THE RIDDLE OF THE RHINE THE LIVENS PROJECTOR—I. A completed battery of projectors in the foreground, with a battery on the left rear, half dug in. Suitably camouflaged with brush, the batteries are not observable by aircraft, and, being in “No-Man’s-Land,” neither party can detect them by day. Frontispiece THE RIDDLE OF THE RHINE CHEMICAL STRATEGY IN PEACE AND WAR An account of the critical struggle for power and for the decisive war initiative. The cam- paign fostered by the great Rhine factories, and the pressing problems which they represent. A matter of pre-eminent public interest con- cerning the sincerity of disarmament, the future of warfare, and the stability of peace. BY VICTOR LEFEBURE \n Officer of the Order of the British Empire (Mil.) Chevalier de la Legion d’Honneur, Officer of the Crown of Italy Fellow of the Chemical Society, etc. WITH A PREFACE BY MARSHAL FOCH AND AN INTRODUCTION BY FIELD-MARSHAL SIR HENRY WILSON, Bart. Chief of the Imperial General Staff NEW YORK E. P. DUTTON & COMPANY 681 Fifth Avenue Published, 1923, By E. P. DUTTON & COMPANY All Rights Reserved Printed in the United States of America PREFACE My motives in writing this book are sufficiently explained in the first chapter. The silence surround- ing the true facts of the chemical campaign, the tardy realisation of the real forces behind it in Germany, and our failure to grasp the significance of the matter in the Treaty, all pointed to the need for an early statement. More recently, this need has been empha- sised by inaccurate public utterances oil the matter, and by its vital importance for the full and fair treatment of certain legislative measures before Allied countries. A unique experience of chemical warfare in all its aspects, first with a combatant gas unit on the British front in France, then as Liaison Officer with France and other Allies on all Chemical Warfare and allied questions, has afforded me an exceptionally complete survey of the subject. Later post-armistice exper- ience in Paris, and the occupied territories, assisting Lord Moulton on various chemical questions in connection with the Treaty, and surveying the great chemical munition factories of the Rhine, has pro- tided a central view of the whole matter which can have been the privilege and opportunity of very few. Further, my association with the dye industry, since commencing this book, leaves me with a deep conviction of the critical importance for disarma- ment, of a world redistribution of organic chemical production. It is inevitable that such a step should benefit the growing organic chemical industries of 5 Preface countries other than Germany, but this issue need not be shirked. The importance of the matter is so vital that it eclipses all reproach that the dis- armament argument for the maintenance of the dye industry is used on selfish grounds. Such reproach cannot, in fairness, be heard unless it destroys the case which we have established. We are faced with the following alternatives. Safety demands strong organic chemical industries or cumbersome and burdensome chemical warfare establishments. The stability of future peace depends upon the former, and the extent to which we must establish, or can abandon, the latter depends entirely on the activity and success of those whose special duty it is to organise against war. A recent visit to America revealed the consider- able publicity and public interest surrounding chemical warfare, strengthening my conviction that the facts, now noised abroad, should be presented in their proper setting. They are supremely significant at the present time and for the future, hence the chapters which follow. V. Lefebure. Hampstead, October 12,1920. 6 PREFACE BY FIELD MARSHAL FOCH In 1918, chemical warfare had developed con- siderably in our army. Before 1914. Germany possessed chemical factories which permitted her to manufacture in great quantities chemicals used at the front, and to develop on a large scale this new form of fighting. The Allies, to retaliate, had to experiment and organise important centres for production. Only in this way, though starting late, were they able to put themselves in a position to supply the growing necessities of their armies. To-day, the ability for aviation to carry increasing weight furnishes a new method for abundantly spreading poison gases with the aid of stronger and stronger bombs, and to reach armies, the centres of population in the rear, or to render regions unin- habitable. Chemical warfare is therefore in a condition to produce more formidable results over more extended areas. It is incontestible on the other hand that this growth will find an easy realisation in one country, Germany, addicted in times of peace, to wholesale manufacture of chemical products, which a simple modification in reactions can transform into war products. This country, deprived, partially at least, of its former methods of fighting, and its numerous forces of specially trained soldiers, regularly organised and 7 Preface by Field Marshal Foch strongly armed, will be more drawn toward the new systems of attack—that of chemical warfare. Chemical warfare must therefore enter into our future provisions and preparations, if we do not wish to experience some terrible surprises. The work of Major Lefebure gives an exact idea of the possibilities he finds to-day in Germany, and through them the dangers with which she threatens us. In this form it constitutes a warning, and infor- mation of the highest order, for the minds who remain anxious for the fate of their country con- fronted by the inefficience of the old fighting methods which the progress of industry out of date renders daily. By sounding the alarm in both our countries, I find myself in company with my faithful friend Field Marshal Sir Henry Wilson. This is an old habit, contracted by both of us, many years ago, which we still maintain at the present time to insure for our- selves once again, peace in the future. Together, we say, read this work of Major Lefebure. F. Foch. 8 CONTENTS PAGE CHAPTER I—Explanatory The Riddle of the Rhine—A Critical Point in Dis- armament—Need for a Balanced View of Chemical Warfare—Some Preliminary Explanation—“Poison Gas” a Misleading Term—The French Physiological Classification—Asphyxiating Substances—Toxic Sub- stances—Lachrymators—Vesicant or Blistering Com- pounds—Sneezing or Sternutatory Substances—The Tactical Classification—Persistent Substances—Non- persistent Substances—Penetrants—Special Gas Wea- pons and Appliances—Gas Shell 17 CHAPTER II—The German Surprise The First Cloud Gas Attack—The Element of Surprise —Lord Kitchener’s Protest—German Preparations— Research—Production—Field Preparations—German Opinion of Results—Germany Prompted by Production Monopoly—Standard Uses for Gas—Gas Shell—Fur- ther German Cloud Attacks—Hill 60—Origin of Ger- man Gas Shell—Early German Gas Shell—A Successful Experiment—Lachrymators at Loos, 1915—The Flam- rnenwerfer—German Phosgene Clouds—Gas and the Eastern Theatre—Conclusion 31 CHAPTER III—The Allied Reaction The Need of Retaliation—First Signs—The Loos Attack, September, 1915—The Somme Battle, 1916— Reasons for British Cloud Gas Success—Our Casualties —Exhausting Preparations for Cloud Attack—The Livens Projector—British Gas Shell—German Gas Shell Development, 1916—Main Features of the Period. . 48 CHAPTER IV—Intensive Chemical Warfare The Mustard Gas Surprise—Blue Cross—German Emphasis on Gas Shell—The German Projector—Ger- man Projector Improvements—Dyes in Gas Shell— German Flame Projectors—Their Origin—Further Flame Development—The 1918 Offensive—Luden- dorff’s Testimony—Preparations for Assault—Gas Defensive Flank at Armentieres—Fixed Gas Barrage at Kemmel—Percentage of Chemical Shell—Gas Re- 9 Contents PAGE treat Tactics—General Hartley’s Analysis—Percent- age of German Gas Shell in Enemy Dumps—Forced Exhaustion of Stocks—Yperite, French Mustard Gas— Effect on German Gas Discipline—Allied Gas Statistics —Critical Importance of Rapid German Production . 66 CHAPTER V—Chemical Warfare Organisations German Research—Leverkusen—Hochst—Ludwigs- haven—Early Formulation of Policy—Movements of Personnel—German Simplicity of Organisation— German Organisation at the Front—The Gas Regi- ment—Early German Gas School—New Gas Regi- ments—Gas Shell Experts—Inspection of Protective Masks and Method—British Field Organisation— “Breach” Organisations—Central Laboratory—New Type of Casualty—Directorate of Gas Services— British Home Organisations—The Royal Society— Royal Society Chemical Sub-Committee—The Trench Warfare Department—Scientific Advisory Committee —Commercial Advisory Committee—Split Between Research and Supply—Munitions Inventions De- partment—Imperial College of Science—The Chem- ical Warfare Department—The Anti-Gas Department —Designs Committee—French Organisation—Italian Developments—Supply Organisations—British Supply Organisation—Allied Handicaps—The German Solu- tion—Departmental Difficulties—Allied Success Against Odds—Allied Lack of Vision in Production— British Lag in Organisation—French and American Characteristics—Inter-Allied Chemical Warfare Liaison —Inter-Allied Supply—Nature of Chemical Warfare Research—Discovery of New Substances—Technical Method of Preparation—Filling Problem—Protection —Half Scale Investigation—Two Classes of Research —Conclusion—The “Outer and Inner Lines.” . . 85 CHAPTER VI—The Struggle for the Initiative Meaning of the Chemical Initiative—Controlling Fac- tors—Rapid Manufacture—Rapid Identification Essen- tial—Propaganda and Morale—Peculiar Peace-time Danger—War Fluctuations of Initiative—The Tense Protective Struggle—The German Mask—Enforced German Modifications—Shortage of Rubber—Gas Dis- cipline—Summary—New German Attempts—Yellow and Blue Cross—Yellow Cross—Blue Cross—“Particu- late” Clouds—Potential Production and Peace. . . 111 10 Contents PAGE CHAPTER VII—Review of Production Critical Importance of Production—Significance of the German Dye Industry—The Interessen Gemein- schaft—War Production by the I.G.—Allied Difficul- ties—Conclusion. 143 CHAPTER VIII—American Developments Special Attention Justified—Special Value of American Opinion—Early American Activities—Field Activities— Special Difficulties—Edgewood Arsenal—Research— Production—Post-Armistice Developments—Views of General Fries—The Gas Cloud Inescapable—Impor- tance of Smoke—Casualty Percentages—Short Range Projectors—Vast Expansion in Personnel. . . .173 CHAPTER IX—German Chemical Policy Origin of German Chemical Monopolies—German Chemical Commercial Policy—Evidence of the U. S. A. Alien Property Custodian—Pre-war American Situa- tion—German Price Cutting—Salicylic Acid—Full Line Forcing—Bribery and Corruption—German Patent Policy—Propaganda and Information— Espionage—Activities of the Dye Agencies—Manoeu- vring Raw Materials—Chemical Exchange Association —Doctor Albert’s Letter—Dye Agency Information System—Dr. Albert on Chemical Warfare—The Moral Aspect—Report of the New York World—German Policy Regarding Dye Supplies to the U. S. A.— Professor Stieglitz’s Evidence—Ehrlich’s Discovery— Drugs and Medicinal Products—The German Monop- oly—National Health Insurance Commission—The Royal Society — Novocain — Beta-Eucaine — Photo- graphic Chemicals—War Activities of the I.G.—The Rhine Factories and the Armistice—War Mentality of the I.G.—German Attitude towards Inspection—The Rhine and Chaulny Contrast—German Revolution and the Industrial Leaders—The German Peace Delegation —Recent Signs of Government Interest—Nitrogen Fix- ation—The German Nitrogen Syndicate—Haber Proc- ess Prominent—The New German Dye Combine— Aggressive Nationalist Policy 186 CHAPTER X—Lines of Future Development The Element of Speculation—Chemical Tactics and Strategy—New War Chemicals—“Camouflage” Chem- icals—Functions Hitherto Immune—Chemical Con- stitution and Physiological Action—Unsolved Prob- 11 Contents PAGE lems of Mustard Gas—A New Type of Obstacle— The “Persistent Lethal” Substance—The Critical Range—The New No-Man’s-Land—The “Alert Gas Zone”—Gas and Aircraft—Protective Development —Individual Protection—Collective Protection—Con- clusion. 215 CHAPTER XI—Humane or Inhumane? Nature of Gas Casualties—Sargent’s Picture—Need for Safeguards. . 238 CHAPTER XII—Chemical Warfare and Disarmament The Treaty of Versailles—German Information—Limi- tation of Armament—Report of the Hartley Mission— New Conceptions in Chemical Disarmament—Limi- tation Mechanical and Chemical—Tank Disarmament —Chemical Limitation—Research—Production—Me- chanical and Chemical Preparations for War—Recent Disarmament Proposals—The Covenant of the League —Need for Guarantees—Viscount Grey, Germany must disarm first”—Suggested Methods—“ Vested Interests”—“Handing Over” Inventions—Neglect of Chemical Disarmament in the Treaty .... 242 CONCLUSION—The Treaty of the Future . . . 264 12 ILLUSTRATIONS The Livens Projector—I Frontispiece A completed battery of projectors in the foreground, with a battery on the left rear, half dug in. Suitably camouflaged with brush, the batteries are not observ- able by aircraft, and, being in “No-Man’s-Land,” neither party can detect them by day. FACING PAGE Typical Gas Shell Bursting 30 The Livens Projector—II 61 A working party fitting electric leads and adjusting bombs prior to discharge. This work occurs at night. The Livens Projector—III 133 Explosion of Livens bombs on the objective. Smoke Barrage 181 Note the sharp curtain which is formed, behind which the infantry advance. 13 INTRODUCTION No one who has the welfare of the country at heart can fail to share Major Lefebure’s anxiety that a clear, accurate, and unbiased account of chemical warfare should be presented to the public, so that the many erroneous ideas now prevalent in regard to poison gas and its uses may be dispelled. The whole subject of chemical warfare is at present sub judice, and there is great danger that the future safety of this country may be jeopardised by the almost universal ignorance of the peculiarities and potentialities of this class of warfare. Recent publications in the Press have shown a tendency to deal with the subject on purely sentimental grounds, and attempts have been made to declare this form of warfare illegitimate without full and careful consideration of all the facts and their significance for the future. Major Lefebure has therefore attempted in his book to make it quite clear that no convention, guarantee, or disarmament safeguard will prevent an unscrupulous enemy from employing poison gas, especially if that enemy has discovered some new powerful agent, or possesses, as Germany does in her well-organised and strong chemical industry, a ready means for producing such chemicals in bulk at practically a moment’s notice; further, that the safety of this country makes it im- perative that the study and investigation of the sub- ject should be continued and that our chemical and 15 Introduction dye industry should be developed, so that when an emergency arises we may have the necessary facilities for supply read to hand. It is not for me to express any opinion here either as to the desirability of using gas as a weapon or as to the possibility of preventing an enemy from using it. But I am convinced that a decision come to without full knowledge of the facts may involve grave danger and heavy preventable loss of life. I am further convinced that Major Lefebure, by his special knowledge and long experience as chemical liaison officer during the war, is well qualified to speak, and that his opinion is entitled to full con- sideration. For these reasons I think that his book will do a much needed public service. I wish it every success, and the greatest possible number of readers. Henry Wilson, F.M. 16 CHAPTER I EXPLANATORY The Riddle of the Rhine.