6 Fawcett, Cicely D., and Pearson, Karl: Proc.

Roy. Soc. Lond. 62:415, 1898.
7 Heron, David: On the Relationof Fertility in

Man toSocial Status, London,Dulau & Co., 1906.

8 Greenwood, M.: Eugenics Rev. 4:248, 1912-1913.
9 Greenwood, M., and Brown, J.: Biometrika

9:478, 1913.
10De Souza, D. H.: Biometrika 9:490, 1913.11 Beeton, Mary, and Pearson, Karl: Biomet-

rika 1:60, 1901-02.
12 Macdonell, W. R.: Biometrika 1:376, 1901-1902.
13Schuster, E.: Biometrika 8:51,1911-12.
14 Rock, Frank: Biometrika 8:238, 1911-12.
15 Assortive Mating in Man, Biometrika 2:4851902-03.

Correlated Characters. Coefficient of
correlation.

Age (adults) and temperature (oral) 1 —. 150± .022
Age (adults) and pulse rate 1 +.121± .022
Age (adults) and respiration rate 1.. i +.077 ±.022
Age (adults) and body weight 1 +.136±.030
Temperature (oral) and pulse rate 1 +.288±.020
Temperature (oral) and respiration rate 1 +.142 ±.,022
Temperature (oral) and height 1 +. 003 ±. 022
Temperature (oral) and body weight 1 +. 043 ±. 022
Pulse rate and respiration rate 1 +.060±.022
Pulse rate and height 1 —.078±.022
Pulse rate and body weight 1 +.114±.022
Respiration rate and height 1

— . 144± .022
Respiration rate and body weight 1 -.089+.022
Corrected death rates from (a) cancer of theliver, and (b) cancer of thestomach

+.161 ±.140
Corrected deathrates from (a) cancer of the stomach, and (6) cancer of the

rectum and intestines (Switzerland) 2 +.263±.134
Occupation and cancer mortality (occupied andretired males, 1900-2, weighted) 3 +.40 ±.06Weightand length of infants at birth (males) 4 +.644± .012Body weightand height (adult males) 4 +.486±.016
Strength of pull and height (adult males) 4 +.303±.019
Strength'of pull and body weight (adult males) 4 +:545 ±015
Length of first joint of forefinger in (a) right hand, and ( b) left hand 5 +.925 ±.004
Stature in (a) brother and (6) sister 6 + .375±.017
Cephalic index in (a) brother, and (b) sister 6 +.340± .050
Birth rate and infant death rate (London, 1901) 7 + .51 ±10
Birth rate and povertyrate 8 + ,420± .047
Infantmortality and artificial feeding rate 8 + .760±.029
Heart weight and body weight 9 +.65 ±.04
Heart weight and kidney weight 9 + .56 ±.05
Heart weight and liver weight9 +.52 ±.06Heart weight and brain weight 9 +.08 ±.08Obstetric conjugate and inter-crests diameters of pelvis 10 + .17 ±.04
Obstetric conjugate and inter-spines diameters of pelvis 10 + .13 +.05
Obstetric conjugate and transverse diameters of pelvis 10 + .07 ±.05
Obstetric conjugate and diagonal conjugate diameters of pelvis 10 + .91 ±01
Obstetric conjugate and antero-posterior diameters of pelvis 10 + .30 ± 04
Duration of life of (a) father, and (b) adult son 11 + .135±.021
Duration of life of (a) father and (b) minor son 11 +.087 ±.022
Duration of life of (a) father, and (b) adult daughter 11 +. 130± .020Duration of life of (a) mother, and (6) adult soil 11 +.131±.019
Duration of life of (a) mother, and ( b) adult daughter 11 +.149 ±.020
Duration of life of (a) adult brother and (6) adult brother 11 +.285 ±.020
Duration of life of (a) adult sister and (b) adult sister 11 +.332±. 019
Vaccination and recovery from smallpox 12 +.656 ±.009
Lung capacity and body weight (age 19, males) 13 . ; + .62 ± 02
Number of decayed teeth and use of tooth-brush (boys) 14 +.074± .030Mean age at death of (a) husband, and (b) wife 15 +.224±.022
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SKEW CORRELATION AND NON-LINEAR REGRESSION. THE CORRE-
LATION RATIO

So far we have dealt only with two-variable correlation where
the means of the arrays fall upon a straight line, within the errors
of sampling. It will be at once obvious to any biologist that
there are many cases in nature in which this condition is not at all
approached even. An example is the correlation between a bodily
characteristic and age during the growing period of the organ-
ism; the data, in short, which lead to a growth curve.

Pearson3 has called these cases of non-linear regression skew
correlation, and devised a satisfactory method of measuring the
correlation or association in such cases. In the first place it is
apparent that such a constant as

fa — \/bi • t>2

fails wholly in such a case as that of a growth curve, because hi
and lh no longer have the simple meaning they did in linear re-
gression.

Pearson, therefore, proposes a new constant, the correlation
ratio, conventionally denoted by the Greek letter eta (77). Let us
now try to explain, with a minimum of mathematical notation,
just what this constant means.

Going back to Table 70 it must be apparent to anyone that
each array of such a table may be treated biometrically as a separate
frequency distribution. Thus the array of brain-weights associated
with skull lengths 170-174 mm. is as follows:

For this, or any other similar array distribution, we can, if it
is desired, compute in the regular way the mean and the standard
deviation. The former will measure the type of the array, and the
latter the variability of the array. Suppose we calculate in this

Brain-weight. > Frequency.
1200-1299 5
1300-1399 19
1400-1499 28
1500-1599 :.. ii
1600-1699 4
1700-1799 .. i

Total 68



312 MEDICAL BIOMETRY AND STATISTICS

way the standard deviation, measuring the variability, of each
brain-weight array in the table. We shall then have a series of
9 standard deviations. If we add these together and divide by 9
we shall have as the result the unweighted mean variability of
brain-weight arrays associated with particular skull lengths. If
we multiply each standard deviation of an array by 'the total fre-
quency in that array, add up the results and divide by 299, the
sum of all the frequencies in all arrays, the result will be the
weighted mean variability of arrays of brain-weight associated with
particular skull lengths.

Plainly, from mere inspection of the table, this weighted mean
variability of brain-weight arrays will be smaller than the varia-
bility of brain-weight in general over the whole table, provided
there is any correlation or association between brain-weight and
skull length. One can see at once that no single row (i. e., brain-
weight array) of Table 70 shows as great a scatter or variability,
as does the total row for all brain-weights at the bottom of the
table. It follows that if no single row is as variable as the total,
the average variability of all single rows must be less than the
variability of the total.

Suppose now we define a quantity 77 as follows:
aax2 = (1 - V2 ) <*x2

, (i)

where <rax is the weighted mean variability of the single arrays,
of which we have just been speaking, and ax is the total varia-
bility of the same variable.

Thus rj plainly is the ratio of reduction of average variability
of an array below the variability of the sample 'as a whole. Now
one can see by studying again Table 57 to 69 supra that when the
correlation or association between the two variables is high oax is
bound to be small as compared with ax,

and consequently r) will
be large. When, on the other hand, the correlation is low, crax2

will be of the same order of magnitude as ax,
and 77 will necessarily

be small. Therefore it follows that 77 may be used as a measure
of the degree of correlation existing in a particular case, quite
regardless of whether the regression is linear or not. When the
regression is strictly linear 77 will be equal to r.
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The value of the correlation ratio may be computed in either
of two ways. One may proceed in just the manner outlined above,
getting the standard deviation, or rather the second moment about
the mean of each array, determining their weighted average, and
then applying in equation (i) to determine rj.

A shorter method is, however, more commonly used. From
equation (i)

ax2 — aax 2
jrjZ __

<*x2

Take a new quantity
a mx = a x — cax

It can be shown that this quantity amx is the standard deviation
of the means of arrays, and therefore easily determined because we
already have the means of the arrays for the purpose of plotting
regression lines. So then we have

a mx
°x

Let us take as a first numerical example of the computation
of the correlation ratio the brain-weight skull length case of Table
70. The work is shown in Table 73.

TABLE 73
Calculation of Correlation Ratio from Data of Table 70

Skull length classes.
Means of the

x arrays
(brain-
weight).

X X2 ZX

155-159 1300 -164 26,896 2 53,792
160-164 1393 - 71 5,041 14 70,574
165-169 1386 - 78 6,084 42 255,528
170-174 1440 - 24 576 68 39,168
175-179 1455 - 9 81 79 6,399
180-184 1502 + 38 1,444 61 88,084
185-189 1550 + 86 7,396 19 140,524
190-194 1650 + 186 34,596 10 345,960
195-199 1725 +261 68,121 4 272,484

Totals 299 1,272,513
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Gmx = = V4255 - 896 = 65.237
= 118.995 (from p. 305 supra)

°mx 65.237
_ „

= W = IT8T99S “
- S48

It is evident that the whole process of getting rj might equally
well have been carried out on the skull-length variabilities. Would
the result have been the same? There is no way to find out equal
to trying, which is done in Table 74.

TABLE 74
Alternative Calculation of Correlation Ratio from Data of Table 70

[ 4969.68 -

°my —
—

299
— ~~ \/l6.621 — 4.0/7

<ry = 7.508
(Tmy 4.077 ...

Vyx ~

ny
- rm ~ 543

It is seen that rjyx is substantially the same as rj xy and that
both are practically the same as rxy from the same data, its value
being .522 ± .028. Thus it appears from analytic, as well as
visual evidence, that the regressions of Table 70 are strictly linear.

Let us take another example where the regression is more
evidently non-linear. Such a case is furnished in Table 75, the
data of which are taken from Streeter,* using only embryos below
400 grams in weight.

* Streeter, G. L.: Weight, Sitting Height, Head Size, Foot Length, and Men-
strual Age of the Human Embryo, Carnegie Institution of Washington Publication
No. 274, pp. 143-170.

Brain-weight classes. Means of the
y arrays. y j>2 Z yy2

1000-1099 167.5 9.0 81.00 1 81.00
1100-1199
1200-1299 169.6 6.9 47.61 21 999.81
1300-1399 173.8 2.7 7.29 66 481.14
1400-1499 175.0 1.5 2.25 101 227.25
1500-1599 179.7 3.2 10.24 77 788.48
1600-1699 182.1 5.6 31.36 25 784.00
1700-1799 187.5 11 .0 121.00 6 726 00
1800-1899 197.5 21.0 441.00 2 882.00

Totals 299 4969.68
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Correlation
Between

Weight
and

Sitting
Height
of

Embryos
Below
400
Grams
in

Weight

TABLE
75

From this table it is at once evident that sitting height does
not increase in a linear manner as weight increases.

Calculated in the manner described earlier in this chapter, the
correlation coefficient is

r = .9440 ± .0034.

The computation of the correlation ratio rj from the same data
is given in Table 76.

(Weight
in

grams).

0- 19
20 39

4o- 59
60- 79
80- 99

100- 119
120- 139

mo- 159
160- 179
180- 199

200- 219
220- 239

21*0- 259
260— 279
280- 299
300- 319
320- 339
31*0-359
360- 379
380- 399

Totals

It
5

5

45- 52_
38

38

60- 74

40
22

62

75- 89

-

32

17

49

90-io4

-

-

23
27

8

58

SittingheightInmm
105- 119

-

-

-

3

19

19

8

49

h
iso- 134

-

-

-

-

-

4

13

13
11

2

1

44

135- 149
-

-

-

-

-

-

1

2

11

8

7

9

5

3

2

1

-

-

-

-

49

150-164

1

2

6

11

12

9

10

4

1

2

2

60

165- 179

1

3

5

1

9

8

9

37

8<SH r-1

3

3

Totals
83

54

40

30
27

23
22

15
22

11

10

16

16

16

14

16

5

10

10

14

454
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TABLE 76
Correlation Ratio: Weight and Sitting Height of Embryos

/2873.60 . ..

a mx —
—

— -y/6.3295 — 2.5158

ox = 2.5661

_

2.5158
_

.......

Vxy ~ " 9804

The question will arise in the reader’s mind: Is rj significantly
different from r ? To the eye the regression is plainly non-linear,,
but we have

r/ = .9804
r = ,9440

Difference = .0364

This is absolutely a small difference. Is it significant in com-
parison with its probable error? To answer this question resort is
necessary to the methods developed by Blakeman4 for testing the

Type of array (weight).
Mean of
array m x

(sitting
height).

mx - M x (mx - Mx)* Z* (mx — Mj.)2

10 1.4217 -3.5034 12.2738 83 1018 73
30 2.5926 -2.3325 5.4406 54 293 79
50 3.5750 -1.3501 1.8228 40 72 91
70 4 1000 -0.8251 .6808 30 20 42
90 4.7037 -0.2214 .0490 27 1 32

no... . 5 1739 +0.2488
+0.7567

.0619 23 1 42
130 5.6818 .5726 22 12 60
150 6 1333 + 1.2082 1 4597 15 21 90
170 6 5000 + 1.5749

+ 1.9840
+2.1749

2.4803 22 54 57
190 6 9091 3.9363 11 43 30
210 7 1000 4.7302 10 47 30
230 7 5000 +2.5749

+2.7624
6.6301 16 106 08

250 7.6875 7.6309 16 122 09
270 7.8750 +2.9499 8.7019 16 139 23
290 8 0714 +3.1463

+3.3249+3.2749
+3.9749
+3.8749
+4.1463

9.8992 14 138 59
310 8 2500 11.0550 16 176 88
330 8.2000 10.7250 5 53 63
350 8 9000 15.7998 10 158 00
370 8 8000 15.0149 10 150 15
390 9.0714 17.1918 14 240.69

Totals 128.2464 454 2873.60
Mean =

4.9251
= Mx
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significance of the difference between rj and r. Of the several
tests proposed by Blakeman we may take as the most useful,
considering ease of computation,

P. E.£ = 2 XI VU - v2 ) 2
- (1 - r2) 2 + 1,

where
? = V2

- r2

Xi = .67449/'^/N, and is given in Pearson’s Tables.

In the present example we have:
P. = 2 X .03166 X .2648 V - 03882 - • 10892 + 1

= .01677 V- 9896 = 01677 X .9948 = .017

l = v2
- r 2 = .961 - .891 = .070 ± .017

f is 4.1 times its probable error, and quite certainly signifi-
cant. We may then conclude that the regression of sitting height
on weight is certainly non-linear.

CORRECTION FOR CORRELATION RATIO

It is important to remember when using the correlation ratio
r] that, as shown by Pearson, 5 in samples from material in which rj

is actually zero, the mean value of rj from samples will be (k — 1)/N,
where k is the number of arrays involved in calculating rj and
N is the size of the sample. It is evident, therefore, that in any
value of r? actually obtained from a sample, there needs to be
some correction to allow for the influence of number of arrays.
Pearson6 lately has returned to a consideration of the subject and
has suggested that

Observed ?/2 — (« — 3)/N
1 - (k - 3)/N

is a reasonable value for the rj2 of the sampled population, provided
N is fairly large.

“Of course the first consideration in any investigation of rj 2

is to determine whether it is comparable with (k — 1)/N. If it
be less than this value we cannot assert significant association.
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If it be greater than this value we have to consider whether rj as
observed differs considerably from

67449^,
and for general purposes we must settle whether rj differs from

- 1 )/N by, say, 1.7f^N.”
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CHAPTER XV

PARTIAL CORRELATION

By a simple extension of the principle of two-variable correla-
tion, described in the last chapter, multiple and net or partial
correlations may be determined. Multiple correlation is the
correlation between one variable and a series of other variables
taken together. A net or partial correlation is the correlation
between two variables when a whole series of other variables are
held constant. The epistemologic value of the method of partial
correlation is great. This is evident from the following considera-
tions.

The most useful general method of acquiring knowledge of
dynamic phenomena is unquestionably the experimental method.
When we deal with phenomena of human biology, there is a wide
range of matters in which the laboratory experimental method is,
in the nature of the case, ruled out. Unfortunately, one cannot
breed homozygous strains of men at will for experimental pur-
poses, nor subject them methodically to desired environmental
conditions. In studying most problems of human biology, resort
must be had to some form of the statistical method. This is
fundamentally a descriptive method, and hence, in many of its
phases, ill-adapted to the analysis of dynamically active events.

The essence of the experimental method, as practised in the
laboratory, and in theory, is that, of the multitude of variables
conditioning a phenomenon, as many as possible are, by appropriate
methods, held constant while one or at most a very few selected
variables are allowed to vary and the results noted. One may
then deduce the relative significance of the selected variable in
determining the phenomenon under observation. Now we fre-
quently hear in scientific discussions about the experiments that
nature makes. Actually the true conditions of an experiment
are rarely if ever realized in the course of natural events. It is
just because nature permits manifold and haphazard changes in
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all variables at the same time that recourse must be had to the
method of experimental control in the laboratory. What is needed
in order to interpret the results, in the experimental sense, and
determine the meaning of the manifold and ceaseless changes and
variations in the flow of naturally determined events, is some
method of picking out of the manifold some selected constant
conditions of a series of variables, and then measuring the extent
and character of the variations in a single selected variable, whose
true relative influence upon the phenomenon it is desired to know,
while all these other variables are held constant. If this can be
done we shall have realized all the epistemologic advantages of
the experimental method as practised in the laboratory, and have
freed ourselves at the same time of the limitations which in so
many cases inhere in the material itself, and make the laboratory
type of experimental inquiry impossible. In other words, we shall
have let nature perform the experiment, in the sense of deter-
mining the phenomena, in her own way, while we evaluate the
results in critically analytic terms of precisely the same sort and
meaning as those in which we evaluate the results of a laboratory
experiment.

Now exactly this epistemologic boon is actually afforded in
the method of partial or net correlation, if properly handled. This
calculus enables one, out of a manifold complex of variables operat-
ing in an entirely uncontrolled and natural manner, to determine
the variation of any selected single variable, or the correlation of
any selected pair of constant conditions or values of the other
variables in the complex, while any other selected one varies.

The fundamental theorems in partial correlation were developed
in Pearson’s biometric laboratory (cf. Pearson 1). The notation
now almost universally used in this field is due to Yule, 2 whose
paper should be carefully studied for the full mathematical devel-
opment of the subject, which cannot be gone into here. It is as
follows (Yule, loc. cit., p. 182):

“Let Xi x2 ... xn denote deviations in the values of the n
variables from their respective arithmetic means. Then the re-
gression equation may be written:

Xl ~ . • nX2 ~b ■ . .» A 3 T ' ' ' ' Y ln .23. . n ~ 1 XM
d)
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In this notation the suffix of each regression coefficient completely
defines it. The first subscript gives the dependent variable, the
second the variable of which the given regression is the coefficient,
and the subscripts after the period show the remaining independent
variables which enter into the equation. It is convenient to
distinguish the subscripts before and after the period as ‘primary’
and ‘secondary’ subscripts respectively. The order in which the
secondary subscripts are arranged is indifferent, but the order
of the two primary subscripts is material; e. g., bn3 n and b2l3 n

denote two quite distinct coefficients. A coefficient with p
secondary subscripts may be termed a regression of the
order, the total regression bl2 ,

bn ,
b23 , etc. being thus regarded as

of order zero.
“The correlation coefficients may be distinguished by subscripts

in precisely the same manner. Thus the correlation rnM n is
defined by the relation

rn-a- ■ n
~ • 1-34. . -«)2

.

(2)

In the case of the correlations, the order of both primary and
secondary subscripts is indifferent. A correlation with p secondary
subscripts may be termed a correlation of order p, the total cor-
relations rn , r u, r23 , etc., being regarded as of order zero.”

Now the essence of the partial correlation calculus is that in
the expression

■ ■ ■n

the variables represented by the secondary subscripts 34....n
are held constant, while those represented by the primary sub-
scripts 1 and 2 are allowed to vary as much as they will under the
restriction that all the others are constant, and the correlation
between variables 1 and 2 under those circumstances is measured.
What this means in terms of biologic realities is this: In the
last chapter it was seen that there was less variation in brain-
weight among the persons composing a single array than among
all the persons in the sample taken together. But this is pre-
cisely what would be expected biologically. For what is a brain-
weight array? It is in this case simply a group of persons so picked
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out as to be all alike (within certain narrow limits) in respect of
skull length. Naturally, if they are all alike in skull length they
cannot differ (or vary) very much among themselves in respect
of brain-weight, because of the biologic correlation which exists
between skull-size and brain-weight. Now consider an extension
of the same process. Suppose a group of persons to be selected
all of the same stature, and let measurements be made of the
skull length and brain-weight of each. Plainly, a correlation
table can be set up between skull length and brain-weight in this
group. The resulting coefficient of correlation will be of the sort
r 12.3, where 1 denotes skull length, 2 denotes brain-weight, and 3
stature. The coefficient will measure the correlation between skull
length and brain-weight for the one particular constant stature, to
which the perspns were selected. So, similarly, there might be
picked a group of persons in which all were alike in respect of both
stature and body-weight, let us say, and the correlation between
skull length and brain-weight determined for this group. This
would lead to a correlation of the sort rn .u- And so, theoretically,
the process might be continued on to any number of characters in
respect of all of which the persons in the group were so selected
as to be all just alike.

For the arithmetic work of the following numerical example on
this point I am indebted to my colleague, Doctor L. J. Reed.
Some years ago Pearl and Surface* published detailed measure-
ments of length, breadth, and weight of 453 hens’ eggs. Now
from all these eggs

/*i2*3 ■ — .8955.

This coefficient measures for the whole material the net correla-
tion between length and breadth when weight is held constant by
the application of equation (3) infra.

But now suppose from the table of individual measurements
given as an appendix to the paper cited there are picked out all
those eggs that weighed 53 to 53.9 grams, and a correlation
table then constructed, for these selected eggs, between length and

* Pearl, R., and Surface, F. M.: A Biometrical Study of Egg Production in the
Domestic Fowl. III. Variation and Correlation in the Physical Characters of the
Egg, U. S. Dept. Agr. Bur. Anim. Ind., Bulletin 110, pp. 171-241, 1914.
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breadth. There were 42 such eggs and the table is shown as
Table 77.

TABLE 77
Correlation Between Egg Length and Breadth, for Eggs Weighing 53 to

53.9 Grams

Egg breadth (mm.)

Egg
length

(mm.)

From this table the coefficient of correlation calculated in the
usual manner described in the preceding chapter is

ra = - -9117.

It will be noted that this is very close indeed to the value of
r 12.3 given above. But let us take another array and see what the
result is. Table 78 gives the correlation between length and
breadth of 46 eggs picked out of the whole lot, each having a
weight between 56 and 56.9 grams.

Here the coefficient worked out in the usual way is
ri2 = - .8911,

a result still closer to the rl2 j value given above.
Let us take one more example, choosing this time eggs which

are near the extreme of weight, instead of arrays near the middle
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TABLE 78
Correlation Between Egg Length and Breadth for Eggs Weighing 56

to 56.9 Grams
Egg breadth (mm.)

Egg
length
(mm.

value. Table 79 gives the length-breadth correlation for 13 eggs
each having a weight between 62 and 62.9 grams, that is, heavy
eggs.

TABLE 79
Correlation Between Egg Length and Breadth for Eggs Weighing 62

to 62.9 Grams
Egg breadth (mm.)
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Here, with such a small array, the length-breadth correlation is
m = - .8739.

Let us now take a weighted mean of these three length-breadth
correlations (ru ). We have:

- .9117 X 42 = -38.2914
- .8911 X 46 = -40.9906
-.8739 X 13 = -11.3607
Totals 101 -90.6427

Whence
Mean rn = —.8975

(By partial correlation) m.3 = — . 8955
Difference = .0020

Thus it is seen, by this process of actual trial, that if we
physically select individuals so that they are all alike relative
to one variable (3) and then directly measure their correlation
in respect of two other variables (1 and 2), the average corre-
lation (r12) so obtained is substantially identical with the result
which we get mathematically when we calculate the partial cor-
relation rn .3-

The only difference between the perfectly simple biologic pro-
cedure, which anyone can understand, of selecting individuals
alike in respect of n variable and then measuring the correlation
between two other variables, and the processes implicit in the
arithmetic working out of the equation for a partial correlation
coefficient,

_

r 12-34 (n—l)
~ r\n-u fa—l) -r-in-U («—l)

ri2 ' 34 *" (I" 'Vh (n-o)^ 1 - '\M. («-!))* ’ (3)

is simply that the mathematical procedure operates upon the
basis of the weighted average variability of all arrays in the manifold
space involved by the variables held constant. In the process of
concrete physical selection of individuals described above one set
of arrays only can be dealt with at one time.

Not only can the correlation between two variables be deter-
mined from equation (3) when a whole series of other characters
are constant, but also the reduction in the variability of any
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character as 1, 2, 3. . .n other variables are held constant can be
measured. The expression for this is

°h.23. . -n
= ff2l G — r\i) 0 ~ r~n-2) — ••••(! — ffin.23. . l) (4)

The arithmetic of the whole process is extremely simple. For
3 variables equation (3) is, obviously,

r — r my
_

12 13 23
~

(1 - <*»)* (1 - ry' (S>

The zero order correlations rn , r l3 ,
and r23 will be calculated from

the observed correlation tables like Table 70 in the preceding
chapter. If we have in the whole system under consideration say
5 variables there will obviously be 29 other possible first order
coefficients as follows: rnA , r 12. 5, r 13 .2 , r 13.4, r 13. 5, r 14. 2, r 143 , r 14-S,

15.35 r 15.4? r 2iAi r23.3) *24.12 **24.3> 5> *25.1> r25.3, r 25.4) r34.17
r34.2i r 34.$i i r33.2i r33.4) *45.12 *45.22 *45.3* Each one of these can be
determined from the zero order coefficient just as r ni was in (5)
above.

For the second order coefficients (3) becomes, for example,
r — r • T

—

12-3 14-3 24-3
b2,4 -

( 1 - r’14 .8 )l (1 - r2
24-3 )i

But we may equally well write

r — v ,v
_

12-4 ' 13*4 23-4h*-34 -

(1 - (1 - r’23. 4)i

These two methods of calculation should give the same result,
and, in fact, do, thus furnishing in actual practice a most useful
check on the arithmetical work.

For the third order coefficients (3) takes such forms as

r — r " r12-34 15-34 25-34
-

(1 - r*u . M)i (1 - r2
26 . 34)i

And so on, indefinitely, except for the two following limitations:
(a) All the zero order correlations must have linear regressions,

or the method is not valid. Therefore before embarking on an
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extensive partial correlation project we should always test the
zero order correlations for linearity in the manner described in the
preceding chapter.

(b ) The number of observations in each of the zero order
tables must be fairly large, as compared with the number of vari-
ables dealt with, if the partial correlation results are to be in any
degree conclusive.

It will be noted from the form of equation (3) that if one had
available tables of \/l — r 2

, sufficiently detailed so that inter-
polation would be unnecessary, the computation of partial cor-
relation coefficients would become a very simple matter indeed.
Such tables have, in fact, been provided by my colleague, Dr. John
Rice Miner3 and can be obtained from the Johns Hopkins Press
at a nominal price.

ILLUSTRATION OF PARTIAL CORRELATION

In order that the reader may become thoroughly familiar with
the operation of the useful partial correlation technic, a numerical
example will now be presented in detail. The example is drawn
from the writer’s (Pearl 4) studies on the epidemiology of in-
fluenza.

The problem set is this: What is the net correlation between
the destructiveness of the 1918-1919 influenza epidemic in large
American cities and the normal death-rate in the same cities from
organic diseases of the heart, when all the cities are made con-
stant in respect of (a) the age constitution of the population, (b )
the sex ratio of the population, and (c) the density of population?

The data are taken from Pearl. 4 The subscripts have the
following significance:

Subscript 2 denotes the destructiveness of the epidemic, meas-
ured by the twenty-five-week excess mortality rates calculated
and published by the Bureau of the Census. These twenty-five-
week excess rates indicate the number of people dying from all
causes, during the twenty-five weeks following the initial out-
break of the epidemic in this country in the autumn of 1918, in
excess of the number who probably would have died in the same
period had no epidemic occurred. The rates for the 34 cities are
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given in Table 1 (p. 12) of my Influenza Studies I, and hence
need not be reprinted here.

Subscript 3 denotes the normal death-rate in each city from
organic diseases of the heart, averaged for the three years 1915,
1916, and 1917.

Subscript 4 denotes the age distribution of the population, as
measured by an age-constitution index having the form

<t> = ~ mp)

where A is the deviation for each of six age groups (viz., 0-4, 5-14,
15-24, 25-44, 45-64, 65 and over) of the percentage of the actual
population of each city in 1910 in each age group, from the per-
centage in the same group in the standard population of Glover’s
life table, denoted in the formula by P; S denotes summation of
all six values; M = mean age of living population in any com-
munity; Mp = mean age of persons in a stationary population
unaffected by migration and which, assuming the mortality rates
of Glover’s life table, would result if 100,000 persons were born
alive uniformly throughout each year {Mp calculated from L x
line of Glover’s table (p. 16) = 33.796 years).

Subscript 5 denotes the ratio of males to 100 females in each
of the cities in 1910.

Subscript 6 denotes density of population calculated from data
furnished in the “Financial Statistics of Cities,” issued annually
by the Bureau of the Census, and was expressed as the number
of persons per acre of land area within the legally defined limits of
the city.

The values of the zero-order correlations and the first order
coefficients derived from them are given in Table 80, which include
all the figures set down in making the calculations, the multi-
plications and divisions having been made on a calculating
machine.

The computations go in this way, taking the upper block of
Table 80. To get the product term of the numerator of equation (3)
r 24

= .0238 is multiplied by r 34 = .6093, giving the result .0145,
set down in the column headed “Product term of numerator.”
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TABLE 80
Partial Correlations. Influenza. Zero and First Order Coefficients

The two elements in the denominator \/(l - .02 382 ), and
V(1 — .60932 ), are read off from Miner’s Tables, as .9997
and .7930 respectively. The whole numerator is .4874 —

.0145 = .4729, while the denominator is .9997 X .7930 = .7928.
Finally r23.4 = T928 = A965. And so on for the other cases.

The calculation of the second order coefficients is given in
Table 81, which is of exactly the same form as Table 80, except that
each second order coefficient is calculated in two different ways
(7. e., with two different sets of first-order coefficients) as a check
on the arithmetic.

Finally, Table 82 gives the third order coefficient in which we
are interested, again calculated in two ways as a check.

r 0 Order
(1 - r2)i Product

term of
numerator.

Whole
nu-

merator.
De-

nominator.
r First order.

Subscript. Coefficient. Subscript. Coefficient.

23 + .4874 + .0145 +.4729 .7928 23.4 + .5965
24 + .0238 .9997
34 + .6093 .7930
23 + .4874 + .0050 +.4824 .9853 23.5 + .489625 -.0295 .9996
35 -.1682 .9857
23 + .4874 -.0177 + .5051 .9811 23.6 + .5148
26 +.1108 .9938
36 -.1595 .9872
24 + .0238 .9997 + .0035 + .0203 .9926 24.5 + .020525 -.0295 .9996 -.0028 -.0267 .9927 25.4 -.026945 -.1184 .9930
24 + .0238 .9997 -.0259 + .0497 .9663 24.6 + .0514
26 + .1108 .9938 -.0056 + .1164 .9720 26.4 + .1198
46 -.2338 .9723
25 -.0295 .9996 +.0017 -.0312 .9937 25.6 -.031426 + .1108 .9938 -.0005 + .1113 .9995 26.5 + .111456 + .0155 .9999

34 + .6093 .7930 + .0199 + .5894 .9788 34.5 + .6022
35 -.1682 .9857 -.0721 -.0961 .7874 35.4 - .1220
45 -.1184 .9930
34 + .6093 .7930 + .0373 + .5720 .9598 34.6 + .5960
36 -.1595 .9872 -.1425 -.0170 .7710 36.4 -.0220
46 -.2338 .9723
35 -.1682 .9857 -.0025 -.1657 .9871 35.6 -.1679
36 -.1595 .9872 -.0026 -.1569 .9856 36.5 -.1592
56 + .0155 .9999

45 -.1184 .9930 -.0036 -.1148 .9722 45.6 -.1181
46 -.2338 .9723 -.0018 -.2320 .9929 46.5 -.2337
56 + .0155 .9999 + .0277 -.0122 .9655 56.4 -.0126
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TABLE 81
Partial Correlations. Influenza. First and Second Order Coefficients

TABLE 82
Partial Correlations. Influenza. Second and Third Order Coefficients

r First order.
(1 - r*)l Product

term of
numerator.

Whole
nu-

merator.
De-

nominator.
r Second order.

Subscript. Coefficient. Subscript. Coefficient.

23.4 + .5965 + .0033 + .5932 .9921 23.45 +.5979
25.4 -.0269 .9996
.35.4 -.1220 .9925
23.5 + .4896 + .0123 + .4773 .7981 23.45 + .5980
24.5 + .0205 .9998
34.5 + .6022 .7983
23.4 + .5965 -.0026 + .5991 .9926 23.46 +.6036
26.4 + .1198 .9928
36.4 -.0220 .9998
23.6 + .5148 +.0306 + .4842 .8019 23.46 . +6038
24.6 + .0514 .9986
34.6 + .5960 .8030
23.5 + .4896 -.0177 + .5073 .9811 23.56 + .5171
26.5 + .1114 .9938
-36.5 -.1592 .9872
23.6 + .5148 + .0053 +.5095 .9853 23.56 + .5171
25.6 -.0314 .9995
35.6 -.1679 .9858

25.4 -.0269 .9996 -.0015 -.0254 .9927 25.46 -.0256
26.4 +.1198 .9928 +.0003 +.1195 .9995 26.45 + .1196
56.4 -.0126 .9999
24.5 + .0205 .9998
26 5 +.1114 -.0048 + .1162 .9721 26.45 + .1195
46.5 -.2337 .9723
24.6 -.0514 .9986
25 6 -.0314 -.0061 -.0253 .9916 .25.46 -.0255
45.6 -.1181 .9930

35.4 -.1220 .9925 + .0003 -.1223 .9997 35.46 -.1223
36.4 -.0220 .9998 + .0015 -.0235 .9924 36.45 -.0237
.56.4 -.0126 .9999
34.5 + .6022 .7983
36.5 -.1592 -.1407 -.0185 .7762 36.45 -.0238
46.5 -.2337 .9723
34.6 + .5960 .8030
35.6 -.1679 -.0704 -.0975 .7974 35.46 -.1223
45.6 -.1181 .9930

r Second order.
(1 - r2)i Product

term of
numerator.

Whole De-
r Third order.

Subscript. Coefficient. merator. nominator. Subscript. Coefficient.

23.45
26.45
36.45

+ .5979
+ .1195
-.0237

.9928

.9997
-.0028 + .6007 .9925 23.456 + .6052

.23.46
25.46
35.46

+ .6037
-.0255
-.1223

.9997

.9925
+ .0031 + .6006 .9922 23.456 + .6053
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From this we see that there was a relatively high net or partial
correlation between destructiveness of the epidemic outbreak and
normal cardiac death-rate, the coefficient being

r23*456 = -(--605 =*= .073,

when the demographic variables of age, sex, and density are held
constant.

It should be noted that the probable error of a partial correla-
tion of higher order is of the same form as that of a zero order co-
efficient (see Chapter XIV).

The student should read some of the extended investigations
which have been made by the partial correlation method, par-
ticularly that of Miner.5
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CHAPTER XVI

SIMPLE CURVE FITTING

The worker in practically any branch of science is more or
less frequently confronted with this sort of problem: he has a
series of observations in which there is clear evidence of a certain
sort of orderliness, on the one hand, and evident fluctuations from
this order, on the other hand. What he obviously wishes to do,
on the basis of a quite sound instinct, is to emphasize the orderli-
ness and minimize the fluctuations about it. His reasoning,
deeply rooted in racial experience of more or less scientific matters,
is that the orderliness of which he sees traces, if really there, de-
pends upon a true lawful relation between the variables he is
studying, and that the fluctuations are in general merely accidents
of random sampling. He would like an expression, exact if pos-
sible, or, failing that, approximate, of the law if there be one. This
means a mathematical expression of the functional relation between
the variables.

The only method which science offers in the premises is that
which Newton followed in discovering the law of gravitation,
namely, to fit a curve to the observations, and use the equation of
the curve as the expression of the law. Newton studied the
observed positions of the planets, relative to the sun and to each
other, and found that these observed positions could be fitted
with great exactness by a family of curves based upon the assump-
tion that between each of the heavenly bodies there is an attrac-
tion, having at any moment a force inversely proportional to the
squares of their distances from each other, and directly propor-
tioned to their masses. He called this relationship the law of
gravitation.

It is doubtless too much to hope that this chapter will make
Newtons out of all its readers, but it seems desirable to give the
medical man some little introduction to the methods which the
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followers of the sciences at the moment more exact than medicine,
use in fitting together mathematical expressions and observational
data. It should be made clear at the start that there is, unfor-
tunately, no method known to mathematics which will tell anyone
in advance of the trial what is either the correct or even the best
mathematical function with which to graduate a particular set of
data. The choice of the proper mathematical function is essen-
tially, at its very best, only a combination of good judgment and
good luck. In this realm, as in every other, good judgment depends
in the main only upon extensive experience. What we call good
luck in this sort of connection has also about the same basis. The
experienced person in this branch of applied mathematics knows
at a glance what general class of mathematical expression will
take a course, when plotted, on the whole like that followed by
the observations. He furthermore knows that by putting as
many constants into his equation as there are observations in the
data he can make his curve hit all the observed points exactly,
but in so doing will have defeated the very purpose with which
he started, which was to emphasize the law (if any) and minimize
the fluctuations; whereas actually if he does what has been de-
scribed he emphasizes the fluctuations and loses completely any
chance of discovering a law.

Of mathematical functions involving a small number of con-
stants there are but relatively few. If one takes account of that
group of curves which in his youth he studied under the name of
“conic sections,” adds to it the curves which derive from the trigo-
nometrical functions, and fills out the equipment with the loga-
rithmic-exponential family, he will not have exhausted the pos-
sibilities of curves with few constants, but he will have included
the great bulk of the mathematical functions which have so far
been found to be of wide utility in expressing the laws of nature.
In short, we live in a world which appears to be organized in ac-
cordance with relatively few and relatively simple mathematical
functions. Which of these one will choose in starting off to fit
empirically a group of observations depends fundamentally, as I
have said, only on his judgment and experience. There is no
higher guide.
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Of the observational data which the medical man has occasion
or desire to graduate (which means fit a curve to) perhaps the
most frequent will be those in which there is a definite trend up
or down, or first in one direction and then in the other. I propose
now to show briefly how to fit three simple functions, namely, a
straight line, a second-order parabola, and a logarithmic curve,
to such data. The method which I shall use is that known in
mathematics as the “method of least squares,” but the reader
should not let this discourage him. It is really very simple. If
he wants to know about its foundation perhaps the best thing to
read is a short paper by Ellis. 1 If he prefers a more detailed
mathematical approach than mine, both specifically and in gen-
eral, to curve fitting problems, Running’s2 book, or the excellent
text on least squares of Brunt 3 can be recommended.

After one has, on the basis of his general judgment of the
whole situation, chosen a particular function with which to graduate
a set of data, the theory of least squares says that “the best fitting”
curve is that particular one, out of the whole range given by the
chosen function, which makes the sum of the squares of the dif-
ferences between the observed points and the corresponding points
on the fitted curve a minimum. This, it should clearly be under-
stood, is simply a convention. Other conventions quite as sound
and well justified could be, and have been, used. For example, it
may be said that, under the same initial premise as before, the
“best fitting curve” shall be that one having its area and moments
equal to the area and moments of the observations. If one fol-
lows this definition he fits by the method of moments; if he follows
the first definition he fits by the method of least squares. We
have chosen for discussion here the least square definition.

Take as the equation to a straight line

y = a + bx.

Now, plainly, the difference between any observation and this
curve (for a straight line is a curve of zero curvature) will be

(y — a — bx).

There will be as many of such differences as there are observations.
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The theory of least squares insists that values for the constants
a and b be so chosen that

S (y — a — bx ) 2
,

where S denotes summation, shall be a minimum. How shall we
determine from the observations the values of a and b which will
fulfil this requirement?