—The Great War chal- lenged our very existence. But with the tension re- leased, and the Allies victorious, the check to the German menace appears crushing and complete. Few realise that one formidable challenge has not been answered. Silently menacing, the chemical threat remains unrecognised. How, asks the reader, can this be? Are we not aware of the poison gas cam- paign? Indeed, we have not yet grasped the simple technical facts of the case, and these are merely the outward signs of a deep-rooted menace whose na- ture, activities, and potentialities are doubly impor- tant because so utterly unsuspected by those whom they most threaten. How many of us, for example, realise that the Germans relied mainly on gas for success in the great March assault of 1918, which threatened to influence the destinies of the world. Yet Ludendorff goes out of his way to tell us how much he counted upon it. How many understand that the 1918 hostilities were no longer a war of explosives. German guns were firing more than fifty per cent, of gas and war chemical. But a deep study of such war facts re- veals a much more significant matter. All are aware of the enormous national enter- prises built to fulfil our explosives programme. 17 The Riddle of the Rhine With mushroom-like growth chemical establishments of a magnitude hitherto unknown in England arose to meet our crying needs. What was the German equivalent, and where were the huge reservoirs of gas and war chemical which filled those countless shells? Krupp, of Essen, loomed large in the mind of every Allied citizen and soldier. There lay the sinews of war in the making. But the guns were useless without their message. Who provided it? A satisfactory answer to this question demands an examination of the great German I.G., the Inter- essen Gemeinschaft, the world power in organic chemical enterprise, whose monopoly existence threat- ened to turn the tide of war against us. This or- ganisation emerges from the war with renewed and greater strength. Our splendid but improvised fac- tories drained the vital forces of the nation, and now lie idle, while German war chemical production fed new life blood and grafted new tissue to the great pre-war factories of the I.G., which, if she will, she can use against us in the future. I do not claim that this German combine has at present any direct economic or military policy against world peace. In any case, the facts must speak for them- selves. But the following pages will prove that the mere existence of the complete German monopoly, represented by the forces of the I.G., however free from suspicion might be the mentality and morals of those directing its activities, constitutes, in itself, a serious menace. It is, if you will, a monster camou- flaged floating mine in the troubled sea of world peace, which the forces of reconstruction have left unswept. The existence of this giant monopoly raises vital military and economic questions, which are, indeed, “The Riddle of the Rhine.” Impersonal Examination of Fact.—In a sound 18 Explanatory examination of the subject it becomes necessary to examine the activities of our former enemies very closely. Even adopting a mild view of the case, their reputation has not been unattacked, and is not left untarnished. We, however, have no desire to renew such attacks, but we wish our statement to be coldly reliable. National and international issues are at stake which require a background unprejudiced by war emotion. Placed in a similar predicament, in reporting to his Government of the methods of German economic aggression in the United States of America, Mr. Mitchell Palmer, the Alien Property Custodian, ex- pressed himself as follows: “I do not advocate any trade boycott out of spirit of revenge or in retaliation for injuries done to the United States. I do not want to continue the war after the war. I am for peace. I believe that the great overshadowing result which has come from this war is the assurance of peace almost everlasting amongst the peoples of the earth. I would help to make that an absolute certainty by refusing to permit Germany to prosecute a war after the war. The military arm of her war machine has been palsied by the tremendous hammering of the allied powers. But her territory was not invaded, and if she can get out of the war with her home territory intact, rebuild a stable government, and still have her foreign mar- kets subject to her exploitation, by means no less foul and unfair than those which she has employed on the field of battle, we shall not be safe from future onslaughts different in methods, but with the same purpose that moved her on that fateful day in July when she set out to conquer the world.” Ours is a fair standpoint. Let us know the facts of the chemical war into which Germany impelled us. 19 The Riddle of the Rhine Let us examine its mainsprings, in conception and action, see how far they can be explained in terms of pre-war Germany, and how far they remain ready to function in the much desired peace which they threaten. If the result be unpleasant, let us not hide our heads in the sand, but exercise a wise vigilance, choose what precautions are available and consistent with our plans for world peace. A Critical Point in Disarmament.—Probably never before in the history of man has Disarmament figured as such a vitally urgent national and inter- national measure. Discussions and official utter- ances reveal a very disquieting tendency. When compared with the methods, armament and materials of the war in 1914, those of 1918 reveal basic changes which a hundred years of former peace could not have brought about. These developments are not merely of fact, but they represent the open- ing of new fields, visions of possibilities previously undreamed of by the practical soldier. By the con- centrated application of electricity, chemistry, and other sciences to war two dominating factors have emerged, whose importance to war, and danger for world peace, can only gain momentum with time. The scientific or technical initiative, the invention of a deadly new chemical, wireless-directed aeroplane, or other war appliance and their incidence on war through large scale production in the convertible in- dustries of peace constitute a challenge which, if un- answered by practical schemes for world disarma- ment, will render the latter worse than useless, by aggravating the danger of sudden decisive attack in an otherwise disarmed world. There is a tendency to ignore this aspect of dis- armament. We appear to be thinking in terms of a world still organised for war on 1914 lines. The 20 Explanatory disbanding of the German army and semi-military organisations, and the reduction of her artillery and small arms seem to occupy all our attention. Such, it might be urged, is the immediate need; we can leave the future to find answers to the other prob- lems. This answer is dangerous, for it ignores the disarmament aspect of what is perhaps the most important development in the modern offensive cam- paign. We refer to poison gas or chemical warfare. This, the crux of all disarmament, is dealt with at some length in the chapters which follow. A curiously illogical attitude of mind has arisen in certain quarters. There is a tendency among strong adherents to the ideal of world peace to regard them- selves as its sole possessors. Every thinking civilian and soldier must adhere to such an ideal; the only point at issue is the method of approaching it. The mere fact that a League of Nations is called into being to attain world peace implies recognition of the fact that a definite mechanism and definite meas- ures are required for the purpose; this is self-evident. There are those who, having established their League of Nations, feel that they can attain chemical peace by merely prohibiting chemical war, in other words, they expect their mechanism to achieve its object without functioning, to attain peace by its mere ex- istence. Just as special measures are required to control disarmament in the older branches of war- fare, in the same way special measures, but not the same measures, are required to control the chemical peace. Chemical peace guaranteed by a mere signa- ture is no peace at all. In a recent Press utterance we find an appeal to prohibit chemical warfare and to “trust the general sentiment of the civilised world to say that the lesson has been learnt in that sense.” “There is the League 21 The Riddle of the Rhine of Nations to furnish that sentiment with a mouth- piece and a sanction.” We agree, but to stop there is dangerous, the most important thing which it must furnish is a mechanism of control, a check, or guar- antee. This question is one of the most important which confronts us for world peace. It merits the most careful consideration. Even responsible and relevant officials who admit that their League must do more than issue edicts, that their mechanism must function, are ignoring the specific technical aspect of the war methods whose use we wish to limit. This matter will receive later attention. The following pages, therefore, are an attempt to represent the salient points in the development of chemical warfare, its causes, results, and future. Such an attempt cannot limit itself to merely British de- velopments, and this is not a final detailed memoir of British chemical warfare. Further, in consider- ing the future, we examine another aspect of chem- ical warfare. Facts lead us to believe that it was purely the most open and obvious activity in a whole campaign of chemical aggression which had effective unity of conception and direction long before the war started. Need for a Balanced View of Chemical Warfare. —The facts of chemical warfare have probably been less ventilated than those of any other important war development. Yet no subject has aroused more general and intense feeling. Tanks, aircraft, the different campaigns, enemy memoirs, and a variety of war subjects, have received a considerable meas- ure of publicity, some more than full measure. Grave questions are pending in which the chemical aspect of national defence is a prominent factor. However willing the individual concerned, he cannot 22 Explanatory make a sound judgment on the brief technical or popular garbled versions which have appeared. One searches in vain for balanced and detailed statements on the question. This may be due in no way to lack of intention, but to lack of opportunity. Therefore, no excuse is needed for this contribution, but rather an apology for the obscurity which has so far sur- rounded the subject. What is the cause of this emo- tional or almost hysterical background from which a clear definition of the matter is only now beginning to emerge? Circumstances are to blame; the first open act of chemical warfare decided the matter. This event, the first German cloud gas attack at Ypres, arriving at the peak of allied indignation against a series of German abuses, in particular with regard to the treatment of prisoners, left the world aghast at the new atrocity. Further, its use against entirely unprotected troops was particularly revolt- ing. The fact that such a cloud of chlorine would have passed the 1918 armies untouched behind their modern respirators, could not be known to, nor ap- preciated by the relatives of the 1915 casualties. But the emotion and indignation called forth by the first use of gas has survived a period of years, at the end of which the technical facts would no longer, of themselves, justify such feeling. We would hesitate to do anything which might dispel this emotional momentum were we not convinced that, unaccom- panied by knowledge, it becomes a very grave danger. If we felt that the announcement of an edict was sufficient to suppress chemical warfare we would gladly stimulate any public emotion to create such an edict. But therein lies the danger. Owing to certain technical peculiarities, which can be clearly revealed by examination of the facts, it is impossible to sup- press chemical warfare in this way. As well try to 23 The Riddle of the Rhine suppress disease by forbidding its recurrence. But we can take precaution against disease, and the fol- lowing examination will show clearly that we can take similar precautions against the otherwise per- manent menace of chemical war. Further, backed by such precautions, a powerful international edict has value. It is, therefore, our intention to present a reasoned account of the development of poison gas, or chemi- cal warfare, during the recent war. But to leave the matter there would be misleading and culpable, for, however interesting the simple facts of the chem- ical campaign, they owed their being to a combina- tion of forces, whose nature and significance for the future are infinitely more important. The chief cause of the chemical war was an unsound and dan- gerous world distribution of industrial organic chem- ical forces. Unless some readjustment occurs, this will remain the “point faible” in world disarmament. We, therefore, propose to examine the relationships between chemical industry, war, and disarmament. Some Preliminary Explanation.—The chemistry of war, developed under the stress of the poison gas campaign, is of absorbing chemical and technical in- terest, but it has none the less a general appeal. When its apparently disconnected and formidable facts are revealed as an essential part of a tense struggle in which move and counter-move followed swiftly one upon the other, its appeal becomes much wider. Therefore, in order not to confuse the main issue in the following chapters by entering upon tire- some definitions, it is proposed to conclude the pres- ent chapter by explaining, simply, a number of chem- ical warfare conceptions with which the expert is probably well acquainted. 24 Explanatory “‘Poison Gas” a Misleading Term.—Poison gas is a misleading term, and our subject is much better described as “chemical warfare.” Let us substan- tiate this by examining briefly the types of chemicals which were used. In the first place they were not all gases; the tendency during the war was towards the use of liquids and solids. Even the chemicals which appeared as gases on the field of battle were transported and projected as liquids, produced by compression. As the poison war developed, a large number of different chemicals became available for use by the opposing armies. These can be classified, either according to their tactical use, or according to their physiological effects on man. The British, French, American, and German armies all tended to the final adoption of a tactical classification, but the French emphasized the physio- logical side. Let us use their classification as a basis for a review of the chief chemicals concerned. The French Physiological Classification;—As- phyxiating Substances; — Toxic Substances. — Chemicals or poison gases were either asphyxiating, toxic, lachrymatory, vesicant, or sternutatory. It is perfectly true that the asphyxiating and toxic sub- stances, used during the war, produced a higher per- centage of deaths than the other three classes, but the latter were responsible for many more casualties. The so-called asphyxiating gases produced their effect by producing lesions and congestion in the pulmonary system, causing death by suffocation. The best known substance of this type was chlorine, employed in the liquid state in cylinders on the occasion of the first German gas attack, but the most formidable were phosgene (an important substance required in the manufacture of dyes), diphosgene, chlor-picrin, made from bleaching powder and picric acid, brom- 25 The Riddle of the Rhine acetone, which was also a powerful lachrymator, and diphenylchlorarsine, known as sneezing gas, the first sternutatory or sneezing compound to appear on the front in large quantities. The toxic compounds were so called because of their specific effect upon par- ticular parts of the organism such as, for example, the nervous system. The chief example, with regard to the military value of which there has been much dispute, was prussic, or hydrocyanic, acid. The French had definite evidence of the mortal effect of this compound upon German gunners, but it was doubted by other Allies whether French gas shell produced a sufficient concentration of gas to be of military value. It was a kill or cure compound, for recovery was rapid from any concentration which did not produce death. A prominent Cambridge physiologist, in the heat of the controversy on this matter, made a very brave and self-sacrificing experiment. He entered a cham- ber of prussic acid which was sufficiently concentrated to cause the death of other animals which were pres- ent. They were removed in time, and he escaped because the concentration was not a mortal one for man. This was, in a sense, an experimentum crucis and, although it did not disprove the extreme danger of prussic acid, if employed in high concentrations, it showed, on the other hand, that it was difficult to gauge the military value by field experiments; battle results were necessary. The Germans’ disappoint- ment with the use of arsenic compounds confirms this need for battle evidence. Lachrymators.—There is hardly need to dwell on the next class, the lachrymator. These com- pounds were employed on a large scale to produce temporary blindness by lachrymation, or weeping. We give later some interesting examples of their use 26 Explanatory on the front. It is an arresting thought that even as early as 1887 Professor Baeyer, the renowned organic chemist of Munich, in his lectures to ad- vanced students, included a reference to the military value of these compounds. Vesicant or Blistering Compounds.—It was the introduction of the fourth, the vesicant class, which revealed, more than any other enemy move, the great possibilities inherent in chemical warfare. These compounds, the chief of which was mustard gas, pro- duced vesicant, or skin burning, effects, which, al- though rarely mortal, were sufficient to put a man out of action for a number of months. Mustard gas resulted from pure scientific investigation as early as i860. Victor Meyer, the famous German chemist, described the substance in 1884, indicating its skin- blistering effects. There is evidence of further in- vestigation in German laboratories a year before the outbreak of war, and whatever the motive for this work, we know that mustard gas must have received the early attention of the German War Office, for it was approved and in production early in 1917. Although the Medecin aide-major Chevalier of the French services drew attention to its importance in 1916, the French had no serious thought of using mustard gas, and did not realise its possibilities until the German battle experiment of July, 1917. It is not generally known, however, that other vesicant compounds were employed, notably some of the arsenic compounds, and the Germans were research- ing on substances of this nature which gave great promise of success. Mustard gas provides a striking example of the organic way in which chemical war- fare is bound up with the dye industry. The com- pounds required for its manufacture were those which had been made on a large scale by the I.G. for the 27 The Riddle of the Rhine production of indigo. World indigo monopoly meant possession of a potential mustard gas surprise on the outbreak of war. Sneezing or Sternutatory Substances.—The last class, the sternutatory substances, produced the fa- miliar sneezing effect which was accompanied by in- tense pain and irritation of the nose, throat, and respiratory channels. They were mostly arsenic com- pounds and were not only sternutatory but also toxic, producing the after effects of arsenic poisoning. The Tactical Classification.—From the point of view of our account of chemical warfare, however, the physiological classification of these substances is not so important as the tactical and, indeed, once this grouping of the substances is understood, a profound knowledge of their chemical nature is not necessary. Persistent Substances.—Two main classes exist from the tactical point of view. There are those “persistent” substances which remain for a long time on the soil or on the object on which they are sprayed by shell, while retaining their dangerous effect. Mus- tard gas was the chief example, but some of the lachrymators were just as persistent. By their use it is possible to render ground uninhabitable or in- effective for military movement. The combination of the vesicant and persistent properties of mustard gas rendered it a powerful military factor. Non-Persistent Substances.—On the other hand, there are the relatively volatile substances, such as phosgene, which can be used immediately before an attack. The chief sternutatory compound, diphenyl- chlorarsine, although not volatile, could also be used in this way, for, being a solid and in a very finely pul- verised state, its presence on the ground was not a distinct danger, and it invited chemical decomposi- tion. 28 Explanatory Penetrants.—The Germans introduced an addi- tional tactical group. This comprised pulverised substances able to penetrate the mask on account of their existence as minute particles. The Germans expressed these tactical conceptions by their shell markings. The familiar Green Cross represented the slightly persistent, volatile, lethal compounds, such as phosgene and diphosgene. The German gun- ner had no need to know the content of his gas shell so long as he could identify the cross. Yellow Cross, representing mustard gas, was the most highly persistent type. It is interesting to specu- late whether a new persistent compound, whose mili- tary value was due to some other property than the blistering, would have been grouped under Yel- low Cross. Logically, this should have been done. Blue Cross covered the arsenic group of compounds, which were non-persistent and were expected to pen- etrate the mask. So strong was this tactical con- ception that the Allies were on the verge of adopting a uniform shell marking based on this principle throughout their armies. Special Gas Weapons and Appliances.—It is a popular misconception that gas was only discharged from cylinders in huge clouds, or used as artillery shell. A number of special weapons developed, which were particularly adapted for gas. Thus, the Livens projector, which was a great Allied advance, produced a gas cloud a long distance from the point of discharge, while the Stokes and other short range guns were used for rapid fire of large numbers of gas shell. The primary conceptions with regard to protec- tion have been brought home to so many, through the fact that the mask was a part of the equipment of every soldier, that we need not dwell on them 29 The Riddle of the Rhine here. It is not generally realised, however, that every modification introduced by either side was a vital and direct counter to some enemy move planned to render the protection of the opponent ineffective. Gas Shell.—A word is necessary to define the use of gas shell. The point which must be realised is that gas, and in particular gas shell, fulfilled a spe- cial purpose in warfare, for which it was much more suitable than explosives. The use for neutralising batteries, cross roads, and rendering whole areas uninhabitable, is developed fully in our reference to the great German attacks in 1918. With this brief sketch to clear the ground, we can embark more freely upon the account of chem- ical warfare which follows. 30 To face page 30 TYPICAL GAS SHELL BURSTING. CHAPTER II THE GERMAN SURPRISE Ypres, April, 1915, to the Somme, August, 1916. The First Cloud Gas Attack.—The critical factor of surprise in war was never nearer decisive success than on April 22nd, 1915. Of this, the occasion of the first German gas attack at Ypres, Field-Marshal Sir J. D. P. French stated: “Following a heavy bombardment, the enemy at- tacked the French Division at about 5 p.m., using asphyxiating gases for the first time. Aircraft re- ported that at about 5 p.m. thick yellow smoke had been seen issuing from the German trenches be- tween Langemarck and Bixschoote. What follows almost defies description. The effect of these poison- ous gases was so virulent as to render the whole of the line held by the French Division mentioned above practically incapable of any action at all. It was at first impossible for any one to realise what had actually happened. The smoke and fumes hid everything from sight, and hundreds of men were thrown into a comatose or dying condition, and within an hour the whole position had to be aban- doned, together with about fifty guns. I wish par- ticularly to repudiate any idea of attaching the least blame to the French Division for this unfortunate incident.” 31 The Riddle of the Rhine The Element of Surprise.—The enemy just missed colossal success rendered possible by the use of an entirely new war method; one contrary to en- gagements entered into by them at the Hague Con- vention. There were elements in this first gas attack which were absent even from the situation created by our first use of tanks. Unfamiliarity amongst the troops, or the staff, for that matter, created an atmosphere of unparalleled confusion. Men at- tempted to protect themselves by burying their mouths and nostrils in the loose earth. Those chem- ists, on the spot, not immediately struck down, made frantic efforts to bring up supplies of any suitable and available chemical or material which might as- sist resistance and movement in the affected zone. Paying every homage to the heroic sacrifices and brave actions which characterised the Allied re- sistance, we cannot ignore the fact that morale must have been very severely shaken locally, and that a general disquiet and uneasiness must have per- meated the whole front until measures were known to be effectively in progress, not only for protection, but for retaliation. The enemy had but to exploit the attack fully to break through to the channel ports, but failed to do so. The master mind behind this new and deadly attack was not, let us remem- ber, that of a soldier. It was very strongly ru- moured that this monstrous conception and its exe- cution were due to one or, at the most, two re- nowned German Professors. The first hammer blow in the enemy chemical campaign was a two- party conspiracy, led by world-famous scientists and the powerful I.G. with the German army uncon- vinced but expectant, little more than a willing dupe. 32 The German Surprise Lord Kitchener’s Protest.—In his spirited protest in the House of Lords, Lord Kitchener stated: “The Germans have, in the last week, introduced a method of placing their opponents hors de combat by the use of asphyxiating and deleterious gases, and they employ these poisonous methods to pre- vail when their attack, according to the rules of war, might have otherwise failed. On this sub- ject I would remind your Lordships that Germany was a signatory to the following article in the Hague Convention: “ ‘The Contracting Powers agree to abstain from the use of projectiles the object of which is the dif- fusion of asphyxiating or deleterious gases.’ ” This protest circulated amongst neutrals prompted numerous attempts at vindication in the German Press. In several cases we find important newspapers arguing that the German attack was not contrary to the Hague Convention, while others admitted the breach, but claimed that the Germans merely followed Allied example. The main techni- cal excuse was that the effect of the German gas was merely stupefying (Colniche Zeitung, June, 1915). It is incredible that the German nation was, or could allow itself to be, so hoodwinked. Scientific Ger- many was certainly aware of the true nature of the gases used. Even scientific neutrals in Berlin at the outbreak of war, and during the ensuing winter, were aware of the German poison gas work, which commenced, in an organised wray, almost as soon as war broke out. The Germans have argued that they only entertained the idea of gas after Allied use. The facts revealed below are a suf- ficient answer. Whatever legal arguments may be 33 The Riddle of the Rhine involved, there is no doubt as to German intention. We do not wish to enter into a comprehensive examination of the legal aspect of the first use of cloud and shell gas by Germany. Whatever com- plicated arguments may turn upon the strict reading of a phrase in the records of the Hague Convention, we have no doubt whatever as to the desires and intentions of the Assembly, and we regard Germany (and the Allies) as morally engaged not to venture upon the series of chemical enterprises which she openly commenced with the Ypres cloud attack. The Versailles Treaty also renders fruitless any such discussion. Article 171, accepted by Germany, is deliberately based on her breach of International Convention. German Preparations.—A significant phrase oc- curs in the Field-Marshal’s despatch. “The brain power and thought which has evidently been at work before this unworthy method of making war reached the pitch of efficiency which has been dem- onstrated in its practice shows that the Germans must have harboured these designs for a long time.” This is a most important point. It was argued by many generous and fairminded people in April, 1915, that the German use of gas was the result of a sudden decision, only arrived at in a desperate effort to terminate the war. This point of view would give us maximum hope for the future. But the actual truth ? What do we know about German preparations, and how far back do they date? Any preparations which occurred must have covered re- search on the compounds to be employed and on the protection required for the German troops, their training for the cloud attack, and the design and production of the special appliances to be used. 34 The German Surprise Finally, the production of the chemicals themselves had to be faced. Research.—We have obtained an insight into the German research preparations, which leaves no doubt as to their intention. There is evidence that the Kaiser Wilhelm Institute and the physico-chemical institute near by were employed for this purpose as early as August, 1914. Reliable authority exists for the statement that soon after this date they were working with cacodyl oxide and phosgene, both well known before the war for their very poison- ous nature, for use, it was believed, in hand gre- nades. Our quotations are from a statement by a neutral then working at the Institute.- “We could hear the tests that Professor Haber was carrying out at the back of the Institute, with the military authorities, who in their steel-gray cars came to Haber’s Institute every morning.” “The work was pushed day and night, and many times I saw ac- tivity in the building at eleven o’clock in the eve- ning. It was common knowledge that Haber was pushing these men as hard as he could,” Sachur was Professor Haber’s assistant. “One morning there was a violent explosion in the room in which most of this war work was carried out. The room was instantly filled with dense clouds of arsenic oxide.” “The janitors began to clear the room by a hose and discovered Professor Sachur.” He was very badly hurt and died soon after. “After that accident I believe the work on cacodyl oxide and phosgene was suspended and I believe that work was carried out on chlorine or chlorine compounds.” “There were seven or eight men working in the In- stitute on these problems, but we heard nothing more until Haber went to the Battle of Ypres.” Rumours to this effect circulated in 1915. 35 The Riddle of the Rhine Production.—Preparations for production can easily be imagined. The Germans first used chlorine for cloud gas, and certain lachrymators for shell. The chlorine was readily available. At about this time British liquid chlorine capacity had a maximum daily output of about one ton, while along the Rhine alone the production was more than forty times greater. The question of German chlorine produc- tion was, therefore, already solved. The lachry- mators were mainly raw materials and intermedi- ates of the dye industry submitted to a process, the technique of which the German dye factories read- ily mastered. Here, again, production presented no real difficulties. Cylinders were also probably available from the industry. Field Preparations.—There remains the last question of gas attack technique and personnel. Those of us who remember the difficulties involved in creating our own organisation in the summer of 1915 have no illusions on the question of German preparation. Giving the Germans every credit for their technical and military efficiency, some months must have been occupied in establishing and train- ing the special companies required, and in arriving at a satisfactory design for the discharge appliances. Schwarte’s book, Die Technik Im Weltkriege,1 tells us “specially organised and trained troops” were required for the purpose. Prisoners taken later re- vealed the German methods. Gas officers and N.C.O.’s, after making a careful survey of the front line trench, organised the digging of deep narrow trenches at suitable places below the surface of the main trench, just underneath the parapet. The heavy gas cylinders, weighing as much as ninety pounds, were carried to the front line by the un- 1 Die Technik Im Weltkreige. Publisher: Miltler, Berlin, 1920. 