This is done by solving two equations (since there are two con-
stants to be determined) which are known technically as the
normal equations. How it is known that they are the right equa-
tions, in respect of their form, comes about from an application
of certain principles of the differential calculus, which need not be
gone into here. The normal equations for fitting a straight line are

S (y) — n a — b S (x) — 0
S (xy) - aSx -b S (x 2) = 0

Transposing terms in form for computation these become

n a + b S (x) = S (y)
a S (x) + b S ( x2 ) = S {xy),

where n is the number of observed points.
The location of the points on the abscissal scale can, of course,

take origin from any place one pleases. It is convenient, since
usually the observations are equally spaced on the x axis, to take
origin of x at one abscissal unit below the first observation. Then
the x of the first observation is 1, that of the second 2, and so on;
and the sum of the x’s (,S (x)) and 6" (x2) can be read directly
from tables of the sums of the powers of the natural numbers (as
in Pearson’s Tables). All of this is merely another way of saying
that in curve fitting just as in the calculation of frequency con-
stants (cf. earlier chapters) it is convenient to work in abscissal
units of grouping rather than in concrete units such as pounds,
feet, etc. S ( y ) will be readily got simply by summing the ob-
served points (the numerical values of the ordinates). 5 (xy)
involves multiplying each x by its y and summing.

The best way to show how delightfully simple this all is will
be to work out an example. This is done in Table 83. The
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data are drawn from Table 75 in Chapter XIV, and consist of the
mean sitting heights of human embryos. The figures constitute
the observed regression line of sitting height on weight.

TABLE 83
Mean Sitting Heights of Embryo. Curve Fitting

From this table, and a table of the sums of the powers of the
natural numbers, we have,

n — 20
S (x) = 210
A (x2 ) = 2870
S (y) = 2673.7
S (xy) = 31640.5

Whence the equations are

20 a + 210 b = 2673.7
210 a + 2870 b = 31640.5

Solving, we get
a = 77.37
b = 5.36
y = 77.37 + 5.36 x.

We next proceed to calculate the value of y (sitting height)
for two values of x as follows:

Weight of
embryo in

grams.

Mean
sitting

height in
mm.

y X xy xy2 y log x.

Calculated
y from

parabola.

Calculated
y from

log curve.

0- 19 58.8 1 58.8 58.8 0 66.9 55.9
20- 39 76.4 2 152.8 305.6 22.9987 77.3 78.1
40- 59 91.1 3 273.3 819.9 43.4658 87.1 91.760- 79 99.0 4 396.0 1,584.0 59.6039 96.3 101.8
80- 99 108.1 5 540.5 2,702.5 75.5587 105.0 110.0

100-119 115.1 6 690.6 4,143.6 89.5652 113.2 117.0
120-139 122.7 7 858.9 6,012.3 103.6935 120.7 123.2
140-159 129.5 8 1,036.0 8,288.0 116.9502 127.8 128.7
160-179 135.0 9 1,215.0 10,935.0 128.8227 134.3 133.7
180-199 141.1 10 1,411.0 14,110.0 141.1000 140.2 138.4
200-219 144.0 11 1,584.0 17,424.0 149.9605 145.5 142.8
220-239 150.0 12 1,800.0 21,600.0 161.8772 150.3 147.0
240-259 152.8 13 1,986.4 25,823.2 170.2106 154.6 150.9
260-279 155.6 14 2,178.4 30,497.6 178.3375 158.3 154.7
280-299 158.6 15 2,379.0 35,685.0 186.5281 161.4 158.3
300-319 161.3 16 2,580.3 41,292.8 194.2246 164.0 161.8
320-339 160.5 17 2,728.5 46,384.5 197.4870 166.0 165.1
340-359 171.0 18 3,078.0 55,404.0 214.6516 167.5 168.4
360-379 169.5 19 3,220.5 61,189.5 216.7487 168.4 171.5
380-399 173.6 20 3,472.0 69,440.0 225.8588 168.8 174.6

Totals. ..2673.7 31,640.5 453,700.3 2677.6433
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When
x = 1, y = 82.73
x — 20, y = 184.64

The line can then be drawn. The result is shown graphically
in Fig. 69.

Mean
Sifting
Height
in

mm.

Weight m Grams
Fig. 69.—Observed mean sitting heights of embryos (circles) and straight line fitted

by least squares.

It is apparent that a straight line is not the mathematical
function best adapted to fit these observations. This was already
known from the value of rj2 — r2 in this case, which proved that
this was non-linear regression (cf. p. 317).

A parabola may be fitted next to the data. Its equation is
y = a-\-bx-\-cxl

The normal equations now are three in number, since this is a
three constant equation, as follows:

n a b S (x) + cS ( x2 ) = 5 ( y)
a S (x) + b S (x2 ) + c S (ac 3 ) = S (xy)

a S (x2 ) + b S (cc3 ) + c S ( x4) = S ( x2y)
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Filling in the values from Table 83 these become
20 o+ 210 6+ 2870 c= 2673.7

210 a + 2870 6+ 44,100 c = 31,640.5
2870 a + 44,100 6 + 722,666 c = 453,700.3

Solving,
y = 55.986 + 11.195 x - .278 *2

Substituting successive values of x and solving for y gives the
values of the ordinates of the curve exhibited in the last column
but one of Table 83. It is at once apparent that the parabola
comes closer to the observation than the straight line, but it still
is a poor fit.

The result is shown graphically in Fig. 70.

Mean
Sitting
Height
in

mm,

Weight in Grams
Fig. 70.—Observed mean sitting height of embryo (circles) and parabola of the second

order fitted by least squares.

Turning to the logarithmic curve the equation we shall use is
y = a-\-bx-\-c log x

It may be well at this point to say a word as to the reasoning
which leads to the choice of this particular form of a logarithmic
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curve. If one had had no pedagogic purpose in mind, this is the
one of the three curves which would have been chosen in the first
instance, and no straight line or parabola would have been fitted.
It is apparent to anyone of experience in such matters that the
first 6 or 8 observations are curving too rapidly to be capable of
representation by a second order parabola, if the same parabola
is to come anywhere near the remaining observations. At the low
values of x a logarithmic curve is curving relatively rapidly as
compared with what it does at higher values of x. But this is
precisely what the observations in this case actually do. Hence
one perceives that there is needed in the equation a term in log x.
But it is further seen that the observations are more spread out
horizontally, that is, the whole series is flatter, than could be
represented by

y = c log x

whatever value might be given to c. So there is put in a line
term, b x, which has the effect of stretching the curve horizontally.
Finally, since all the observations have fairly considerable values
(starting at 58.8) it will be desirable to put in a constant term a
to raise the general level, from which the terms in x operate, up to
a reasonable point.

For the form of logarithmic curve chosen the normal equations
are:

n a • + b S (A + c S (log x) = S (y)
a S (x) + b S (x2) + c S (x log x) = S (xy)

a S (log x) + b S (x log x) + c S (log x) 2 = S (y log x)

The numerical values here are again drawn from Table 83 and
for A (log x), S (x log x) and A (log x) 2 from table of sums of loga-
rithmic functions given as Appendix V of this book.

The final equations are

20 a + 210 b + 18.3861246c = 2673.7
210 a + 2870 b + 230.0033043 c = 31640.5

18.3861246 a + 230.0033043 b + 19.2694686 c = 2677.6433

Solving, we have
= 54.347 + 1.555 x + 68.549 log x
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Substituting successive values of x as before and solving for y
gives the values in the last column of Table 83, which are shown
graphically in comparison with the observations in Fig. 71.

Mean
Sifting
Height
in

mm.

Weight in Grams

Fig. 71. —Observed mean sitting heights of embryo (circles), and a logarithmic curve
fitted by least squares.

It is at once apparent that we now have a much more satis-
factory graduation than any attained in the other trials. We
could do still better by introducing another term in the equation,
but, on the whole, the present result may be taken as reasonably
satisfactory.

A final word may be said as to the writing of normal equations
in fitting by least squares. In the first place it must always be
remembered that the method cannot be applied directly in any
case where any one of the functions of the independent variable
involves an arbitrary constant. If, for example, in fitting a log
curve we wish to use a term in the equation of the form log (a + x),
which it is often convenient to do because it changes the origin of
the log term without correspondingly changing the origin of the
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terms in simple powers of x, it is necessary to go through a round-
about process of trial and error to get a proper value of a. It
cannot be determined directly by the least square method.

But with this caution in mind we can lay down a series of rules
as follows:

1. Write the equation of the curve it is proposed to fit with the
summation sign ,5 before the variable, in each term which contains
a variable (i. e., x or y ) and write n before any term which does not
contain a variable. Call the equation (i).

2. Multiply each term in (i) by the function of x (x itself,
x2

, x3
, log x, etc.) that has for its coefficient the first constant in

(i), writing S before the variable in each case, and dropping the n
which appears in (i).

3. Multiply each term in (i) by the function of x, that has for
its coefficient the second constant in (i), writing S before the
variable in each case as before.

4. Continue this process till (i) has been successively mul-
tiplied in this way by each function of x which appears in it. This
will make as many equations including (i) as there are constants
to determine.

5. Perform the indicated summations and solve the system of
simultaneous equations for the unknowns.
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APPENDIX I

AGE AND SEX SPECIFIC DEATH-RATES FOR THE UNITED
STATES REGISTRATION AREA (EXCLUSIVE OF NORTH
CAROLINA) IN 1910

As a matter of reference, and because they are nowhere avail-
able for the United States Registration Area, it is thought desirable
to present age and sex specific death-rates for each of the prin-
cipal causes of death in the International List, as it existed in
1910. These rates have been for some years used in manuscript
form in this laboratory.

All the rates are per 1000 living in the designated class, and
are tabled to four places of decimals. The rates are, in general, not
significant to this degree, but it seems desirable to have the extra
figures, in case one wishes to make derivative use of the rates
involving computations, so that a merely arithmetic error may
not accumulate in the last place which is significant. Furthermore,
in many of the causes of death where the rates are inherently low,
their definite and orderly trend is better shown with the four
place figures than it would be with figures corrected to the last
significant place.

In order that the reader may judge, in every case, the extent
to which the rate is significant, the following preliminary table is
introduced, which shows how large a rate has to he in order to he
as much as three times the prohahle error differentfrom zero.

The relationship between p and n, when p is three times its
probable error is

p = 3 (.67449) -x/— = 2.02347 a/—
\ n X n

4.09443
_

n T 4.09443
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Population of Registration Area (Exclusive of North Carolina) 1910

It is to be understood that whenever in the following tables a
rate is larger than those given in the third and fifth columns of
the above table, it is more than three times its probable error
different from zero.

Age. Males.
Probably
significant
death-rate
per 1000.

Females.
Probably

significant
death-rate
per 1000.

All ages 27,340,093 .0001 25,920,337 .0002
Under 1 578,096 .0071 563,247 .0073

1-4 2,167,541 .0019 2,123,575 .0019
5-9 2492,138 .0016 2,455,673 .0017

10-14 2,384,739 .0017 2,362,477 .0017
15-19 2,476,198 .0017 2,504,352 .0016
20-24 2,700,695 .0015 2,622,154 .0016
25-29 2,623,398 .0016 2,386,018 .0017
30-34 2,295,174 .0018 2,063,546 .0020
35-39 2,108,397 .0019 1,906,943 .0021
40-44 1,802,044 .0023 1,602,854 .0026
45-49 1,523,143 .0027 1,360,843 .0030
50-54 1,289,199 .0032 1,146,788 .0036
55-59 902,617 .0045 829,995 .0049
60-64 709,372 .0058 687427 .0060
65-69 525.942 .0078 525,080 .0078
70-74 347,919 .0118 360,859 .0113
75-79 204,211 .0200 221,533 .0185
80-84 95,295 .0430 110,206 .0372
85-89 34,681 .1180 43,540 .0940
90-94 8.319 .4919 11423 .3583
95-99 1,414 2.8875 2,266 1.8037

100 or over 259 15.5682 494 8.2217
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Specific
Death-rates

per
1000

Population.
Registration

Area,
1910,

Exclusive
of

North
Carolina

Diseases.

Males.

Under 1.

1-4.

5-9.
10-14.
15-19.

20-24.
25-29.
30-34.
35-39.
40-44.
45-49.

50-54.
55-59.

60-64.
65-69.

70-74.
75-79.
80-84.
85-89.
90-94.
95-99.

100
or over.

All
causes

147.9927
15.0913

3.7109
2.4988
4.1394
5.9685
6.7725
8.0007
9.7463

11.6079
14.5390

18.5123
25.6620
36.0728
51,4410

75.0979
112.2369
168.1410

237.9112
313.0184

410.1839
494.2085

1

Typhoid
fever

.0623
.1250

.1324
.1493
.3679
.4854
.4460
.3647

.3073

.2536
.2593

.2529

.2515

.2002

. 1939
.1696
.1812
.1049
.0577
.3606

4

Malaria

.0484

.0226

.0116

.0034

.0141

.0156

.0126

.0157

.0152

.0150

.0197

.0256

.0465

.0578

.0551

.0604

.1273

.1259

.2307
.2404

1.4144

5

Smallpox

.0311

.0060

.0012

.0017

.0048

.0030

.0046

.0052

.0028

.0055

.0053

.0023

.0028

.0038

.0029

.0049

.0105

6

Measles

1.5032
.9093
.1196
.0243
.0222
.0130
.0053
.0083
.0066
.0061
.0072
.0039
.0066
.0042
.0095
.0115
.0049
.0315

7

Scarlet
fever

.2889
.7299
.3330
.0805
.0424
.0252
.0126
.0113
.0066
.0039

.0020
.0016
.0033

8

Whooping-cough
2.7902
.4683
.0365
.0042
.0016
.0015
.0008

.0006

.0007

.0029

.0098

9

Diphtheria
and

croup

.8805
1.5418

.5710

.1342

.0505

.0237

.0160

.0118

.0100

.0089

.0079

.0140

.0100

.0085

.0019

.0029

.0098

10
Influenza

.5068

.0900

.0225

.0143

.0262

.0244

.0282

.0344

.0484

.0605

.0893
.1241
.2094
.3158
.5856

1.1324
1.9734

3.4524
5.7668
8.2943
9.9016

15.4440

13
Cholera
nostras

.1090

.0138

.0036

.0017

.0008

.0007

.0008

.0017

.0028

.0039

.0066

.0093

.0122

.0324

.0209

.0891

. 1518

.

1994
.4613
.3606
.7072

14

Dysentery

.6798

.1449

.0092

.0029

.0028

.0041

.0053

.0083

.0138

.0266

.0230

.0411
.063!
.0789
.1863
.3219
.6709

1.4271
1.8742

2.7648
6.3649
3.8610

17
Leprosy

.0004

.0004

.0013

.0016

18
Erysipelas

.5899

.

0129
.0012
.0042
.0069
.0081
.0145
.0231
.0351
.0499
.0643
.0745
.0997
.1212
.2091
.2386
.3575
.5142
.9227

1.0819

19
Other
epidemic

diseases

.0692

.0161

.0040

.0038

.0012

.

0019
.0004
.0013
.0014

.0007

.0023

20
Purulent

infection
and
septi-

cemia

.2180

.0217

.0185

.0172

.0182

.0148

.0198

.0266

.0356

.0455

.0532

.0752

.0931

.0874

.1312

.1667

.1714

.2623

.3748

.1202

21
Glanders

.0004

.0008

.0014

.0011

22
Anthrax

.0017

.0008

.0007

.0013

.0005

.0013
.0039

.0014

.0029

.0049

23
Rabies

.0028

.

0036
.0025
.0012
.0004
.0004
.0004
.0019
.0017
.0020
.0016
.0033
.0028
.0038

24
Tetanus

.3961
.0180
.2490

.0503

.0299
.0185

.0183
.0209
.0228

.0166
.0243
.0186
.0388
.0211
.0190
.0144
.0294

25
Mycoses

.0004

.0007
.0008

.0011

.0033

.0056

.0038

.0086

.0049

26
Pellagra

.0005

.0004

.0013

.0012

.0019

.0011

.0035

.0033

.0039

.0059
.0054
.0066
.0070
.0038
.0057
.0098

27
Beriberi

.0007

.0008

.0004

.0006

.0007

.0008

28
Tuberculosis
of
the
lungs

.8026

.2648

.0823

.1308

.8832
1.7055

2.0111
2.2870
2.4274
2.4616
2.3760
2.2634

2.3986
2.2738
2.2588

1.9746
1.8559
1.6475
1.0669
1.6829

2.1216

29
Acute
miliary
tuberculosis..
..

.0830

.0323

.0148

.0105

.0363

.0559

.

0545
.0558
.0569
.0405
.0361
.0111
.0454
.0338
.0323

.0201

.0049

30
Tuberculous
meningitis

.9012

.4498

.1099

.0411

.0444

.0307

.

0255
.0301
.0213
.0211
.0236
.0147
.0177
.0127
.0152
.0086

.0147

.0210

31
Abdominal

tuberculosis
.2076
.0770
.0197
.0197
.0323
.0396
.0412
.0449
.0550
.0527
.0617
.0527
.0875
.0775
.0989
.0977

.1077

.0630

.0577

.1202

32
Pott’s

disease

.0138

.0212

.0205

.0101

.0157

.

0152
.0156
.0100
.0138
.0150
.0138
.0209
.0188
.0155
.0209
.0201

.0245

.0210

33
White
swellings

.0086

.0078

.0060

.0117

.0093

.0104

.0069

.0087

.0095

.0083
0131
.0121
.0144
.0113
.0209
.0287
.0098

.0210

.0288

34
Tuberculosis
of
other
organs...
.1072
.0249
.0088
.0109
.0117
0156
.0225
.0209
.0209
.0211
.0295
.0303
.0366
.0381
.0399
.0661
.0490
.0315

.1202

35
Disseminated

tuberculosis
.0813
.0138
.0072
.0075
.0182
.0215
.0194
.0213
.0237
.0222
.0184
.0248
.0222
.0296
.0247
.0259
.0098
.0210

.0288

36
Rickets

.2318

.0383

.0024

.

0013
.0004
.0004
.0008
.0004

.0007

.0008

.0022

.0049

.0288

37
Syphilis

1.5862
.0323
.0052
.0038
.0065
.0259
.0374
.0471
.0593
.0583
.0696
.0698
.0842
.0775
.0551
.0460
.0190
.0315
.0288

38
Gonococcus

infection

.0796

.0009

.0008

.0011
,0008
.0022
.0014
.0017
.0013
.0023
.0011
.0028
.0038
.0029
.0049
.0105

39
Cancer
of
the

buccal
cavity...

.0009

.0016

.0008

.0012

.0007

.0030

.0057

.0095

.0277

.0670

.1334

.

1595
.2749
.3822
.4628
.4848
.9444

1.3840
1.0819

2.1216

40
Cancer
of
the
stomach,
liver...
.0052
.

0051
.0040
.0004
.0048
.0056
.0244
.0457
.1006
.2370
.4261
.7268

1.2109
1.8650

2.3235
2.8599
3.1046
3.1061
2.3932

1.5627
1.4144

41
Cancer
of
the

peritoneum,
etc..

.0042

.0020

.0038

.0032

.0052

.0160

.0222

.0398

.0733
.1274
.1838
.3113
.4229
.5932
.7128
.7296
.7451
.7785
.2404
.7072

44
Cancer
of
the
skin

.0014

.0012
0017
.0016
.0015
.0030
.0044
.0071
.0139
.0322
.0458
.0864
.1494
.2225
.4139
.6660

1.0809
1.6436

2.4041
2.8289

45
Cancer
of
other

organs,etc....
.0242

.0254
.0092

.0105

.0206
.0322
.0217

.0466

.0607

.1043

.1871

.2816

.4620

.6555

.9393
1.2273
1.6062
1.5741
1.9896
1.2021
1.4144

46
Other

tumors

.0173

.0032

.0008

.0013

.0007

.0023

.0013

.0028

.0050

.

0053
.0085

.0144

.0127

.0304

.0575

.0490

.0420

.0288

.1202
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47
Acute
articular

rheumatism...
.0294
.0291
.0646
.0709
0533
.0293

.0225

.0314
0413
.0511
.0558
.0760
.0908
.1311

.2225

.