36 The German Surprise fortunate infantry. The discharge valves were care- fully protected by domes which screwed on to the cylinder. The latter were introduced into the holes, tops flush with the trench bottom, and covered by a board on which reposed the “Salzdecke,” a kind of long bag stuffed with some such material as peat moss and soaked in potash solution to absorb any slight gas leakages. Three layers of sandbags were built above the salzdecke to protect the cylinder from shell fragments and to form a firestep for the infantry. This concealed the cylinders so effi- ciently that, in our own trenches, I have often found the new occupants of a sector ignorant of the pres- ence of gas cylinders under their own firesteps. On the favourable night the dome was removed and a lead pipe was connected to the cylinder and di- rected over the parapet into No Man’s Land, with the nozzle weighed down by a sandbag. The pion- eers stood by the batteries of twenty cylinders each and let off the gas a fixed few minutes after a rocket signal, at which the infantry retired to leave the front line free for the pioneers, who not only ran the risk of gassing from defective appliances but were subjected to almost immediate violent bom- bardment from the opposing artillery. When sur- prise was complete artillery retaliation was very late in developing. This gives a faint idea of the elaborate preparations required. They must have been doubly arduous and lengthy on the very first occasion of cloud gas attack. German Opinion of Results.—We can now re- gard the chlorine attack of April 22, 1915, as the first and successful result of a huge German experi- ment on a new method of war, the pioneer work of which actually began at (if not before) the out- break of war. Quoting again from Schwarte: 37 The Riddle of the Rhine “G.H.Q. considered the attack near Ypres to be a successful experiment. The impression created was colossal and the result not inconsiderable, although it was not fully utilised from the tactical point of view. It was obvious that we had gained a great advantage; the enemy was not sufficiently prepared with defensive measures against gas.” Indeed, we were absolutely unprepared, so much so, that after the German attack nearly every household in Eng- land contributed to our first inefficient and impro- vised mask. Is not this suggestion of our prepara- tion a deliberate attempt to deceive the German pub- lic? They seem to have been as easily hoodwinked on gas questions as on many others. Germany Prompted by Production Monopoly. —An important point arises. The Germans failed to exploit their initial success. This is not very surprising. Whatever the opinion of the chemists behind the movement, the German General Staff must have retained the elements of precaution in its opinion. It could not have taken for granted the formidable success which the chemists proved justified in prophesying. This being so, we can fairly assume that had there been very serious dif- ficulties in carrying out this huge war experiment it might never have materialised. Such difficulties might have been found in production. But as we have seen, the question of production was the most easily forged link in the chain of events which led to the use of poison gas by Germany. In other words, this monopoly in ease of production was an inducement to the Germans to proceed with their experiment. The earliest German cloud gas attacks estab- lished beyond a doubt the enormous value of gas against unprotected troops, in other words, its value 38 The German Surprise as a complete surprise. These conditions were again approached in the first German use of mustard gas. The most telling examples will probably be found in the future, unless the correct precautions are taken. The whole history of chemical warfare dur- ing the war was a struggle for this initiative, a struggle between gas protection and aggression. Standard Uses for Gas;—Gas Shell.—But gas found an important use besides that of strategic surprise. It became a standard weapon for certain clear and definite tactical purposes. (For some of these, indeed, the factor of local surprise was im- portant.) We refer to the specific use of gas shell for the neutralisation of batteries, roads, and areas, and to the use of cloud gas, prior to offensives for the production of casualties, and wearing down of reserves. The Ypres attack had not by any means established the use of gas for such purposes. There is no doubt that, from this point of view, the ex- perimental period carried on for many months. Naturally, in some respects, there was always an experimental element in the use of gas. Further German Cloud Attacks.—Two days after the first cloud gas attack the Germans launched a second against the Canadians, with similar results. Quoting from official despatches: “On the early morning of the 24th a violent outburst of gas against nearly the whole front was varied by heavy shell fire, and a most determined attack was delivered against our position east of Ypres. The real attack commenced at 2.45 a.m. A large proportion of the men were asleep, and the attack was too sudden to give them time to put on their respirators.” These latter were hurriedly improvised after the first Ypres attack. 39 The Riddle of the Rhine Hill 60.—Four more attacks occurred in May, notably in the region of Hill 60. “On May ist an- other attempt to recapture Hill 60 was supported by great volumes of asphyxiating gas which caused nearly all the men along a front of about 400 yards to be immediately struck down by its fumes.” “A second and more severe gas attack under much more favourable weather conditions enabled the enemy to recapture this position on May 5th. The en- emy owes his success in this last attack entirely to the use of asphyxiating gas.” “It was only a few days later that the means which have since proved so effective of counteracting these methods of mak- ing war were put into practice.” (Official des- patches, 1915.) The despatch further described how violent bombardments, the confusion and de- moralisation from the first great gas surprise, and subsequent almost daily gas attacks, prevented the proper reorganisation of the line in question. Origin of German Gas Shell.—After May a long period elapsed during which the Germans confined their war chemical activities on the front to the use of gas shell. Schwarte’s book describes their origin as follows:—“The main idea wThich influ- enced the first construction of a German projectile containing chemicals (October, 1914) was that of adding to the charge an irritant substance, which would be pulverised by the explosion of the projec- tile, and would overwhelm the enemy with a cloud of dust. This cloud would hover in the air and have such an effect upon the mucous membranes that, for the time being, the enemy would be unable to fight in such an atmosphere. By altering the construction of the 10.5 c.m. universal shell for light field howitzers, the ‘N.i’ projectile was created in the form of 10.5 c.m. shrapnel, the bullets of 40 The German Surprise which were embedded in a sternutatory powder (double salts of dianisidine) well stamped down, instead of an explosive. By means of the propelling charge and the grinding effect of the bullets, this powder was pulverised on explosion. The irrita- tion caused was not very intense, lasted only a short time and affected only a limited area and therefore it was of no importance in the field, but the initial step had been taken. Liquid irritants soon came to the front—xylyl bromide and xylylene dibromide— a mixture used later under the name of T. stuff, bromo-acetone and brominated methyl ethyl ketone, later introduced under the name of B. stuff and Bn. stuff.” During experiments they gave such improved re- sults in intensity, in power of lasting and of affecting an increased area, that practical results in the field were ensured. The use of these liquids in projectiles, however, was contrary to the accepted idea with re- gard to artillery, according to which liquid materials should not be used for ballistic reasons. Specially arranged shoots were required to prove that the pro- jectiles in use in the German Army could also be used from the ballistic point of view when filled with liquids. In this way the first effective German gas pro- jectile, the T. shell for heavy field howitzers, was evolved (January, 1915). Early German Gas Shell.—The first important use of German gas in shell was that of brominated and chlorinated organic compounds, T. and K. stuffs. Schwarte’s book tells us “the use of these projectiles was continually hampered by lack of understanding on the part of the troops which was difficult to over- come. In the summer of 1915 it was practically in the Argonne alone that any considerable results were 41 The Riddle of the Rhine attained by the new projectiles.” And he describes how the first elements of the new gas tactics were developed there. A Successful Experiment.—The development of the gas shell, the use of which, generally speaking, is independent of, but co-ordinated with, wind direc- tion, may have received stimulus from the fact that the prevailing wind, so important for cloud gas, fa- voured the Allies. It is clear that this period was an experimental one, but we know that by August, 1915, German military opinion had crystallised out to the extent of formulating certain rules, issued as Falkenhayn’s orders for the employment of gas shell. These early orders defined two types of shell, one persistent, for harassing purposes, and the other non- persistent, to be used immediately before an attack. They specified the number of shell to be used for a given task. But in this they were unsound and it is clear that the Germans had an exaggerated opinion of what could be achieved with a small number of shell. They adhered too closely to high explosive practice. Various documents reveal the fact that the Germans were much more satisfied with their gas tactics than they would have been had they pos- sessed information with regard to our losses from their shell. They attached insufficient importance to the value of surprise and highly concentrated shoots, and had a mistaken idea of the actual specific aggres- sive value of their early types. Lachrymators at Loos, 1915.—Germany com- menced the manufacture of lachrymators, crude brominated xylene or brominated ketones, early in, or perhaps before 1915. These substances caused great inconvenience through temporary blindness by lachrymation, but were not highly toxic. In June, 1915, however, they began to produce lethal gas for 42 The German Surprise shell. Falkenhayn’s orders for the use of gas shell, mentioned above, although they represent by no means the best final practice, were definite evidence that gas had come to stay with the Germans. The writer has vivid recollections of their use of lachry- mators in the Loos Battle. Batteries in the open, under the crest near the Lens road, were in position so that the wind direction practically enfiladed them, sweeping along from the direction of Le Rutoire farm. Gas from German shell, borne on the wind, was continually enveloping the line of batteries, but they remained in action. It was on this occasion while watching the bursting gas shells from the out- skirts of the mining village of Philosophe that- Major-General Wing was killed outright by a high explosive shell. These gas shell certainly did not achieve the results which the Germans expected, al- though they were not without effect. Demolished villages, the only shelter for troops in a desolate area, have been rendered uninhabitable for days by a concentrated lachrymator enemy shoot of less than one hour. Again, walking into gas “pockets” up a trench one has been stopped as by a fierce blow across the eyes, the lachrymatory effect was so piercing and sudden. The great inconvenience which was oc- casioned to parties engaged in the routine of trench warfare, on ration or engineering duties, and the effect on movement in the rear after an assault, taken cumulatively, represented a big military factor. The Flammenwerfer.—There can be no doubt that this period marks increasing German willingness to live up to their “blood and iron” theories of war, and, in July, 1915, another device with a considerable surprise value was used against us: the flame pro- jector, or the German flammenwerfer. Field-Mar- shal Sir John French signalled the entry of this new 43 The Riddle of the Rhine weapon as follows: “Since my last despatch a new device has been adopted by the enemy for driving burning liquid into our trenches with a strong jet. Thus supported, an attack was made on the trenches of the Second Army at Hooge, on the Menin Road, early on 30th July. Most of the infantry occupying these trenches were driven back, but their retirement was due far more to the surprise and temporary con- fusion caused by the burning liquid than to the actual damage inflicted. Gallant endeavours were made by repeated counter-attacks to recapture the lost section of trenches. These, however, proving unsuccessful and costly, a new line of trenches was consolidated a short distance farther back.” Although this weapon continued to be used right through the campaign, it did not exert that influence which first acquaintance with it might have led one to conclude. At the same time, there exists a mis- taken notion that the flame projector was a negligible quantity. This may be fairly true of the huge non- portable types, but it is certainly not true of the very efficient portable flame projector which was the form officially adopted by the German, and later by the French, armies. On a number of occasions Germany gained local successes purely owing to the momentary surprise effect of the flame projector, and the French made some use of it for clearing out captured trench systems over which successful waves of assault had passed. Further, the idea of flame projection is not without certain possibilities for war. German Phosgene Clouds.