2501
.3330
.2938
.6055

1.2021

48
Chronic

rheumatism
and
gout.

.0121

.0281

.0277

.0428
.0020 .0517
.0019 .0422
.0019 .0438
.0030 .0571
.0038 .0702
.0067 .0971
.0072
.0124
.0299 .4709
.0507 .6710
.0513 .9184

.0977 1.0347

.1812 1.0528

.2309 1.0599

.2307 .7497

.1202 .8414
.7072

.0065

.0047

.0017

.0008

.0015

.0023

.0030

.0024

.0055

.0111

.0014

.0057

.

0049

.0004

.0076

.0024
.0015
.0015
.0035
.0052
.0072

.0111

.0029

.0196

.0311

.0194

.0100

.0249
nasi

nan-

.0105

.0288

.0113
.0101
.0122
.0156
.0161
.0204
.0239

.0551

.0604

.0539

.1730

.9226

.0071

.0081

.0081

.0088

.0161

.0232

.0400
.0578
.0861
.1274
.1762
.2301
.2271
.2351
.2414
.2595
.4818

.0156

.3771
.0600

.0075

.0093

.0100

.0069

.0070

.0095

.0117

.0151
.0155
.0188
.0310
.0418
.0489
.0735
.0735
.1153
.3606

56
Alcoholism
(acute

or
chronic)...

.0008

.0028

.0167

.0587

.1237

.1836

.2231
.235?
.2226
.2360
.2284
.2187
.2012
.1518
.1574
.0577

57
Chronic
lead-poisoning

58
Other
chronic
occupation

0004
.0004
.0011
.0019

.0052
.0081

.0105

.0118

.0163

.0122

.0099

.0114

.0086
.0098

.0004

.0004

59
Oth»r
chronic
poisonings

. 1263 1.6624.5259

.0235

.0088
0084

~0030 .0095
.

0039 .0135
.0085 .0133
.0055 .0139
.0079 .0138
.0078 .0186
.0166 .0377
.0169 .0296
.0266 .0171
.0287 .0287
.0196 .0392
.0630 .0630

.0577

.1202

.0105
.0015 .0118

.4055

.0*15

.0449
0367
.0307
.0294
.0296
.0308
.0366
.0440
.0489
.0465
.0578
.0627
.0747
.0588
.0839
.2883
.1202

6ljCerebrospinal
meningitis

.

1582
.0437
.0250

.0287

.0189
,0099
.0109
.0095
.0078
.0131
.0116
.0133
.0085
.0076
.0086
.0049
.0105

.0450

.0161

.0096
.0034
.0036
0022
.0011

.0014

.0017

.0013

.0016

.0014

0131

.

1828

.2643

.2529

.2351

.1994
.0577

,0005

.0004

0004
.0050

.0270

.0549

.0893

.1272

.2044

fi3
/Acute

anterior
poliomyelitis...

.2456

.1629

.0494
.0222
.0198
.0118
0069
.0035
.0009
.0039
.0033

.0023

.0011

.0028

.0038

.0029

.0049

(Other
diseases
of
spinal
cord..
.0329
.0106
.0044
0101
0137
.0118
.0141
0257
.0261
.0422

.0735

.1032

.1418

.2143

.3365

.4886

.6660

.6821

.7497
3606

64
Cerebral
hemorrhage,
apoplexy.

.5276

.0346
.0096
.0101
.0206
.0330
0606
.1159 .0044
.1836 .0052
.3296 .0061
.6073 .0151

1.0619.0240
2.0485 .0355
3.4693 .0761
5.6622 .1445
8.9245 .2386

13.4175.5680
18.5739.7346

23.4999 .8515
23.4403
22.6308
30.8880

66
Paralysis

without
specified

.

004

.00-3

.7212

.0467
.0101
.0052
.0063

0070
.0084
.0179
.0365
.0549
.1031
.1598
.2770
.5047

1.0000
1.5693

2.8794
4.2290
6.0552
6.9720
6.3649
3.8610

67
General

paralysis
of
the

insane.

68
Other
forms
of
mental

aliena-

.0008

.0033

.0133
.0697
.

1598
.2164
.2258
.2536
.2160

.1706

.1977

.2041

.3771

.3568

.4325

.0017

.0004

.0107

.0107

.0244

.0223

.0322

.0374

.0582

.0787

.1085
.1521
.2529
.3526
.7136
.5767
.4808

~0217

.0294
.0404

.7072

.0882

.0189

.0444

.0574

.0572

.0617

.0683
.0654
.0930
.0875
.1121
.1861
.2414
.0577
.1202

70
Convulsions

(non-puerperal)...
3.9924 .0069

'.'

1772.0028
.0104
.0021
.0016
0011
.0015
.0009
.0019
.0039
.0007

.0019

.0057

.0049

.0315

.1202

.0012

.0021
.0065
.0011
.0008

.0005

.0020

.0011

.0014

.0038

.0105

.0030

.0061

!0140

.0345

.0539

.0577

.1202

.0012
.0004
.0004
.0007
.0015

.0057

.0131

.0144

.0127

.0494

.0420

74
Other
diseases
of
the

nervous
.1263 .0086
.0300 .0014
.0156
.0113
.0125

.0274 .0009

.0294 .0009

.0427 .0006
.0565

.0721
.0576
.0789 .0014
.0837
.1610
.2399
.3148 01/15
.2595
.3606 .1202
.7072

75
Diseases
of
the
eyesand

annexa

.0004 .0111
.0114

.2422

.0434
0197

.0143

.0125

.0091

.0085

.0133

.0158

.0155

.0166

.0197

.0304

.0086
.0098
.0315

2307
.1202

.0173

.0032

.0048
.0067
.0028

.0050
.0087
.0128
.0100
.0184
.0178
.0366
.0381
.0589
.0776

.1371

.1574

nw

.

1455
.0281

.0353

.0369

.0396

.0693
.0901
.1154
.1740
.2203
.3590
.1410
.1787
.2501

.3379
4197
6632
7212

79

Organic
diseases
of
the

heart...
.9116 .0035
.0983 .0005

.1316 .0012

.1874 .0021

.

2290 .0032
.2240 .0041
.2855 .0069

.4313 .0174

.6446 .0223

.9894 .0433
1.4030.0893

2.1859 .1536
3.5209 .3002
6.1054 .5159
9.9289 .7396

15.3829.9600
22.7657
30.9670
38.7532
39.9086
43.1400
54.0541

81
Diseases
of
the

arteries,
ather-

1.3026
1.3747
1.5282
1.5627
1.4144

.0052 .0519

.0009 .0042

.0013 .0038

.1385 .0387

.4343 .0798

1.6523.1825
3.2766 .2817
6.2142 .4456

10.55674932
16.60853172

20.0745 8414
25.4597 .7072
27.0270

82
Embolism

and
thrombosis

.0040

.0040
.0093
.0118
.0152
.0190
.0327

.0520

.1226

.0069
.0009
.0004
.0004

.0007

.0008

.0028

.0100

.0085

.0089
.0197
.0285
.0316
.0441

.0315

.1153

.1202

84
Diseases
of
the
lymphatic

sys-

0

.1194

.0115

.0040

.0025
.0024

.0009

.0019

.0017
.0013

.0023
.0033
.0014
.0095
.0115
0245
0210

.0011

.0004

.0288
.1202

.1401
.0032
.0012
.0004

.0012

.0043

.0033

.0085

.0085
.0066
.0141
.0133
.0144
.0539
.0525

'

.0577
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Specific
Death-rates
Per

1000
Population.

Registration
Area,

1910,
Exclusive

of
North
Carolina

—
Continued

Males.

Diseases.
•

Under 1.

1-4.

5-9.
10-14.
15-19.

20-24.
25-29.
30-34.
35-39.
40-44.
45-49.
50-54.
55-59.
60-64.
65-69.

70-74.
75-79.
80-84.
85-89.
90-94.
95-99.

over.

86
Diseases
of
the
nasal
fossa;

.0571

.0042

.0020

.0013

.0012

.0004

.0004

.0005

.0008

.0011

.0029

.0049

.0420

.3606

87
Diseases
of
the
larynx

.1816
.0775
.0197
.0046
.0016
.0015
.0034
.0044
0062
.0050
.0092
.0070
.0078
.0070
.0152
.0201
.0196
.0839
.0288
.1202

88
Diseases
of
the
thyroid
body...

.0104
.0005

.0017

.0004

.0004

.0004

.0009

.0011

.0020

.0016

.0022

.0056

.0095

.0115

.0105

89
Acute
bronchitis

4.0132
.3017
0152
.0042
.0044
.0048
.0050
.0035

.0095

.0061
.0098
.0171
.0310
.0663
.1046
.2156
.4505

1.1333
2.0472
5.6497

4.2433

90
Chronic

bronchitis

.1055

.0245
.0128
.0042
.0069
.0096

.0091
.0192

.0223

.0300

.0506
.0861

1429
.2763
.4810
.9571

1.9147
3.3265

5.8533
8.5347
5.6577
7.7220

91

Bronchopneumonia
10.3616

1.5806
.1031
.0264

.0307
.0304
.0431
.0444
.0863
.1004
.1156
.1675
.2482

.4441
.6674

1.1842
1.9441

3.0432
4.4405
5.8901

11.3154
19.3050

q<JLobar
pneumonia

2.3024
.5744
.0991
.0621
.1490
.2318
.2638
.3886
.5103
.6315
.7892
.9463

1.1444
1.4858
1.7207

2.0062
2.6492
3.1061
3.2294
3.9668
8.4866
7.7220

\Pneumonia
undefined

5.7793
.8936

.1352

.0797

.

1345
.1537
.1757
.2244

.3206

.4034
.5016
.6686
.9018

1.1982
1.6808

2.5092
3.6433
6.0129
8.3908

10.3378
16,9731
11.5830

93
Pleurisy

.0744

.0655

.0165

.0067
.0234

.0281

.0274

.0292

.0346

.0516

.0538

.0761

.0831
.1156
.1217
.2271
.2889
.2833
.3748
.4808
2.1216

94

Pulmonary
congestion,
pulmo-

nary
apoplexy

.5812

.0424

.0068

.0021

.0036

.0078

.0091

.0118

.0138

.0172

.0177

.0295

.0432
.1043
.1198
.2357
.5338

1.2068
2.3356
3.4860

7.0721

95

Gangrene
of
the
lung

.0009

.0004

.0015

.0019

.0022

.0028

.0044

.0066

.0101

.0155

.0169

.0190
.0144
.0098
.0105
.0865

96
Asthma

.0208

.0046

.0016

.0004

.0008

.0007

.0038

.0057

.0090

.0189

.0295

.0520

.0798
.1297
.1654
.2932
.4750
.6716
.6920
.6010
.7072

97

Pulmonary
emphysema

.0121
.0009
.0012
.0004
.0004
.0007
.0011
.0009
.0014
.0033
.0066
.0047
.0078

.0127

.0171

.0315

.0392

.0735

.1153

98
Other
diseases
of
the

respira-

tory
system

.0917

.0125

.0040

.0034

.0061

.0096

.0183

.0213

.0247

.0316

.0440

.0590

.0787
0973

.1198

.1207

.1077

.1364

.2307

.2404
1.4144

99
Diseases
of
the

mouth
and
an-

nexa

.2595
.0120
.0028

.0012

.0004

.0019

.0013

.0014

.0011

.0020

.0008

.0044

.0028

.0057

.0115

.0049
.0315
.0288
.1202

100
Diseases
of
the

pharynx

.1245

.0415
.0269
.0101
.0101
.0100
.0084
.0100
.0076
.0122
.0072
.0132
.0199
.0113

.0304

.0201

.0490

.1049
.1442

101
Diseases
of
the
esophagus
.0035
.0023

.0008
.0007

.0004

.0004

.0005
0017
.0026

.0039

.0100

.0099

.0095

.0201

.0294
.0525
.0865

.7072

102
Ulcer
of
the
stomach

.0156

.0037

.0028

.0029

.0052

.0196

.0252

.0383

.0522

.0666

.0939
.1055
.1473
.1635
.1730
.2184
.2546
.2623

.3172
.3606

103
Other

diseases
of
the

stomach..
2.7158

.1269

.0233

.0067

.0125

.0126

.0221

.0344

.0470

.0666

.0959

.1249

.1839

.3073

.4335

.7473
1.1704

2.2142
3.6908

5.4093
4.2433
7.7220

104
Diarrhea
and

enteritis
(under

two
years)

42.3476
2.3196

105
Diarrhea
and
enteritis

(two

years
and
over)

.6879

.0943

.0264

.0170

.0159

.0248

.0288

.0413

.0494

.0663

.1063

.1451
.2693
.4468
.7789

1.5082
2.8753
4.3251
7.6932
4.9505
3.8610

106

Ankylostomiasis

.0004

.0004

107
Intestinal
parasites

.0017

.0088

.0028

.0004

.0004

.0011

.0008

.0013

.0006

108
Appendicitis
and
typhlitis

.0242

.0494

.1188

.1673
.1741
.1492
.1254
.1311
.1361
.1249
.1287
.

1559
.1185
.1508
.1559
.1178
.1028
.0525
.0577

(Hernia

.2110

.0088

.0016

.0008

.0057

.0093

.0118

.0190

.0232

.0305

.0414

.0745

.0820
.1198
.2130
.3564
.5827
.7555
.8939

1.2021
.7072

8
\lntestinal

obstruction
.7905
.0803
.0281
.0210
.0279
.0285
.0259
.0309
.0460
.0483
.0657
.0931
.1429
.1804

.2852

.3737

.5778
.7241
.7497

1.3223
1.4144

110
Other
diseases
of
the

intestines.
.2975
.0157
.0060
.0038
.0032
.0085
.0095
.0161
.0161
.0144
.0328
.0341
.0510
.0663
.0780
.1236

.2302

.4722

.4325
.7212
2.1216

Ill
Acute
yellow

atrophy
of
the

liver

.0086

.0014

.0004

.0012

.0022

.0027

.0035

.0024

.0017

.0046

.0054

.0022

.0099

.0095
.0057
.0490
.0315

112
Hydatid

tumor
of
the
liver

.0035

.0005

.0004

.0011

.0004

.0009

.0017

.0013

.0022

.0014

.0019

.0029

113
Cirrhosis
of
the
liver

.0035
.0028
.0036
.0034
.0040
.0118
.0313
.0845
.1660
.2708
.3992
.5251
.7046
.9050

1.0648
1.0951

1.1312
.9759
.8650
.6010
2.1216

114
Biliary
calculi

.0017

.0005

.0004

.0004

.0046

.0039

.0100

.0133

.0256

.0496

.0709

.0761

.0856

.1552

.2155
.2309
.1153

115
Other

diseases
of
the
liver

.1401

.0203
.0092
.0063
.0085
.0156
.0255
.0344
.0427
.0583
.0637
.1094
.1318
.2044
.2244
.2903
.4358
.5876

.7497
.8414

.7072

116
Diseases
of
the
spleen.

.0052

.0008

.0004

.0015

.0030

.0038

.0022

.0020

.0023

.0033

.0070

.0076

.0057

.0196

117
Simple
peritonitis

(non-puer-
peral)

.1470

.0374

.0237

.0247

.0258

.0252

.0194

.0283

.0275

.0311

.0289
.0403
.0399
.0789
.0913
.1207
.1861
.1259

.2018
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118

Other
diseases
of
the
digestive

.0086

.0028

.0001

.0013

.0020

.0033
.0027
.0052

.0085
.0089

.0105

.0194

.0144

.0141

.0133

.0144

.0294

.0315

.0288 1.0380
1.0819

.4013

.0904

.0546

.0289
.0355
.0185
.0694
.0771
.0996
.1199
.

1405
.1784
.2260
.2876
.3023
.4254
.4848
.7555

19.8020
30.8880

.3217

.0830

.0457

.0453
0816
.1144

.2104

.3233

.5217

.8196
1.2697

1.8872
2.9171
4.4377
6.2859
9.0969

12.6144
15.0754

20.9525
18.7522

.0029

122
Other
diseases
of
the

kidneys
.1470 .0104
.0055 .0009
.

0032
.0008
.0020
.0067
.0103
.0139

.0128

.0233

.0453

.0403
.0499
.1085
.1312
.2328
.3379
.5667
.8074

1.2021
.7072
3.8610

.0004

.0004

.0008

.0022

.0034

.0039

.0076
.0039
.0118
.0140
.0288

.0310
.0589
.0948

.1077

.0839

.

0577
5.1689
5.6577
3.8610

124

.0467
.0028
.0008
.0004
.0020
.0019
.0038
.0039

.0095

.0133

.0171

.0233

.0543

.1128

.2681

.5547
1.3271

2.2666
3.8926

.0086

.0004

.0015

.

0038
.0039

.0081
0161
.0164
.0217
.0255
.0183
.0380
.0546
.0441
.0630

4.3540
.1202

8.4866

.0004

.0008

.0017
.0024
.0044
.0118
.0225
.0798
.2171
.6274

1.2043
2.1155
3.5993

4.2072

127
Non-venereal
diseases
of
male

.0571
.0014
.0004

.0004

.

0004
.0022
.0005
.0022
.0013

.0008

.0011

.0042

.0019

.0259

.0294

.0105
2'5951

.1202

.7072

.0311

.0051
.0024
.0013
.0024
.0015
.0019
.0035
.0062
.0117
0151

.0240

.0465

.0761

.1996

.3966

.7884
1.7105

4.6881
6.3649 .7072

.0346

.0005

.

0004

.0032
.0030
.0019
.0052
.0033
.0061
.0072

.0140

.0244

.0197

.0418

.0460

.0294

.0525

.0865

.1540

.0120

.0020

.0008

.0036

.0022
.0034
.0061
.0066
.0089
.0092

.0140

.0155

.0268

.0437

.0460

.0490

.0839

.0577

.0539

.0735

.2018

.1202

.7072

.2041

.0055

.0019

.0017

.0033

.

0053
.0093
.0022
.0113

.0228

.0402

146
Diseases
of
the

bones
(tuber-

.1090

.0401

.0173

.0226

.0218

.0130
0126
.0161
.0223
.0222
.0243
.0287
.0321
.0282
.0589
.0661

.0686

.1889

.0865

.1202
2.1216

147

.0047

.0014

.0038

.0086
.0294

.0288

.2404

.0086

.0009

.0012

.0013

.0012

.0004

.002.3

.0004

.0047
.0044
.0026

.0022

.0006

.0011

.0014

.0057

.0028

.0019

.0057

.0147
.0315
.057?

.0017

.0005
.0004
.0004
.0012
.0004

.0009

.0005
.0011
.0020

.0011

.4722
.0355
.0080
.0034
.0008
.0011
.0004

.0005

.0006

.0008

160
Congenital
malformations
of
the

.0005

4.6705
.0304
.0052

.0063

.0028

.0011

Other
congenital
malformations
2.2436 19.6507
.0189
.0032

.0008
.0004
.0004

151
Congenital

debility,"
atrophy,”

11.7852
.0028
.0008

.0004

.0004
.0008

3.9578

152
Other

causes
peculiar
to

early
3.1413 .1228

5.3131
17.8288

38.3207
77.5334

.1085

.4126
1.7964

123.0552
227.7992

.0004
.0075
.0594
.1996
.2501
.2802
.3349
.3624
.4747

.5088

.6404

.6583

.6236

.5950

.7052

.6716

.6055

.7212

.7072
3.8610

104 164 186 183 184 187 189

1.3042
.9375
.5778

.5485
.8691

1.3500
1.4089
1.3916
1.5514
1.5566
1.6564

1.6359
1.7039
1.8848

2.0934
2.5379
3.2173
4.8691
7.3816

12.0207
26.1669

19.3050

.1245

.0097

.0072

.0126

.0448

.1592

.1719
.1534
.1622
.1182
.1156

.0838

.0775

.0648

.0494

.0431

.0441

.0525

.0577

6.2152
.2630
.0152
.0088
.0141
.0193

.0313

.0292

.0536

.0522

.0775

.1342

.2050

.3017

.4355

.6553
1.1606

2.4660
4.2675
7.6932
8.4866

11.5830
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Specific
Death-rates
Per

1000
Population.

Registration
Area,

1910,
Exclusive

of
North
Carolina

Diseases.