—Germany had by no means abandoned cloud gas, however. She had merely been planning to regain what the Ypres at- tacks had lost for her, the cloud gas initiative. We have seen how phosgene had occupied the attention of the German research organisation in the first 44 The German Surprise months of the war. Once alive to its great impor- tance, they must have strained all efforts to obtain an efficient method of using it at the front. Phos- gene was remarkable for its peculiar “delayed” effect. Relatively small quantities, inhaled and followed by vigorous or even normal exercise, led to sudden col- lapse and fatal effects sometimes more than twenty- four hours after the attack. The case of a German prisoner in a First Army raid after a British gas attack was often quoted on the front. He passed through the various Intelligence headquarters as far as the Army, explaining the feeble effect of the Brit- ish gas and his own complete recovery. But he died from delayed action within twenty-four hours of his last interrogation. This effect imposed strict condi- tions of discipline, and men merely suspected of ex- posure to phosgene were compelled to report as serious casualties and carried as such even from the front line. The successful development of the phosgene cloud probably arrived too late for the Ypres attacks, and a variety of reasons must have led to the postpone- ment of its use until such time as it might once again give Germany the real initiative. Accordingly, on December 19, 1915, a formidable cloud gas attack was made on the north-east of the Ypres salient, using a mixture of phosgene and chlorine in a very high concentration. Fortunately, by this time we had established an anti-gas organisation, which had fore- stalled the production of cloud phosgene by special modifications in the British respirator. The condi- tions were similar to those of April 22nd, 1915. Instead of the first use of cloud gas, we had the first use of the new gas in highly concentrated cloud. In both cases the Germans reckoned on our lack of pro- tection, correctly in the first case, but incorrectly in 45 The Riddle of the Rhine the second. In both cases they were sure that great difficulties in production would meet our attempts at retaliation. In general this proved true, but in this case and increasingly throughout the war, they reck- oned without Allied adaptability. The French de- velopment of phosgene manufacture was indeed re- markable. Very interesting light is thrown on this attack by Major Barley, D.S.O., Chemical Adviser to the British Second Army. It appears that in November, 1915, the French captured a prisoner who had at- tended a gas school in one of the factories of the I.G. Here lecturers explained that a new gas was to be used against the British forces, many thousands of casualties were expected, and an attack would follow, which correcting the errors of the effort at Ypres, would lead to the capture of the Channel ports. Efforts were at once made to obtain infor- mation on gas preparation by the Germans in front of the British sectors. In this way a sergeant-major was captured on the morning of December 16th, and he revealed the date and front on which the cylinders were installed. About 35,000 British troops were found to be in the direct line of the gas, but owing to the timely warning and to the protection which had recently been adopted, we experienced very few casualties. The Germans had prepared a huge in- fantry attack, and used a new type of gas shell on this occasion. German troops massing must have received huge casualties owing to our preparation and the failure of their gas attack. The last German cloud attack on the British front occurred on August 8, 1916. There were later attacks against the French, but the Germans were replacing the cloud method by other methods which they considered more suitable. These will be dis- 46 The German Surprise cussed later on, when considering our own reaction against the chemical offensive. Gas and the Eastern Theatre.—The German sur- prise was not limited to activities on the Western front. In fact, apart from the first Ypres attack, cloud gas probably reaped more casualties in the East against Russia. We learn from Schwarte’s book: “From reliable descriptions we know that our gas troops caused an unusual amount of damage to the enemy—especially in the East—with very little expenditure of effort. The special battalion formed by Austria-Hungary was, unfortunately, of no special importance for various reasons.” Had the nature of the Russian campaign been different, with a smaller front, and nearer critical objectives to the front of attack, we have no doubt that gas would have assumed enormous importance in the East. Russia, even more feebly organised for production than ourselves, would have been at a tremendous disadvantage, both from the point of view of protection and of the retention of satisfac- tory morale by retaliation. Conclusion.—This, then, was the period of the German surprise, during which the first big shock occurred, and which promised most success for fur- ther attempts owing to the lack of comprehensive protection by the Allies. Looking at the matter in a very broad way, ignoring the moral and legal as- pects of the case, we can describe this period as an example of brilliant chemical opportunism. Accord- ing to plan or otherwise, conditions for this experi- ment were ripe in Germany as in no other country. Overcoming whatever prejudices may have existed, the German authorities realised this, seized the op- portunity, and very nearly succeeded. 47 CHAPTER III THE ALLIED REACTION Loos, September 1915, to Ypres, July, 1917. The Need of Retaliation.—The conclusive sign of the Allied reaction to the German poison gas attack appeared at the battle of Loos. “Owing to the re- peated use by the enemy of asphyxiating gas in their attacks on our positions,” says Field-Marshal French in his despatch of October 15, 1915, “I have been compelled to resort to similar methods, and a de- tachment was organised for this purpose, which took part in the operations commencing on the 25th Sep- tember for the first time.” Five months thus elapsed before retaliation. From a military point of view there can be no doubt as to the wisdom, in fact the absolute necessity, of using gas in order to reply to the many German attacks of this nature. The ques- tion of morale was bound up in this retaliation. Had the Germans continued their chemical attacks in variety and extent as they did, and had it been real- ised that for some reason or other we were not able to retaliate in kind, none but the gravest consequences could have resulted with regard to morale. It must be remembered that the earlier use of cloud and shell gas by the Germans was of local incidence, when compared with its tremendous use along the whole of the front in the later stages of the war. 48 The Allied Reaction First Signs.—Our preparatory period was one of feverish, if somewhat unco-ordinated, activity. The production of a protective appliance, the gas mask, was vital. This development will be considered later. Allied chemical warfare organisations arose, to become an important factor in the later stages of the war. The history of Allied gas organisation is one of the gradual recognition that chemical warfare represented a new weapon with new possibilities, new specific uses, and new requirements from the rear. Its beginnings are seen in the English and French Scientific Advisory Committees appointed to examine the new German method. One could always trace an element of reluctance, however, in Allied develop- ment, signs that each move was forced upon us by some new German surprise. We find the other ex- treme, the logical outcome of war experience, in the completely independent Chemical Warfare Service now actually adopted in the United States of Amer- ica. This is dealt with in a separate chapter. The decision to retaliate once made, our difficulties commenced. We required gas, weapons, and meth- ods for its use, trained personnel, and the association of certain scientific with military standards without losing the field efficiency of the latter. The German staff found this in their co-operation with eminent scientists, notably Professor Haber. Without draw- ing invidious distinctions between pre-war military and public appreciation of chemical science in Eng- land and Germany, it would be merely untrue to state that the Germans were not in a position of advan- tage in this respect. However, chemical mobilisation and co-operation proceeded sufficiently rapidly to provide us with personnel and material for the Loos attack. The assembly and organisation of personnel oc- 49 The Riddle of the Rhine curred in three directions. In the first place the Royal Society had already begun to mobilise promi- nent scientists for other war purposes. In the second place, different formations in the field, realising the need for specialist treatment of the gas question, after the first German attack, created staff appoint- ments for certain chemists chosen from infantry regi- ments and other formations on the front. Thirdly, men were collected at a depot in France to form the nucleus of the offensive gas troops. For this purpose chemists were specially enrolled and chosen men from infantry and other front line units were added. Early gas attacks and gas organisation did not ap- pear to justify the immobilisation of so much chemi- cal talent in the offensive gas troops, when chemists were needed all over England for munition produc- tion so vital to war. But later events justified the mobilisation and military training of these specialists. The expansion of the advisory and offensive organi- sations at the front necessitated a large number of officers, whose chemical training was of great value. It is difficult to see where they would have been found had they not been mobilised with the Special Com- panies. Moreover, their offensive and battle ex- perience gained with the latter was of great value. Six or seven weeks’ training witnessed the conversion of a few hundred men of the above type into one or two so called Special Companies. The spirit and work of these men in the Loos attack cannot be spoken of too highly. The Loos Attack, September, 1915.—The Field- Marshal bears testimony to its success as follows: “Although the enemy was known to have been pre- pared for such reprisals, our gas attack met with marked success, and produced a demoralising effect in some of the opposing units, of which ample evi- 50 The Allied Reaction dence was forthcoming in the captured trenches. The men who undertook this work carried out their un- familiar duties during a heavy bombardment with conspicuous gallantry and coolness; and I feel con- fident in their ability to more than hold their own should the enemy again resort to this method of warfare.” There is evidence, however, that this early at- tack, inefficient as it appeared to be to participants, met with considerable success. Schwarte’s book tells us: “The English succeeded in releasing gas clouds on a large scale. Their success on this oc- casion was due to the fact that they took us by sur- prise. Our troops refused to believe in the danger and were not sufficiently adept in the use of defen- sive measures as prescribed by G.H.Q.” On the occasion of a cloud attack a few weeks later, at the storming of the Hohenzollern re- doubt, Sergeant-Major Dawson, in charge of a sec- tor of gas emplacements in the front line trench, won the Victoria Cross. The German reply to our bombardment was very severe and under stress of it a battery of our cylinders, either through a direct hit or faulty connections, began to pour gas into our own trenches. In order to prevent panic and casualties among our own troops at this critical time, a few minutes before zero, the moment of as- sault, Sergeant-Major Dawson climbed on to the parapet under a hail of shell, rifle, and machine-gun fire, and, hauling up the cylinders., in question, car- ried them to a safe distance into the poisoned at- mosphere of No Man’s Land and ensured their complete discharge by boring them with a rifle bul- let. In addition to the Hohenzollern attack cloud gas was used in December, 1915, in the region of Givenchy. 51 The Riddle of the Rhine The Somme Battle, 1916.—My impression as an eyewitness and participator, however, was that the real British gas offensive began after, and as a re- sult of, the Loos experience. Material, organisa- tion, and numbers of personnel, both at the front and at home, co-operation with staffs and tactical conceptions all improved vastly in time to contribute largely to the efficiency of preparations for the Somme offensive in July, 1916. During the early months of 1916, a Special Brigade was created by expanding the four Special Companies, and the 4-inch Stokes mortar was adopted, training being vigorously pursued. As many as no cloud gas dis- charges, mainly of a phosgene mixture, occurred during the Somme battle, and evidence of their suc- cess is seen in German reports. These successes were due not only to the magnitude of our opera- tions, but to the carefully developed cloud attack tactics which aimed at obtaining maximum results from the gas employed. The factor of surprise governed all other considerations. Attacks oc- curred at night and depended for success upon the concentration of the maximum amount of gas in the given sector for a short, sharp discharge under the best wind conditions. There is abundant evidence of our success in these attacks. Probably the most marked feature of the captured documents or of prisoners’ statements during the later stages of the Somme battle was the continual reference to the deadly effect of British cloud gas. The captured letter of a German soldier writing home stated: “Since the beginning of July an unparalleled slaugh- ter has been going on. Not a day passes but the English let off their gas waves at one place or an- other. I will give you only one instance of this gas; men 7 and 8 kilometres behind the front line 52 The Allied Reaction became unconscious from the tail of the gas cloud, and its effects are felt 12 kilometres behind the front. It is deadly stuff.” The accuracy of this reference to the long range effect of our gas clouds is borne out in a number of other statements. For example, we learnt from a prisoner examined by the French: “The men were thrown into disorder and raised their masks because they were suffocated. Many fell in running to the rear; a number did not become ill until the next day. Vegetation was burnt up to a depth of 8 kilometres.” Again, prisoners taken at Maurepas stated that one of the English gas attacks was ef- fective 10 kilometres back. There are also marked references to the surprise nature of our gas attacks, which are an unconscious tribute to the successful tactical developments which have already been referred to, and also numerous other references to the “delayed” action of phos- gene. The prisoner mentioned above, taken at Maurepas, gave testimony that some were only taken ill after several days, and one died suddenly two days after, whilst writing a letter. One pris- oner, pointing to Les Ayettes on the map, stated that about the beginning of September when gas came over suddenly in the late evening, they thought it was from artillery fire because it was so sudden. No one was expecting gas and very few were carry- ing their masks. Another one stated: “The at- tack was a surprise and the cloud came over and passed fairly quickly. The whole thing did not occupy more than ten minutes.” More than thirty per cent, of the battalion was put out of action. Finally, to show what a serious imposition this constant cloud gas attack was upon the German Army, we will quote from the Special Correspondent 53 The Riddle of the Rhine of the Fossiches Zeitung. He said: “I devote a special chapter to this plague of our Somme war- riors. It is not only when systematic gas attacks are made that they have to struggle with this devil- ish and intangible foe.” He refers to the use of gas shell, and says: “This invisible and perilous spectre of the air threatens and lies in wait on all roads leading to the front.” In a despatch dated December 23rd, 1916, from Field-Marshal Sir Douglas Haig, G.C.B., the situ- ation is ably summarised: “The employment by the enemy of gas and of liquid flame as weapons of offence compelled us not only to discover ways to protect our troops from their effects but also to devise means to make use of the same instruments of destruction. Great fertility of invention has been shown, and very great credit is due to the special personnel employed for the rapidity and success with which these new arms have been developed and perfected, and for the very great devotion to duty they have displayed in a difficult and dangerous service. The army owes its thanks to the chemists, physiologists, and physicists of the highest rank who devoted their energies to enable us to surpass the enemy in the use of a means of warfare which took the civilised world by surprise. Our own experience of the numerous experiments and trials necessary be- fore gas and flame could be used, of the prepara- tions which had to be made for their manufacture, and of the special training required for the per- sonnel employed, shows that the employment of such methods by the Germans was not the result of a desperate decision, but had been prepared for deliberately. “Since we have been compelled, in self-defence, to use similar methods, it is satisfactory to be able to 54 pThe Allied Reaction record, on the evidence of prisoners, of documents captured, and of our own observation, that the en- emy has suffered heavy casualties from our gas at- tacks, while the means of protection adopted by us have proved thoroughly effective.” One of the causes which leads to a lack of under- standing of the chemical weapon is the fact that the results of chemical attack are not, like those of a huge assault, obvious to the mere visual ob- server. A period of months often elapsed during the war before the immediate effect of a gas at- tack was known. It was inspiring to witness the assault of the 18th Division near Montauban on July ist, 1916. But few realised the part played by the preparatory gas attacks in that and other sectors of the line, in weakening the numerical strength and battle morale of effective reserves. It is, therefore, of great interest to follow up a par- ticular 'case and to obtain a connected idea of the series of events associated with some particular at- tack. The early stages of the Somme battle were char- acterised by a number of cloud gas attacks which served the double purpose of a feint, and reducing the strength of available reserves. These attacks occurred chiefly along the part of the line north of the Somme battle zone, and they extended as far as the sea. One of them occurred on the 30th August, 1916, at Monchy, between Arras and Bapaume. About one thousand cylinders were dis- charged during the night. The usual careful or- ganisation preceded the attack and it is quite likely that it shared the advantage of surprise common to a large number of these attacks. Three German regiments were holding the line directly in front of the British sector concerned. Before December, 55 The Riddle of the Rhine 1916, the following reliable information was col- lected from prisoners and confirmed by cross-ex- amination. One Company of the 23rd regiment was in training and had no gas masks with it. The gas came along quickly and about half the Com- pany were killed. After that there were more strin- gent rules about carrying masks. They had no recollection of a gas alarm being sounded. An- other man said that in his Company no special drill or training was being done, and a large number of men were put out of action through not being able to adjust their respirators in time. There was no warning, although after this gas alarms were given by ringing church bells. Other prisoners, from the 63rd regiment, had such vivid recollections of the attack that they said: “The effects of the English gas are said to be appalling.” Collecting informa- tion from prisoners belonging to this or that Com- pany, and carefully checking by cross-examination, it is clear that this attack must have been responsible for many hundreds of casualties. Reasons for British Cloud Gas Success.—The fact that the British persisted with cloud gas attack and attained so much more success than the Germans, after the first surprise, was due to a curious combina- tion of causes, quite apart from the prevailing favourable wind. Our Casualties.—In the first place, we knew from bitter experience the deadly effect of a successfully operated cloud gas attack. We knew, for example, that in the first attack at Ypres there were more than 5000 dead with many more times that number of casualties. On the other hand, the Germans, left to speculate on our casualties, retained the conviction from apparent non-success, that cloud gas was not a suitable form of preparation behind which to develop 56 The Allied Reaction big infantry attacks. Quoting from Schwarte: “Large gains of ground could hardly be attained by means of an attack which followed the use of gas clouds, therefore such clouds were soon merely em- ployed as a means of injuring the enemy, and were not followed up by an attack.” This represented German policy, and it lacked vision. They did not realise that their difficulty was the method of form- ing the cloud, and that if a more mobile and long range method of cloud formation materialised, with correspondingly less dependence on wind direction, the object which they once sought and failed to attain would again be within their reach. Exhausting Preparations for Cloud Attack.— The second reason accounting for the relatively early cessation of German cloud attacks is one constantly referred to in the German war memoirs. It was the enormous mechanical and muscular effort required in preparing for such an attack. Few people realise what hours of agonised effort were involved in pre- paring and executing a cloud gas attack. The cylinders had to be in position in specially chosen em- placements in the front line within certain time limits. The “carrying in” could not be spread over an in- definite period and usually took from two to six nights, according to the magnitude of the attack and the local difficulties. Naturally, all the work occurred in the dark. Picture the amount of organisation and labour required to install 2000 cylinders on, say, a two mile front. These cylinders would have to be assembled at a number of points in the rear of the given line where the roads met the communication trenches. No horse or lorry transport could assemble at such points before dark, nor be left standing there after dawn. To carry this number of cylinders more than fifty lorries would be required 57 The Riddle of the Rhine or, say, perhaps, 90 G.S. wagons. All the points of assembly would be under possible enemy shell fire. These points would be normally in use for the un- loading of rations and trench engineering materials, etc., with which cylinder transport would have to be co-ordinated. Once arrived at the unloading points, parties had to be provided for unloading the lorries and for conveying the cylinders up to the front line trench. In a normally difficult trench system, for a carry of a mile to a mile and a half of com- munication trench, at least four men per cylinder are required to give the necessary margin for casualties and reliefs, etc. This implies the organisation of more than 8000 officers and men for the installation, with a fundamental condition that only small groups of these men be assembled at any one point at any given time. The installation of gas for an attack on this scale would have been a matter of vast and complicated organisation if there were no other activities in the trench system, and no enemy to harass the work. But to co-ordinate such an enterprise with the busy night life of the trench system and to leave the enemy unaware of your activities was a task which tried the patience, not only of the Special Companies, who organised, guided, and controlled these opera- tions, but much more so of the Infantry Brigades and Divisions whose dispositions were interfered with, and who had to provide the men for the work. Add to this even more acute difficulties. The front line trench is nothing but a series of traverses, thus to avoid the enfilade effect of shell and machine-gun fire. A straight trench is a death-trap. But to carry hundreds of pole-slung cylinders, already weighing as lead, round traverses on a dark night, is a feat re- quiring superhuman endurance. Therefore many “carries” finished with a hundred yards “over the 58 The Allied Reaction top” through the parados wire, to the near locality of the appropriate emplacement in the front line. This last carry was critical; a false step, the clatter of falling metal, meant drawing the fire of some curious and alert German machine gunner. The sudden turning of darkness into day by enemy Very lights imposed instantaneous immobility. Yet all the time tired men were straining at their heavy burden and any moment a cylinder might be pierced by inten- tional or unaimed rifle fire. But the spirit of the infantry in this work, as in all they undertook, is to their everlasting credit. These tasks were an enemy challenge and they accepted it successfully, albeit with much cursing. The work was indeed beyond description and the country, colonial, and London troops expressed their opinion equally emphatically in their own peculiar way. Think again of the need of systematic wind observation along the whole front of attack, the dis- organization and “gas alert” conditions imposed on the favourable night, the possibility of postponement, and we can only draw one conclusion. There must have been some imperative need or justification of cloud gas attack for the army to have encouraged or even tolerated its continuance. There is no difficulty in understanding why gas attack was so exceedingly unpopular among the staffs in the early stages of the war. Later, however, when they realised the enemy casualties that were being created by the gas, and what a large part it was taking in the war of attrition, the opposition and lack of appreciation vanished. Further, when the projector arrived to produce similar effects with less demand upon infantry per- sonnel, and less dependence on the wind, the whole tone of the army towards gas was changed, and it became almost popular. 59 The Riddle of the Rhine The peculiarity of cloud gas attack was the con- centration of all this effort of preparation within a few days. In terms of military efficiency, the amount of energy expended was fully justified by the casualties produced. We know that some of our cloud attacks were responsible on one night for many thousands of casualties, and the amount of artillery effort to give such a result would probably have been considerably larger. But under normal conditions of warfare, such artillery effort would have been ex- pended over a much longer period of time. The Livens Projector.—The Somme offensive witnessed the use of a new British gas weapon which became of the utmost importance. This was the mortar known as the Livens Projector. Its origin dates back many months, however, and is of con- siderable interest. A British engineer, Lt. Livens (afterwards Major, D.S.O., M.C.) of the Signal Corps, was inspired to constructive and aggressive thought on the gas question by a double motive. He quickly realised the tactical weakness of the German method at Ypres, once shorn of its vast initial possibilities of surprise. He saw the advantage of being able to command the point or locality of inci- dence of the cloud, instead of being limited to the actual trench front. Prompted by a direct personal interest in the huge loss sustained by the Lusitania outrage, he determined to find a practical outlet for his feelings by developing his views on the future of gas clouds. In a few months the general prin- ciples of the projector were defined and a crude specimen resulted. Caught up, however, in the gas organization, preparations for the cloud attack at Loos absorbed all his attention and energies and the consequent reorganization found him developing a flammenwerfer and training a company for its use. 60 THE LIVENS PROJECTOR—II. A working party fitting electric leads and adjusting bombs prior to discharge. This work occurs at night. To face page 61 The Allied Reaction It was really the Somme battle which gave him the first opportunity to carry his idea into offensive practice. This arose in front of High Wood, which was a veritable nest of German machine gunners in such a critical tactical position as to hold up our ad- vance in that region. The huge stationary flammen- werfer had recently been used by Major Livens and his company against a strong point in front of Carnoy in the assault of July ist. Here again the effect of flame was limited even more than that of cloud gas by dependence on a fixed emplacement. It was quickly grasped that the solution was to be found in the application of the projector principle to the use of oil for flame and a crude projector was de- vised for the emergency, using oil cans as mortars, burying them in the earth for two-thirds of their length and employing water cans as bombs. As soon as the possibilities of the weapon were seen its development was pressed. The usual Livens Projector consisted of a simple tube mortar or pro- jector closed at one end, and fitted with a charge box on which rested the projectile. By an electrical arrangement and suitable communications, large numbers, sometimes thousands, of these projectors could be discharged at a given moment. In this way quantities of gas, comparable with the huge tonnages employed in the normal stationary cloud attack, could be used to produce a cloud which would originate, as cloud, as far as a mile away from the point of dis- charge. In other words, the advantages of cloud attack could be used with a much smaller dependence on wind direction, and with a much greater factor of local surprise. Thus when the partially perfected and efficient weapon was used in large quantities dur- ing the British Arras offensive in April, 1917, the German Army was thrown into great consternation. 61 The Riddle of the Rhine But for the fact that protection had developed so strongly on both sides, the use of the Livens Pro- jector would have gone far towards a decision. The simplest way to illustrate the peculiar value of the projector will be to quote from one or two of the many Intelligence reports collected. Thus from a captured document dated July, 1917, be- longing to the mth German Division, signed Von Busse, we have: “The enemy has combined in this new process the advantages of gas clouds and gas shells. The density is equal to that of gas clouds, and the surprise effect of shell fire is also obtained. For the bombardment the latter part of the night is generally chosen, in a calm or light wind (the direction of the latter is immaterial). The enemy aims essentially at surprise. Our losses have been serious up to now, as he has succeeded, in the ma- jority of cases, in surprising us, and masks have often been put on too late. ... As soon as a loud report like a mine is heard 1000-1500 metres away, give the gas alarm. It does not matter if several false alarms are given. Masks must not be taken off without orders from an officer. Men affected, even if ap- parently only slightly, must be treated as serious cases, laid flat, kept still, and taken back as soon as possible for medical treatment. Anti-gas officers and Company Commanders will go through a fresh course of training on the above,principles.” The influence of gas discipline is borne out by another captured statement that they could only attempt to “reduce their losses' to "a minimum' by the strictest gas discipline.” Again, from a prisoner we learn that “every time a battalion goes into rest, masks are inspected and a lecture is delivered by the gas officer on British gas projectors, which are stated to be the most deadly form of warfare.” So great was 62 The Allied Reaction the impression formed by the introduction of the projector that uneasiness at the front was reflected later on in the Press. Thus, quoting from reference to the military discussion before the main committee of the Reichstag. “Casualties from enemy poison gas admit on the whole of a favourable judgment, as the harm involved is only temporary, and in most cases no ill after-effects persist” (Tdgliche Rund- schau, 24.4.18). “Cases of gas poisoning are not as a rule accompanied by harmful consequences, even though the treatment extends sometimes over a long period” (Forwarts, 25.4.18). Based on the later mustard gas casualties these statements would have been more truthful. As it was, they afforded poor consolation to the German people. British Gas Shell.—The British first used shell gas as lachrymators, in trench mortar bombs, in small quantities, during the battle of the Somme, but for the first time, during the battle of Arras, 1917, our supplies of gas for shell were sufficient for extensive and effective use. Our success can be measured by the report dated April nth, 1917, from the General Commanding the first German Army on “Experi- ences in the Battle of Arras,” in which he says: “The enemy made extensive use of gas ammunition against our front positions as well as against batteries.” “The fighting resistance of the men suffered considerably from wearing the mask for many hours.” Artillery activity seems to have been paralysed by the effects of the gas. In a general comparison of British and German methods of gas warfare,1 General Hartley tells us “our methods improved rapidly during 1917. At first we neglected, almost entirely, the question of rate of firing, but we soon arrived at the method of 1 Journal of the Royal Artillery, February, 1920. 63 The Riddle of the Rhine crashes of lethal shell. These got the surprise con- centrations of gas which proved so effective, and we realised that the number of shells required to produce an effect was much bigger than we thought originally. At Messines gas was used in much the same way as at Arras.” German Gas Shell Development, 1916.