Females.

Under 1.

1-4.

5-9.
10-14.
15-19.

20-24.
25-29.
30-34.
35-39.
40-44.
45-49.
50-54.
55-59.
60-64.
65-69.
70-74.
75-79.
80-84.
85-89.
90-94.
95-99.

100
or over.

All
causes

119.8213
13.8441

3.4891
2.3916
3.6884
5.2148
6.1169
6.7941
7.7685
8.9347

11.0321
14.6304

20.6230
29.2671
44.2904
66.8156

100.8969
155.8717

222.7377
309.7260368.9320471.6599

1

Typhoid
fever

.0604
.1224
.

1425
.2023
.2911
.2727
.2154
.1740
.1652
.

1635
.1609
.1526
.1627
.1280
.

1333
.1884
.1129
.1633

.0919

4

Malaria

.0586
.0212
.0086

.0097
.0104

.0141

.0163
.0155
.0126

.0125
.0198
.0244
.0229
.0320
.0571

.0499

.0451
.1361
.1608
.2626
.441;

5

Smallpox

.0107

.0047

.0012

.0008

.0020

.0053

.0042

.0019

.0037

.0044

.0037

.0026

.0012

.0038

6

Measles

1.1576
.8344
.1144
.0385
.0220
.0160
,0163
.0233
.0184
.0175
.0162
.0105
.0157
.0102
.0114
.0222
.0181
.0091

7

Scarlet
fever

.2432
.7412
.3661
.1054

.0507

.0336
.0251
0136
.0105

.0037

.0073

.0052
.0048
.0029

.0045

8

Whooping-cough
3

0111
.6932
.0558
0030
.0024
.0011
.0004

.0005

.0012

.0009

.0012

.0029

.0038

.0083

.0045

.0230

.1751

9

Diphtheria
and

croup

.6782
1.3661

.6137

.1600

.0403

.0305

.0193

.0121

.0126

.0150

.0096

.0096

.0060

.0029

.0095

.0194

.0090

.0091

.4413

10
Influenza

.3977

.0838

.0269

.0165

.0212

.0267

.0377

.0344

.0503

.0649

.0816

.1291

.2735

.4582

.8170
1.4632

2.3653
4.4008
6.3160
9.1920
9,7087

10.1215

13
Cholera
nostras

.0604

.0118

.0020

.0017

.0020

.0011

.0038
,0015
.0037
.0025
.0059
.0044
.0145
.0175
.0419
.0665
.1580
.2178
.2986
.5253

1.3239

14

Dysentery

.5699
.1121
.0098
.0030
.0024
.0042
.0101
.0107
.0173
.0168
.0272
.0314
.0590
.1178
.2552
.4766
.7629

1.5335
1.9063

2.9765
2.6478
4.0486

17

Leprosy

.0004

.0005

.0006

.0007

18

Erysipelas

.6285

.0226

.0020

.0017

.0072

.0095

.0109

.0160

.0157

.0237

.0316

.0375

.0542

.0742

.1333

.2023

.2347

.3720

.4134

.3502

.8826
2.0243

19
Other
epidemic
diseases

.0497
.0151
.0049
.0008

.0004

.0005

.0007

.0019

.0055

.0045

20
Purulent

infection
and
septi-

cemia

.1687

.0179

.0110

.0089

.

0152
.0229
.0235
.0199
.0236
.0237
.0250
.0401
.0373
.0436
.0686
.0748
.0813
.1089
.2986
.1751

2.0243

22
Anthrax

.0007

.0015

.0019

23
Rabies

.0018

.0019

.0016

.0008

.0012

.0004

.0007

.0009

24
Tetanus

.3160
.0067
.0155
.0114
.0052
.0042
.0071

.0029
.0131

.0056
.0073
.0078
.0145

.0095

.0166

.0226

.0454

25

Mycoses

.0008

.0004

.0010

.0006

.0015

.0015

.0091

26
Pellagra

.0018

.0009

.0008

.0020

.0050

.0109

.0136

.0121

.0112

.0081

.0742

.0193

.0087

.0133

.0166

.0045

27
Beriberi

.0008

28
Tuberculosis
of
the
lungs

.6480
.2274
.1112
.3043
i.

1.536
1.8546

2.0704
1.9554

1.7284
1.5017
1.2500
1.1938
1.2253
1.2481
1.4074
1.6267
1.6431
1.3066

.8268

.7003

.4413

29
Acute
miliary
tuberculosis....
.0639
.0301

.0163
.0233
.0491
.0614
.0486
.

0465
.0330
.0231
.0213
.0201
.0120

.0087

.0229
.0194
.

0226
.0091
.0230

30
Tuberculous
meningitis

.8788

.4346

.1157

.0508

.0515

.0294

.0256

.0218

.0184

.0175

.0132

.0113

.0133
.0102

.0076

.0055

.0045

.0181

31
Abdominal

tuberculosis
.2361
.0593
.0224
.0246
.0587
.0698
.0708
.0746
.0792
.0661
.0603
.0759
.0627
.0946
.1181
.0970
.0993
.

1543
.1608

32'
Pott’s

disease

.0231

.0217

.0175

.0089

.0060

.0076

.0134

.0131

.0058

.0069

.0110

.0105

.0241
.0145

.0229

.0333

.0316

33;
White
swellings

.0142

.0066

.0037

.0076

.0064

.0038

.0034

.0039

.0052

.0031

.0051

.0035

.0108

.0058

.0095

.0139

.0135

.0363

34,
Tuberculosis
of
other
organs...
.

0852
.0193
.0057
.0102
.0148
.0160
.0142
.0102
.0205
.0168
.0228
.0183
.0301
.0247
.0343
.0471
.0542
.0635
.0919
.1751

35'
Disseminated

tuberculosis
.0479
.0170
.0069
.0068
.0164
.0202
.0222
.0141
.0215
.0175
.0184
.0140
.0193
.0160
.0267
.0221
.0181
.0272

36
Rickets

.1864

.0311

.0029

.0021

.0012

.0004

.0008

.0005

.0016

.0012

.0015

.0015

.0057

.0055

.0135

.0181

37

Syphilis

1.3049
.0344
.0041
.0008
.0076
.0172
.0260
.0291
.0409
.0349
.0228
.0296
.0265
.0247
.0209
.0249
.0135
.0181
.0230

38
Gonococcus
infection

.1012

.0014

.0004

.0056

.0057

.0021

.0024

.0026

.0019

.0037

.0024

.0019

.0028

39
Cancer
of
the

buccal
cavity....
.

0036
.0005
.0016
.0004
.0012
.0008
.0021
.0015
.0021
.0044
.0088
.0096
.0337
.0335
.0667
.0970
.1490
.

1543
.2986
.5253
.8826

40
Cancer
of
the
stomach,
liver

.0053
.0042
.0020
.0017
.0024
.0065
.0235
.0635
.1301
.2539
.4968
.7979

1.3675
1.6845

2.4377
2.9319
3.1553
3.1759
2.8939

1.9259

41
Cancer
of
the

peritoneum,
in-

testines,
etc

.0018

.0019

.0020

.0017

.0028

.0057

.0189

.0363

.0729

.1185

.1940

.3183

.4193

.6139

.7675

.

9533
1.2323
1.0798

.8957

.4377

42
Cancer
of
the
female
genital

organs

.0005
.

0004
.0017
.0056
.0114
.0407
.1265
.2292
.4529
.6783
.7761
.9458

1.0110
.9827
.9948

1.0518
.8348
.6431
.7003
.4413
4.0486
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43
Cancer
of
the

breast

.0036

.0009

.0008

.0042

.0113

.0465

.0991

.2059

.3601
.4412
.5422
.5441

.7732

.8507
1.1691

1.3974
1.9293
1.9259

.8826!
2.0243

44
Cancer
of
the
skin

.0053

.0009
.0004

.0004

.0011

.0004

.0024

.0047

.0075

.0162

.0218

.0229
.0655
.1047
.2051
.3476

.7985
1.0106

.4882
.8826
2.0243

45
Cancer
of
other

organsor
of

organsnot
specified

.0178

.0202

.0086
.0089
.0160
.0118
.0239
.0426

.0724
.1204
.1499
.2581
.3108
.4568
.5237
.6568
.8983
.9528
.9646

1.313
1.3239

46
Other
tumors

(tumors
of
the

female
genital
organs
ex-

cepted)

.0142

.0024

.0024

.0004

.0024

.0042

.0038

.0087
.0142
.0187
.0316
.0349
.0398
.0320
.0667
.0942
.1625
.2268
.2297

.8826

47
Acute
articular

rheumatism....
.0213
.0330
.0672
.0796
.0511
.0362
.0293
.0334
.0467
.0487
.0522
.0802
.1036
.1120
.1619
.2771

.4830

.7078

.5053

.6128

48
Chronic

rheumatism
and

gout.
.

.0018

.0009

.0008

.0012
.0008

.0029

.0019

.0058

.0062

.0169

.0253

.0458

.0524
.1219
.1968
.2302
.3539
.2297

.525!
.4413;

50
Diabetes

.0107

.0179

.0305

.0440

.0511

.0351

.0474

.0567

.0666

.1004

.1764

.3453

.6542

.8961
1.1598
1.1168
1.2549
1.0979

.9187

.6128

.4413

51

Exophthalmic
goiter

.0013

.0124

.0206

.0231

.0267

.0372

.0505

.0500

.0506

.0651

.0406

.0457
.0527
.0406
.0272

52
Addison’s

disease

.0004
.0012
.0015

.0029

.0082

.0058

.0069

.0073
.0087
.0169

.0145

.0190
.0166
.0181

53
Leukemia

.0107
.0108
.0077

.0034

.0056

.0092
.0113
.0111
.0105
.0175
.0125

.0235

.0277

.0262

.0267

.0333

.0406

.0454

.0230

54
Anemia,
chlorosis

.1793

.0188

.0077

.0097

.0196

.0206

.0243
.0286
.0472

.0631

.0874

.1221

.1627

.1993

.2438
.2771
.2483
.3539
.3445
.2626

55
Other
general
diseases

.3373

.0570

.0171

.0072

.0084

.0107

.0096

.0102
.0105
.0137
.0103
.0122
.0133
.0262
.0438
.0804
.0903
.1724
.1378
.0875

2

0243

56
Alcoholism
(acute

or
chronic)..

.0004

.0004

.0034
.0122
.0262
.0404

.0381
0345
.0279
.0205
.0175
.0133
.0055
.0045

.0230

57
Chronic
lead-poisoning

.0005

,0004

.0012
.0007

.0015

.0038

.0055

59
Other
chronic
poisonings

.0008

.0015

.0025

.0039

.0063

.0075

.0081

.

0113
.0072
.0175
.0286
.0277
.0316
.0363
.0230

60

Encephalitis

.

0959
0188
.0049
.0072
.0052
.0061
.0059
.0078
.0084
.0087
.0118
.0052
.0145
.0145
.0152
.0222
.0361
.0272
.0230

[Simple
meningitis

1.3742
.3367
.0900
.0457
.0327
.0217
.0243
.0228
.0220
.0287
.0367
.0340
.0349
.0305
.0476
.0748
.0632
.0726
.1378
.2626

6l[

Cerebrospinal
meningitis

.4687

.1573

.0448

.0288

.0148

.0118

.0105

.0048

.0105

.0075

.0066

.0096

.0024

.0058

.0114

.0055

.0090

.0272

.0230

.4413

[Cerebrospinal
fever

.0373

.0118

.0045

.0038

.0012

.0034

.0004

.0015

.0021

.0015

.0009

.0015

.0028

62
Locomotor

ataxia

.0004

.0008
.0004
0034
.0068
.0089
.0131
.0257
.0358

.0482

.0669
.0838
.0998

.0587

.0272

[Acute
anterior

poliomyelitis...
.2184
.1304
.0472
.0241
.0108
.0057
.0059
.0034
.0016
.0019
.0015
.0017

.0073

.0019

.0028

.0230

6?|
Other
diseases
of
the
spinal

.0355

.0122

.0057
.0051
.0076

.0080

.0113

.0184

.0210

.0324

.0558

.0959
.1277
.2095
.2952

.3769
.4017
.4446
.4364
.4377

....1
2.0243

64
Cerebral
hemorrhage,

apoplexy
.3835

.0316

.0086

.0089

.0204

.0301
.0469
.0838
.1673
.3294
.6349

1.1414
1.9048

3.0854
5.1763

7.9532
12.9146

18.5199
21.4745
25.2998
25.5958

26.3158

65

Softening
of
the
brain

.0005

.0016

.0004

.0013

.0039
.0026
.0050

.0184
.0209
.0373
.0611
.1162
.2217
.3295
.6533
.8039

1.3131
1.3239!

66
Paralysis

without
specified

cause

.0284

.0099

.0057

.0025

.0068

.0053

.0113
.0233
.0315

.0449

.0735

.2049

.2916

.5659

.9618
1.6627

2.9747
4.5551
7.0280
7.6162
7,0609
8.0972

67
General

paralysis
of
the
in-

sane

.

.0004

.0023

.0096

.0228
.0378

.0580

.0536

.0602

.0590

.0742

.1047

.1413

.2663

.3357

.4364

.4377

.8826;

68
Other
forms
of
mental

aliena-

tion

.0008

.0048

.0103

.0214

.0281

.0346

.0393

.0625

.0759

.0771

.1047

.1390

.1968

.2889

.5081

.6661
1.1381
1.3239

.0586

.0137

.

0130
0202
.0280
.0328
.0386
.0426
.0414
.0455
.0397
.0602
.0386
0495
0648
0721

1399
.1724
.1608
.0875
.4413;
2.0243

70
Convulsions

(non-puerperal)...

.0114

.0017

.0056

.0092

.0088

.0073

.0037

.0037

.0029

.0035

.0029
.0057

.0028

.0090

71
Convulsions
of
infants

3.1159
.1526

72
Chorea

.0036

.0019

.0041

.0051

.0096

.0027

.0010

.0005

.0007

.0009
.0012
.0029
.0076
.0028
.0045

73
Neuralgia
and
neuritis

.0018

.0005

.0004
.0024

.0027

.0038

.0082

.0063

.0087

.0125

.0166

.0133
.0116
.0438
.0471
.0497
.1180
.2756
.1751

74
Other
diseases
of
the

nervous
system

.1261

.0193

.0126

.0131

.0120

.0172

.0218
.0354
.0399
.0468
.0507
.0794
.0759
.0873
.1181
.1552
.2438
.2541
.4593
.9630
.4413

75
Diseases
of
the

eyes
and

an-

nexa

.0053

.0014

.0004

.0008

.0006

.0099

.0012

.0029

.0038

.0055

.0091

.0230

76
Diseases
of
the
ears

.1474
.0386
.0175
.0127
.0056
.0065
.0071
.0073
.0047
.0056
.0132
.0131
.0120
.0087
.0209
.0111
.0226
.0363
.0689

77
Pericarditis

.0124

.0042

.0081

.0063

.0028

.0042

.0050

.0058

.0068

.0094

.0110

.0113

.0193

.0189

.0571

.0582

.0903

.1996

.2297

.0875

.4413

78
Acute
endocarditis

.1314

.0424

.0464

.0580

.0387

.0503

.0499

.0654

.0084

.0998

.

1330
.2058
.3036
.1236
.2133
.2162
.2618
.3357
.3904
.5253
.8826]

79
Organic
diseases
of
the

heart...
.6906
.0914
.1576
.2362
.2324
.2437
.3210
.4420
.6303
.9502

1.4278
1.9829

3.1024
5.2558
8.2102

13.2268
18.8279

27.0130
33.4864
32.3032
41.0415
38.4615
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Specific
Death-rates
Per

1000
Population.

Registration
Area,

1910,
Exclusive

of
North
Carolina

—
Continued

Females.

Diseases.

Under 1.

1-4.

5-9.
10-14.
15-19.

20-24.
25-29.
30-34.
35-39.
40-44.
45-49.
50-54.
55-59.
60-64.
65
69.

70-74.
75-79.
80-84.
85-89.
90-94.
95-99.

100
or over.

80
Angina
pectoris

.0036

.0005

.0016

.0030

.0036

.0050

.0117

.0155

.0210

.0406

.0470

.0863

.1554

.2793

.4323

.6152

.7719
1.0072
1.0795
1,0505

.4413

81
Diseases
of
the

arteries,
etc

.0053

.0009

.0013

.0024

.0031

.0042

.0131

.0194

.0275

.0544

.1055

.2205

.5310
1.0056

2.0562
3.8459
7.9850

12.4943
19.9597

24.7132
24.2915

82
Embolism
and
thrombosis
.0320
.0028
.0041
.0042
.0088
.0149
.0168
.0276
.0362
.0412
.0522
.0654
.1036
.1397
.2076
.2660
.3972
.7894
.6431

1.2256

83
Diseases
of
the
veins

.0053

.0004

.0008

.0038

.0097

.0094

.0069

.0154

.0087

.0217

.0291

.0362

.0582

.0767

.1633

.0459

.0875

.4413

84
Diseases
of
the
lymphatic

sys-

tem

.0905
.0075
.0012
.0013
.0012

.0010

.0012

.0007

.0009

.0048

.0015

.0038

.0055

.0090

.0230

.0875

85

Hemorrhage,
etc

.1101
.0014
.0012
.0008

.0012
.0031
.0013
.0029
.0047
.0044
.0037
.0052
.0084
.0102
.0095
.0083
.0406
.0635
.0689
.1751

86
Diseases
of
the
nasal
fossae..
..

.0426

.0019

.0016

.0008

.0008

.0004

.0005

.0017

.0012

.0076
.0028

.0045
.0544
.1148

.2626
.4413

87
Diseases
of
the
larynx

.1083

.0523
.0167

.0008

.0030

.0031
.0029

.0039
.0052
.0012
.0051

.0035
.0024
.0102
.0114
.0083
.0181
.0181
.0459
.0875

88
Diseases
of
the
thyroid
body...

.0053

.0009

.0001

.0013

.0040

.0053

.0046

.0053

.0105
.0087

.0125

.0131
.0169

.0175

.0305
.0222

.0361
.0181

.0230

.1751

89
Acute

bronchitis

3.1958
.3014
.0212
.0047
.0040
.0027
.0071
.0039
.0094
.0119
.0103
.0227
.0398
.0931
.1676
.3963
.7042

1.7150
3.0547
6.1280

3.5305
4.0486

90
Chronic

bronchitis

.0799

.0235

.0118

.0072

.0068

.0126

.0147

.0174

.0236

.0200

.0353

.0732

.1434

.2764

.5599
1.2165

2.1848
4.0016

7.2118
9.6297

12.3566
12.1457

91

Bronchopneumonia
8.1261

1.5168
.1063
.0360
.0311
.0404
.0310
.0456
.0519
.0643
.0926
.1482
.2819
.4859
.9560

1.5602
2.7490
4.7910
6.4309
9.2795

11.4740
16.1943

„
0

/Lobar
pneumonia

1.7541
.5015
.1002
.0525
.0843
.1102
.1706
.2244
.2475
.3001
.3836
.5188
.7277

1.0925
1.5350

2.1283
2.8032
3.4390
4.0652
4.2896

2.6478
6.0729

“/Pneumonia
undefined

4.7386
.7916
.1197
.0800
.0803
.1014
.

1354
.1580
.2119
.2496
.3285
.4194
.6277

1.0765
1.6607

2.6769
4.3470
6.4969
8.6817
2.6937

12.7979
16,1943

93
Pleurisy

.1047

.0593

.0102

.0068

.0096

.0137

.0142

.0218

.0257

.0243

.0265

.0323

.0566

.0887

.1295

.1690

.2392

.2994

.4364

.4377

2.0243

94

Pulmonary
congestion,
pulmo-

nary'
apoplexy

.4563

.0311

.0045

.0047

.0032

.0069

.0067

.0082

.0131

.0100

.0191

.0305

.0458

.0727

.1695

.3187

.5417
1.2159

2.2508
4.2896
5.2957
4.0486

95

Gangrene
of
the
lung

.0018

.0009

.0004

.0004

.0004

.0021

.0019

.0010

.0012

.0029

.0026

.0024

.0076

.0055

.0045

96
Asthma

.0142

.0047

.0016
0013
.0012

.0023
.0038
.0073
.0121
.0175
.0265
.0262
.0554
.0975
.1924
.2383
.4063
.4628

1.0106
.6128
.8826
2.0243

97

Pulmonary
emphysema
.0071
.0005

.0008
.0017

.0006

.0029

.0061

.0048

.0029

.0152

.0249

.0226

.0817

.0689

.4413

98
Other
diseases
of
the

respira-

tory
system

.0941

.0071

.0024

.0021

.0048

.0034

.0101

.0087

.0126

.0150

.0088

.0201

.0217

.0378
.0628
.0721
.1219
.2178
.1378
.3502

.4413

99
Diseases
of
the

mouth
and

an-

nexa

.2131
.0146
.0016
.0017
.0012
.0011
.0004

.0037

.0012

.0015
.0035
.0012

.0029
.0038
.0028
.0090
.0091
.0459
.1751
.4413

100
Diseases
of
the

pharynx

.0675

.0320

.0228

.0106

.0060

.0061

.0046

.0063

.0079

.0037

.0059

.0105

.0120

.0102
.0190
.0249
.0497
.0726
.0919

.0875

101
Diseases
of
the

esophagus
.0053
.0005
.0004
.0004
.0004

.0010

.0016

.0006

.0022

.0009

.0024

.0087

.0114
.0222

.0135
.0454

.0230

102
Ulcer
of
the
stomach

.0178

.0024

.0024

.0047

.0136

.0244

.0243

.0281

.0409

.0399

.0536

.0732

.0904

.0989

.1276
.2272
.2483
.1633
.2067
.3502

103
Other
diseases
of
the
stomach..
2.2246
.1342
.0232
.0174
.0160
.0263
.0298
.0422
.0566
.0774
.0794
.1308
.

1759
.3084
.4952
.8258

1.4355
2.5225
3.7207
5.2526
4.4131
4.0486

104
Diarrhea

and
enteritis
(under

two
years)

35.3096
2.0579

105
Diarrhea
and
enteritis

(two

yearsand
over)

.6216

.0933

.0284

.0192

.0324

.0402

.0456

.0503

.0792

.0948

.1352

.2325

.3142

.6456
1.1667
1.9230

3.3846
5.2595
7.0910
9.7087
8.0972

106

Ankylostomiasis

.0014

.0006

107
Intestinal
parasites

.0071

.0085

.0020

.0004

.0008

.0015

.0019

.0045

108
Appendicitis
and
typhlitis

.0284

.0301

.1104

.1342

.1270

.1072

.0964
0911
.1028
.0961
.0933
.0837
.1096
.0931
.0857
.0942
.0767
.1180
.1148
.0875

10
JHernia

.0462

.0028

.0012

.0013

.0028
.0029

.0038

.0078

.0147

.0418

.0830

.0985

.1422
1789

.2628

.2854

.3882

.4991

.3675

.7003

.4413

/Intestinal
obstruction
.5646
.0560

.0228

.0157

.0180
.0320

.0457
.0572
.0556
.0686

.0933

.1125

.1542

.2182

.3428

.4406

.6636

.7804

.8268

.9630

.4413

110
Other
diseases
of
the
intestines.
.2592
.0198
.0041
.0047
.0052

0107
.0138
.0170
.0246

.0293

.0309
.0375
.0313

.0509
.0724
.1469
.3024
.2994
.4593

1.0505
.4413
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ill
Acute

yellow
atrophy
of
the

.0160

.0014

.0004

.0004

.0032

.0053

.0092

.0039

.0084

.0050

.0044
.0009
.0108

.0116

.0114

.0166

.0316

.0181

.0230

112
Hydatid
tumor
of
the
liver

113
Cirrhosis
of
the
liver

114
Biliary
calculi

115
Other
diseases
of
the
liver

.

0089 J332 .0053
.0061 '.'0188 .0005

.0024 .0053

.0034 .0004 .0085 .0004

.

0060 .0008 .0084
.0004 .0092 .0072 .0137 .0004
"

0264 .0080 .0147
.

0470 .0141 .0267 .0019
.0781 .0294 .0472 .0010
.

1260 .0437 .0599 .0037
'

1852 .0838 .0801 .0007
!

2468 .1107 .1142 .0044
0012 .2964 .1530 .1518 .0060
.0015 .4059 .1833 .2080 .0102
.0019 .4780 .2247 .3104 .0057

.6180 .2743 .4406
.7087 .3431 5733 .0090
.7804 .2722 .7894 .0091
.8039 .3215 1.3780
.5253 .4377 .5253 .0875
.4413 .4413

2.0243

117
Simple
peritonitis
(non-puer-

.1474

.0325
.0297
.0207
.0379
.0576
.0608
.0693
.0750
.0549
.0529
.0532

.0542

.0669

.0743

.1025

.1309

.1815
.3215
2875

118
Other
diseases
of
the
digestive

.0071

.0005

.0033

.0004

.0008

.0027
.0063
.0053
.0084
.0081
.0088
.0131
.0181

.0175

.0133

.0222

.0271

.0181

.0230
P3131

.4413

.2521

.1022

.0464

.0394

.0439

.0545
.0687
.0843
.0949
.1142
.1205
.1291
.1723
.2400

.2971

.3353

.4153

.4718

.6661

1.3239

.2503

.0650

.0436

.0652

.0938

.1419
.2443
.3518
.5129
.7549

1.0648
1.5556

2.2639
3.0752
4

5269
6.6702
8.9061

11.5239
14.0790
13.8317

20.7414
8,0972

122
Other
diseases
of
the

kidneys
.1119
.0080
.0049
.0017
.0044
.0080

.0172

.0121

.0147

.0281

.0184

.0340

.0470

.0582

.0552
.1025
.1896
.2087
.2756
.1751
.4413

123
Calculi
of
the

urinary
pass-

.0018

.0005

.0004

.0008

.0004

.0031

.0013

.0029

.0016

.0050

.0059
.0061
.0133
.0058
.0114
.0222
.0271
.0272

.7579

.0107

.0014

.0004
.0004

.0008

.0034
.0005
.0037

.0031

.0059
.0061
.0096
.0218
.0533
.1081
.1399
.2813

.7003

.8826
2.0243

125
Diseases
of
the
urethra,
etc—
.0018

.0004
.0004 .0016

.0046
!

0038
.0005 .0048
.0005 .0058
.0006 .0062
.0015 .0081

.0009 .0035

.0029 .0029

.0019 .0038

.0028

.0090

129
Uterine
tumor

(non-cancerous)
130

Other
diseases
of
the
uterus
...

131
Cysts
and
other
tumors
of
the

.0018 .0036
.0005 .0009

.0004 .0008

.0021
.0004 .0116 .0016
.0027 .0301 .0088
.0092 .0503 .0189
.0363 .0499 .0218
.0614 .0561 .0278
.1148 .0661 .0343
.1389 .0551 .0382
.1012 .0410 .0384
.0566 .0265 .0325
.0742 .0233 .0553

.0743 .0552 .0762

.0804 .0360 .0804

.1219 .0316 .1219

.1543 .0635 .0544

.0459 .0459 .1148
.0875 .1751

.4413

132
Salpingitis
and
other
diseases

of
the
female
genital
organs.

133
Non-puerperal
diseases
of
the

.0018 .0036
.0005

.0004

.0008

.0299 .0004

.0801 .0004
.1136 .0004
.1129
.1232 .0021
.
.0805 .0025
.0639 .0015

.0201 .0035

.0108 .0012

.0116 .0015

.0095 .0038

.0055
.0045 .0090
.0091 .0272
.0230

.0004

.0140 .0068

.0503

.0985
.1013
.0939

.0406

.0051
.0009

.0385

.0738
.0858

.1002

.0437

.0088

.0144

.0564

.0729

.0741

.0965

.0618

.0073

.0017

.1294

.3596

.4053

.3925

.2858

.1522

.0184

.0009

138
Puerperal
albuminuria
and

con-

.0021

.0703
.1586
.1639

.1657
.1489
.0973
.0088
.0017

139
Puerperal
phlegmasia
alba

dolens,
embolus,
sudden

.0040
.0149
.0231
.0267
.0231
.0143
.0022

140
Following

childbirth
(not
other-

.0020
.0038
.0059
.0058
.0037

.0007

141
Puerperal

diseases
of
the

breast
.0320
.0047
.

0016
.0017

.0004 .0008
.0011

.0008 .0008

.0005 ,0024

.0005 .0063
.0062
.0147
.0166
.0433
.0815
.1295
.3215
.6590

1.0344
2.0441
2.5387

4.8544
4.0486

.0337
0019

.0012

.0015
.0013
.0019

.0012

.0015

.0070

.0084

.0073

.0057

.0222

.0181

.0181

.0459

.4413

.1119

.0075

.

0029
.0013

.0031
.0025
.0039
.0031
.0019
.0044
.0070
.0072
.0145
.0114
.0333
.0497
.

0544
.0230
.0875
.4413

145
Other
diseases
of
the
skin
and

.1775

.0042

.0012

.0008

.0012

.0019

.0017
.0019
.0047
.0019
.0096

.0096

.0096

.0175

.0209

.0388

.0813

.1270

.1378

.0875

2.0243

146
Diseases
of
the

bones
(tuber-

.0799

.0264

.0200

.0152

.0096

.0053
.0122
.0073
.0079
.0112
.0125
.0183
.0229
.0218
.0305
.0360
.0677
.0544
.0919
.0875
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Specific
Death-rates

Per
1000

Population.
Registration

Area,
1910,

Exclusive
of

North
Carolina

—
Concluded

Diseases.

Females.

Under 1.

1-4.

5-9.
10-14.
15-19.

20-24.
25-29.
30-34.
35-39.
40-44.
45-49.
50-54.

55-59.
60-64.
65-69.
70-74.
75-79.
80-84.
85-89.
90-94.
95-99.

100
or over.

147
Diseases
of
the
joints

(tuber-

culosis
and

rheumatism
ex-

cepted)
148

Amputations
149

Other
diseases
of
the
organsof

locomotion(Hydrocephalus Congenital
malformations
of

isu
the
heart
I

Other
congenital
malformations

(Premature
birth

15l]Congenital
debility,

“atrophy,”

l

“marasmus” (Injuries
at
birth

152-1
Other

causes
peculiar
to
early

l

infancy
153

Lack
of

care
154

Senility Jjjjjjsuicide 186
}Accidental

or
undefined

1871 jggJIll-defined
diseases

.0071 .0018 .4030 3.3502 1.9405 15.5900 9.1097 2.5371 2.3826 .1083 1.0724 .0870 5.5375

.0005 .0226 .0325 .0141
-

.0033 .7502 .0094 .2501
.0012 0041 .0077 .0020 .0004 .2883 .0053 .0126
.0004 (0013 .0042 .0055 .1198 .0068 .0089
.0008 .0008 .0024 .0004 .0711 .1426 .0240 .0120
.0011 .0004 .0011 .0008 .0004 .1148 .1449 .0416 .0137
.0013 .0008 .0004 .0008 .0004 .0972 .1408 .0398 .0163
.0015 .0005 .0010 .0005 .1071 .1420 .0412 .0233

.0005 .0010 .0005 .1211 .1883 .0351 .0351
.0012 .0006 .0012 .1067 .1872 .0306 .0449
.0007 .0007 .1161 .2234 .0250 .0625
.0026 .0009 .0009 .1186 .3183 .0140 .0759
.0012 .0024 .1217 .3771 .0169 .1157
.0058 .0015 .0015 .1615 .1047 .5411 .0044 .2066
.0095 .0019 .5656 .1295 .9199 .0152 .3618
.0055 .0028 2.0479 .1219 1.6073 .0166 .6180
.0090 6.1706 .1309 3.0244 .0181 1.0879
.0454 .0363 .0091 18.0843 .0817 5.5986 1.7422
.0230 .0230 40.6752 .0919 9.9908 3.8585
.0875 81.7649 .1751 18.2964 .0875 6.3906

116.9462 21.6240 5.7370
224.6964 16.1943 8.0972
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APPENDIX II

AIDS TO BIOMETRIC WORKERS

The following tables are indispensable to the biometric worker.
1. Pearson, K. (Editor): Tables for Statisticians and Biometricians, Cambridge

University Press, 1914.
2. Barlow’s Tables of Squares, Cubes, Square Roots, Cube Roots, Reciprocals,

London (E. & F. N. Spon, Ltd.), 1919.
3. Bruhns, C.: Neues logarithmisch-trigonometrisches Handbuch auf sieben Deci-

malen, Leipzig (Tauchnitz), 1919. (Any other 7-place table will do, but Bruhns
is surpassed by none.)

4. Miner, J. R.: Tables of V 1 — r2 and 1 — r2 for Use in Partial Correlation and in
Trigonometry, Baltimore (The Johns Hopkins Press), 1922.

In addition to the above, the following will be found useful:
Glover, J. W.: Tables of Applied Mathematics in Finance, Insurance, Statistics,

Ann Arbor, Mich. (George Wahr), 1923. (This contains what appears to be
a photographic reprint of Bruhns’ 7-place logarithms of numbers.)

Carr, G. S.: A Synopsis of Elementary Results in Pure Mathematics: Containing
Propositions, Formulae, and Methods of Analysis, with Abridged Demonstra-
tions, London (Francis Hodgson), 1886. (This book is out of print and, there-
fore, difficult to acquire, but to him who has it it is an invaluable desk com-
panion.)

APPENDIX III

MATHEMATICAL FORMULA AND CONSTANTS

Multiplication

(1) 1a = a; 3a = a + a + a
(2) (a + b) c = ac + be
(3) (a — b) c = ac — be
(4) (<x -)- 5) • (c -\~ d) = (a -|- &) c (a -f 6)

= ac + ad + be + bd
(5) (a — b) . {c + d) = (a — b) c + (a - b) d

= ac + ad — be — bd
(6) (a + b) (c — d) = (a + b) c — (a + b) d

= ac — ad + be — bd
(7) (a — b) (c — d) = (a — b) c — (a — b) d

= ac — ad — be + bd
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(8) (<z —J— 1) & = ab -f- b
(9) (a — 1) b = ab — b

(10) (a -f- b) (c -f- 1) = ac be a b
(11) (a + b) (c — 1) = ac + be — a — b
(12) (a — b) {c + 1) = ac — be + a — b
(13) (a — b) (c — 1) = ac — be — a +(&
(14) ab = ba
(15) a. 0 = 0
(16) (+ a) • (+ b) or (— a) . (- b) = + ab
(17) (+ a) . (— b) or (— a) •(+&) = — ab

Division

a)±.bor f-a
(2) — = — .b = — . a

c c c
O' a 1 a
b be be

/ 4 \ ci' ex • e a*e
{ } T = bT~c = bTc
/q\ d e de
U ~b"~d =

Jd
/ cl e dd(6) T : ~d = ~bc

_| b_
_

a + b
c c c

(8) A _ A = fLzi
c c c

(9) a + — = 2^
C C

(10) a - — =

c c

(ID «+ i- £+J
0 0
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(12) ±
- 1 =

(13) -L + -1 = i+ J
a b ab

/..si 1 b — a a — b(14) — = —7— = - —j-a b ab ab
a j c ad be

{ T + ~d = bd~~
(16) T

“ W
(17) -Z- + i = ?2±»

a + b a + b

(18) f + »
+ - a

(19) l +

— + —

(20) -2
a b

(21) ±
= *

a

(22) — = oo
o

(23>
+ j or —

4 =+T
(24) ~i) or

+ »
“ - T

Powers
a4 = aaaa; a1 = a; la = 1

(1) (+ a)” = + an

(2) (— a) n
= + an

, if n is an even number
(3) (— a) n

= — an
, if n is an odd number

(4) (ab) m = am bn
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(6) am
. an

= am + M

am
(7) am :an

= — = am ~ n
v ' an

(8) an + 1 : an
= a

(9) an : an ~ 1
= a

<•»> i - (i)'
(11) (a w)w = amn

(12) 3a° = 3; (3a)° = 1

(13) a-1
=

—

a
/ w\ x m x

(14) ia n W = an y

(15) (an + 1) 2 = a2n
• a2

(16) ax
• a~ y

= ax ~ y

(17) a~ x a~ y = a" (* + *>

(18) — = ax + y

a~ y

n~ x 1
<w>^
(20) (a~ x)y

= a~ xy

(21) {ax )~ y = a~ xy

(22) (ar x) ~ y = axy

(23) (a + 6) 2 = a2 + lab + b 2

(24) (a - 6)2 = a2
- 2a& + b2

(25) a 2 - 62 = (a + b) (a - b)
(26) (a + b + c)2 = a2 + 2ab + b2 + lac + Ibc + c 2

(27) (a + ft)® = a 3 + 3a26 + 3aZ>2 + b 3

(28) (a — b) 3 = a3
— 3a2b + 3ab 2

— & 3
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(29) a3 + b 3
— (a + b) (a2

— ab + b2)

(30) a3
— b 3

= (a — b) (a 2 + ab + & 2)

(31) (a + 6) 4 = a4 + 4a36 + 6a 2& 2 -+- 4a& 3 + b 4

(a + 6) 5 = a 5 + 5a 46 + 10a3 & 2 + 10a2& 3 + 5ab* + b 5

Roots
n n / n \n

(1) Va = b; Va" = a; \Va/ = a
fl

__(2) Va”*” = a*
w n n

(3) y/ab = Va • V&

(4) / ~V &

& vt
» / w _\ w

(5) vV” = VVa/
»

(6) Vam
= Vamp

m n
I n

_
I m mn

(7) \ \/« = \ Va = Va
(8) Va2 = =*= a; V(a + &) 2 = =*= (a + &)

Incorrect: Va2 + fr 2 = a + b; and
3

_____Va3 + b 3 = a + b
(9) (Va + y/b) (Va — y/b) = a — b

(10) (a + y/b) (a — y/b) — a2
— b

(11) (y/a + b) (y/a — b) = a — b 2

(12) Vl + X = 1 + \X - i X2 + y6% S ~ its + 256 “

• • •

/ 1 -\/1 /y* 1 1. /y* . 1 /y»2
__ JL /y*3 - /y»4

_ ..
.T /y*5

_\J-Oy VI vV — 1 16 128 256 • • •

3

(14) Vl + X = 1 + | X - | X 2 + gj X 3
- X 4 +

3

(15) Vl — x = 1 — -3- x — i x2
— £iX 3

— H3 x4
— x6 —

...
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Fractional Powers
m x

(1) (f = Va™
m p m p

(2) an
. a9 = an 9

m p m p
(3) a* : a9 = aF

~

9

m mm

(4) (a b) n = an
. bn

(5) {~b) n = an ■ bn

[ m\ p mp
| n \q nq

(6) [a )

Logarithms

(1) loga a = 1; log 1 = 0.
(2) log M2V = log M + log iV.

(3) = log -M — log TV.

(4) log (M) w
= n log M.

n \
(5) log VM = — log Af.

n

Proportion

From a :b = c : d it follows:
(1) a : c = b : d

b :a = d : c
b :d = a : c
c : a = d : b
c :d = a : b
d : b = c : a
d : c = b : a

(2) ad = be
/-,v 6c , 6c , ad ad(3) a = —d = —; 6 = —; c =

—

d a c b
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(4) ma :mb = c : d
ma :b = me : d, etc.

(5) — : — = c : d
n n

— : b = — : d, etc.
n n

(6) an :b n = cn : dn

n n n n

(7) Vcs : V & = Vc : Vj

Differential Coefficients of Simple Functions

(1) y = xn
,

= nxn 1
Q/jC

y = axn
,
$- = naxn ~ 1

ax
, ,

_

a dy
_ _ na

\
'

y
,yn ’

/r w "t" *
%A/ U'tV «/v

= ax~ w
,

= — nax~ n ~ 1

ax
n

(3) y = a Vx, = — lx 1 ~ n
' dx n \

-~r dy 1 - 1
= ax ,

=
— axdx n

n

(4) y = a Vxm
,

= — a jxm~~ n
' dx n \

m 7 m
- dy m - ~ 1

= ax , -f- — — ax n

dx n

y = v*’t = 27i
i dy 1

_ i
= x*, -f- = — x 2

dx 2

(6) y = o*.-g- =

(7) y = ax = ax log, a
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(8) y = log* = -

dx x

y = log x, -j- = M . —, where M = 0.43429
dx x

(9) y = sin x, ~ = cos xdoc

(10) x = cos x, = — sin xdx

(11) y = tgx, = —\-dx cos 2 x

(12) y = ctg x, ax sin2 x

(13) y = arc sin x, ax VI— x2

(14) x = arc cos x, =
— ~

dx Vl-x2

(15) y = arctgx V =
V_

2

(16) y = arc ctg x, =l~ .