—The main evidence of Allied reaction was to be found in the intensive development of cloud gas attacks, but during the same period the Germans who appeared to be abandoning the use of cloud gas, were making steady efforts to regain their initiative by the compre- hensive development of shell gas. Thus, to quote from General Hartley’s report to the British Associa- tion, “In the Summer of 1916 chlor-methyl-chloro- formate with toxic properties similar to those of phos- gene wras used against us in large quantities during the battle of the Somme. Later this was replaced by tri- chlor-methyl-chloro-formate, a similar liquid, which was used until the end of the war as the well-known Green Cross shell filling. The use of phosgene in trench mortar bombs also began in 1916.” Many of those on the front in 1916 will remember the sur- prise gas shell attack of December of that year, on the Baudimont gate at Arras. We were fortunately let off lightly with little over 100 casualties, but the effect was to tighten up gas discipline all along the line. The appearance of the new substances repre- sented definite German progress and had definite mili- tary results, but they lost decisive value owing to the relative inefficiency of German gas shell tactics. Consideration of the Allied reaction must include some reference to the appearance of the American Army in the field. The Americans during their more or less educational period gave serious attention to the gas question, and showed almost immediately, by 64 The Allied Reaction their preparations, that they attached enormous im- portance to the new weapon. Main Features of the Period.—It is difficult to generalise. But the following features appear to characterise the period under discussion. In the first place we see German policy tending towards the use of gas projectiles containing a variety of organic substances. Secondly, we have the British exploita- tion of cloud gas attack both in magnitude and method. The Livens Projector provides the third important feature. Fourthly, we note the somewhat tardy development of the British use of gas shell. A number of causes, no doubt, unite in responsibility for the above. But whether due to definitely framed policy on our part, or merely to the hard facts of the case, one important factor seems largely responsible. It is the relative ease of production by Germany as compared with ourselves. When German military opinion tended towards the development of gas shell, a variety of substances came quickly to hand, not only from German research sources, but in quantity from the dye factories. No such quick response could have met, or actually did meet, the demands of Allied military policy. Whatever ideas emanated from our research organisations, there was no quick means of converting them into German casualties. It is true that we could obtain chlorine and later phosgene in bulk and devote them to the exploita- tion of the older gas appliances in cloud methods. But British chemical supply was weak, owing to the absence of a strong organic chemical industry. In other words, German flexibility of supply meant flex- ibility in meeting the requirements of military policy, and, given sound military policy, this flexibility meant surprise, the essence of successful war. 65 CHAPTER IV INTENSIVE CHEMICAL WARFARE The chemical struggle became very intense in the Summer and Autumn of 1917. Projector attacks multiplied, the use of chemical shell increased on both sides, allied and enemy gas discipline was tight- ened up, officers and men acquired a kind of gas sense, a peculiar alertness towards gas. The home front was strengthened in England and France by reinforced and sounder organisations, and by the vigorous steps taken by America. The Germans be- gan to reap the benefit of their gas shell policy. At the end of 1916, as a result of a review of the pro- duction situation, they had arrived at the so-called Hindenburg Programme. This included a large out- put of gas for shell, and from its realisation the Ger- mans acquired a momentum which kept them ahead well into 1918. It is a very clear indication of the progress made by Germany in research, that the sudden expansion in manufacture required by the Hindenburg Programme found a number of new efficient war chemicals ready for production. The Mustard Gas Surprise.—The next big sur- prise came from Germany. Units in the line at Nieu- port and Ypres in July, 1917, were the first to ex- perience it. Some were sprinkled and some deluged with a new type of German shell chemical which, in many cases, evaded the British gas discipline, and mustard gas, unrecognised, caused many serious cas- 66 Intensive Chemical Warfare ualities. Even those who wore the mask were at- tacked by the vesicant or blistering influence of the gas. The matter is vividly expressed in a letter, given below, which I received from an officer wounded in the Nieuport attack: “I was gassed by dichlor-diethyl sulphide, com- monly known as mustard stuff, on July 22nd. I was digging in (Livens Projectors), to fire on Lom- bartzyde. Going up we met a terrible strafe of H.E. and gas shells in Nieuport. When things quietened a little I went up with the three G.S. wagons, all that were left, and the carrying parties. I must say that the gas was clearly visible and had exactly the same smell as horseradish. It had no immediate' effect on the eyes or throat. I suspected a delayed action and my party all put their masks on. “On arriving at the emplacement we met a very thick cloud of the same stuff drifting from the front line system. As it seemed to have no effect on the eyes I gave orders for all to put on their mouthpiees and noseclips so as to breathe none of the stuff, and we carried on. “Coming back we met another terrific gas shell attack on Nieuport. Next morning, myself, and all the eighty men we had up there were absolutely blind. The horrid stuff had a delayed action on the eyes, causing temporary blindness about seven hours after- wards. About 3000 were affected. One or two of our party never recovered their sight and died. The casualty clearing stations were crowded. On August 3rd, with my eyes still very bloodshot and weak and wearing blue glasses, I came home, and went into Millbank Hospital on August 15th.” These early mustard gas attacks caused serious gaps amongst the troops assembling for the Northern offensives. The gas was distinctly a new departure. 67 The Riddle of the Rhine Effective in low concentrations, with very little odour, and no immediate sign of discomfort or danger, very persistent, remaining on the ground for days, it caused huge casualties. Fortunately, its most fatal effects could be prevented by wearing a respirator, and only a very small proportion of mustard gas casualties were fatal. The insidious nature of the gas and the way in which it evaded the gas discipline is shown in the following example from an official report: “A bat- tery was bombarded by the new gas shell from io p.m. to 12 midnight and from 1.30 to 3.30 on the night of 23rd-24th July. The shelling then ceased and at 6 a.m., when the battery had to carry out a shoot, the Battery Commander considered the air free from gas, and Box Respirators were accord- ingly removed. Shortly afterwards several men went sick from gas poisoning, including the Battery Commander. On previous nights they had been fired at with gas shell in the same way, but found it safe to remove Box Respirators after a couple of hours. On the occasion in question the air was very still and damp.” In another case an officer in the Boesinghe sector, during the gas bombardment on the night of the 22-23 July, adjusted the mouthpiece and nose-clip, but left the eyes uncovered. His eyes were seriously affected, but he had no lung symp- toms on the morning of the 24th. Mustard gas (or Yellow Cross, as it was called officially by the Germans) was the war gas par excellence for the purpose of causing casualties. In- deed, it produced nearly eight times more Allied casualties than all the various other kinds of German gas. It was used for preparation a considerable time before the attack, or during the attack, on local- 68 Intensive Chemical Warfare ities and objects with which the attackers would have no contact. Blue Cross.—Another new type, the German Blue Cross, was introduced about the same time. This represented at different times diphenylchlorarsine, diphenylcyanarsine and other arsenic compounds. The Blue Cross compound was contained in a shell with high explosive. The enemy expected that the shell burst would create such a fine diffusion of the compound that it would penetrate our respirator mechanically, and then exercise its effects. These, violent irritation of the nose and throat, nausea and intense pain, would cause the removal of the respi- rator and allow other lethal gases to have full play. Fortunately, the German hopes of penetration were not realised, but they were, no doubt, continuing to develop the vast possibilities of the new method. German Emphasis on Gas Shell.—The Green Cross or lethal filling was another type of German gas shell. Green Cross covered such compounds as phosgene and chlor-methyl chloroformate. Al- though these caused fewer casualties than mustard gas, they were relatively more fatal. Schwarte’s book tells us that, “After the introduction of the Green Cross shell in the summer of 1916, at Verdun over 100,000 gas shell were used to a single bom- bardment.” From the time of the first use of mustard gas until the terrific gas shell attack of March, 1918, the Germans persistently used their new types against us with considerable effect. Even when the period of surprise effect with mustard gas was over, the number of casualties caused by it was considerably greater than during the months when the Germans were firing only non-persistent lethal shell of the Green Cross type. The Germans regarded these 69 The Riddle of the Rhine shell gas developments as largely responsible for our failure to break through in the Autumn of 1917. The German Projector.—During this period they also developed a projector. Their first use of it was again co-ordinated with an attempt at surprise. For- tunately, protection and gas discipline had reached such an efficient state that normal “alert55 conditions of the front line system were largely able to counter the use of this new device by Germany. The first attack was against the French at Rechicourt on the night of December 5th-6th. On the night of December ioth-nth, 1917, they fired several hundred projectiles on the Cambrai and Givenchy sectors of the British line. In both cases the gas bombs were fired almost simultaneously into a small area including our front and support lines. The bombs appeared to have been fired from the enemy support line, as observers state that they saw a sheet of flame run along this line, followed by a loud explosion. The bombs, which emitted a trail of sparks, were seen in the air in large numbers and made a loud whirring noise. They burst with a large detonation, producing a thick, white cloud. The dis- charge was followed immediately by a bombardment with H.E. shrapnel and gas shell, and a raid was attempted south of Givenchy. We learn that so strong was the gas discipline that in many cases res- pirators were adjusted before the arrival of the bombs, the resemblance to our projector attacks hav- ing been established at once. When this was done practically no casualties occurred. Again, to show the efficiency of British protection against projector gas, we learn from official reports that, “At one point five bombs burst in a trench without harming the occupants. It should be remembered that the British box respirator protects against very high con- 70 Intensive Chemical Warfare centrations of gas which pass at once through the German mask.” Similar discharges were made against the French on two occasions in December, and against the Lens sector on December 30th. The compounds used in the bombs were phosgene and a mixture of phosgene and chlorpicrin. These attacks increased in number during the ensuing months. German Projector Improvements.—The Ger- mans developed a longer range modification and would undoubtedly have exploited this weapon very considerably but for the trend of the campaign. The Allied advance in 1918 uncovered a number of enemy dumps. Amongst the most interesting was one which contained a number of a new type of pro- jector. A prisoner of the 37th pioneer gas battalion, cap- tured on August 26th, had said that they were to practise with a new type of projector with a range of 3 kilometres, the increased range being obtained by rifling the bore of the projector. He stated that the intention was to use the longer range weapons in conjunction with the old short range projector, using the new type to deal with the reserve positions. The capture of the dumps referred to above revealed the truth of his statement. Two kinds of bombs were used, one containing H.E. and the other small pumice granules impregnated with phosgene. This was an ingenious attempt to produce a persistent but highly lethal gas by physical means, for hitherto the highly lethal gases had only been slightly persistent. The new projector had a calibre of 158 mm. and was termed the “Gaswerfer, 1918.” The impor- tance of this new projector cannot be overestimated. Its large scale use would, undoubtedly, have resulted in imposing stringent gas alert conditions at greater distances from the front line. 71 The Riddle of the Rhine Dyes in Gas Shell.—Another interesting German development of this period was the use of certain dyes or stains in gas shell. After gas bombardments in the winter of 1916-17, the snow was seen to be covered with coloured patches. These coincided with the bursts of the shell. Analysis of the earth showed that the colour was due to the presence of an actual dyestuff. A number of explanations were advanced to account for the use of the colour, of which the most probable claimed its employment for the identification of affected localities several hours or even days after the bombardment. This was especially the case with persistent types. As the ex- plosive charge of chemical shell was feeble, some such means of identification was necessary. It may be that the Germans expected that troops advancing after such bombardments would be helped by the splashes of colour, and that these earlier attempts were purely experimental. German Flame Projectors.—We have already re- ferred to the use of flame projectors by the enemy, and a picturesque account of their development and use in the later stages of the campaign is found in an extract from the Hamburger Nachrichten of the 9th of June, 1918: Their Origin.—“Our Flammenwerfer troops owe their origin to a mere incident. Their present com- mander, Major R., when an officer of the Reserve, received the order, during peace manoeuvres, to hold a certain fort at all costs. During the sham fight, having employed all means at his disposal, he finally alarmed the fire brigade unit, which was under his orders as commander of the fort, and directed the water jets on the attacking force. Afterwards, dur- ing the criticism of operations in the presence of the Kaiser, he claimed that he had subjected the attackers 72 Intensive Chemical Warfare to streams of burning oil. The Kaiser thereupon inquired whether such a thing would be possible, and he received an answer in the affirmative. “Long series of experiments were necessary before Engineer L. succeeded in producing a combination of various oils, which mixture is projected as a flame on the enemy by means of present day Flammen- werfer. “Major R. occupied himself in peace time with fighting fire as commander of the Munich Fire Brigade. The ‘Prince of Blades,’ as he is called by his ‘fire spouters,’ enjoys great popularity among his men as well as among the troops to whose assistance he may be called. He can look back on an important development of his units. Whereas in January, 1915, Flammenwerfer troops consisted of a group of 36 men, to-day they constitute a formation with special assault and bombing detachments, and are furnished with all requisites for independent action. In reading Army Communiques, we often find men- tion of these troops. If difficulty is experienced in clearing up an English or French Infantry nest, the ‘Prince of Hades’ appears with his hosts and smokes the enemy out. That conditions of membership of this unit hardly constitute a life insurance policy is obvious; nor is every man suitable. Special men who are physically adapted and who have given proof of keenness in assault are necessary for such work.” Further Flame Development.