1
-

dx 1 + x2

Simple Integrals

(1) j'a dx = ax + C
n 'Ytl + 1

axn dx — ——- + C
n + 1

(3) j ex dx = ex + C

(4) dx = log e x + CJ x

(5) ( ax dx — h C
J log e a

(6) j sin x dx = — cos x + C

(7) j cos x dx = sin x -f C
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(8) f a cos x dx = a • sin x + C

(9) ( -i— dx = tg x + C

(10) ( —7—— dx = — ctg x + C
»/ sin2 x

/* 1(11) | —7 dx = arc sin x + C*' V 1 - x2

= — arc cos x + C'

(12) ( dx = arc tg x + C
1 + x2

= — arc ctg x + C'

• Constants
log.

Base of Napierian logarithms e= 2.7182818 0.4342945
Log. e = Modulus of common logarithms M = 0.4342945 9.6377843 — 10
Radius reduced to seconds 206264.8 5.3144251
Radius reduced to minutes 3437.7468 3.5362739
Radius reduced to degrees 57.29578 1.7581226
360 degrees expressed in seconds 1296000 6.1126050
360 degrees expressed in minutes 21600 4.3344538
360 degrees expressed in degrees 360 2.5563025
Diameter 1, circumference tt = 3.14159265 0.4971499

— = 0.3183099 9.5028501 - 10
TC

ir 2 = 9.8696044 0.9942997
Vn = 1.7724539 0.2485749
3

9.9063329 - 10
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APPENDIX IV

TABLE OF AREAS AND ORDINATES OF THE NORMAL CURVE

X/<T.

Area from
middle of

curve
(*/<r = 0)

to indicated
X/<T.

Ordinate at
X/<T.

.35 . 1368 .3752

.36 .1406 .3739

.37 .1443 .3725

.38 .1480 .3712

.39 .1517 .3697

.40 .1554 .3683

.41. .1591 .3668

.42 .1628 .3653

.43 .1664 .3637

.44 .1700 .3621

.45 .1736 .3605

.46 .1772 .3589

.47 .1808 .3572

.48 .1844 .3555

.49 .1879 .3538

.50 .1915 .3521

.51 .1950 .3503

.52 .1985 .3485

.53 .2019 .3467

.54 .2054 .3448

.55 .2088 .3429

.56 .2123 .3410

.57 .2157 .3391

.58 .2190 .3372

.59 .2224 .3352

.60 .2257 .3332
.61 .2291 .3312
.62 .2324 .3292
.63 .2357 .3271
.64 .2389 .3251

.65 .2422 .3230

.66 .2454 .3209

.67 .2486 .3187

.68 .2517 .3166

.69 .2549 .3144
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AREAS AND ORDINATES OF THE NORMAL CURVE (Continued)

X/<T.

Area from
middle of

curve
(x/a = 0)

to indicated
x/a.

Ordinate at
x/a.

.70 .2580 .3123

.71 .2611 .3101
.72 .2642 .3079
.73 .2673 .3056
.74 .2703 .3034

.75 .2734 .3011

.76 .2764 .2989

.77 .2794 .2966

.78 .2823 .2943

.79 .2852 .2920

.80 .2881 .2897

.81 .2910 .2874

.82 .2939 .2850

.83 .2967 .2827

.84 .2995 .2803

.85 .3023 .2780

.86 .3051 .2756

.87 .3078 . 2732

.88 .3106 .2709

.89 .3133 .2685

.90 .3159 .2661

.91 .3186 .2637

.92 .3212 .2613

.93 .3238 .2589

.94 .3264 .2565

.95 .3289 .2541

.96 .3315 .2516

.97 .3340 .2492

.98 .3365 .2468

.99 .3389 .2444
1.00 .3413 .2420
1.01 .3438 .2396
1.02 .3461 .2371
1.03 .3485 .2347
1.04 .3508 .2323

1.05 .3531 .2299
1.06 .3554 .2275
1.07 .3577 .2251
1.08 .3599 .2227
1.09 .3621 .2203

x/cr.

Area from
middle of

curve
{X/<T - 0)

to indicated
x/o.

Ordinate at
x/v.

1 10 .3643 .2179
1.11 .3665 .2155
1 12 .3686 .2131
1.13 .3708 .2107
1.14 .3729 .2083

1.15 .3749 .2059
1.16 .3770 . 2036
1.17 .3790 .2012
1.18 .3810 .1989
1.19 .3830 .1965

1.20 .3849 .1942
1.21 .3869 .1919
1.22 .3888 .1895
1.23 .3907 .1872
1.24 .3925 .1849

1.25 .3944 .1826
1.26 .3962 .1804
1.27 .3980 .1781
1.28 .3997 .1758
1.29 .4015 .1736

1.30 .4032 .1714
1.31 .4049 .1691
1.32 .4066 .1669
1.33 .4082 .1647
1.34 .4099 . 1626

1.35 .4115 .1604
1.36 .4131 .1582
1.37 .4147 .1561
1.38 .4162 .1539
1.39 .4177 .1518

1.40 .4192 . 1497
1.41 .4207 .1476
1.42 .4222 . 1456
1.43 .4236 .1435
1.44 .4251 .1415

1.45 .4265 .1394
1.46 .4279 .1374
1.47 .4292 . 1354
1.48 .4306 . 1334
1.49 .4319 .1315
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AREAS AND ORDINATES OF THE NORMAL CURVE (Continued)

X/(T.

Area from
middle of

curve
{X/<T = 0)

to indicated
x/<r.

Ordinate at
x/a.

1.50 .4332 .1295
1.51 .4345 .1276
1.52 .4357 .1257
1.53 .4370 .1238
1.54 .4382 .1219

1.55 .4394 .1200
1.56 .4406 .1182
1.57 .4418 .1163
1.58 .4429 .1145
1.59 .4441 .1127

1.60 .4452 .1109
1.61 .4463 .1092
1.62 .4474 .1074
1.63 .4484 .1057
1.64 .4495 .1040

1.65 .4505 .1023
1.66 .4515 .1006
1.67 .4525 .0989
1.68 .4535 .0973
1.69 .4545 .0957

1.70 .4554 .0940
1.71 .4564 .0925
1.72 .4573 .0909
1.73 .4582 .0893
1.74 .4591 .0878

1.75 .4599 .0863
1.76 .4608 .0848
1.77 .4616 .0833
1.78 .4625 .0818
1.79 .4633 .0804

1.80 .4641 .0790
1.81 .4649 .0775
1.82 .4656 .0761
1.83 .4664 .0748
1.84 .4671 .0734

1.85 .4678 .0721
1.86 .4686 .0707
1.87 .4693 .0694
1.88. .4699 .0681
1.89 .4706 .0669

X/<T.

Area from
middle of

curve
(x/cr = 0)

to indicated
x/tr.

Ordinate at
x/<J.

1.90 .4713 .0656
1.91 .4719 .0644
1.92 .4726 .0632
1.93 .4732 .0620
1.94 .4738 .0608

1.95 .4744 .0596
1.96 .4750 .0584
1.97 .4756 .0573
1.98 .4761 .0562
1.99 .4767 .0551

2.00 .4772 .0540
2.01 .4778 .0529
2.02 .4783 .0519
2.03 .4788 .0508
2.04 .4793 .0498

2.05 .4798 .0488
2.06 .4803 .0478
2.07 .4808 .0468
2.08 .4812 .0459
2.09 .4817 .0449

2.10 .4821 .0440
2.11 .4826 .0431
2.12 .4830 .0422
2.13 .4834 .0413
2.14 .4838 .0404

2.15 .4842 .0395
2.16 .4846 .0387
2.17 .4850 .0379
2.18 .4854 .0371
2.19 .4857 .0363

2.20 .4861 .0355
2.21 .4864 .0347
2.22 .4868 .0339
2.23 .4871 .0332
2.24 .4875 .0325

2.25 .4878 .0317
2.26 .4881 .0310
2.27 .4884 .0303
2.28 .4887 .0297
2.29 .4890 .0290
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AREAS AND ORDINATES OF THE NORMAL CURVE (iContinued)

x/o.

Area from
middle of

curve
(*/cr = 0)

toindicated
x/<r.

Ordinate at
x/<r.

2.30 .4893 .0283
2.31 .4896 .0277
2.32 .4898 .0270
2.33 .4901 .0264
2.34 .4904 .0258

2.35 .4906 .0252
2.36 .4909 .0246
2.37 .4911 .0241
2.38 .4913 .0235
2.39 .4916 .0229

2.40 .4918 .0224
2.41 .4920 .0219
2.42 .4922 .0213
2.43 .4925 .0208
2.44 .4927 .0203

2.45 .4929 .0198
2.46 .4931 .0194
2.47 .4932 .0189
2.48 .4934 .0184
2.49 .4936 .0180

2.50 .4938 .0175
2.51 .4940 .0171
2.52 .4941 .0167
2.53 .4943 .0163
2.54 .4945 .0158

2.55 .4946 .0154
2.56 .4948 .0151
2.57 .4949 .0147
2.58 .4951 .0143
2.59 .4952 .0139

2.60 .4953 .0136
2.61 .4955 .0132
2.62 .4956 .0129
2.63 .4957 .0126
2.64 .4959 .0122

2.65 .4960 .0119
2.66 .4961 .0116
2.67 .4962 .0113
2.68 .4963 .0110
2.69 .4964 .0107

x/a.

Area from
middle of

curve
(x/tr = 0)

to indicated
x/<t.

Ordinateat
x/<r.

2.70 .4965 0104
2.71 .4966 .0101
2.72 .4967 .0099
2.73 .4968 .0096
2.74 .4969 0093
2.75 .4970 .0091
2.76 .4971 .0088
2.77 .4972 .0086
2.78 .4973 .0084
2.79 .4974 .0081

2.80 .4974 .0079
2.81 .4975 .0077
2.82 .4976 .0075
2.83 .4977 .0073
2.84 .4977 .0071

2.85 .4978 .0069
2.86 .4979 .0067
2.87 .4979 .0065
2.88 .4980 .0063
2.89 .4981 .0061

2.90 .4981 .0060
2.91 .4982 .0058
2.92 .4982 .0056
2.93 .4983 .0055
2.94 .4984 .0053

2.95 .4984 .0051
2.96 .4985 .0050
2.97 .4985 .0048
2.98 .4986 .0047
2.99 .4986 .0046
3.00 .4987 .0044
3.01 .4987 .0043
3.02 .4987 .0042
3.03 .4988 .0040
3.04 .4988 .0039

3.05 .4989 .0038
3.06 .4989 .0037
3.07 .4989 .0036
3.08 .4990 .0035
3.09 .4990 .0034
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AREAS AND ORDINATES OF THE NORMAL CURVE (Continued)

x/<J.

Area from
middle of

curve
(X/<T = 0)

to indicated
X/<T.

Ordinate at
x/a.

3.10 .4990 .0033
3.11 .4991 .0032
3.12 .4991 .0031
3.13 .4991 .0030
3.14 .4992 .0029

3.15 .4992 .0028
3.16 .4992 .0027
3.17 .4992 .0026
3.18 .4993 .0025
3.19 .4993 .0025

3.20 .4993 .0024
3.21 .4993 .0023
3.22 .4994 .0022
3.23 .4994 .0022
3.24 .4994 .0021

3.25 .4994 .0020
3.26 .4994 .0020
3.27 .4995 .0019
3.28 .4995 .0018
3.29 .4995 .0018

3.30 .4995 .0017
3.31 .4995 .0017
3.32 .4995 .0016
3.33 .4996 .0016
3.34 .4996 .0015

3.35 .4996 .0015
3.36 .4996 .0014
3.37 .4996 .0014
3.38 .4996 .0013
3.39 .4997 .0013

3.40 .4997 .0012
3.41 .4997 .0012
3.42 .4997 .0012
3.43 .4997 .0011
3.44 .4997 .0011

3.45 .4997 .0010
3.46 .4997 .0010
3.47 .4997 .0010
3.48 .4997 .0009
3.49 .4998 .0009

xl<r.

Area from
middle of

curve
Cx/<j = 0)

to indicated
x/<r.

Ordinate at
x/a.

3.50 .4998 .0009
3.51 .4998 .0008
3.52 .4998 .0008
3.53 .4998 .0008
3.54 .4998 .0008

3.55 .4998 .0007
3.56 .4998 .0007
3.57 .4998 .0007
3.58 .4998 .0007
3.59 .4998 .0006

3.60 .4998 .0006
3.61 .4998 .0006
3.62 .4999 .0006
3.63 .4999 .0005
3.64 .4999 .0005

3.65 .4999 .0005
3.66 .4999 .0005
3.67 .4999 .0005
3.68 .4999 .0005
3.69 .4999 .0004

3.70 .4999 .0004
3.71 .4999 .0004
3.72 .4999 .0004
3.73 .4999 .0004
3.74 .4999 .0004

3.75 .4999 .0004
3.76 .4999 .0003
3.77 .4999 .0003
3.78 .4999 .0003
3.79 .4999 .0003

3.80 .4999 .0003
3.81 .4999 .0003
3.82 .4999 .0003
3.83 .4999 .0003
3.84 .4999 .0003

3.85 .4999 .0002
3.86 .4999 .0002
3.87 .4999 .0002
3.88 .4999 .0002
3.89 .4999 .0002
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AREAS AND ORDINATES OF THE NORMAL CURVE (Concluded)

X/<T.

Area from
middle of

curve
{x/<t = 0)

to indicated
x/<r.

Ordinate at
x/<r.

4.10 . 5000 .0001
4.11 . 5000 .0001
4.12 .5000 .0001
4.13 .5000 .0001
4.14 .5000 .0001

4.15 .5000 .0001
4.16 .5000 .0001
4.17 .5000 .0001
4.18 .5000 .0001
4.19 .5000 .0001

4.20 .5000 .0001
4.21 .5000 .0001
4.22 .5000 .0001
4.23 . 5000 .0001
4.24 .5000 .0000

x/a.

Area from
middle of

curve
(x/<r = 0)

to indicated
X/<T.

Ordinateat
x/<r.

3.90 .5000 .0002
3.91 . 5000 .0002
3.92 .5000 .0002
3.93 .5000 .0002
3.94 .5000 .0002

3.95 .5000 .0002
3.96 .5000 .0002
3.97 . 5000 .0002
3.98 .5000 .0001
3.99 .5000 .0001

4.00 .5000 .0001
4.01 .5000 .0001
4.02 .5000 .0001
4.03 .5000 .0001
4.04 .5000 .0001

4.05 .5000 .0001
4.06 .5000 .0001
4.07 .5000 .0001
4.08 .5000 .0001
1.09 . 5000 .0001
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APPENDIX V

SUMS OF LOGARITHMS

Table of the Sums of the Logarithms of the Natural Numbers from 1 to 100

X. 5 (log x). S (* log x). S (log X)*.

1 0.0000000 0.0000000 0.0000000
2 0.3010300 0.6020600 0.0906191
3 0.7781513 2.0334238 0.3182638
4 1.3802112 4.4416637 0.6807400
5 2.0791812 7.9365137 1.1692991

6 2.8573325 12.6054212 1.7748184
7 3.7024305 18.5211075 2.4890091
8 4.6055205 25.7458274 3.3045806
9 5.5597630 34.3340100 4.2151594

10 6.5597630 44.3340100 5.2151594

11 7.6011557 55.7893295 6.2996581
12 8.6803370 68.7395045 7.4642903
13 9.7942803 83.2207681 8.7051601
14 10.9404084 99.2665606 10.0187696
15 12.1164996 116.9079295 11.4019602

16 • 13.3206196 136.1738492 12.8518651
17 14.5510685 157.0914808 14.3658697
18 15.8063410 179.6863859 15.9415788
19 17.0850946 203.9827044 17.5767895
20 18.3861246 230.0033043 19.2694686

21 19.7083439 257.7699095 21.0177324
22 21.0507666 287.3032084 22.8198311
23 22.4124944 318.6229487 24.6741338
24 23.7927057 351.7480185 26.5791169
25 25.1906457 386.6965187 28.5333531

26 26.6056190 423.4858257 30.5355027
27 28.0369828 462.1326474 32.5843049
28 29.4841408 502.6530722 34.6785713
29 30.9465388 545.0626142 36.8171792
30 32.4236601 589.3762518 38.9990664

31 33.9150218 635.6084643 41.2232261
32 35.4201717 683.7732636 43.4887026
33 36.9386857 733.8842237 45.7945871
34 38.4701646 785.9545068 48.1400148
35 40.0142326 839.9968884 50.5241609
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SUMS OF LOGARITHMS (Continued)

X. 5 (log x). 5 (x log x). S (log x)2 .

36 41.5705351 896.0237784 52.9462384
37 43.1387369 954.0472422 55.4054951
38 44.7185205 1,014.0790189 57 9012113
39 46.3095851 1,076.1305385 60.4326979
40 47.9116451 1,140.2129382 62.9992941

41 49.5244289 1,206.3370763 65.6003659
42 51.1476782 1,274.5135465 68.2353041
43 52.7811467 1,344.7526901 70.9035233
44 54.4245993 1,417.0646079 73.6044600
45 56.0778119 1,491 4591710 76.3375716

46 57.7405697 1,567.9460313 79.1023352
47 59.4126676 1,646.5346306 81.8982465
48 61.0939088 1,727.2342100 84.7248186
49 62.7841049 1,810.0538179 87.5815814
50 64.4830749 1,895.0023181 90.4680804

51 66.1906450 1,982.0883971 93.3838763
52 67.9066484 2,071.3205710 96.3285438
53 69.6309243 2,162.7071920 99.3016711
54 71.3633180 2,256.2564551 102.3028592
55 73.1036807 2,351.9764030 105.3317215

56 74.8518687 2,449.8749325 108.3878829
57 76.6077436 2,549.9597993 111.4709794
58 78.3711716 2,652.2386229 114.5806577
59 80.1420236 2,756 7188916 117.7165745
60 81.9201748 2,863.4079666 120.8783964

61 83.7055047 2,972.3130866 124.0657990
62 85.4978964 3,083.4413713 127.2784670
63 87.2972369 3,196.7998259 130.5160934
64 89 1034169 3,312.3953443 133.7783793
65 90.9163303 3,430.2347124 137.0650341

66 92.7358742 3,550.3246122 140.3757742
67 94.5619490 3,672.6716240 143.7103234
68 96.3944579 3,797.2822300 147.0684123
69 98.2333070 3,924.1628173 150.4497786
70 100.0784050 4,053.3196801 153.8541654

71 101.9296634 4,184.7590228 157.2813229
72 103.7869959 4,318.4869626 160.7310069
73 105.6503187 4,454.5095314 164.2029790
74 107.5195505 4,592.8326786 167.6970062
75 109.3946117 4,733.4622734 171.2128609

76 111.2754253 4,876.4041064 174.7503207
77 113.1619160 5,021.6638922 178.3091670
78 115.0540106 5,169.2472713 181.8891890
79 116.9516377 5,319.1598115 185.4901776
80 118.8547277 5,471.4070104 189.1119291
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SUMS OF LOGARITHMS (iConcluded)

X. S (log x). S (x log x). 5 (log x)2
.

81 120.7632127 5,625.9942970 192.7542442
82 122.6770266 5,782.9270329 196.4169276
83 124.5961047 5.942.2105145 200.0997884
84 126.5203840 6,103.8499746 203.8026391
85 128.4498029 6,267.8505832 207.5252965

86 130.3843013 6,434.2174510 211.2675808
87 132.3238206 6,602.9556260 215.0293157
88 134.2683033 6,774.0701012 218.8103286
89 136.2176933 6,947.5658118 222.6104500
90 138.1719358 7,123.4476376 226.4295137

91 140.1309772 7,301.7204043 230.2673568
92 142.0947650 7,482.3888844 234.1238194
93 144.0632480 7,665.4577986 237.9987445
94 146.0363758 7,850.9318169 241.8919781
95 148.0140994 8,038.8155594 245.8033687

96 149.9963707 8,229.1135977 249.7327590
97 151.9831424 8,421.8304560 253.6800209
98 153.9743685 8,616.9706114 257.6450022
99 155.9700037 8,814.5384957 261.6275620

100 157.9700037 9,014.5384957 265.6275620
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Abscissa defined, 105, 106
Abscissae of binomial, 241
Addition nomograms, 132, 133
Age at marriage, 210-213

in centiles of life span, 188, 190-192
index of population, 328
limits of fertility, 163
mean, at death, 179, 209, 210

Aids to biometric workers, 353
Alimentary tract, mortality from, 70.