—Specimens of a very neat portable German Flammenwerfer were captured in August, 1917. It contained three essen- tial parts: a ring-shaped oil container surrounding a spherical vessel containing compressed nitrogen, which was used to expel the oil, and a flexible tube of rubber and canvas carrying the jet. The whole 73 The Riddle of the Rhine was arranged to be carried on the back. At about this time prisoners stated that men were transferred to the Flammenwerfer companies as a form of punishment. The Germans were fond of using the Flammen- werfer during counter-attacks and raids in which the morale factor is so important. Thus in September, 1918, in a raid against the British during our great offensive, the German raiding party was heralded by a shower of stick bombs and the Flammenwerfer men followed. The bombing party advanced under cover of these men, the smoke from the flame throw- ers acting as a screen. British experience was that the calm use of machine-gun fire soon put German flame throwers out of action, and it is clear that the Germans themselves realised this weakness of iso- lated flame attacks for, in one of their documents issued by German G.H.Q. in April, 1918, they said: “Flammenwerfer have been usefully employed in combats against villages. They must be engaged in great numbers and must fight in close liaison with the infantry, which helps them with the fire of its machine-guns and its grenades.” The 1918 Offensive.—Some idea of the impor- tance of these developments and of the scale on which they were exploited in the later campaigns of the war can be obtained by briefly examining the German plans for the use of gas in their 1918 of- fensive, and their execution: Die Technik im fVelt- kriege tells us: “During the big German attacks in 1918, gas was used against artillery and infantry in quantities which had never been seen before, and even in open warfare the troops were soon asking for gas.” The Yellow and Blue Cross shells first introduced into operation in July, 1917, were not incorporated 74 Intensive Chemical Warfare into comprehensive offensives until March, 1918. Owing to the exigencies of the campaign, the initial surprise value of these gases was subordinated to the later large scale use in the great offensive. In December, 1917, the German Army was instructed anew regarding the use of the new gas shell types for different military purposes, laying great stress on the use of non-persistent gas for the attack. Fortunately for us, the gas shells destined for this purpose were not relatively so efficient as the German persistent types, which were devoted to the more remote prep- aration for attack and to defensive purposes. Their penetrating Blue Cross types were a comparative failure. Although plans emphasised the importance of this gas for the attack, facts later gave greater prominence to the use of the persistent Yellow Cross shell for defensive purposes in the great German retreat. Ludendorff’s Testimony.—Ludendorff, himself, emphasised the great importance which was attached to gas in this offensive. He says1: “And yet our artillery relied on gas for its effect, and that was de- pendent on the direction and strength of the wind. I had to rely on the forecast submitted to me at II a.m. by my meteorologist, Lieutenant Dr. Schmaus. Up till the morning of the 20th strength and direction were by no means very favourable; indeed, it seemed almost necessary to put off the attack. It would have been very hard to do. So I was very anxious to see what sort of report I should get. It was not strikingly favourable, but it did indicate that the attack was possible. At 12 noon the Army Groups were told that the programme would be carried out. Now it could no longer be stopped. Everything must run its course. G.H.Q. 1 My War Memories. Hutchinson & Co., 1919. 75 The Riddle of the Rhine higher commanders and troops had all done their duty. The rest was in the hands of fate, unfavour- able wind diminished the effectiveness of the gas, fog retarded our movements and prevented our su- perior training and leadership from reaping its full reward.” Preparations for Assault;—Gas Defensive at Armentieres.—For twelve days prior to their March assault the Germans used mustard gas over certain areas, and the non-persistent types for other localities. As an example of the first method, we can state that nearly 200,000 rounds of Yellow Cross shell were used on the 9th March, and caused us heavy casualties. The actual attack at once con- firmed our suspicions of enemy intention to break through on the territories which were not infected by the persistent mustard gas. In the second case, of the non-persistent types of Blue and Green Cross, bombardments of tremendous intensity occurred for several hours before the assault, on all defensive positions and organisations for several miles behind the front line. Millions of rounds must have been used. Although not without serious effect on the campaign, this furious gas attack did not fully justify expectations. The failure of mask penetration by the Blue Cross shell prevented the full possibilities of Green Cross coming into play. To illustrate the specific use of gas in this great offensive, and the organic way in which it was co-ordinated in the plan of attack, we quote from a recent statement by Gen- eral Hartley.1 Referring to the gas shelling imme- diately before the extension of the attack to the north of Lens on 9th April, he explains, “Between the 7th April and 9th April there was no gas shelling between the La Bassee Canal and Armentieres, 76 1 Journal of the Royal Artillery, February, 1920. Intensive Chemical Warfare while there was heavy Yellow Cross shelling imme- diately south of the Canal, and Armentieres had such a heavy bombardment that the gutters were running with mustard gas. This indicated the probability of an attack on the front held by the Portuguese, which occurred on 9th April, Blue and Green Cross being used in the preliminary bombardment.” The Portuguese front lay between the two Yellow Cross regions. Fixed Gas Barrage at Kemmel.—Another most interesting example is also quoted, dealing with the shelling preceding the attack on Kemmel on 25th April. “This is an interesting case, as non-persistent Blue Cross shell were used within the objective and Yellow Cross just behind it, indicating that on 25th April the enemy did not intend to go beyond the line they gained.” Percentage of Chemical Shell.—Some idea of the importance which the Germans attached to their chemical ammunition, as distinct from explosives, can be gathered from the following extract from a captured order of the Seventh German Army, dated May 8th, 1918, giving the proportion of chemical shell to be used in the artillery preparation for the attack on the Aisne on 27th May, 1918. “(140. Experts on Artillery staffs, see Artillery Gas Experts. Gas Mask, see Mask, gas, and Helmet, gas. Personnel, 89. Regiment, 90, 91. School, German, 86, 90, 91. Shell, see Shell, gas. Specific uses of, 39. Gaswerfer, 1918, 71. Gelbolin, 221. German Dye Industry, see Dye Industry, German. Patent Policy, see Patent Policy, German. Press, 33, 54. Production, see Production, German. Givenchy, attack near, 51, 70. Green Cross, 29, 69, 77,135,136, 158. Haber Process, see Nitrogen, Fixa- tion. Hague Convention, 32, 33, 240. Hanlon Field, experimental sta- tion, 175, 218. Hartley Mission, 87,148,149,172, 207, 245. Heeres-Gasschule, see Gas School, German. Helmet, Gas, 121, 122, 124. See also Mask. Hexamine, 122. Hill 60, attack on, 40. Hindenburg Programme, 66, 89, 149. Hochst, 87,151,152,156,157,158, 161. Hohenzollern Redoubt, storming of, si. Iiooge, attack on 2nd Army, 44. Hydrocyanic acid, see Prussic acid. I.G., see Intersessen Germein- schaft. 277 Index Immune Functions, 217, 218, 232. Imperial College of Science, 97. Indigo, 28, 155,158, 159,165, 168, 202, 255. Initiative, Struggle for, in, 121, 134, 273. Interessen Gemeinschaft, 18, 32, 86, 89,109,148,149-151. i54, 163, 186, 187, 192, 198, 200, 202, 205, 214, 258-260, 264- 267, 270. Inter-Allied Chemical Supply Committee, 107. Commission of Control, 85, 264. Liaison, 106. Munitions Council, 107. Intensive Chemical Warfare, 66. International Police Force, 256. Kaiser Wilhelm Institute, 35, 85, 89. Kalle and Co., 151. Kemmel, attack on, 77, 224, 229. K. Stuff, 41. Kommandeur der Gastruppen, 91. Krupp’s Works, 206. La Bassde Canal, 76. Lachrymators, 26, 42, 118, 124, 156, 170, 217, 218. League of Nations, 21, 127, 239, 246, 247, 255, 256, 258, 260, 261, 262, 263, 271-273. Lens, attack at, 71, 76. Le Rutoire Farm, 43. Leopold Cassella, G.m.b.H., 151. Leverkusen, 86, 90, 149, 151, 156- 158, 159, 161, 208, 250. Levinstein Limited, 168, 169. Lewis Gun, 252. Limitation of Armament, 114, 244- 248, 254, 264, 265, 267. See also Disarmament. Livens Projector, 29, 60, 61, 65, 90, 101, 133, 17s, 216, 227, 228, 245, 252. Longworth Bill, 178. Loos, Battle of, 43, 50,118,170. Ludwigshafen, 88, 151, 156, 159, 160, 161. M2, French Mask, 135. March, 1918, German Offensive, 17, 69, 76, 219, 224. Marne, Battle of, 94, 143, 205. Mask, first improvised gas, 121. See also Helmet, gas. German cartridge, see Car- tridge Mask, German. M2 French, see M2, French Mask. resistance of, to breathing, 130, 131, 140. Metol, 203. Minist&re de l’Artillerie et des Munitions, 100. Monchy, attach at, 55. Monopoly, Germany Dye, 18, 38, 148, 188, 198, 214, 266. Montauban attack, 55. Munitions Inventions Depart- ment, 97. Mustard Gas, 27-29, 28, 67,68, 74, 75. 77. 78, 81, 89, 119, 136, 137, 141, 158, 170, 216, 217, 221, 224, 230, 236, 240, 255, 258, 272. , Allied Production, 80, 81, 104, 164, *65, 168, 171. casualties, 68, 224. defensive use of, 229. first use of, 66, 67, 215- German production, 158, 202. 278 Index Mustard Gas, protection against, 137, 221, 222. Surprise, 66, 67, 69. National Health Insurance Com- mission, 164, 201. Neglect of Chemical Industry, 171, 187. New War Chemicals, see War Chemicals. Nieuport, 66, 67, 217. Nitric Acid, 171. Nitrogen Fixation, 88, 171, 186, 205, 208, 211-213, 244, 260, 265, 267, 268, 269. No-Man’s Land, future, 227, 229. Non-persistent substances, 28, 29. Novocain, 201. Obstacle, new type of, 223, 229. Organic Chemical Industry, 145, 235, 236, 250, 251, 271. Oxalic Acid, 190. Particulate Clouds, 140, 232. Patent Policy, German, 191. Penetrants, 29. Persistent lethal substance, 225- 227, 229,231. substances, 28, 29. Phenol, German cornering of, 194. Phenylcarbylamine chloride, 158. Phosgene, 25, 29, 64, 69, 124, 141, 156, 167, 217, 230, 249. , “ delayed action,” 45, 53. , French development of, 170. , German cloud, 44-46. Phosphorus, 175, 181. Photographic chemicals, 189, 203. Physiological classification, 25. Poison gas, 25, 150, 151. Porton, experimental station, 97, 110. Portuguese front, attack on, 77. Potassium permanganate, 126, 221. Price cutting policy, German, 189, 213. Production, 83,149,162, 163, 249, 250. , critical importance of, 143, 144, 171, 260. statistics, 82, 83, 88. Projector, German development of, 70, 71. Livens, see Livens Projector. short range, 182. Propaganda by German dye agents, 191. , German use of, 113. Protection, 38, 90, 92, 95, 99, 100, 109, 113, 114, 121, 124, 125, 127, 128, 176, 216, 217, 220, 221. collective, 231, 233. future developments, 231. Individual, 231, 232. of animals, 92. Prussic acid, 26, 118. Puteaux, American laboratory, 175, 218. Rechicourt, attack on French, 70. Red Cross appeal to end war, 1x9. Research, 35, 85, 108, 176, 184, 249- Respirator, Box, see Box Respira- tor. drums, 87. XTX, 135. Rhineland occupation, Allied, 206. Royal Society, 50, 94-97. Rubber, German shortage of, 132. Russia, gas attacks against, 47, 123, 124. St. Mihiel Battle, 182. Salicylic acid, 189, 194,199. 279 Index Salvarsan, 199. Scientific Advisory Committee, 49, 95, 96. Semi-Circular Canals, 215. Sensitisers, photographic, 203. Service Chimique de Guerre, 105. Shell, Gas, 30, 40, 41, 64,136,183, 216. Falkenhayn’s orders, 43. percentage of, 77, 79, 80, 141, 245. Smoke, future importance of, 180, 181, 216. use with lethal gases, 140, 180. Somme offensive, 52, 55, 61, 64, 143. Speculative element, 215, 220. Special Brigade R.E., 52, 174. Companies, 50, 93. Sternutatory compounds, 26, 28, 4i. Stokes Mortar, 29, 52,175. Stovaine, 220. Strategy, chemical, see Tactics and Strategy. Sulphur Black, 155. Sulphuric acid, 171, 253. Supply Department, British, 101, 105. Organisations, 102. Surprise, critical factor of, 31, 32, S3, hi, 113,114,144. Tactics and Strategy, 215, 216, 225. Tactical classification, 25, 28. Tanks, 143,217,227,233, 234, 247, 248. Technik im Weltkriege, Die, 36,3 7, 40, 41, 47, 5i, 57, 69, 74, 80, 125, 128, 129, 135, 136, 141. Thermite shell, 175. Thiodiglycol, 159. Toxic compounds, 26. Treaty Stocks, 150. Trench Warfare Department, Brit- ish, 95, 96. Research Department, 96. Supply Department, 96, 105, 170. Tri-chlor-methyl-chloro-formate, 64, iS7- T. Stuff, 41. Verdun, gas attack at, 69. Versailles, Treaty of, 34, 150, 210, 242-244, 264-267, 270, 271. Vesicant Compounds, 27,137, 217, 239- Vested Interests, 258, 259. Vincennite, 118. War chemicals, new, 217, 225. Physiological classifica- tion, see Physiologi- cal classification. Tactical classification, see Tactical Classifi- cation. Warsaw, cloud attacks, 123. White Cross shell- 225. Xylyl bromide, 41, 156. Xylylene dibromide, 41. Yellow Cross, see Mustard Gas. Yperite, 80,166. Ypres, first German gas attack 23,31,32,38- first Mustard gas, 66, 217. Yser, raid by Germans. 117. 280 NAME INDEX Albert, Dr., 194-196,197,198. Bacon, Colonel R. F., 218. Baeyer, Professor, 27. Baker, Professor H. B., 95. Barley, Major, D.S.O., 46. Beilby, Sir George, 96. Bemstorff, von, 194. Bethmann-Hollweg, Dr. von, in, 197. Boy-Ed, Captain, 197. Bueb, Dr., 212. Cadman, Sir John, 96. Chevalier, Medecin aide-major, 27. Crossley, Professor A. W., 95, 97. Curmer, General, 99. Davies, Major David, M.P., 172, 255, 257, 258. Davy, J., 249. Dawson, Sergeant-Major, 51. Debeney, General, 185. Duisberg, Herr, 147, 208. Ehrlich, Dr. Paul, 199. Falkenhayn, General, 94,147,148. Foch, Marshal, 175. Foulkes, Brig.-General C. H., 92. French, Field-Marshal Sir J., 31, 43, 48. Fries, Brig.-General A. A., 114, i7S, 177, 179, 180, 183. Fuller, Colonel J. F. C., 227, 233. Garvan, Francis P., 189, 195, 197, 199. Geyer, Captain, 136-140. Green, Prof. A. G., 168. Grey, Viscount, 256, 257. Guthrie, 249. Haber, Professor, 35, 49, l>$, 90. Haig, Field-Marshal Sir Douglas, 54- Haldane, Dr., 12T. Harrison, Lieut.-Colonel E. F., 98, 126. Hartley, Brig.-General H., 63, 76, 98, 123, 240. Horrocks, Sir William, 95. Hossenfelder, Consul-General, 197: Jackson, Colonel L., 94, 95. Joyce, Colonel, 212. Kirschbaum, Prof. F. P., 135. Kitchener, Lord, 33, 94, 95, 121, 237- Kling, M., 100. Krupp, von Bohlen, Herr, 147, 259. Lambert, Major, 126. Lebeau, Professor P., 101. Levinstein, Dr. H., 168. Livens, Major, 60. Lodge, Sir Oliver, 94. Ludendorff, General, 70, 82,90,91, 114, 147, 149, 259. 281 Name Index Meyer, Victor, 27. Macpherson, Captain, 121. McConnel, Lieut., 208. Moulton of Bank, Rt. Hon. Lord, S, 169, 242, 243, 270. Moureu, M. Charles, 100. Norris, Colonel, 206, 208, 209. Ozil, General, 100, 105. Palmer, Mitchell, 19, 189. Paterno, Senator, 101. Penna, Colonel, 101. Pick, Dr. H., 125, 129, 130,131. Pollard, Professor A. F., 112. Pope, Sir William, 165,191, 202. Ramsay, Sir William, 94. Rayleigh, Lord, 94. Runciman, W., 1461. Sachur, Professor, 35. Schmaus, Lieut. Dr., 75. Schwarte, see Technik im Welt- kriege (Subject Index). Schweitzer, Dr. Hugo, 194, 195, 211. Sering, Dr. Max, 211. Stieglitz, Professor Julius, 191, 198, 200. Thomas, Albert, 100. Thorpe, Prof. J. F., 96, 99. Thuillier, Major-General H. F., 94, 98, 105. Villavecchia, Prof., 101. Vincent, Monsieur, 100. Watson, Colonel, 93. Weiss, M., 100. Wells, H. G., 112. Wing, Major-General, 43. 282