71
American Public Health Association, 66

Statistical Association, 29
Amsterdam, population of, 151, 152
Angular co-ordinates, 106
Approximations to factorial n, 230, 231
Area, land, of United States, 111
Areas of normal curve, 362-367
Arithmetic scale, 123
Arosonius, E., 28
Arrangement of tables, 84-87
Array defined, 302
Artificial feeding rate, 310
Astronomy, 25, 332
Australia, 161, 164, 165, 184, 185
Austria, 28, 29, 161, 164

Babst, E. D., 128
Bacon, A. L., 5, 72
Baden, 28
Baines, A., 29
Baker, O. E., Ill
Baltimore, 24, 120, 157, 209, 210
Bar diagrams, 107-110
Barlow, P., 353
Bavaria, 28
Bayes’ theorem, 250
Beef, 107, 108
Beeton, M., 310
Belgium, 29, 161, 164

Bertillon, J., 50 (portrait), 59
Bill of mortality, 28, 30

oldest, 32-35
Billings, J. S., 29, 94
Binomial, abscissae of, 241

illustrated, 237-239
standard deviation of, 241
terms of, 239, 260, 261

Biology, relation of, to biometry, 18
Biometer, 37
Biometry defined, 18, 21

history of, 40-44
Biostatistics defined, 21
Birth certificate, standard, 48
Birth-death ratio, 168-175
Birth-rates, crude, 162-164, 310

specific, 165, 166
Blakeman, J., 316, 317, 318
Blood, nomogram for, 133-137
Blood-pressure in old men, 76
Body surface, nomogram for, 133, 134

weight, 276, 310
Bookkeeper-teller illustration, 22
Boole, G., 37
Brain weight, 276, 300-309, 310, 311-314,

320, 321
Bravais, A., 29
Brazil, 70, 71
Breathing capacity, 276
Brinton, W. C., 110, 138, 143
Brodetsky, S., 131, 144
Brown, J. W., 159, 175, 310
Brown, L., 22
Brownlee, J., 37, 44, 207, 218
Bruhns, C., 353
Brunt, D., 334, 341
Buache, 131
Buday, L. v., 29
Bulgaria, 161
Bureau of the Census, 29, 63, 327
Burger, M. H., 175, 176
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Calculation of moments, 266-269
Canada, 28
Cancer, 310

illustration, 64, 65
Cancerous, age at death of parents of, 117
Card forms for mechanical tabulation, 97-

104
Carr, G. S., 353
Case fatality rates, 161, 162

histories, preservation of, 92, 93
history writing, 89-92
record method, 47

Cause of death, International List of, 49-
58, 344-352

joint, 58-64
organological classification of, 66-72
reliability of statistics of, 64-66

Census, Bureau of the, 29, 63, 327
method, 45

Centiles of life span, age in, 188, 190-192
Cephalic index, 310
Certificate of birth, standard, 48

of death, standard, 48, 49
Ceylon, 161
Chart, ratio, 125, 126
Chemistry, 25
Chile, 161
Chi-square test, 251-255
Circulatory system, mortality from, 70, 71
Class limits, 81-84, 265
Classification, dichotomous, 74-81, 87

linear, 76
of rates and ratios, 147-150

Code, disease, 100
health, 102

Coefficient of regression, 308, 309, 320, 321
of variation, 274-276, 282

probable error of, 275
Collis, E. L., 208
Combinations, 228-230
Commission for the Prevention of Tuber-

culosis in France, 130
Complications, mechanical tabulation of,
*103, 104

Compound variable, constants of, 280, 281
Concurrent events,probability of, 231-234
Constants, 361

measuring variation, 272-276

Constants of a compound variable, 280,
281

of hypergeometrical series, 247
shape, 277-279
type, 269-272

Construction of life table, 196, 197
Consumption of protein in United States,

107, 108
Co-ordinates, angular, 106

polar, 106, 126, 128
rectangular, 105, 106

Corrected death-rates, 198, 202-206
Correction for correlation ratio, 317, 318
Correlation coefficient, 303-309

probable error of, 304
genesis of, 292-300
in man, 310
measurement of, 292-318
partial, 319-331
ratio, 311-318

correction for, 317, 318
skew, 311-318
spurious, 280, 281
table, 300-303

Course of death-rate from tuberculosis,
121-125, 168

Creighton, C., 34, 44
Crude death-rates, 150-152
Cubit length, 276
Cummings, J., 29
Curve fitting, 332-341
Cyclic time trend diagrams, 126-128
Czuber, E., 26

Dana, W. F., 210
Darbishire, A. D., 292, 318
Darwin, C., 40
Davenport, C. B., 29
Davis, W. H., 51
Death certificate, standard, 48, 49

joint causes of, 58-64
ratios, 167, 168

Death-rates, corrected, 198
crude, 150-152
specific, 152-155, 342-352
standardized, 198-202

Defects in medical records, 89-92
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Definitions, 17-21
DeMoivre, A., 28
DeMorgan, A., 29
Denmark, 28, 161, 164
Deparcieux, 28
Derham, W., 28
Dermal sensitivity, 276
Descartes, R., 131
De Souza, D. H., 310
Deviations, probability of relative to

probable error, 218
Diabetes mellitus, 233, 234
Diagrams, bar, 107-110

cyclic time trend, 126-128
defined, 105
integral frequency, 110, 117-120
“pie,” 110, 111
types of, 107

Dice, 236-238, 292
Dichotomous classification, 74-81, 87
Difference, probable error of, 213-218

significant, 214-218
Differential coefficients, 359, 360
Diphtheria, laryngeal, 146, 147
Disease code, 100
Division, 354, 355
D’Ocagne, 131, 144
Doering, C. R., 189, 197
Double dichotomous tables, 77, 79
Drosophila melanogaster, 186-191
Dudfield, R., 73
Duration of life, 310

Edgeworth, F. Y., 246
Effectiveness of public health work, 167
Eggs, 82-84, 108, 165, 322-325
Elderton, W. P., 279, 291
Ellis, R. L., 334, 341
Embryo, weight and height of, 315-317,

336-340
Endocrinal system, mortality from, 70, 71
England, 29, 61, 70, 71, 161, 164, 184, 185
Epidemic jaundice, 77, 84-87

symptomatology of, 85, 86, 109
d’Espine, M., 50
Evolution, 192
Exclusiveness in tabulation, 80

Expectation of life. 28, 179
Experience the basis of probability, 220-

223
Experimental method, 319, 320
Exposed to risk, 145-147

Factorial n, approximations to, 230, 231
Farr, W., 29, 35, 36 (portrait), 37-39, 44,

49, 176, 179
Faure, F., 28
Fawcett, C. D., 310
Fecundity, 165, 166
Feldman, W. M., 101, 134
Femur length, 276
Fertility, 165, 166

age limits of, 163
Field, J. A., 125, 144
Fineness of grouping, 81
Finland, 161
Fisher, A., 168, 246
Fisher, I., 125, 143
Fitting a logarithmic curve, 339

a parabola, 337, 338
a straight line, 334-337

Flies, life table for, 186, 187
Foot length, 276
Force of mortality defined, 145
Forearm length, 276
Foreign born, 169-175
Formulae, 353-361
Forsyth’s approximation, 231
Fractional powers, 358
France, 28, 59, 130, 161, 164
Frequencies, probable error of, 266
Frequency, 20, 302

distribution, 264-266
polygons, 110, 114-117

Functional breakdown, 70

Gall-bladder, 233, 234
Gall-stones, 90
Galton, F., 18, 29, 40, 41 (portrait), 44

116, 246, 302
Gauss, K. F., 28, 38, 40, 42, 243
Genesis of correlation, 292-300
Germany, 28, 29, 60, 161, 184, 185
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Glover, J. W., 179,180,183,184, 185, 197
199, 328, 353

Glycosuria, 233, 234
Godfrey, E. H., 28
Graphic work, standards in, 137-143
Graphical representation, 105-144
Graunt, J., 28, 35, 284
Great Britain, 28
Greece, 29
Greenwood, M., 23, 26, 35, 44, 158, 159,

168, 175, 176, 208, 276, 310
Grouping, fineness of, 81
Guillard, A., 50

Hair color, 252-254
Halley, E., 28, 32 (portrait)
Hamblen, A. D., 125, 126, 144
Hardman, R. P., 146, 147
Haskell, A. C., 143
Hawkes, O. A. M., 33
Hayward, T. E., 197
Head height, 110-120

length, 276
Health code, 102
Heart, organic diseases of, 327-331

weight, 276, 310
Height of embryo, 315-317, 336-340
Henderson, L. J., 133, 135
Henderson, R., 197
Heron, D., 310
Hezlet, R. K., 131, 144
Histograms, 110-115
History of biometry, 40-44

of science, 17
of vital statistics, 27-44

Hoffman, F. L., 50
Hollerith, H., 29, 94, 104
Homicide, 66
Hooker, R. H., 72
Hookworm, 129, 167, 255-259
Hooper, W., 26
Hospital statistics, 93-104, 162
Howard, W. T., 5, 120, 146, 175
Hull, C. H., 28, 44
Humerus length, 276
Humphreys, N., 29, 37, 39, 44
Hungary, 29, 161, 164

Huygens, C., 28, 32
Hypergeometrical series, constants of, 247

Incidence rates, 166
Indexing, 94
India, 29, 184, 185
Infant mortality, 31, 273, 282-291

rates, 156-161
variation in, 282-291

Influenza epidemic, 283, 327-331
incidence among tuberculous, 75, 76, 78

Inheritance, 40
Institute of Actuaries, 29
Integral curve with percentage scale, 119

frequency diagrams, 110, 117-120
Integrals, 360, 361
International Health Board, 129, 130

List of Causes of Death, 49-58, 344-352
Ireland, 161, 164
Italy, 29, 161, 164, 184, 185

Jamaica, 161
Japan, 161
Jaundice, epidemic, 77, 84-87
Jensen, A., 28
Johns Hopkins Hospital, 78, 102
Jointcauses of death, 58-64
Jones, D. C., 25
Julin, A., 29

Kaufman, A., 29
Keenness of sight, 276
Kenyon, F., 33
Key punch, 94
Keynes, J. M., 224
Kiaer, A. N., 28
Kidney weight, 276, 310
Kidneys, mortality from, 70, 71
Kilgore, E. S., 26
Knibbs, G. H., 163, 164, 165, 175, 176
Knight, F. H., 104
Koren, J., 44
Kurtosis, 278, 279, 282, 286

probable error of, 278



INDEX 375

Lal, M., 310
Land area of United States, 111
Laplace, P. S., 28, 30, 38, 40, 42 (por-

trait), 243,246
Laryngeal diphtheria, 146, 147
Law of gravitation, 332
Least squares, method of, 334-341
Lee, A., 276
Life, expectation of, 28, 179

table, 37, 168, 177-197
construction of, 196, 197
Farr on, 37
population, 192-195

Limit of binomial, normal curve as, 242-
245

Limitations of partial correlation method,
326,327

Limits, class, 81-84
table of sampling, 259

Linear classification, 76
regression, 303-309

Litchfield, H. R., 146, 147
Liver weight, 276, 310
Loeb, J., 188
Logarithmic curve, fitting of, 339

scale, 123, 124
Logarithms, 358

sums of, 368-370
London Hospital, 24
Lotka, A. J., 152, 175
Lottin, J., 28, 29, 44
Love, A. H., 100
Lower organisms, life tables for, 185-192
Lung capacity, 310

MacDonald, D., 252
Macdonell, W. R., 276, 310
Man, correlation in, 310

variation in, 276
Maps, statistical, 128-131
Marriage, age at, 210-213
Mathematical formulae, 353-361
Matiegka, H., 301
Mean, 269, 270, 275, 282

age at death, 179, 209, 210
probable error of, 270

Measles, 252-254

Measurement of correlation, 292-318
of variation, 264-291

Mechanical tabulation, 29, 89-104
card forms for, 97-104
of complications, 103, 104

Median, 270, 271, 282
probable error of, 271

Medical records, defects in, 89-92
Menzler, F. A. A., 104
Mercandin, 29
Method of least squares, 334-341

of studying therapeutic problem, 23-25
Meyer, R., 28, 29
Miliary tuberculosis, 78, 79
Milk production, 20, 21, 26
Miner, J. R., 5, 26, 175, 327. 331, 353
Mode, 271, 272, 282, 285

probable error of, 272
Moments, calculation of, 266-269
Morbidity, force of, 145

mortality as measure of, 65
rates, 166, 167

Mortality as measure of morbidity, 65
bill of, 28, 30
force of, defined, 145
importance of different organ systems

in, 70
infant, 31, 273, 282-291

rates, 156-161
oldest bill of, 32-35
urban vs. rural, 160, 284

Mortara, G., 25
Multiples of probable error, 245
Multiplication, 353, 354

Natality, force of, 145
Native born, 169-175
Negro, 169-171, 273, 284
Nervous system, mortality from, 70, 71
Netherlands, 28, 161, 164
Newton, I., 332
New York City, 126, 127, 157
New York State, 77, 85, 86, 109, 145, 170
New Zealand, 161
Noble, R. E., 50
Nomogram, 131-137

addition, 132, 133
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Nomogram for blood, 133-137
for body surface, 133, 134

Non-linear regression, 311-318
Normal curve, 42, 215, 216, 272, 277, 362-

367
areas of, 362-367
as limit of binomial, 242-245
ordinates of, 362-367

equations, 335, 337, 339, 340
Northrop, J. H., 188
Norway, 28, 161, 164
Nosology, 49
Noyes, B., 189, 190

Occupation, 310
Ogives, 110, 116-118
Ogle, W., 39, 44
Oldest bill of mortality, 32-35
Ordinate defined, 105, 106
Ordinates of normal curve, 362-367
Organic diseases of the heart, 327-331
Organological classification of causes of

death, 66-72
Original registration states, 121, 180-182,

193, 194
Osier, W., 23

Parabola, fitting of, 337, 338
Parker, S. L., 197
Partial correlation, 319-331

method, limitations of, 326, 327
Past experience and future expectation,

247-251
Pearl, R., 26, 44, 72, 73, 88, 107, 117, 165,

175, 176, 187, 197, 248, 263, 276, 280,
282, 291, 301, 322, 327, 331

Pearson, K., 5, 6, 29, 41, 42, 43 (portrait),
44, 111, 131,231,247,251,252,262,263,
270, 271, 274, 275, 276, 277, 278, 279,
280, 291, 292, 310, 311, 317, 318, 320,
331, 335, 353

Peirce, C. S., 245
Pell, C. E., 169
Pelvic diameters, 310
Penny tossing, 220-223, 225, 231-233,

235-241, 292-300

Percentage frequency, 119
Permutations, 227-229
Petty, W., 44
Philadelphia, 126, 127, 157
Physics, 25
“Pie” diagrams, 110, 111
Pigmentation, 252-254
Pikler, J. J., 59
Pneumonia, 23, 64, 65, 95, 103, 248-250
Point binomial, 235-241
Poisson, S., 37, 38
Polar co-ordinates, 106, 126, 128
Polygons, frequency, 110, 114-117
Population, age index of, 328

life table, 192-195
of Amsterdam, 151, 152
standard, 204-207

Poultry, 108
Poverty rate, 159, 310
Powers, 355-357
Preservation of case histories, 92, 93
Proales decipiens, 189-192
Probability, measure of, defined, 224

of concurrent events, 231-234
of deviations relative to probable error

218
of male birth, 226, 244
special theorems in, 247-263
theory of, 220-246

Probable error, 18, 25, 82, 209-219
multiples of, 245
of coefficient of variation, 275
of correlation coefficient, 304
of difference, 213-218
of frequencies, 266
of kurtosis, 278
of mean, 270
of median, 271
of mode, 272
of skewness, 277
of standard deviation, 274

Proportion, 358, 359
Protein, consumption of, in United States,

107, 108
Providence, R. I., 199-206
Prudential Insurance Company, 127
Prussia, 28, 161, 164
Psychology, 17
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Public health work, effectiveness of, 167
Puerperal septicemia, 145, 146
Pulse, 264-279, 310
Purpose of tabulation, 74, 87

Quetelet, L. A. J., 28, 29, 35, 36 (por-
trait), 40, 44

Radius length, 276
of gyration, 273

Randomness, 222
Rates, 145-167

and ratios, 145-176
classification of, 147-150

birth-, 162-166
case fatality, 161, 162
morbidity, 166, 167

Ratio chart, 125, 126
Ratios, 145, 167-175

birth-death, 168-175
death, 167, 168

Recorde, R., 6, 16
Rectangular co-ordinates, 105, 106
Reed, L. J., 5, 280, 322
Registrar-General, 29, 62, 205
Registration area, 29, 47, 68, 70, 71, 121,

153, 154, 155, 160, 161, 170, 171, 173,
226, 282, 342-352

method, 46
states, original, 121, 180-182, 193, 194

Regression, 300-303
coefficient, 308, 309, 320, 321
non-linear, 311-318

Reliability of statistics of causes of death,
64-66

Respiration rate, 310
Respiratory system, mortality from, 70, 71
Rock, F., 310
Roots, 357
Rose, W., 129, 130
Rossiter, W. S., 28, 29, 44, 72
Rotifer, life table for, 189-192
Royal Air Force, 104

Statistical Society, 27, 29
Rubin, M., 169
Running, T. R., 334, 341

Rural vs. urban mortality, 160, 284
Russia, 29, 161

Sampling, 255-262, 266
limits, table of, 259

Sao Paulo, 70, 71
Saxony, 28
Scarlet fever, 252-254
Schuster, E., 310
Science, history of, 17
Scotland, 161, 164
Seattle, 157, 199-206
Serbia, 161
Sex organs, mortality from, 70, 71

ratio, 30
Shape constants, 277-279
Sheppard, W. F., 266, 268, 291, 305
Shull, G. H„ 41
Significant difference, 214-218
Singer, F., 211
Skeletal and muscular systems, mortality

from, 70, 71
Skew correlation, 311-318

curves, 43, 286-291
Skewness, 277, 278, 282, 285

probable error of, 277
Skin, mortality from, 70, 71
Skull, variation in, 276
Smallpox, 310

illustration, 74, 75
Smits, E., 29
Societe de statistique de Paris, 29
Sociology, 17
Sorter, 94, 95
Space base of statistics, 20
Spain, 28, 161
Specific birth-rates, 165, 166

death-rates, 152-155, 342-352
Spleen weight, 276
Spot maps, 129
Spurious correlation, 280, 281
Standard deviation, 273, 274, 275, 282,

285
of binomial, 241, 274
probable error of, 274

million, 193-196
population, 204-207
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Standardized death-rates, 198-202
Standards in graphic work, 137-143
Statistical maps, 128-131

method defined, 19, 21
Statistics defined, 19
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Stevenson, T. H. C., 37, 39
Stirling’s theorem, 231
Stockholm, 24
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Tabulation, exclusiveness in, 80

mechanical, 29, 89-104
purpose of, 74, 87

Tabulator, 96
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Tebb, A. E., 168, 176
Technical terminology, 18
Teller-bookkeeper illustration, 22
Temperature, oral, 310
Terminology, technical, 18
Terms of binomial, 239, 260, 261
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Therapeutic problem, method of studying,
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Time base of statistics, 20
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Typhoid fever, 19, 20, 90, 120-125, 162

Umanski, A. J. V., 133, 134
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